
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ADVERSARIAL EXAMPLES FOR HEURISTICS IN COMBINATORIAL OPTIMIZATION: AN LLM BASED APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

This work employs LLMs to generate adversarial examples for heuristics in combinatorial optimization. The problem, given a heuristic for an optimization problem, is to generate a problem instance where the heuristic performs poorly. We find improved adversarial constructions for well-known heuristics for k-median clustering, bin packing, the knapsack problem, and a generalization of Lovász’s gasoline problem. Specifically, we adapt the FunSearch framework [Romera-Paredes et al., Nature 2023] to obtain adversarial constructions for these problems. We note that using FunSearch is crucial to our improved constructions — local search does not give comparable results. The advantage of FunSearch is that it produces structured instances that yield theoretical insights which are post-processed and generalized by a human researcher, while other metaheuristics usually produce only unstructured instances that are harder to generalize.

1 INTRODUCTION

Recent advances in neural networks, particularly large language models, have provided a new impetus to the use of artificial intelligence (AI) in all areas of science. Mathematics is of particular interest to AI researchers due to its formalism, perfect verification ability, being an open domain as well as being a domain which is a hallmark of reasoning and intelligence. In the last decade, AI made advances in research by proposing new conjectures in niche domains such as knot theory (Davies et al., 2021), discovered new algorithms (Fawzi et al., 2022) and provided new lower bounds or combinatorial constructions (Romera-Paredes et al., 2024; Novikov et al., 2025; Wagner, 2021; Mehrabian et al., 2023).

Some of the works (Fawzi et al., 2022; Wagner, 2021; Mehrabian et al., 2023) use black-box neural networks to make these advances, which provide new discoveries yet provide almost no interpretation or insight to mathematicians to advance the field itself. The use of large language models in works like (Romera-Paredes et al., 2024; Novikov et al., 2025) provided an opportunity to bridge this gap by using natural language or coding languages as an interface of communication between mathematicians and black-box neural networks. In this work, we take this inspiration forward to generate adversarial examples for heuristics used in combinatorial problems. Many combinatorial optimization problems have widespread real-world applications but are computationally intractable (e.g., NP-hard). A natural way to solve these problems in practice is to devise heuristics. Ideally, we aim to analyze a heuristic to guarantee an upper bound on its approximation ratio and provide a matching lower bound by constructing an example where the heuristic achieves this bound. However, this is often not achievable in practice. Instead, one typically tries to either tighten the upper bound through more refined analysis or raise the lower bound by identifying a better adversarial example.

In this work, we use the FunSearch paradigm (proposed by Romera-Paredes et al. (2024)) to generate adversarial examples for heuristics to solve a variety of combinatorial optimization problems. **Analyzing the worst-case performance of heuristics can explain their performance in real-world applications, and knowledge of adversarial instances can help devise better heuristics.** Specifically, we consider well-known heuristics for the knapsack problem, bin packing, hierarchical clustering, and a variant of Lovász’s gasoline puzzle. This approach of using FunSearch in contrast to local search has several advantages: a) Local search algorithms which search in vector spaces only find one vector.

054 FunSearch can find a Python-program that is generic on parameters like the dimension or size of the
 055 instance, and thus generalizes. Secondly, the result of local search, just being a vector of unlabeled
 056 numbers, does not lend itself to interpretation. The result of FunSearch is (usually short) Python-
 057 code that can be interpreted and modified by humans. Thirdly, for many optimization-problems,
 058 optimal solutions have a lot of structure and symmetry, i.e. low Kolmogorov-complexity. Simple
 059 local search encodes all vectors indifferently and does not account for symmetries, while FunSearch
 060 does. The most striking example was for bin packing, where local search provided comparable
 061 scores for small numbers of bins. Unfortunately, the solution found by local search did not follow a
 062 discernible pattern¹, while the code from FunSearch (see Fig. 2b) was generalized to obtain a lower
 063 bound of 1.5 (whereas the previous best-known lower bound was 1.3). We refer to Section 2.2.2 and
 064 Fig. 2b for further details.

065
 066
 067
 068
 069
 070
 071
 072
 073
 074 Figure 1: A diagrammatic representation of Co-FunSearch.

075 We start with adversarial examples provided to FunSearch, and then inspect the programs which
 076 yielded the highest scores. Some of these programs might have a discernible structure relevant to
 077 the problem, while others consist of hard-coded or pseudo-random numbers which expose no useful
 078 structure. We then manually inspect and modify the promising programs: We eliminate parts whose
 079 removal does not decrease the score, and we modify the program to be simpler where possible. For
 080 example, this may involve removing redundant elements of lists (Fig. 2, Fig. 5), or simplifying a list
 081 of n ascending numbers into a list containing the mean of those numbers n times (Fig. 5). Afterward,
 082 we attempt to prove statements about the scores of the instances, or otherwise feed the simplified
 083 programs back into FunSearch to obtain better results. These expert modifications were essential
 084 for generating meaningful insights, and the collaborative workflow demonstrates FunSearch’s poten-
 085 tial for productive partnerships between mathematicians and AI systems. We call this method
 086 Co-FunSearch: *Collaborative FunSearch*.

087 Particularly, with Co-FunSearch, we were able to *disprove* that the Nemhauser-Ullmann heuristic
 088 for knapsack problem has output-polynomial running time, and we *improve the lower bound* of best
 089 fit heuristic for bin packing in the random order model *from 1.3 to 1.5*. We also obtained the *first*
 090 *non-trivial lower bound of the golden ratio* for the price of hierarchy for k -median clustering, and
 091 *disprove the conjecture* that the iterative rounding algorithm for the generalized gasoline problem is
 092 a 2-approximation.

093 We conclude with some challenges and limitations of our approach in Section 4.

095 2 PROBLEMS AND NOTATION

097 2.1 GENERAL FRAMEWORK FOR ADVERSARIAL INSTANCE GENERATION

099 We first propose a general framework for generating adversarial instances for any given heuristic,
 100 and then describe the particular problems we focus on in this work and how we instantiate this gen-
 101 eral framework for the given problem. Given an optimization problem (without loss of generality,
 102 a minimization problem), a heuristic algorithm \mathcal{H} and a (computationally expensive) optimal algo-
 103 rithm Opt , the goal is to construct an instance \mathcal{I} where the heuristic performs poorly with respect
 104 to Opt . More concretely for minimization problems, we aim to construct an adversarial instance \mathcal{I}

105
 106 ¹For instance, one of the local-search-generated lists outperforming FunSearch was: [0.003031, 0.005466,
 107 0.006098, 0.007283, 0.021158, 0.068030, 0.073417, 0.170490, 0.202092, 0.219287, 0.306771, 0.375912,
 0.540358].

108 such that the ratio $R = \frac{\text{Score}(\mathcal{H}(\mathcal{I}))}{\text{Score}(\text{Opt}(\mathcal{I}))}$ is large, where $\text{Score}(\mathcal{H}(\mathcal{I}))$ denotes the value yielded by the
109 heuristic algorithm and $\text{Score}(\text{Opt}(\mathcal{I}))$ denotes the optimum value for \mathcal{I} .
110

111 While methods like local search, tabu search, and genetic algorithms have focused on generating
112 adversarial instances for heuristics, this work focuses on using language models for generating the
113 instances. Specifically, we model each instance as output of a program \mathcal{P} s.t. $\mathcal{I} = \text{Output}(\mathcal{P})$.
114 Initially, a trivial instance is expressed as program \mathcal{P}_0 . In addition, we prompt a large language
115 model \mathcal{L} that has proficiency in code generation and reasoning. At each iteration i , the language
116 model takes as input one of the previously generated programs, $p = \mathcal{P}_{*}}*$ and generates an improved
117 version p' of p such that it improves the reward R . We specifically follow the evolutionary approach
118 used in Romera-Paredes et al. (2024) for generating these programs and optimizing the reward R .
119

120 **2.2 PROBLEMS AND HEURISTICS**

121 We focus on four distinct problems and their corresponding heuristics to illustrate the effectiveness
122 of this approach. These problems vary from knapsack, bin-packing, hierarchical clustering to the
123 gasoline puzzle by Lovász. While the approach is general, we believe the specific instantiation on
124 these problems provides a general lens to find adversarial instances for any given heuristic.

