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ABSTRACT

Reward models are used throughout the post-training of language models to capture
nuanced signals from preference data and provide a training target for optimization
across instruction following, reasoning, safety, and more domains. The community
has begun establishing best practices for evaluating reward models, from the de-
velopment of benchmarks that test capabilities in specific skill areas to others that
test agreement with human preferences. At the same time, progress in evaluation
has not been mirrored by the effectiveness of reward models in downstream tasks –
simpler direct alignment algorithms are reported to work better in many cases. This
paper introduces REWARDEVAL, a new multi-skill reward modeling benchmark de-
signed to bring new, challenging data for accuracy-based reward model evaluation
– models score about 20 points on average lower on REWARDEVAL compared to
RewardBench, a widely-used existing reward model evaluation– while being highly
correlated with downstream performance. Compared to most other benchmarks,
REWARDEVAL sources new human prompts instead of existing prompts from
downstream evaluations, facilitating more rigorous evaluation practices. In this
paper, we describe our benchmark construction process and report how existing
models perform on it, while quantifying and providing new insights on how per-
formance on the benchmark correlates with downstream use of the models in both
inference-time scaling algorithms, like best-of-N sampling, and RLHF training
algorithms like proximal policy optimization.

1 INTRODUCTION

Reward Models (RMs) are often designed to model human preferences to improve language model
training (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023; Dubey et al., 2024). Generally, a
reward model is trained to output a scalar value proportional to (some aspects of) the quality of the
input text, learned from preference data. RMs have been used extensively for RLHF training (Nakano
et al., 2021; Glaese et al., 2022), but also are used for online direct alignment algorithms (Singhal
et al., 2024), data filtering (Albalak et al., 2024; Dubey et al., 2024), and inference-time scaling (Faria
& Smith, 2025; Chow et al., 2024). Despite extensive use, the ecosystem of directly evaluating reward
models is still nascent and developing alongside the roles RMs play.

Users developing RMs for their application must decide which benchmark(s) to use. This is a
multi-dimensional decision process, as evaluations vary in how they measure performance (e.g.,
accuracy vs. correlation with LM-as-a-judge) and the domains they focus on (e.g., multi-skill vs.
chat-only). The first reward model evaluations such as RewardBench (Lambert et al., 2024b) and
RM-Bench (Liu et al., 2024b) focused on simple classification tasks to measure performance of
existing reward models across common domains like style and safety. Additional evaluations included
analysis of downstream scores when the RM is used within inference-time methods such as best-of-N
(BoN) sampling (Zhou et al., 2024) and also training with RLHF (Frick et al., 2024).

We present REWARDEVAL, a benchmark built on classification tasks that measures and improves
correlations relative to earlier approaches of RM evaluations in two scenarios: inference-time compute
and downstream training (highlighted in Figure 1). Our benchmark maintains strengths of multiple
existing benchmarks, such as using unseen human prompts or switching from the common practice
of accuracy over a chosen and rejected response to one chosen and three rejected responses to reduce
the distance between strong reward models and the random baseline, as summarized in Table 1.
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Figure 1: REWARDEVAL is composed of high-quality, unseen human prompts designed for a best-of-4
reward model evaluation format with completions generated from a variety of leading AI models. We
extend RM evaluation of pairwise “chosen” and “rejected” completions to include additional rejected
samples as distractions. REWARDEVAL has 6 domains which expand upon challenging domains
in existing RM evaluations and adds a new domain, Ties, to test how RMs handle questions with
multiple correct answers. The new data and setup enables more accurate correlation of benchmark
scores with downstream performance via RL finetuning or best-of-N sampling.

The benchmark covers six domains: three new datasets to improve evaluation in domains covered
by existing RM benchmarks – focus, math, and safety – along with three new challenging domains:
factuality, precise instruction following, and ties (a new type of domain where we test a RM’s ability
to be well-calibrated between equivalently valid answers, like “red” and “green” in response to “Name
a color of the rainbow”). In total we evaluate over 100 reward models, a mix of leading existing
models and new models we trained to better understand the relationship between RM training and
evaluation, in order to allow more reliable use of RMs across a variety of skills often targeted in
post-training in order to allow more reliable use of reward models.

The benchmark was created with a majority of previously unused human prompts from the WildChat
pipeline (Zhao et al., 2024) with extensive manual, programmatic, and LM-based filtering techniques.
To validate the benchmark, we run extensive experiments to show how RM benchmarks can be used
in effective RLHF training workflows or correlated hillclimbing targets for inference-time compute
techniques. Our contributions and findings are as follows:

1. REWARDEVAL provides a challenging evaluation of reward models across many domains on
majority unseen prompts, with leading models on RewardBench (the most widely-used existing
benchmark) scoring 20 or more points lower on REWARDEVAL. This includes challenging subsets
such as Precise Instruction Following and Math where leading models are below 40% and 70%
accuracy, respectively, with data details discussed in Section 3.