125 **2.2.1 NEMHAUSER-ULLMANN HEURISTIC FOR THE KNAPSACK PROBLEM**

126 In the classical NP-hard knapsack problem, an input consists of a set of n items, where each item
127 $i \in [n]$ has a profit $p_i \in \mathbb{R}_{>0}$ and a weight $w_i \in \mathbb{R}_{>0}$. Additionally, a capacity $t \in \mathbb{R}_{>0}$ is given,
128 and the goal is to find a subset $I \subseteq [n]$ of the items such that the profit $\sum_{i \in I} p_i$ is maximized
129 under the constraint $\sum_{i \in I} w_i \leq t$. Without a given capacity t , the knapsack problem can also
130 be viewed as a bi-objective optimization problem, where one wants to find a subset with small
131 weight and large profit. These two objectives are obviously conflicting and there is no clear optimal
132 solution anymore, but one rather has to find a good trade-off between the criteria. In multi-objective
133 optimization, it is very common to compute the set of Pareto-optimal solutions where a solution
134 is called Pareto-optimal if there does not exist another solution that is simultaneously better in all
135 objectives (see, e.g., Ehrgott (2005) for a comprehensive overview). Only Pareto-optimal solutions
136 constitute reasonable trade-offs and for many multi-objective optimization problems, algorithms for
137 computing the set of Pareto-optimal solutions are known (e.g., for the multi-objective shortest path
138 problem (Corley & Moon, 1985)). These are usually no polynomial-time algorithms, as the set of
139 Pareto-optimal solutions can be of exponential size. However, in practice the Pareto set is often small
140 and one is interested in finding algorithms that are output-polynomial time, i.e., whose running time
141 depends polynomially on the input and the output size. Such algorithms are efficient if the Pareto
142 set is small, which is often the case in applications.
143

144 **Nemhauser-Ullmann heuristic** It is an open problem whether output-polynomial time algorithms
145 for the knapsack problem (viewed as a bi-objective optimization problem) exist (Röglin, 2020). The
146 best candidate for such an algorithm is the Nemhauser-Ullmann algorithm, which is based on dy-
147 namic programming (Nemhauser & Ullmann, 1969). For a given instance of the knapsack problem
148 with n items, it computes iteratively the Pareto sets $\mathcal{P}_1, \dots, \mathcal{P}_n$, where \mathcal{P}_i denotes the Pareto set of
149 the sub-instance that consists only of the first i items (i.e., \mathcal{P}_n is the Pareto set of the entire instance).
150 The Nemhauser-Ullmann algorithm can be implemented to run in time $O(\sum_{i=1}^n |\mathcal{P}_i|)$. If there was
151 an α such that $|\mathcal{P}_i| \leq \alpha |\mathcal{P}_n|$ for each instance and each i , one could bound the running time by
152 $O(\alpha n |\mathcal{P}_n|)$, which would result in an output-polynomial time algorithm as long as α grows at most
153 polynomially with n . So far, no instances were known where an intermediate set \mathcal{P}_i is larger than the
154 final Pareto set \mathcal{P}_n by more than a small constant factor. With the help of an instance generated by
155 FunSearch, we construct a sequence of instances disproving that the Nemhauser-Ullmann algorithm
156 has output-polynomial running time.

157 **2.2.2 BEST FIT HEURISTIC FOR BIN PACKING**

158 Bin Packing is a classical NP-hard optimization problem that has been studied extensively as an
159 online problem. In this problem, items with sizes w_1, w_2, w_3, \dots arrive one by one and an online
160 algorithm has to assign each item irrevocably to a bin when it arrives. There is an unlimited number
161 of bins with a fixed capacity c available. The goal is to use as few bins as possible to pack all items.

162 In the online setting, simple algorithms like First-Fit and Best-Fit have been studied, which pack
 163 each arriving item into the first bin into which it fits or the fullest bin into which it fits, respectively.
 164 To mitigate the power of the adversary in classical worst-case analysis, these algorithms have been
 165 studied extensively in the random order setting, in which an adversary chooses the items sizes but
 166 the items arrive in a random order. In the unshuffled setting, Dósa & Sgall (2014) proved an upper
 167 bound of 1.7 on the approximation-ratio of Best-Fit. This means that, on any instance, the expected
 168 number of bins used by Best-Fit is at most 1.7 times the optimal number. As this holds for any
 169 instance, this upper bound also applies to the shuffled setting. In the shuffled setting, the best-known
 170 lower bound was 1.3, i.e. there exists an instance such that, when the instance is shuffled, Best-Fit
 171 needs at least 1.3 times the optimal number of bins, in expectation (Albers et al., 2021). With the
 172 help of FunSearch, we improve this lower bound to 1.5.
 173

174 2.2.3 K-MEDIAN IN HIERARCHICAL CLUSTERING

175 Hierarchical clustering is an important research topic in unsupervised learning. In such a clustering
 176 problem, usually a data set X with n points is given and one seeks for a sequence $\mathcal{H}_1, \dots, \mathcal{H}_n$ of
 177 clusterings, where each \mathcal{H}_k is a k -clustering of X , i.e. a partition of X into k parts. The clusterings
 178 must be hierarchically compatible, meaning that each \mathcal{H}_k is obtained from \mathcal{H}_{k+1} by merging two
 179 clusters. To evaluate the quality of such a hierarchical clustering, a common approach is to choose an
 180 objective function Φ like k -center, k -median, or k -means and to compare each clustering \mathcal{H}_k with an
 181 optimal k -clustering OPT_k with respect to the objective Φ . Then the approximation factor α of the
 182 hierarchical clustering can be defined as the worst approximation factor of any of the levels, i.e., $\alpha =$
 183 $\max_{k \in [n]} \Phi(\mathcal{H}_k)/\Phi(\text{OPT}_k)$ (see, e.g., Lin et al. (2010)). Since the optimal clusterings are usually
 184 not hierarchically compatible, an approximation factor of 1 cannot be achieved even with unlimited
 185 running time. Arutyunova & Röglin (2025) defined the *price of hierarchy* of a clustering objective
 186 Φ as the best approximation factor that can be achieved for any clustering instance. They showed,
 187 e.g., that the price of hierarchy for the k -center objective is exactly 4, meaning that for any instance
 188 of the hierarchical k -center problem there exists a hierarchical clustering with an approximation
 189 factor of 4 and that there exists an instance for which any hierarchical clustering does not have a
 190 better approximation factor than 4. For the k -median problem, no non-trivial lower bound on the
 191 price of hierarchy is known. The best known upper bound is 16 for general metrics (Dai, 2014). We
 192 obtain the first non-trivial lower bound for the price of hierarchy for the k -median problem, showing
 193 that it is at least the golden ratio, ≈ 1.618 .

194 2.2.4 GASOLINE PROBLEM

195 The Gasoline problem is a combinatorial optimization problem inspired by Lovász's gasoline
 196 puzzle (Lovász, 2007). In an instance of this problem, we are given two sets $X = \{x_1, \dots, x_n\}$ and
 197 $Y = \{y_1, \dots, y_n\}$ of non-negative numbers with the same sum. The goal is to find a permutation π
 198 of the set X that minimizes the value of η such that

$$199 \quad 200 \quad 201 \quad \forall [k, \ell] : \quad \left| \sum_{i \in [k, \ell]} x_{\pi(i)} - \sum_{i \in [k, \ell-1]} y_i \right| \leq \eta.$$

202 Given a circle with n points labeled 1 through n , the interval $[k, \ell]$ denotes a consecutive subset
 203 of integers assigned to points k through ℓ . For example, $[5, 8] = \{5, 6, 7, 8\}$, and $[n-1, 3] =$
 204 $\{n-1, n, 1, 2, 3\}$. The intuition is that the y_i -values correspond to road segments on a cycle and
 205 the x_i -values correspond to fuel canisters that can be placed between the segments. The goal is to
 206 distribute the canisters such that one can get around the cycle with the smallest possible fuel tank
 207 capacity η .

208 The Gasoline problem is known to be NP-hard, and a 2-approximation algorithm for it is known
 209 (Newman et al., 2018). It is an open problem whether better approximation algorithms or even a
 210 polynomial-time approximation scheme exist. In the literature, another heuristic for the problem
 211 has been considered that is based on iteratively rounding the linear programming relaxation (Ra-
 212 jković, 2022). The approximation guarantee of this algorithm is unknown. In his master's thesis,
 213 Lorieau constructed a class of instances showing that its approximation factor is not better than 2
 214 (Lorieau, 2024). Lorieau conjectured that it is actually a 2-approximation algorithm, but this has not
 215 been proven yet. The iterative rounding algorithm is interesting because it generalizes canonically
 216 to a d -dimensional Gasoline problem in which x_i and y_i are d -dimensional vectors. Also for this

generalization, the best-known lower bound was 2 and Lorieau conjectured that also for this generalization the algorithm achieves a 2-approximation. With Co-FunSearch, we obtain a family of instances disproving this conjecture.

3 EXPERIMENTAL DETAILS AND RESULTS

We compare Co-FunSearch to base FunSearch and local search on the above 4 problems. The main goal in all these problems is to search for a vector v (encoding the instance) which optimizes the given objective (usually some performance-measure of some heuristic on this specific instance). The objectives depend on the problem, and are detailed below in section 3.3. Random search works by initializing a random vector v . At each step, sample a random vector v' close to v and check if v' improves on the objective. If it does, replace v by v' with some probability p , otherwise keep v unchanged. This procedure keeps improving on the objective until reaching a local minimum. For our experiments, v' arises from v by adding independent normally-distributed noise with mean 0 and variance $s \cdot (1 - \frac{t}{t_{\max}})$ to each coordinate of v (clipping v' to the problem's bounds as required), where t is the current time since the start of the search, t_{\max} is the time after which we terminate the search (set to 3 minutes), and s is a problem-specific parameter. For the knapsack-problem, we chose 20 items and $s = 1000$, because both weights and profits were rounded before evaluation to be less sensitive to floating-point imprecision. For bin-packing, we chose 13 bins with capacity 1 and $s = 0.2$. For weighted hierarchical clustering, we chose 8 points, $s = 0.2$, and replaced each point's weight w to 2^w before evaluation, because we observed worst-case instances' weights frequently spanning several orders of magnitude. For the two-dimensional gasoline-problem, we chose $s = 0.2$ and $|X| = |Y| = 14$.

FunSearch works similarly: Instead of searching for a vector v that has a high objective, it searches for a Python-program P outputting a vector with high objective. Sampling a Python-program P' “close” to P is not done by randomly changing characters in the program's source-code, but by prompting an LLM with the source-code of P , requesting a similar program which improves the score. The scoring-function is not provided to the LLM. The newly generated program (if it executes without error) is added to a database of programs with its score. In the next iteration, a new program is sampled from the database according to a probability distribution and the process is repeated. More details about the evolutionary search can be found in Romera-Paredes et al. (2024). To evaluate a given program, we use problem-specific scoring-functions, described in their respective sections below.

3.1 RESULTS

Method	Knapsack	Bin-Packing	k -median	Gasoline
Previous Best Known Lower Bound	2.0	1.3	1.0	2.0
Local Search	1.93	1.478	1.36	2.11
FunSearch	646.92	1.497	1.538	3.05
Co-FunSearch	$n^{O(\sqrt{n})}$	1.5	1.618	4.65
Known Upper Bound	$O(2^n)$	1.7	16	None

Table 1: Comparison of Co-FunSearch with base FunSearch, local search and SOTA on different problems. The given values for local search and FunSearch are the maxima across 30 trials each.

Table 1 outlines the main results for all four problems. Our main results are as follows:

- For the knapsack problem, the local search method only achieves 1.93, whereas FunSearch found instances with a score of 646.92. The compact program found by FunSearch could be improved to a general super-polynomial bound $n^{O(\sqrt{n})}$.
- For the Best-Fit heuristic for bin packing, FunSearch finds an instance which is 1.497 times worse than optimal, outperforming both the existing SOTA (1.3) and local search (1.478). This instance could easily be generalized, yielding an asymptotic bound of 1.5.
- For the hierarchical k -median problem, no non-trivial lower bounds were previously known. FunSearch (1.538) outperforms local search (1.36) with an instance that we could modify to yield a lower bound of the golden ratio (≈ 1.618).

270 • Lastly, in Lovász’s gasoline problem, FunSearch (3.05) outperforms both the SOTA (2.0)
 271 and local search (2.11), and could be further improved to 4.65.
 272

273 **Generated Programs with FunSearch and Co-FunSearch** In this section, we illustrate the pro-
 274 grams found by FunSearch and how these programs are modified by experts to obtain adversarial
 275 instances which are much better in score and are generalizable with guarantees. Fig. 2a shows the
 276 initial program given in the bin-packing problem, Fig. 2b shows the instance generated by Fun-
 277 Search, which achieves a score of 1.4978, and Fig. 2c shows how we generalized this instance: The
 278 instance consists of two types of items in a list which are generalized as entries “a” and “b” in the
 279 figure. Specifically, for large a and b , this instance’s score approaches 1.5. Similar Fig. 5 and 6 are
 280 shown for hierarchical clustering and the gasoline problem respectively in the appendix.

```

281 def get_items() -> list[float]:
282     """Return a new bin-packing-instance,
283     ↪ specified by the list of items.
284
285     The items must be floats between 0 and
286     ↪ 1. """
287     items = [0.4, 0.5, 0.6]
288     return items
289
290 def get_items() -> list[float]:
291     """Return a new bin-packing-instance, specified by the list of items.
292
293     The items must be floats between 0 and 1. """
294     """Yet another version of `get_items_v0`, `get_items_v1`, and `get_items_v2`, with some
295     ↪ lines altered."""
296     items = [0.8, 0.2, 0.6, 0.4]
297     # Split the first item into seven smaller items and the fourth item into five smaller
298     ↪ items
299     items = [0.114, 0.114, 0.114, 0.114, 0.114, 0.114, 0.114] + items[1:3] + [0.08, 0.08,
300     ↪ 0.08, 0.08, 0.08]
301     return items
302
303 (a) Initial program. (c) An intermittent step of tuning 2b by hand
304
305 (b) A program found by FunSearch after 10 trials of 2,400 samples each.
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
```

Figure 2: The evolution of programs generating bin packing instances, with model open-mistral-nemo and a temperature of 1.5.

3.2 ABLATIONS

Figure 3 shows the search dynamics with variations across different models, the temperature parameter and the initial program used during FunSearch. In all these experiments, we plot the maximum score of samples produced so far against the number of samples (LLM-prompts), together with the standard error across 30 trials. To illustrate the effect of variations and due to high computational cost (inference costs) of each experiment, we undertake these ablations on a single problem but believe similar trends would hold for all the other problems as well.

Variations across different models: Fig. 3a shows the variations with two models from OpenAI, gpt-4.1-mini (OpenAI, 2025a) and gpt-4.1-nano (OpenAI, 2025b) with Mistral AI’s open-mistral-nemo model (Mistral AI, 2024). We observe that gpt-4.1-nano slightly outperforms gpt-4.1-mini. This is a bit counterintuitive, as gpt-4.1-mini is a more powerful model than gpt-4.1-nano. To investigate this further, we plot the both the maximum score and the rolling average score of the last 10 samples (Figure 3b). Here, gpt-4.1-mini outperforms gpt-4.1-nano on the rolling average but performs slightly poorer on the maximum score, highlighting that, although larger models are stronger on average, in problems with verifiable score where one cares about the best performing sample, smaller models are sufficient and can outperform larger ones.

Variations across temperature: Fig. 3c shows the variations of the objective function with the change in the sampling temperature. The sampling temperature is an indicator of sharpness of the LLM’s probability distribution for each sample (the lower the temperature, the more sharp it is). We observe that the higher sampling temperature performs better than lower sampling temperature, owing to high entropy of samples produced in inference. It should be noted that we plot the best

324 score obtained across all samples as objective, so even if the mean performance drops, the best
 325 sample is better owing to increase in entropy and diversity.
 326

327 **Variations across initial prompts:** Another critical hyperparameter in FunSearch as outlined by
 328 Romera-Paredes et al. (2024) is the initial instance given to a FunSearch experiment. In Fig. 3d, we
 329 vary the initial program for FunSearch on the bin packing problem. We observe that a trivial instance
 330 with a more flexible structure (a for-loop adding the items $1/i$ for $i \in \{1, \dots, 10\}$) starts from a low
 331 initial score but improves as more and more samples are drawn in FunSearch. Additionally, we
 332 hard-code a trivial instance as numbers without appropriate structure, and although this improves
 333 with more samples, the performance is inferior to both the trivial instance with the structure and the
 334 best known construction. Observing the output, the variations introduced by FunSearch consist of
 335 different hardcoded numbers, as opposed to inserting more structure, like loops or maths-functions,
 336 into the program. This highlights the importance of an appropriate structure and skeleton for the
 337 initial program in FunSearch. We compare this with using the best known construction (Albers
 338 et al., 2021) as the initial instance, which does start from a high score initially but stagnates quickly
 339 with iterations.

340 (a) Comparing different models, each with
 341 temperature 1.0 and starting with a hard-
 342 coded instance.
 343

344 (b) Comparing rolling average (10 samples)
 345 and max-performance of gpt-4.1-mini with
 346 gpt-4.1-nano, both with temperature 1.0 and
 347 starting with a hard-coded instance.
 348

349 (c) Variation of different sampling tem-
 350 peratures for gpt-4.1-mini, each starting with a
 351 hard-coded instance.
 352

353 (d) Variation of initial instances for gpt-4.1-
 354 mini with temperature 1.0.
 355

356 Figure 3: Comparing the effect of different hyperparameters on the objective function in bin packing.
 357

358 3.3 CO-FUNSEARCH AND KEY RESULTS

359 In this section, we highlight how we used FunSearch to find instances and generalized them to
 360 achieve improved lower bounds for each problem. Furthermore, we also provide proofs for lower
 361 bounds for most of these instances.
 362

363 3.3.1 KNAPSACK PROBLEM

364 We consider the knapsack problem (as described in Section 2.2.1) as a bi-criteria optimization prob-
 365 lem, where we want to minimize the total weight while maximizing the total profit. We used Fun-
 366 Search to find instances I that have a high score $\max_{1 \leq i \leq n} |\mathcal{P}_i(I)|/|\mathcal{P}(I)|$, i.e. where the Pareto set
 367 $\mathcal{P}_i(I)$ of a sub-instance I_i , which consists only of the first i items of I , is much larger than the Pareto
 368 set $\mathcal{P}(I)$ of the entire instance I . The sizes of the intermittent and final Pareto-sets are obtained as
 369 a by-product of running the Nemhauser-Ullmann algorithm on I . Items are written as tuples of the
 370 form (weight, profit).
 371

```

378     def get_instance() -> list[tuple[int, int]]:
379         """Return an instance, specified by the
380         ↪ list of (weight, profit) pairs.
381
382         Weights and profits must be non-negative
383         ↪ integers.
384         """
385         return [(1, 2)] * 2 + [(4, 4), (2, 2),
386         ↪ (1, 3)]
387
388     (a) Initial program.

389     def get_instance() -> list[tuple[int, int]]:
390         """Create a variant with more diverse item types and weights to potentially influence
391         ↪ Pareto set size."""
392         items = []
393         # Repeated very light, low profit items
394         items += [(1, 1)] * 8
395         # Mix of moderate weight and profit items with some unique entries
396         items += [(4, 9), (4, 9), (5, 10)]
397         # High-profit, lightweight items with more profit variation
398         items += [(2, 16), (2, 14), (3, 15)]
399         # Heavier items with varied weights and higher profits to increase trade-offs
400         items += [(9, 20), (12, 30), (15, 40)]
401         # Small, low to moderate profit items
402         items += [(1, 3), (2, 5), (3, 7), (3, 8)]
403         # Very heavy, high-profit rare items with similar weights
404         items += [(20, 35), (21, 36), (22, 38)]
405         # Larger weight, moderate profit item to diversify options
406         items += [(18, 28)]
407         # Additional medium-weight high-profit items to increase complexity
408         items += [(10, 25), (11, 27)]
409         return items
410
411     (b) A program found by FunSearch after 10 trials of 500 samples each.

412
413     def get_instance() -> list[tuple[int, int]]:
414         items = []
415         n = 7
416         items += [(1, 1)] * n
417         items += [(4, 9)] * n
418         items += [(2, 16)] * n
419         items += [(9, 20)] * n
420         items += [(18, 28)] * n
421         items += [(10, 25), (11, 27)]
422
423     (c) An intermittent step of tuning 4b by hand.