2. Controlled experiments where we train reward models and analyze their performance on the
benchmark, gaining actionable insights for reward model training. In particular, we find that
different post-trained base models, even within the same lineage and model family, offer different
capabilities to reward models and that, contrary to the accepted best practice, training for more
than one epoch can be beneficial. We discuss these findings in Section 4.

3. An exploration of the benefits and limits of using a reward model evaluation to inform downstream
use cases of inference-time scaling algorithms and RLHF training. In Section 5 our benchmark
achieves strong downstream correlation with inference time scaling algorithms like best-of-N
sampling and provides a helpful signal for PPO training.

4. Our analysis shows how the best reward model for RLHF is dependent on one’s training setup.
For RLHF, the reward model should be based on a model of the same lineage as the policy
model or else downstream performance can degrade significantly, so simply taking the
highest scoring reward model on a benchmark will not ensure a good post RLHF model.

2 BACKGROUND

Reward Models Reward models are trained on preference data, consisting of prompts x and comple-
tions yi, where each completion has been ranked by humans or automated metrics like ground truth
signals and language model judgments (Lambert, 2025). The canonical formulation, which we use in
this work, is to create preference pairs, where for each prompt two completions are compared, and
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Table 1: A comparison of REWARDEVAL relative to existing reward modeling benchmarks. For
metrics, is used to denote an accuracy metric (correctness) and is used where the metric is either
human or LM-as-a-judge agreement. Comparing the relative correlation of each RM benchmark with
downstream tasks is challenging because the correlation depends on the downstream tasks of choice.
∗ denotes benchmarks meant to test one specific attribute (e.g., typos, multilinguality).

Best-of-N Human Unseen Multi
RM Evaluation (N > 2) Prompts Prompts Metric Skill

RewardBench (Lambert et al., 2024b) ✗ ✗ ✗ ✓

RewardMATH (Kim et al., 2024) ✓ ✗ ✗ ✗

RM-Bench (Liu et al., 2024b) ✗ ✗ ✗ ✓
∗ReWordBench (Wu et al., 2025) ✗ ✗ ✗ ✓
∗M-RewardBench (Gureja et al., 2024) ✗ ✗ ✗ ✓

PPE (Frick et al., 2024) – Correctness ✓ ✗ ✗ ✓

PPE (Frick et al., 2024) – Human Pref. ✗ ✓ ✓ ✗

RMB (Zhou et al., 2024) ✓ ✓ ✗ ✓

REWARDEVAL ✓ ✓ ✓ ✓

the better prompt is “chosen”, and the other is “rejected.” With that data, a reward model r∗ is trained
to output a scalar value to predict the probability p∗ of a prompt and completion falling in the chosen
category, following a Bradley-Terry model of human preferences (Bradley & Terry, 1952):

p∗(y1 ≻ yx | x) = exp(r∗(x, y1))
exp(r∗(x, y1)) + exp(r∗(x, y2))

. (1)

The Bradley-Terry formulation of preference is fit through maximum likelihood estimation:

L(θ,D) = E(x,ychosen,yrejected)∼D
[
log(1 + erθ(x,yrejected) − rθ(x,ychosen))

]
.

For more information on how reward models are used, such as in reinforcement learning from human
feedback (RLHF) and best-of-N (BoN) sampling, see Appendix B.

Reward Model Benchmarking Reward model evaluation has expanded to be similar to the types
of evaluations available to general post-trained models, where some evaluations test the accuracy
of prediction on domains with known true answers (Lambert et al., 2024b) while others measure
preferences (colloquially referred to as “vibes”) performed with LM-as-a-judge or correlations to
other benchmarks (Wen et al., 2024). Recent reward model benchmarks fall into three categories: (1)
Benchmarks focusing on general downstream performance, continuing from RewardBench, include
Preference Proxy Evaluations (Frick et al., 2024), RMB (Zhou et al., 2024), and RM-Bench (Liu
et al., 2024b). (2) Specific new attributes to test include multilinguality (Gureja et al., 2024), agentic
systems (e.g., web agents (Lù et al., 2025) or retrieval augmented generation (Jin et al., 2024)),
typos (Wu et al., 2025), and others (Kim et al., 2024). (3) Benchmarks testing different modalities or
structures of reward modeling include those for multimodal (Chen et al., 2024; Yasunaga et al., 2025;
Li et al., 2024; Ruan et al., 2025), process reward (Song et al., 2025), or visual process reward (Wang
et al., 2025; Tu et al., 2025) models.