```

Figure 4: The evolution of programs generating instances of the knapsack problem. The model used was gpt-4.1-nano with a temperature of 1.0, and results obtainable despite a bug in the implementation that underestimated the sizes of some Pareto-sets.

We obtain the code in Figure 4b after running FunSearch for 10 trials of 500 samples each. Having simplified the output (shown in Fig. 4c), we can scale all items’ weights up by a factor of 2 (which does not affect Pareto-optimality), decrease some profits by 1, and change the last item to obtain the following tidier instance, which achieves slightly higher scores for the same n :

$$\left[\underbrace{\left(\begin{matrix} 8 \\ 8 \end{matrix} \right), \dots, \left(\begin{matrix} 8 \\ 8 \end{matrix} \right)}_{n \text{ times}}, \underbrace{\left(\begin{matrix} 2 \\ 1 \end{matrix} \right), \dots, \left(\begin{matrix} 2 \\ 1 \end{matrix} \right)}_{n \text{ times}}, \left(\begin{matrix} 4 \\ 4 \end{matrix} \right), \left(\begin{matrix} 2 \\ 2 \end{matrix} \right) \right].$$

From here, we attempted to prove results about the instance. After a first draft, we found it more natural to replace the first n items by n powers of 2, and saw that stronger results are possible by replacing the last two items by k powers of 2:

$$\left[\left(\begin{matrix} 2^{2k} \\ 2^{2k} \end{matrix} \right), \left(\begin{matrix} 2^{2k+1} \\ 2^{2k+1} \end{matrix} \right), \dots, \left(\begin{matrix} 2^{2k+n} \\ 2^{2k+n} \end{matrix} \right), \underbrace{\left(\begin{matrix} 2^k \\ 2^k - 1 \end{matrix} \right), \dots, \left(\begin{matrix} 2^k \\ 2^k - 1 \end{matrix} \right)}_{n \text{ times}}, \left(\begin{matrix} 2^{2k-1} \\ 2^{2k-1} \end{matrix} \right), \left(\begin{matrix} 2^{2k-2} \\ 2^{2k-2} \end{matrix} \right), \dots, \left(\begin{matrix} 2^{k+1} \\ 2^{k+1} \end{matrix} \right) \right].$$

Finally, to apply our result not only to the size of the Pareto sets but also to the runtime of the Nemhauser-Ullmann algorithm², we appended the factors $x_i := (1 + \frac{2^{-i}}{2^k - 1})$ to the n center items:

$$\left[\left(\begin{matrix} 2^{2k} \\ 2^{2k} \end{matrix} \right), \dots, \left(\begin{matrix} 2^{2k+n} \\ 2^{2k+n} \end{matrix} \right), \left(\begin{matrix} x_1 \cdot 2^k \\ x_1 \cdot (2^k - 1) \end{matrix} \right), \dots, \left(\begin{matrix} x_n \cdot 2^k \\ x_n \cdot (2^k - 1) \end{matrix} \right), \left(\begin{matrix} 2^{2k-1} \\ 2^{2k-1} \end{matrix} \right), \dots, \left(\begin{matrix} 2^{k+1} \\ 2^{k+1} \end{matrix} \right) \right]. \quad (1)$$

By choosing $k = \log_2(\sqrt{n}) + 1$, this instance shows:

Theorem 3.1. *The Nemhauser-Ullmann algorithm does not have output-polynomial running time.*

Before this work, no such instances were known. We refer to Appendix 5.1.1 for further details.

²The difference between the size of the Pareto set and the running time of the Nemhauser-Ullmann algorithm is that, for the Nemhauser-Ullmann algorithm, multiple Pareto-optimal solutions with exactly the same profit and weight are treated as a single solution for the running time.

432 3.3.2 BIN-PACKING
433

434 As outlined in Section 2.2.2, we study the Best-Fit heuristic for the bin packing problem in the random-order
435 setting. To evaluate a generated instance, we compute the value v_{opt} of an optimum solution with a solver
436 described and implemented in Fontan & Libralesso (2020), then compute the mean v_{appx} of 10,000 trials
437 of the Best-Fit algorithm when the instance is shuffled randomly, and assign the instance a score of $\frac{v_{\text{opt}}}{v_{\text{appx}}}$.
438 Fig. 2 shows the programs generated by FunSearch. It is straightforward to observe that Fig. 2b has multiple
439 repetitions. We simplified this code to a list with only two parameters (Fig. 2c).
440

440 **Instance Generated by Co-FunSearch:** For fixed $m \in \mathbb{N}$, consider the instance:
441

442
$$\underbrace{[m+1, \dots, m+1]}_{m \text{ times}}, \underbrace{[m, \dots, m]}_{m+1 \text{ times}}, \quad \text{maximum bin capacity } c := m \cdot (m+1).$$

443

444 An optimal packing puts the first m items into one bin, and the remaining $m+1$ items into a second bin. This
445 fills both bins exactly to their maximum capacity. Because m and $m+1$ are coprime, these are the only two
446 ways of filling a bin exactly to its maximum capacity c . Hence, if any bin contains both an item m and an
447 item $m+1$, the packing must use at least 3 bins. Because the instance is shuffled, Best Fit will put both an
448 item of size m and an item of size $m+1$ into the same bin with high probability, approaching probability 1
449 for growing m . Thus, with high probability, Best-Fit will use at least 3 bins, which shows that the absolute
450 random-order ratio of Best-Fit is at least $3/2$ (the previous best known lower bound was 1.3, by Albers et al.
451 (2021)). Combining with the results of Dósa & Sgall (2014), we obtain the following theorem:
452

452 **Theorem 3.2.** *The absolute random-order ratio of Best-Fit is between 1.5 and 1.7.*
453

453 3.3.3 HIERARCHICAL CLUSTERING
454

454 The exact formulation of hierarchical clustering is described in Section 2.2.3. The objective for our method
455 is to generate a clustering instance with large price of hierarchy for the k -median objective. To compute
456 optimal clusterings and optimal hierarchical clusterings, we wrote a custom implementation based on Branch
457 and Bound. The instance generated by FunSearch after 10 trials of 2,200 samples each can be seen in Fig. 5b,
458 the trimmed instance is depicted in Fig. 5c. We generalized this to d dimensions as follows:
459

459 **Instance generated by Co-FunSearch:** Let e_i be the i th d -dimensional standard basis vector. For a constant
460 c , consider the following weighted instance of $d+2$ points:
461

462
$$(1, \dots, 1), (0, \dots, 0), -ce_1, \dots, -ce_d,$$

463

463 where the point $(1, \dots, 1)$ has weight ∞ and all other points have weight 1. It can be shown that:
464

464 **Theorem 3.3.** *For an appropriate choice of c and for $d \rightarrow \infty$, this instance's price of hierarchy is at least
465 $\frac{1+\sqrt{5}}{2}$, the golden ratio.*
466

467 No previous non-trivial lower bound was known for this problem. We refer the reader to Appendix 5.1.2 for
468 further details and the proof.
469

469 3.3.4 GASOLINE
470

471 The details and notation of the gasoline problem are described in Section 2.2.4. We initialize the FunSearch
472 algorithm with the instance constructed by Lorieau (2024) embedded into two dimensions as shown in Fig. 6a.
473 Generated instances were scored by the ratio between the optimum value (computed via Gurobi Optimization,
474 LLC (2024)) and the value returned by the iterative rounding algorithm.
475

475 **Instances generated by FunSearch:** Unlike previous problems, in this case, nearly no hand tuning was needed
476 to modify the optimal instance generated by FunSearch. Refer to Fig. 6b and Section 5.1.3 for details.
477

477 **Theorem 3.4.** *There exist instances in every dimension $d \geq 2$ where the iterative rounding algorithm for the
478 d -dimensional gasoline problem has an approximation ratio greater than 2.*
479

480 Table 2 in Appendix 5.1.3 contains the computed approximation-factors (worse than 2) for different choices of
481 parameters. For higher d and larger instances, the required computation-time quickly becomes prohibitive.
482

482 4 CONCLUSION AND LIMITATIONS
483

484 In this work, we use large language models (LLMs) to generate adversarial examples for heuristics addressing
485 several well-known combinatorial optimization problems. Our approach uses FunSearch from Google Deep-
486 Mind, a method that produces executable Python code designed to generate such adversarial instances, with
487

486 a preference for concise and interpretable implementations. This makes it relatively straightforward to understand
487 the underlying strategies employed by the model and, in many cases, to manually generalize or refine
488 its solutions. Traditional heuristics like local search do not converge towards such structured solutions, and
489 understanding or generalizing their solutions is usually not feasible.