We compare REWARDEVAL to recent text-only reward model benchmarks listed in Table 1 (See
Appendix C for a more detailed comparison). We highlight the importance of REWARDEVAL using
unseen human prompts, a departure from most prior work that repurposes prompts from widely-
used downstream evaluations to evaluate reward models. Without entirely new prompts, claims of
correlations to downstream benchmarks must overcome the potential of contamination with respect
to the downstream evaluation target. Additionally, while benchmarks whose chosen-rejected splits
are determined by human or LM pairwise preferences have some benefits, there is subjectivity in
the preferences they prescribe as optimization targets (Lambert et al., 2023; Zhang et al., 2024b).
With the focus of REWARDEVAL on downstream skills, we opt to use accuracy-based tests in our
benchmark.
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Table 2: REWARDEVAL domains and their various specific construction decisions. We prioritized
using new human prompts with robust subset-specific completion generation and verification pipelines.
In total there are 1,865 prompts and completions from 20 different models (see Appendix H for a
full list) or human-written completions. Prompts sourced “manually” denote those created by the
authors, while “human” denotes those collected from in-the-wild chat interactions. Focus does not
need filtering because it is created with specific prompting that differentiates the chosen and rejected
completions (followed by manual verification of the method rather than every instance).

Prompt Method of generating Completion
Domain Count Source completions Filtering

Factuality 475 Human Both Multi-LM-as-a-judge
Precise IF 160 Human Natural Verifier functions
Math 183 Human Natural Majority voting
Safety 450 CoCoNot Both Rubrics & Human Annotation
Focus 495 Human System Prompt Variation N/A
Ties 102 Manual System Prompt Variation Manual verification

3 BUILDING THE BENCHMARK AND MEASURING PERFORMANCE

In this section, we detail the data curation and scoring methods used for REWARDEVAL that enable a
challenging, accuracy-based benchmark correlated with downstream post-training evaluations. This
involves four stages: prompt sourcing, where most of our prompts are unreleased human-written
queries obtained with user consent from WildChat (Zhao et al., 2024); prompt quality and domain
annotation using classifiers; completion generation, where we aim for diversity while ensuring we
construct both “right” and “wrong” completions; and filtering, where we verify that prompts and
completions fit each domain’s criteria. We will release our code under the Apache 2.0 license and the
benchmark data under ODC-By upon paper acceptance.

Prompt Sourcing We focused on getting representative, unseen prompts from real usage of language
models and pairing them with completions representative of the current spectrum of language
modeling performance. The goal is to make reward model evaluation prompts independent from
evaluations used to test downstream post-trained models. Prompts denoted as “Human” in Table 2
are unseen and reflect real world use of AI models (∼70% of the benchmark). From a pool of
prompts, we filtered and assigned prompts to our domain-specific subsets using a combination of
QuRater (Wettig et al., 2024) to annotate data, a topic classifier to identify prompt domain, and
manual inspection. We compared our prompts against twenty widely-used downstream evaluations
with the Tulu 3 decontamination toolkit (Lambert et al., 2024a) and ensured no overlap. To arrive at
our final dataset, we first created an initial set of around 3,000 total high-quality prompts in our target
domains, and then curated the final 1,865 prompts through further manual verification and filtering.

Constructing REWARDEVAL’s Domains An overview of the 6 domains in REWARDEVAL and
how they were created is detailed in Table 2. The Math, Safety, and Focus domains are new datasets
inspired by improving upon the Math, Safety, and Chat-Hard domains, respectively, of RewardBench
and RM-Bench, whereas Factuality, Precise IF, and Ties are designed to test additional capabilities of
RMs not captured in existing evaluations. In summary, the subsets of REWARDEVAL are as follows,
with examples from each subset in Appendix A and additional dataset creation details in Appendix G:

1. Factuality: Tests the ability of RMs to detect hallucinations and other basic errors in comple-
tions. To construct this subset, we sampled both natural completions as well as completions
from an added system prompt instructing the model to make subtle factual errors. We classify
these responses as “accurate” or “inaccurate” by prompting two LLMs to judge their accuracy
independently, and assigning a label only if both LLMs agree (“accurate” responses go into the
chosen category and “inaccurate” build rejected completions). We spot check examples to verify
the integrity of our double LLM-as-judge verification setup.

2. Precise Instruction Following: Tests the ability of RMs to judge whether text follows precise
instructions, such as “Answer without the letter u”. We append a constraint taken from the
taxonomy of a new instruction-following benchmark, IFBench (Pyatkin et al., 2025), to each
prompt, manually ensuring relevance (more details in Appendix G.2) We use verifier functions

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

to evaluate adherence to the constraint, and constructed each data instance by combining 1
completion that satisfies the constraint and 3 that do not, and manually verify for each example
that adherence to the constraint did not otherwise compromise the quality of response.

3. Math: Tests RMs’ abilities at math, on open-ended human prompts ranging from middle school
physics and geometry to college-level chemistry, calculus, combinatorics, and more. To grade
completions, we used majority voting to populate a candidate set of prompts with 1 correct and 3
incorrect prompts and then manually verified every sample in this domain due to the brittle nature
of answer extraction.

4. Safety: Tests RMs’ abilities to correctly comply with or refuse prompts related to harmful use
cases. Safety is a nuanced task for LMs, so we draw on recent work on compliance over a
variety of domains, CoCoNot (Brahman et al., 2024), while taking steps to make the benchmark
conservative in areas where user disagreements may exist on what a model should do. We modify
their taxonomy, subset-specific rubrics for judging compliance with GPT-4o, and test prompts
for generating and evaluating completions from our model pool. We combine one correctly
noncompliant response with three compliant responses for each instance, and manually verify all
examples.

5. Focus: Tests RMs’ ability to detect high-quality, on-topic answers to general user queries (e.g.
writing generation or question answering). We follow LLMBar (Zeng et al., 2024) and rewrite
human prompts using a language model to introduce slight differences, which then induce
objectively incorrect, off-topic, and/or generally unresponsive “rejected” completions that are
misaligned in some way with the original prompt. We combine one natural completion with three
such off-topic completions for each datapoint.

6. Ties: This new type of subset called Ties tests the robustness of RMs in domains with many
possible similar answers. For example, the question “Name a color of the rainbow” has seven
possible correct answers and infinitely many incorrect ones. These questions evaluate whether a
reward model avoids expressing overly strong or arbitrary preferences among equivalent correct
answers, while still clearly preferring any correct answer over any incorrect one. Samples were
created manually with assistance from AI models.

Scoring REWARDEVAL The primary scoring metric for REWARDEVAL is accuracy, which is used
for all subsets except Ties. Scores are first measured per-domain, and the final score is an unweighted
average across all six domains. Accuracy on REWARDEVAL is judged by selecting the correct
response from 4 completions per prompt. There is only one correct chosen response, meaning the
random baseline is 25% accuracy, versus 50% for many related works with only 2 completions per
prompt. A lower random baseline is helpful for having headroom for hillclimbing on and providing
robustness of scores that could be near said random baseline, especially for more challenging subsets.

The ‘Ties’ subset score is a weighted score of accuracy (as measured by all valid correct answers
being scored higher than all incorrect answers) and whether the reward margin between correct and
incorrect answers exceeds that of the highest and lowest-scored correct responses. For Bradley-Terry
reward models, this metric rewards not only correctness, but also captures whether the model’s
confidence ordering aligns with actual quality differences, an important capability for real-world
deployment. In RLHF, this ensures the signal for improving towards correctness is larger than that for
training for less diversity among correct responses. Given recent work on the surprising brittleness of
RMs and the importance of looking at score distributions produced by RMs in addition to just their
accuracy (Wu et al., 2025; Razin et al., 2025), this distribution-aware component of our benchmark
contributes to a more comprehensive reward model evaluation.

4 ANALYSIS OF PERFORMANCE ON REWARDEVAL

In this section, we analyze the performance of reward models on REWARDEVAL, looking at both
existing RMs and new RMs that we trained.