490 Across many of the problems we investigated, this form of human-AI collaboration enabled improvements
491 over the existing state-of-the-art. We believe this approach is very flexible and should be considered a valuable
492 addition to the algorithm designer's toolkit for many problems.

493 **Limitations.** Although our method is broadly applicable, it does not always yield improvements over the
494 state of the art. In particular, Co-FunSearch did not produce generalizable results, or even replicate known
495 lower bounds—for certain heuristics. These included k -means clustering, linkage clustering, page replacement
496 algorithms, and the *asymptotic* random-order-ratio of best-fit. Further details are provided in the Appendix 5.4.

497 REFERENCES

499 Susanne Albers, Arindam Khan, and Leon Ladewig. Best fit bin packing with random order revisited. *Algorithmica*, 83:1–26, 09 2021. doi: 10.1007/s00453-021-00844-5.

502 Anna Arutyunova and Heiko Röglin. The price of hierarchical clustering. *Algorithmica*, pp. 1–33, 07 2025.
503 doi: 10.1007/s00453-025-01327-7.

504 H. William Corley and I. Douglas Moon. Shortest paths in networks with vector weights. *Journal of Optimization Theory and Application*, 46(1):79–86, 1985.

507 WenQiang Dai. A 16-competitive algorithm for hierarchical median problem. *Science China Information Sciences*, 57(3):1–7, Feb 2014. ISSN 1869-1919. doi: 10.1007/s11432-014-5065-0. URL <https://doi.org/10.1007/s11432-014-5065-0>.

510 Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn,
511 Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie Williamson, Demis Hassabis, and
512 Pushmeet Kohli. Advancing mathematics by guiding human intuition with AI. *Nature*, 600(7887):70–74,
513 2021.

514 György Dósa and Jiří Sgall. Optimal analysis of best fit bin packing. In Javier Esparza, Pierre Fraigniaud, Thore
515 Husfeldt, and Elias Koutsoupias (eds.), *Automata, Languages, and Programming*, pp. 429–441, Berlin, Hei-
516 delberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-43948-7.

517 Matthias Ehrgott. *Multicriteria Optimization* (2. ed.). Springer, 2005. ISBN 978-3-540-21398-7. doi: 10.100
518 7/3-540-27659-9. URL <https://doi.org/10.1007/3-540-27659-9>.

520 Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin
521 Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittweiser, Grzegorz Swirszcz, et al. Dis-
522 covering faster matrix multiplication algorithms with reinforcement learning. *Nature*, 610(7930):47–53,
523 2022.

524 Florian Fontan and Luc Libralessou. Packingsolver: a solver for packing problems. *CoRR*, abs/2004.02603,
525 2020. URL <https://arxiv.org/abs/2004.02603>.

526 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

529 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A general approach
530 for incremental approximation and hierarchical clustering. *SIAM Journal on Computing*, 39(8):3633–3669,
531 2010. doi: 10.1137/070698257. URL <https://doi.org/10.1137/070698257>.

532 Lucas Lorieau. Approximation algorithm for the generalised gasoline problem. Master's thesis, University of
533 Bonn, 2024.

534 László Lovász. *Combinatorial problems and exercises*, volume 361. American Mathematical Soc., 2007.

536 Abbas Mehrabian, Ankit Anand, Hyunjik Kim, Nicolas Sonnerat, Matej Balog, Gheorghe Comanici, Tudor
537 Berariu, Andrew Lee, Anian Ruoss, Anna Bulanova, et al. Finding increasingly large extremal graphs with
538 alphazero and tabu search. *arXiv preprint arXiv:2311.03583*, 2023.

539 Mistral AI. Mistral NeMo — Mistral AI — mistral.ai. <https://mistral.ai/news/mistral-nemo>,
2024. [Accessed 24-09-2025].

540 George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and capital allocation. *Management*
541 *Science*, 15(9):494–505, 1969.

542 Alantha Newman, Heiko Röglin, and Johanna Seif. The alternating stock size problem and the gasoline puzzle.
543 *ACM Trans. Algorithms*, 14(2), April 2018. ISSN 1549-6325. doi: 10.1145/3178539. URL <https://doi.org/10.1145/3178539>.

544 Alexander Novikov, Ngan Vuu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner,
545 Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphaevolve: A
546 coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*, 2025.

547 OpenAI. OpenAI Platform — platform.openai.com. <https://platform.openai.com/docs/models/gpt-4.1-mini>, 2025a. [Accessed 24-09-2025].

548 OpenAI. OpenAI Platform — platform.openai.com. <https://platform.openai.com/docs/models/gpt-4.1-nano>, 2025b. [Accessed 24-09-2025].

549 Ivana Rajković. Approximation algorithms for the stock size problem and the gasoline problem. Master’s
550 thesis, University of Bonn, 2022.

551 Heiko Röglin. Smoothed analysis of pareto curves in multiobjective optimization. In Tim Roughgarden (ed.),
552 *Beyond the Worst-Case Analysis of Algorithms*, pp. 334–358. Cambridge University Press, 2020. doi: 10.1
553 0179781108637435.020. URL <https://doi.org/10.1017/9781108637435.020>.

554 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar,
555 Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. Mathematical
556 discoveries from program search with large language models. *Nature*, 625(7995):468–475, 2024.

557 Adam Zsolt Wagner. Constructions in combinatorics via neural networks. *arXiv preprint arXiv:2104.14516*,
558 2021.

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 5 APPENDIX
 595

596 5.1 ADDITIONAL DETAILS ON THE PROBLEMS
 597

598 In this section, we discuss additional details and prove the key results.
 599

600 5.1.1 KNAPSACK PROBLEM
 601

602 In the knapsack problem, we are considering a bicriteria optimization problem, where we want to minimize the
 603 total weight while maximizing the total profit. Specifically, we are given an instance as a list of tuples of the
 604 form (weight, profit) from which we select a sub-list. The total weight $\text{Weight}(A)$ (respectively total profit
 $\text{Profit}(A)$) of a sub-list A is the sum of the weights (respectively profits) of its items.
 605

606 A sub-list A *dominates* a sub-list B if $\text{Weight}(A) \leq \text{Weight}(B)$ and $\text{Profit}(A) \geq \text{Profit}(B)$ and at least
 607 one of these inequalities is strict. A sub-list is *Pareto-optimal* if it is not dominated by any other sub-list. The
 608 *Pareto-set* $P(I)$ of an instance I is the set of Pareto-optimal sub-lists of I . When the Pareto-set is known,
 609 objectives like the 0-1 knapsack problem “Maximise total profit while staying below a given maximum total
 610 weight W ” can be optimised by simply finding the sub-list in $P(I)$ that has the largest total profit and whose
 total weight is below W .
 611

612 As described in section 3.3.1, we obtained instance 1 via Co-FunSearch. To analyze the sizes of the instance’s
 613 and subinstances’ Pareto-sets, we define the two segments of the instance: For $a, b, d, n \in \mathbb{Z}_{\geq 1}$ with $d < a \leq b$,
 define $x_i := (1 + \frac{2^{-i}}{2^d - 1})$, and two lists:
 614

$$I_{a,b} := \left[\binom{2^a}{2^a}, \binom{2^{a+1}}{2^{a+1}}, \dots, \binom{2^b}{2^b} \right], \quad J_{d,n} := \left[\binom{x_1 \cdot 2^d}{x_1 \cdot (2^d - 1)}, \dots, \binom{x_n \cdot 2^d}{x_n \cdot (2^d - 1)} \right].$$

617 **Lemma 5.1.** *If a Pareto-optimal packing $A \in P([I_{a,b}, J_{d,n}])$ does not contain all items from $I_{a,b}$, it contains
 618 fewer than 2^{a-d} items from $J_{d,n}$.*

619 *Proof.* Subsets of $I_{a,b}$ can be represented by binary numbers of $(b - a + 1)$ bits. If A does not contain all items
 620 from $I_{a,b}$ and contains at least 2^{a-d} items from $J_{d,n}$, we define a new packing A' as follows: Increment the
 621 binary number representing $A \cap I_{a,b}$ by 1, and remove 2^{a-d} items from $A \cap J_{d,n}$. This changes the weights
 622 and profits by:
 623

$$\begin{aligned} \text{Weight}(A') - \text{Weight}(A) &\leq 2^a - 2^{a-d} \cdot \underbrace{\left(1 + \frac{2^{-n}}{2^d - 1}\right)}_{>1} \cdot 2^d < 0 \\ \text{Profit}(A') - \text{Profit}(A) &\geq 2^a - 2^{a-d} \cdot \left(1 + \frac{2^{-1}}{2^d - 1}\right)(2^d - 1) \\ &= 2^a - 2^{a-d} \cdot (2^d - 2^{-1}) = 2^{a-d-1} > 0 \end{aligned}$$