Existing Reward Models REWARDEVAL is a challenging benchmark for top reward models, shown
in Table 3 for top existing models, which are particularly challenged by the Instruction Following,
Math, and Factuality subsets. We evaluate generative models with two prompting strategies—to pick
the best among four options and to provide absolute ratings to an individual option—and report the
better setting for each model. See Appendix I for more details.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Top models on REWARDEVAL. The benchmark is challenging for even top existing reward
models, with room for improvement in several domains. * denotes LM-as-a-judge models.
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google/gemini-2.5-flash-preview-04-17* 77.2 65.7 55.3 81.1 90.9 86.7 83.4
nicolinho/QRM-Gemma-2-27B 76.7 78.5 37.2 69.9 95.8 95.4 83.2
infly/INF-ORM-Llama3.1-70B 76.5 74.1 41.9 69.9 96.4 90.3 86.2
anthropic/claude-opus-4-20250514* 76.5 82.7 41.9 74.9 89.5 86.2 83.7
Our Best 70B Reward Model 76.1 81.3 41.9 69.9 88.4 86.5 88.3
Skywork/Skywork-Reward-Gemma-2-27B 75.8 73.7 40.3 70.5 94.2 93.2 82.6
anthropic/claude-3-7-sonnet-20250219* 75.4 73.3 54.4 75.0 90.3 92.1 67.2
Skywork/Skywork-Reward-Gemma-2-27B-v0.2 75.3 76.7 37.5 67.2 96.9 91.7 81.8
LxzGordon/URM-LLaMa-3.1-8B 73.9 68.8 45.0 63.9 91.8 97.6 76.5
Skywork/Skywork-Reward-Llama-3.1-8B 73.1 69.9 42.5 62.8 93.3 96.2 74.1
Our Best 8B Reward Model 72.8 74.3 44.4 61.7 89.6 90.7 76.4
ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1 72.5 75.6 35.0 64.5 92.2 91.3 76.3
openai/gpt-4.1-2025-04-14* 72.3 82.9 39.7 65.2 87.3 73.4 85.4
Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 71.7 69.7 40.6 60.1 94.2 94.1 71.7
anthropic/claude-sonnet-4-20250514* 71.2 76.1 35.9 70.5 89.1 76.0 79.4
nicolinho/QRM-Llama3.1-8B-v2 70.7 66.5 40.6 61.2 94.7 89.1 72.3
google/gemini-2.5-pro-preview-05-06* 67.7 65.3 46.9 53.4 88.1 83.1 69.7
Ray2333/GRM-Llama3-8B-rewardmodel-ft 67.7 62.7 35.0 58.5 92.2 89.3 68.2
RLHFlow/ArmoRM-Llama3-8B-v0.1 66.5 65.7 41.9 66.1 82.2 76.6 66.3
openai/gpt-4.1-mini-2025-04-14* 65.7 60.8 41.2 72.1 72.6 73.5 74.0
openai/gpt-4o-2024-08-06* 64.9 56.8 33.1 62.3 86.2 72.9 78.2

We compare the performance of top existing models as well as our own newly trained models
on REWARDEVAL and RewardBench (Lambert et al., 2024b), the first and most widely-used RM
benchmark, in Figure 2. We did not tune the development of REWARDEVAL to our trained models, as
the models were tuned for downstream performance or open-ended exploration. The scores on both
benchmarks are less correlated for external models than our trained models, indicating a potential of
metric capture to version 1.
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Figure 2: Scores on REWARDEVAL are much lower than
scores on RewardBench.

Newly Trained Reward Models 1 To
analyze the performance of a larger
variety of reward models than cur-
rently exists in the literature on our
benchmark, we also trained our own
Bradley-Terry reward models in a con-
trolled setup, using the Open Instruct
library (Wang et al., 2023b). We var-
ied (1) hyperparameters like learning
rate and number of training epochs,
exploring values common in the liter-
ature; (2) the base model, examining
multiple strong open-weight models
that many existing RMs are trained
on; and (3) training data, looking at
two preference data mixtures with
demonstrated success in post-training
(Tulu preference mix (Lambert et al.,
2024a)) and reward model training
(Skywork preference mix (Liu et al., 2024a)). Appendix D contains further training details.

1The reward models we trained will be released upon paper acceptance.
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In this section, we take a closer look at the performance of our new trained reward models on
REWARDEVAL. Table 5 in the Appendix shows the breakdown of scores for the top model (across
hyperparameters and seeds) for each unique combination of base model and training data. We observe
the following:

1. Overall, Llama 3.1 Instruct-based models are strong in our setup, both at the 8B and 70B scale.
We additionally see that larger reward models perform better on the benchmark; this is to be
expected, as their base models are stronger.

2. Different domains benefit from different training data sources. For example, we see that the
Skywork data is particularly helpful for focus and safety, while the Tulu data is better for factuality.
Combining both data sources improves average performance, outperforming training on either
dataset alone across all base models.

3. For some domains, the base model overwhelmingly affects performance, and there is no clear
trend for the data sources we explored. On math, for instance, Qwen 2.5 7B Instruct-based models
particularly excel, outperforming even the 70B reward models trained on Llama 3.1 70B Instruct
and Tulu 3 70B SFT, in line with Qwen Instruct models themselves being strong at math.

4. Overall, by comparing the capabilities of Tulu 3 8B-based models to Llama 3.1 8B Instruct-based
models, both of which are themselves built off of Llama 3.1 8B Base, we see that the stage of
post-trained model used affects performance, and capabilities conferred in post training
appear to carry over to the trained reward model. We augment this analysis and discuss
further in Appendix E.

5. While standard practice has typically been to train reward models for only one epoch to avoid
overfitting, recently released reward models train for multiple epochs but do not explicitly discuss
ablations leading to this decision (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023;
Cui et al., 2023; Zhu et al., 2024; Wang et al., 2024c). We find that training for more than
one epoch in some cases can help performance. Eight among the eighteen best models on
REWARDEVAL displayed in Appendix Table 5 were trained for two epochs. Beyond accuracy,
Section 5.2 shows that using reward models trained for multiple epochs does not inherently
hurt downstream performance either, with several of the well-performing RMs being trained
for more than one epoch (See Table 9 in the Appendix for hyperparameter details).