631 Thus, A' dominates A , and $A \notin P([I_{a,c}, J_{d,n}])$. □
 632

633 On the other hand, all other packings are Pareto-optimal:
 634

635 **Lemma 5.2.** *If a packing A of $[I_{a,b}, J_{d,n}]$ contains all items from $I_{a,b}$ or contains fewer than 2^{a-d} items from
 $J_{d,n}$, then A is Pareto-optimal.*

636 *Proof.* All items from $I_{a,b}$ have a profit-per-weight ratio of 1, while all items from $J_{d,n}$ have a profit-per-weight
 637 ratio of $\frac{2^d - 1}{2^d} < 1$. Hence, a packing B that dominates A must satisfy
 638

$$\text{Weight}(A \cap I_{a,b}) < \text{Weight}(B \cap I_{a,b}),$$

639 otherwise B can not have enough profit to dominate A . If A already contains all items from $I_{a,b}$, this is not
 640 possible, so only the case that A contains fewer than 2^{a-d} items from $J_{d,n}$ remains. Due to the definition of
 641 $I_{a,b}$, the above inequality implies:
 642

$$\text{Weight}(A \cap I_{a,b}) + 2^a \leq \text{Weight}(B \cap I_{a,b}).$$

643 If B dominates A , it must hold that:
 644

$$\begin{aligned} \text{Weight}(A \cap I_{a,b}) + \text{Weight}(A \cap J_{d,n}) &\geq \text{Weight}(B \cap I_{a,b}) + \text{Weight}(B \cap J_{d,n}) \\ \implies \text{Weight}(A \cap J_{d,n}) - 2^a &\geq \text{Weight}(B \cap J_{d,n}). \end{aligned}$$

648 But A contains fewer than 2^{a-d} items from $J_{d,n}$, so:

$$649 \quad \text{Weight}(A \cap J_{d,n}) \leq 2^{a-d} \cdot \left(1 + \frac{2^{-1}}{2^d - 1}\right) \cdot (2^d - 1) = 2^a - 2^{a-d-1} < 2^a.$$

650 This implies $0 > \text{Weight}(B \cap J_{d,n})$, a contradiction. \square

653 Hence, we can describe the Pareto-set exactly:

$$654 \quad P([I_{a,b}, J_{d,n}]) = \{A \cup B \mid A \subsetneq I_{a,b}, B \subseteq J_{d,n}, |B| < 2^{a-d}\} \cup \{I_{a,b} \cup B \mid B \subseteq J_{d,n}\}.$$

655 Its size is (using notation involving binomial coefficients, not vectors):

$$656 \quad |P([I_{a,b}, J_{d,n}])| = (2^{b-a+1} - 1) \cdot \left[\sum_{i=0}^{\min(n, 2^{a-d}-1)} \binom{n}{i} \right] + 2^n.$$

657 For $k, n \in \mathbb{N}$ with $2^k \leq n/2$, consider two instances:

$$658 \quad \mathbb{I}_1 := [I_{2k, 2k+n}, J_{k,n}],$$

$$659 \quad \mathbb{I}_2 := \left[\mathbb{I}_1, \binom{2^{k+1}}{2^{k+1}}, \binom{2^{k+2}}{2^{k+2}}, \dots, \binom{2^{2k-1}}{2^{2k-1}} \right].$$

660 \mathbb{I}_1 is a sub-instance of \mathbb{I}_2 . \mathbb{I}_2 (which is exactly instance 1) contains the same items as $[I_{k+1, 2k+n}, J_{k,n}]$. The sizes of their Pareto-sets can be bounded by:

$$661 \quad |P(\mathbb{I}_1)| \geq (2^{n+1} - 1) \cdot \binom{n}{2^k - 1} + 2^n \geq (2^{n+1} - 1) \cdot \left(\frac{n}{2^k - 1}\right)^{(2^k - 1)}.$$

$$662 \quad |P(\mathbb{I}_2)| \leq (2^{k+n} - 1) \cdot (n + 1) + 2^n \leq (2^{k+n} - 1) \cdot (n + 2)$$

663 The ratio between the two sizes is:

$$664 \quad \frac{|P(\mathbb{I}_1)|}{|P(\mathbb{I}_2)|} \geq \frac{2^{n+1} - 1}{2^{k+n} - 1} \cdot \left(\frac{n}{2^k - 1}\right)^{(2^k - 1)} \cdot \frac{1}{n + 2}$$

665 For $k = \log_2(\sqrt{n}) + 1$, we obtain:

$$666 \quad \frac{|P(\mathbb{I}_1)|}{|P(\mathbb{I}_2)|} \geq \frac{2^{n+1} - 1}{(\sqrt{n} + 1) \cdot 2^n - 1} \cdot \left(\frac{n}{\sqrt{n}}\right)^{\sqrt{n}} \cdot \frac{1}{n + 2} = \Theta(n^{(\sqrt{n}-3)/2}).$$

667 The length of the instance \mathbb{I}_2 is not n but $m := |\mathbb{I}_2| = 2n + k$, resulting in a lower bound of $O((\frac{m}{2})^{(\sqrt{m/2}-3)/2})$.

668 In implementations of the Nemhauser-Ullmann algorithm, two Pareto-optimal packings can be treated as equivalent if they have the same total weight and total profit. Hence, the runtime can be upper-bounded not only by the sum of the sizes of the Pareto-sets $|P(I_{1:1})| + \dots + |P(I_{1:n})|$, but even the sizes of the Pareto-sets when two packings with the same total weight and total profit are treated as identical. The only purpose of the leading factors $(1 + \frac{2^{-n}}{2^d - 1})$ in $J_{d,n}$ is to prevent two Pareto-optimal packings from having the same total profit. As a consequence, we also obtain a bound of $O((\frac{m}{2})^{(\sqrt{m/2}-3)/2})$ for the runtime of the Nemhauser-Ullmann algorithm.

669 **Lemma 5.3.** *If $A, B \subseteq [I_{a,b}, J_{d,n}]$ are two distinct Pareto optimal packings, then $\text{Profit}(A) \neq \text{Profit}(B)$.*

670 *Proof.* Because both A and B are Pareto-optimal, we know by 5.1 that $|A \cap J_{d,n}| < 2^{a-d}$ (same for B), hence:

$$671 \quad \text{Profit}(A \cap J_{d,n}) < 2^{a-d} \cdot \left(1 + \frac{2^{-1}}{2^d - 1}\right) \cdot (2^d - 1) \\ 672 \quad = 2^{a-d} \cdot \left(2^d - \frac{1}{2}\right) \\ 673 \quad = 2^a - 2^{a-d-1} < 2^a.$$

674 (same for $\text{Profit}(B \cap J_{d,n})$).

- 675 • If $A \cap I_{a,b} \neq B \cap I_{a,b}$, the difference between $\text{Profit}(A \cap I_{a,b})$ and $\text{Profit}(B \cap I_{a,b})$ would be at least 2^a , due to the definition of $I_{a,b}$. In this case, the above inequality already shows $\text{Profit}(A) \neq \text{Profit}(B)$.
- 676 • If $A \cap I_{a,b} = B \cap I_{a,b}$, then $A \cap J_{d,n} \neq B \cap J_{d,n}$, and we need to show that $\text{Profit}(A \cap J_{d,n}) \neq \text{Profit}(B \cap J_{d,n})$. This is equivalent to showing that any two distinct subsets of:

$$677 \quad \{(2^d - 1) + 2^{-1}, (2^d - 1) + 2^{-2}, \dots, (2^d - 1) + 2^{-n}\},$$

678 have a distinct sum. This holds because the total sum of the summands $2^{-1}, \dots, 2^{-n}$ is always smaller than 1, whereas $2^d - 1 \geq 1$.

679 \square

702 5.1.2 HIERARCHICAL CLUSTERING

704 In clustering, we're given a set of n weighted points and a number k , with the task of finding a partition of the
 705 set of points into k *clusters* such that the total cost of the clusters is small. In k -median clustering, the points
 706 are a finite subset of \mathbb{R}^d and the cost of a cluster C is defined as the sum of the weighted L^1 -distances all points
 707 have to the center, where the center is the best possible choice within that cluster:

$$708 \text{Cost}(C) = \min_{p \in C} \sum_{q \in C} w(q) \|p - q\|_1$$

710 Here, $w(q)$ is the weight of q as specified by the instance. The total cost of a clustering is the sum of the costs
 711 of its clusters.

712 Clustering is used to analyze empirical data, but it's usually not clear what number of clusters k is a good choice
 713 for the dataset. Instead of computing a clustering for a fixed k , one could instead compute a *Hierarchical*
 714 *Clustering*, which has a clustering for each $k \in \{1, \dots, n\}$ and these clusterings are nested: A hierarchical
 715 clustering $H = (H_1, \dots, H_n)$ consists of n clusterings such that, for all $i \in \{2, \dots, n\}$, H_i is obtained by
 716 merging two clusters of H_{i+1} .