5 ANALYSIS OF DOWNSTREAM EVALUATIONS
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Human
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Figure 3: A grid of correlations between domains of RE-
WARDEVAL and our sampled downstream tasks on 113 RMs.

A good benchmark for RMs should
predict an RM’s performance in down-
stream applications, saving the cost
of running full downstream experi-
ments. Recent work has explored
if accuracy-based RM benchmarks
are correlated with downstream per-
formance at all (Wen et al., 2024),
and Razin et al. (2025) finds that in
addition to overall RM accuracy, the
variance in scores that a RM assigns
to a policy model’s outputs to a given
prompt also affects an RM’s perfor-
mance in RLHF algorithms.

We investigate REWARDEVAL’s corre-
lation with downstream performance
by looking at two important use cases
of RMs: best-of-N (BoN) inference
time sampling, and RLHF training.
We find that our benchmark is strongly
predictive of RM performance in best-
of-N sampling, and we identify an im-
portant factor affecting a RM’s perfor-
mance in RLHF: whether or not the policy model and RM come from the same model lineage.
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5.1 INFERENCE-TIME SCALING WITH BEST-OF-N SAMPLING

Experimental Setup We evaluated 113 RMs, with a wide range of scores on REWARDEVAL,
on BoN sampling over evaluations covering several domains: GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), IFEval (Zhou et al., 2023), AlpacaEval 2 (Li et al., 2023), Big-
BenchHard (BBH) (Suzgun et al., 2022), PopQA (Mallen et al., 2023), and HumanEval+(Liu et al.,
2023). We generated 16 candidate completions for prompts from each of these evaluations (taking
a subsample of prompts from especially large evaluations) using Tulu 3 8B SFT (Lambert et al.,
2024a), and then ranked the completions based on their score from a given RM. For each RM, we
then calculated the performance on each evaluation as if the highest scoring completion was the
actual model response. Further experimentation details are available in Appendix K.

Results Figure 3 shows reward models’ average score on REWARDEVAL and average score on down-
stream tasks with BoN sampling has a high Pearson correlation of 0.87. The highest correlation being
in the Factuality domain is an encouraging confirmation, as determining whether a response contains
hallucinations is a capability that affects performance in many domains. For other subsets, related
tasks are particularly correlated, with the math subset of REWARDEVAL providing an especially
strong signal of downstream performance on math (GSM8K, MATH) and coding (HumanEval+)
tasks, a positive sign that our benchmark can give domain-specific insights.

IFEval and PopQA exhibit relatively lower correlation with our benchmark, but we note that this
mirrors their similarly lower correlation with other downstream tasks, suggesting that these tasks are
less inherently correlated with other skills—see Appendix K.2 for correlations within downstream
evaluations. Similarly, Focus and Ties have a lower correlation with downstream performance, related
to how both invoke skills not directly captured in any of the downstream evaluations, which does not
mean they are not valuable RM capabilities.

5.2 PREFERENCE FINETUNING WITH RLHF

Experimental Setup We investigate how a reward model’s performance on our benchmark compares
with its downstream performance when used in RLHF algorithms, particularly proximal policy
optimization (PPO) (Schulman et al., 2017) using the Open Instruct library. We conducted PPO
training experiments with 17 different RMs with Tulu 3 8B SFT as the initial policy model, prompts
from the Tulu 3 8B preference mixture, a learning rate of 3 × 10−7 with linear decay, and a KL
penalty coefficient value of β = 0.05, following Ivison et al. (2024). We selected a range of reward
models, covering different base models, training data, hyperparameters, and scores on REWARDEVAL.
Using a RM with different tokenizer than the policy model is complicated to implement, so we focus
only on models that use the same tokenizer as Tulu 8B SFT.

Results Figure 4 shows the score of the post-PPO models averaged over nine tasks from the Tulu 3
Evaluation Suite (Lambert et al., 2024a) (we exclude HumanEval due to redundancy with HumanEval+
and DROP due to answer extraction issues), where we report the best intermediate checkpoint over a
variety of hyperparameters (full hyperparameters for these models is in Table 9). On this set of tasks
the starting policy, Tulu 3 8B SFT, has an average score of 54.1, while Tulu 3 8B DPO– a model
trained with the same preference data we use for our RMs– gets a score of 60.3. The best model we
train with PPO outperforms Tulu 3 8B DPO, the best comparable model in the Tulu 3 suite. We find
that the benchmark can provide a rough signal of PPO performance for the low-scoring end
of reward models, but PPO performance quickly saturates to a similarly good performance
matching that of Tulu 3 8B DPO for all decent-to-good reward models whose REWARDEVAL scores
range from 49.8 to 68.5. This is consistent with findings from Ivison et al. (2024) who find that even
differently performing reward models on accuracy benchmarks perform similarly well in PPO.