717 While hierarchical clusterings have an intuitive structure and don't require us to decide on a number k of
 718 clusters beforehand, they come at the disadvantage of their clusters H_i possibly having a higher cost than the
 719 *optimal i -clustering*, because optimal clusterings need not form a hierarchy. For a given instance (a finite set
 720 of points in \mathbb{R}^d) I , we can measure the performance of a hierarchical clustering H by comparing each of its
 721 clusterings H_i to the best i -clustering, and choosing the level where this ratio is highest.

722 To measure how much we sacrifice when restricting ourselves to hierarchical clusterings on an instance I , we
 723 consider the *Price of Hierarchy* of I as the best hierarchical clustering according to that measure:

$$724 \text{PoH}(I) := \min_H \max_{k \in \{1, \dots, n\}} \left[\frac{\text{Cost}(H_k)}{\text{Cost}(\text{OPT}_k)} \right],$$

726 where OPT_k denotes an optimal k -clustering for I .

728 The *Price of Hierarchy for k -median clustering* $\text{PoH}_{k\text{-median}}$ denotes the worst-case Price of Hierarchy of I
 729 across all possible instances I . Thus, $\text{PoH}_{k\text{-median}}$ captures the worst-case quality of an optimal hierarchical
 730 clustering when compared to an optimal non-hierarchical clustering.

731 Fix the dimension $d \geq 4$. Put $c := \frac{\sqrt{4d^2 + (3-d)^2} + d - 3}{2}$, which is one of the two roots of $0 = c^2 - c(d-3) - d^2$.
 732 Because $d \geq 4$, we know that $5d^2 - 6d \geq 4d^2$, hence:

$$734 c = \frac{\sqrt{4d^2 + (d-3)^2} + d - 3}{2} > \frac{2d + d - 3}{2} > d.$$

736 Let e_i be the i th d -dimensional standard basis vector. Consider the following weighted instance of $d+2$ points:

$$737 (1, \dots, 1), \quad (0, \dots, 0), \quad -ce_1, \dots, -ce_d,$$

739 where the point $(1, \dots, 1)$ has weight ∞ and all other points have weight 1.

740 **Theorem 5.4.** *For k -median clustering, this instance's price of hierarchy is at least $\frac{c}{d}$.*

741 *Proof.* For contradiction, assume there exists a hierarchical clustering $H = (H_1, \dots, H_{d+2})$ such that, on
 742 every level, the cost of H_k is strictly less than $\frac{c}{d}$ times the cost of the best clustering using k clusters. This
 743 enables us to narrow down the structure of H :

744 • For $k = d+1$, there is one cluster C containing two points, while all other clusters contain only
 745 a single point. Depending on which two points constitute C , we can calculate the total cost of the
 746 clustering:

747 – If $C = \{(0, \dots, 0), (1, \dots, 1)\}$, the total cost is:

$$748 \quad 749 \| (0, \dots, 0) - (1, \dots, 1) \|_1 = d.$$

750 – If $C = \{(0, \dots, 0), -ce_i\}$ for some i , the total cost is c .

751 – If $C = \{(1, \dots, 1), -ce_i\}$ for some i , the total cost is $d + c$.

752 – If $C = \{-ce_i, -ce_j\}$ for some $i \neq j$, the total cost is $2c$.

753 Because $d < c$, this constrains H_k to $C = \{(0, \dots, 0), (1, \dots, 1)\}$, otherwise the total cost of H_k
 754 would be at least $\frac{c}{d}$ times the cost of an optimal $(d+1)$ -clustering.

755 • For $k = 2$: The clustering now contains exactly two clusters. Because H is a hierarchical clustering,
 756 we now know that H_2 has a cluster that contains $(0, \dots, 0), (1, \dots, 1)$ and some number $0 \leq n \leq$
 757 $d-1$ of the $-ce_i$, while its other cluster contains the remaining $d-1-n$ of the $-ce_i$. Due to

756 symmetry, this number n is sufficient for calculating the total cost of H_2 . Because $(1, \dots, 1)$ has
 757 infinite weight, this point must be the center of the first cluster, so this cluster has cost:
 758

$$759 \quad \|(1, \dots, 1) - (0, \dots, 0)\|_1 + n \cdot \|(1, \dots, 1) - (-ce_1)\|_1 = d + n \cdot (c + d)$$

760 The cluster containing the remaining $d - 1 - n$ of the $-ce_i$ can choose any point as its center. It has
 761 cost:
 762

$$763 \quad (d - 2 - n) \cdot \|ce_1 - ce_2\|_1 = (d - 2 - n) \cdot 2c$$

764 Given n , the total cost of H_2 is $d + c(2d - 4) + n(d - c)$. Because $d - c < 0$, the best choice for n
 765 would be $n = d - 1$, resulting in a cost of $c(d - 3) + d^2$. This is only a lower bound on the cost of
 766 H_2 , because other levels in the hierarchy might put additional constraints on H_2 .

767 For an *upper* bound on the *optimal* cost of a 2-clustering, consider the clustering that has $(1, \dots, 1)$
 768 in its first cluster, and all other points in its second cluster. By assuming the center of the second
 769 cluster is $(0, \dots, 0)$, we get an upper bound on the total cost of this clustering of:
 770

$$771 \quad d \cdot \|(0, \dots, 0) - (-ce_1)\|_1 = d \cdot c.$$

772 Hence, the ratio between the cost of H_2 and the cost of an optimal 2-clustering is at least:
 773

$$774 \quad \frac{c(d - 3) + d^2}{d \cdot c} = \frac{d - 3}{d} + \frac{d}{c}$$

775 We defined c as one of the roots of $0 = c^2 - c(d - 3) - d^2$. Dividing out cd , we get $\frac{d-3}{d} + \frac{d}{c} = \frac{c}{d}$.
 776 However, this contradicts the assumption that the ratio between H_2 and an optimal 2-clustering is
 777 strictly less than $\frac{c}{d}$.
 778

779 Thus, the instance's price of hierarchy is at least $\frac{c}{d}$. \square

780 For large d , this fraction $\frac{c}{d} = \frac{\sqrt{4d^2 + (3-d)^2} + d - 3}{2d}$ converges to $\frac{1+\sqrt{5}}{2}$, the golden ratio.
 781

782 5.1.3 GASOLINE

783 In the generalised Gasoline problem, we are given two sequences of d -dimensional vectors $X = (x_1, \dots, x_n) \in$
 784 $\mathbb{N}_{\geq 0}^{d \times n}$ and $Y = (y_1, \dots, y_n) \in \mathbb{N}_{\geq 0}^{d \times n}$ which sum to the same total: $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$. Our task is to find a
 785 permutation π of the x_i that minimises:
 786

$$787 \quad \min_{\pi \in S_n} \sum_{j=1}^d \left[\max_{1 \leq k \leq n} \left(\sum_{i=1}^k x_{\pi(i)} - \sum_{i=1}^{k-1} y_i \right)_j - \min_{1 \leq k \leq n} \left(\sum_{i=1}^k x_{\pi(i)} - \sum_{i=1}^k y_i \right)_j \right]$$

788 This can be written as an ILP, with a permutation-matrix Z as a free variable. Let $\mathbf{1}$ be the vector containing a
 789 1 in every entry.
 790

$$791 \quad \min \|\beta - \alpha\|_1 \quad \text{s.t.}$$

$$792 \quad \sum_{l=1}^n \sum_{i=1}^m x_l Z_{il} - \sum_{i=1}^{m-1} y_i \leq \beta \quad \forall m \in [n]$$

$$793 \quad \sum_{l=1}^n \sum_{i=1}^m x_l Z_{il} - \sum_{i=1}^m y_i \geq \alpha \quad \forall m \in [n]$$

$$794 \quad Z\mathbf{1} \leq \mathbf{1}$$

$$795 \quad \mathbf{1}^T Z \leq \mathbf{1}^T$$

$$796 \quad Z \in \{0, 1\}^{n \times n}$$

$$797 \quad \alpha, \beta \in \mathbb{R}^d$$

803 In the i th step of the iterative rounding algorithm, the columns $1, \dots, i - 1$ of Z have already been fixed
 804 to integral values by the previous steps and, for column i , we attempt to insert every possible unit-vector
 805 (which does not conflict with the fixed rows and the permutation-matrix requirement) and then solve the Linear
 806 Program obtained by removing the integrality-requirements on columns $i + 1, \dots, n$. We then fix column i of
 807 Z to that unit-vector which yielded the best value for the relaxed LP, breaking ties by preferring unit-vectors
 808 where the 1 occurs earlier. After the n th step of this algorithm, Z is fixed entirely to a permutation-matrix.

809 (Rajković, 2022, Conjectures 2 and 3) conjectured that this algorithm is a 2-approximation for $d \geq 2$, which
 FunSearch found a counterexample for.

<i>d</i>	<i>k</i>	Length of <i>X</i>	Iterative-Rounding	Optimum	Iterative-Rounding/Optimum
2	2	6	10	8	1.25
2	3	14	26	12	2.1667
2	4	30	58	20	2.9
2	5	62	122	36	3.389
2	6	126	250	68	3.676
3	2	12	18	12	1.5
3	3	28	42	16	2.625
3	4	60	90	24	3.75
3	5	124	186	40	4.65
4	2	18	24	16	1.5
4	3	42	56	20	2.8
4	4	90	120	28	4.286

Table 2: The approximation-factor of the Iterative-Rounding algorithm on the instances found by FunSearch.