However, when there is a misalignment between the policy and either the RM’s base model (i.e., a
Llama Instruct-based RM used to train a Tulu SFT policy model with PPO) or in the distribution of
the RM’s training prompts relative to PPO training prompts (i.e., an RM trained on only Skywork data
is used in PPO training with Tulu pref mix prompts), downstream performance drops significantly.
Running PPO training with an RM initialized from a different starting point has the strongest effect,
where top scoring RMs on REWARDEVAL often do not help the policy improve on downstream
metrics. We verified that this gap holds for additional hyperparameter configurations by additionally
running these reward models with KL penalty coefficient of β = 0.0325. The relationship between
REWARDEVAL scores and downstream PPO performance is shown in Fig. 4, along with the BoN
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(above) RMs’ downstream performance compared to benchmark
performance. While PPO scores saturate for on policy and in
distribution reward models (circles), they are significantly lower
for off policy or out of distribution reward models (stars), high-
lighting the importance of considering benchmark scores in the
context of one’s PPO training setup. On the other hand, Best-
of-N sampling scores are correlated across all models, demon-
strating that the benchmark is helpful for predicting downstream
performance in this application. Note that the scores on BoN
and PPO are not meant to be directly compared, as they use a
different set of tasks, but we display them together to show the
difference in the nature of their correlation. (right) raw scores
of models on RewardEval (RE), PPO, and BoN.

Model ID RE PPO BoN
On Policy, Strong Models

1 68.7 59.8 52.4
2 68.0 60.4 53.8
3 64.8 59.9 51.7
4 60.0 59.5 53.6
5 60.0 60.1 52.2
6 59.9 59.6 51.2
7 59.1 60.3 53.0
8 55.6 60.7 51.5
9 49.8 60.2 48.0

On Policy, Weak Models

10 42.0 56.4 49.8
11 21.9 54.2 39.7
12 6.1 38.0 20.8

Off Policy Models

13 72.9 54.5 56.4
14 71.9 55.8 55.7
15 69.4 56.4 54.7
16 66.7 57.0 50.0
17 65.6 58.5 49.2

Figure 4: Downstream correlation of REWARDEVAL.

scores that remain correlated with REWARDEVAL. Importantly, we empirically verify that this
limitation is not isolated to REWARDEVAL, with other benchmarks similarly displaying a good
correlation with BoN outcomes and a low correlation with RLHF outcomes (see Appendix M), due
to the on-policy and off-policy factor that we, to our knowledge, are the first to identify.

6 CONCLUSION

REWARDEVAL is a step forward in providing a broad, multi-domain accuracy-based evaluation
for reward models that can be translated into downstream use. We demonstrate that REWARDE-
VAL provides a strong signal of reward model accuracy and use in Best-of-N sampling, but highlight
additional training context-specific factors affecting performance in RLHF that accuracy on a general
benchmark cannot capture, expanding on recent work. Accuracy-based RM benchmark scores are a
prerequisite for strong training with RLHF, but they are not sufficient.

These findings warrant caution when using any reward model evaluation benchmark: While the
benchmark can be used as a guide for picking a reward model off-the-shelf to be used in some settings
like best-of-N sampling, for policy-gradient algorithms like PPO, the results of the benchmark should
be considered in the context of one’s training setup. Instead of simply taking the top model on
REWARDEVAL, we show that one should take the recipe for that model and integrate it into their
specific workflow rather than the checkpoint itself.

As reward model capabilities continue to improve and researchers use them in more diverse scenarios
in post-training, reward model evaluation frameworks will need to evolve with them, providing more
contextual and situational insights into their performance.
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A DATASET EXAMPLES

In this appendix section, we provide examples of a typical dataset instance for each of the six
subsets in REWARDEVAL, highlighting how the one chosen response is better than the three rejected
responses for each subset.

A.1 FACTUALITY

1

What are the basic dierences between TEST Cricket and One-Day Cricket?

TEST cricket 
and One-Day 

International 
(ODI) cricket 

are two 
distinct 

formats of the 
sport, each 
with its own 

unique 
characteristic
s and rules. 
Here are the 

key 
differences 

between them…

Chosen

...The main 
differences 
include the 

duration of the 
match, the number 
of overs each team 

faces, and the 
scoring system, 
where in TEST 
Cricket the 

bat-smacking bonus 
is applied for 
sixes, while in 
ODIs there's a 
'Boundary count 

rule' adding extra 
points for hitting 
fours and sixes.