Fix some $k \in \mathbb{N}$. For any i , define $u_i := 2^k(1 - 2^{-i})$. Let \oplus denote list-concatenation. The 1-dimensional instance found by Lorieau (2024) can be written as follows:

$$X = \left(\bigoplus_{i=1}^{k-1} \bigoplus_{1}^{2^i} [u_i] \right) \oplus \left(\bigoplus_{1}^{2^k-1} [2^k] \right) \oplus [0]$$

$$Y = \bigoplus_{i=1}^k \bigoplus_{1}^{2^i} [u_i]$$

Let e_j be the j th unit-vector. FunSearch extended the instance to d dimensions as follows:

$$X := \left(\bigoplus_{i=1}^{k-1} \bigoplus_{1}^{2^i} \bigoplus_{j=2}^d [u_i e_1 + 4e_j] \right) \oplus \left(\bigoplus_{j=2}^d \left(\bigoplus_{1}^{2^k-1} [2^k e_1] \right) \oplus [4e_j] \right)$$

$$Y := \bigoplus_{i=1}^k \bigoplus_{1}^{2^i} \bigoplus_{j=2}^d [u_i e_1 + 2e_j]$$

Table 2 contains computed approximation-factors for different choices of d and k . For higher d and k , the instances quickly grow prohibitively large.

In our computational experiments, both APX and OPT scale linearly with input-length $|X|$:

$$\text{APX} = O(1) + |X| \cdot \begin{cases} 2 & d = 2 \\ 3/2 & d = 3 \\ 4/3 & d = 4 \end{cases}, \quad \text{OPT} = O(1) + |X| \cdot \begin{cases} 1/2 & d = 2 \\ 1/4 & d = 3 \\ 1/6 & d = 4 \end{cases}$$

If this scaling held for larger k , the approximation-factors would approach 4, 6, 8 for $d = 2, 3, 4$ respectively. Unfortunately, the proof-strategy employed in Lorieau (2024) does not apply here, as the optimum value of the relaxed Linear Program changes at each step of the algorithm. Hence, we are unable to provide a proof that these trends hold asymptotically.

5.2 PROGRAMS FOUND BY FUNSEARCH AND CO-FUNSEARCH

In this section, we outline the programs generated by FunSearch and how these were simplified by experts for hierarchical clustering and gasoline respectively in figure 5 and 6 respectively.

5.3 COMPARING LOCAL VS FUNSEARCH

We list the instance list generated by local-search and fun-search in table 3. It can be clearly seen here that local search instance has no discernible structure while funsearch instance has a structure which can be further improved by domain experts.

5.4 LIMITATIONS OF CO-FUNSEARCH

Below, we note some combinatorial optimization problems and their corresponding heuristics where our methods did not yield improvements to existing lower bounds:

```

864
865
866
867 def get_weighted_points() ->
868      $\hookrightarrow$  list[tuple[float, np.ndarray]]:
869          $\quad$  """Return a new weighted
870          $\quad$  clustering-problem, specified by a
871          $\quad$  list of weighted points.
872          $\quad$  The returned tuple consists of the weight
873          $\quad$  of the point, and the point
874          $\quad$  itself."""
875         weighted_points = [(1.0, np.array([0, 0,
876             0, 0])), (1e-8, np.array([1, 0, 0,
877             0]))]
878         return weighted_points
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

(a) The initial program given to FunSearch.

(c) The result of tuning by 5b by hand.

(b) A program found by FunSearch after 10 trials of 2,200 samples each.

Figure 5: The evolution of programs generating clustering-instances. The model used was open-mistral-nemo with a temperature of 1.5.

	Local Search	FunSearch	Co-FunSearch
Items	0.003	0.08	0.167
	0.005	0.08	0.167
	0.006	0.08	0.167
	0.007	0.08	0.167
	0.021	0.08	0.167
	0.068	0.114	0.167
	0.073	0.114	0.143
	0.170	0.114	0.143
	0.202	0.114	0.143
	0.219	0.114	0.143
	0.306	0.114	0.143
	0.375	0.114	0.143
	0.540	0.2	0.143
		0.6	
Score	1.4938	1.4979	1.4977

Table 3: Comparing the final instances found by local search, FunSearch and Co-FunSearch for the randomised Best-Fit bin-packing problem.

```

918
919
920
921
922
923
924
925
926
927
928 def gasoline(n: int) -> tuple[list[np.ndarray], list[np.ndarray]]:
929     """Return a new gasoline-problem, specified by the two lists of
930     ↳ 2d-non-negative-integer-points.
931     Both lists must have length at most n and consist only of points in  $\mathbb{N}^2$ .
932     """
933     k = int(math.log2(n + 2)) - 1
934     xs, ys = [], []
935     for i in range(1, k):
936         rounded = int(2**k * (1 - 2 ** (-i)))
937         xs.extend([np.array([rounded, 0]) for _ in range(2**i)])
938         ys.extend([np.array([rounded, 0]) for _ in range(2**i)])
939
940         xs.extend([np.array([2**k, 0]) for _ in range(2**k - 1)])
941         xs.append(np.array([0, 0]))
942
943         rounded = int(2**k * (1 - 2 ** (-k)))
944         ys.extend([np.array([rounded, 0]) for _ in range(2**k)])
945
946     return xs, ys
947
948 (a) The initial program given to FunSearch. This is the construction of Lorieau (2024) embedded into  $\mathbb{R}^2$ .
949
950 def gasoline(n: int) -> tuple[list[np.ndarray], list[np.ndarray]]:
951     """Yet another variation of the gasoline-problem generator."""
952     k = int(math.log2(n + 2)) - 1
953     xs, ys = [], []
954     for i in range(1, k):
955         rounded = int(2**k * (1 - 2 ** (-i)))
956         xs.extend([np.array([rounded, 0]) for _ in range(2**i)])
957         - ys.extend([np.array([rounded, 0]) for _ in range(2**i)])
958         + ys.extend([np.array([rounded, 2]) for _ in range(2**i)]) # No change
959
960         - xs.extend([np.array([2**k, 0]) for _ in range(2**k - 1)])
961         + xs.extend([np.array([2**k, 4]) for _ in range(2**k - 2)]) # No change
962         - xs.append(np.array([0, 0]))
963         + xs.append(np.array([0, 1])) # Changed from [0, 2] to [0, 1]
964         + xs.append(np.array([2**k, 2])) # Changed from [2**k, 0] to [2**k, 2]
965
966         rounded = int(2**k * (1 - 2 ** (-k)))
967         - ys.extend([np.array([rounded, 0]) for _ in range(2**k)])
968         + ys.extend([np.array([rounded, 2]) for _ in range(2**k - 1)]) # No change
969         + ys.append(np.array([0, 1])) # Changed from [0, 2] to [0, 1]
970
971 (b) The difference between the initial program and a program found by FunSearch after 10 trials of 950 samples
972 each, which we only tuned by discarding the final element of both lists.
973
974 Figure 6: The evolution of programs generating 2-dimensional gasoline-instances. The model used
975 was open-mistral-nemo with a temperature of 1.5. Lists were clipped to length n before evaluation.
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
999

```

972
973
974
975
976
977
978
979
980
981

982
983
984 Figure 7: As mentioned previously, we did usually not include the evaluation-function in the prompt.
985 We re-ran two FunSearch-experiments across 30 trials each, one including the evaluation-function
986 and one not including the evaluation-function, on the Knapsack-Problem (the other evaluation-
987 functions delegated a lot of their work to external solvers). We plot both the average running
988 maximum across the trials, and the rolling average across 10 samples, including the standard er-
989 rror. Although the standard-errors are large, the trials including the evaluation-function did perform
990 better on the objective. However, as it used more tokens when querying the LLM, the experiment
991 including the evaluation-function was about 1.6 times as expensive as the experiment omitting the
992 evaluation-function. All best-performing programs across both experiments had a similar structure.
993

994

- 995 • Better heuristics for page replacement algorithms (evaluated on synthetic and real data), but Fun-
996 Search consistently converged to the existing NFU heuristic.
- 997 • Lower bounds on the Price of Hierarchy of k -means clustering (as opposed to k -median clustering).
- 998 • Lower bounds on the price of Ward's method for hierarchical 2-dimensional k -means clustering:
999 Instead of comparing the best possible hierarchical clustering to the optimal clusterings, we compare
1000 the hierarchical clustering found by starting with each point in a singleton cluster, and iteratively
1001 merging the pair of clusters which result in the lowest objective. Neither FunSearch nor local search
1002 managed to recover the State of the Art when starting from a trivial instance. When starting from the
1003 State of the Art in 2 dimensions, both FunSearch and local search improved it marginally (FunSearch
1004 less so than local search, even after tuning), but not in a generalisable way.
- 1005 • Lower bounds on the *asymptotic* random-order-ratio of Best-Fit, which is the same as the absolute
1006 random-order-ratio but restricted to only “large” instances (Albers et al., 2021). FunSearch did not
1007 find any interpretable instances improving on the state of the art.

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025