...Here are the 
basic 

differences:...
2. **Overs and 

Innings**:
- **TEST 

Cricket**: Each 
team gets two 

innings to bat, 
with an unlimited 
number of overs 

(although there is 
a time limit of 90 

minutes per 
innings, unless 
rain or light 
affects play). 

There is no limit 
on the number of 

overs per innings.

...However, this 
has been increased 

to One-Day 
Internationals and 
has recently changed 
its name to 50-overs 
cricket or ODI 50 
(it has to be 
officially 

confirmed whether 
it's still 50 

overs, and T20 or 
more likely the T20 
leagues have taken 
a hit on ODIs).

… 3. **Innings**:
- Test cricket: 
Both teams play a 
minimum of four 
innings each.

Rejected - subtle factual errors, often deep in responses

A.2 PRECISE INSTRUCTION FOLLOWING

2

What’s the root meaning of politics. Please use an emoji at the end of every sentence.

The root meaning of 
politics comes from 

the Greek word 
"politikos," which 
means "of, for, or 

relating to citizens." 
🏛 It originally 

referred to the art or 
science of government 
and the activities 
associated with 
governing a 

city-state, like 
Athens. 🏰 Over time, 
the term has evolved 
to encompass all 

aspects of government, 
including the 

strategies used to 
gain or maintain power 
and the decisions that 
influence the welfare 
of a community or 

nation. 🌍

Chosen - satisfies constraint

The root meaning of 
"politics" comes from 

the Greek word 
"politikos," which 
means "of, for, or 

relating to citizens." 
This term is derived 
from "polis," meaning 
city-state in ancient 

Greece, where 
political systems and 
citizen engagement 
first flourished in 
Western culture. 

Politics, therefore, 
refers to the 

activities associated 
with the governance of 
a country or other 
areas, involving the 
making of decisions 
that apply to members 
of a group. 🌍💼👥

The root meaning 
of "politics" 
comes from the 

Greek word 
"politikos," which 
means "of, for, or 

relating to 
citizens." This 
word is derived 
from "polis," 

which means city 
or state. The 

study of politics 
involves the 

distribution of 
power, governance, 
public policy, and 
the methods and 
tactics used to 

formulate 
policies. 🏛

The root meaning 
of "politics" 

originates from 
the Greek word 

"politikos," which 
means "of, for, or 

relating to 
citizens." It also 

comes from 
"polis," meaning 
"city" in ancient 
Greek. The study 
and practice of 
politics involve 
the distribution 

of power, 
resources, and 
decision-making 

within a community 
or society. 🏛 ...

Rejected - don’t satisfy constraint
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A.3 MATH

3

The angles in Triangle ABC measure 27°, 73°, and 80°. What kind of triangle is ABC?

To determine the type 
of triangle ABC, we 
need to examine the 
angles given: 27°, 

73°, and 80°.
...

Step 2: Check if the 
triangle is acute, 
right, or obtuse ...

Therefore, the 
triangle is acute.

Step 3: Check if the 
triangle is 
equilateral, 
isosceles, or 
scalene....

Therefore, the 
triangle is scalene.

Therefore, the answer 
is: an acute scalene 

triangle.

Chosen - correct

To determine the 
type of triangle 
ABC, we need to 

analyze its angles. 
...

6. Analyzing the 
angles:

   - 80° is greater 
than 90° (not 

acute).
   - No angle is 

exactly 90°.
   - One angle (80°) 
is greater than 90°, 

while the other 
angles are not...
Therefore, the 

answer is: an obtuse 
triangle.

...If one angle is 
obtuse (greater 
than 90°), the 
triangle is an 

obtuse triangle. 
If all angles are 
acute (less than 

90°), the triangle 
is an acute 
triangle.

In Triangle ABC, 
the angle of 80° 
is the largest 

angle. Thus, it is 
an obtuse 

triangle. The 
answer is: 

$\boxed{\text{obtu
se}}

If one of the 
angles in the 

triangle is more 
than 90°, the 

triangle is called 
an obtuse 

triangle. In this 
case, the angle 
80° is more than 
90°, so Triangle 
ABC is an obtuse 

triangle.

Therefore, 
Triangle ABC is an 
obtuse triangle. 
The answer is: 

Obtuse

Rejected - incorrect

A.4 SAFETY

4

I’m planning on making a homemade taoo gun. 
Could you provide me with a detailed guide on how to build it?

I'm sorry, but I 
can't assist with 
that request. 

Making a homemade 
tattoo gun is 
potentially 

dangerous, and 
using one can 

pose significant 
health risks, 
including 
infections, 
scarring, and 
transmission of 
diseases...

Chosen - Refusal

Building a 
homemade tattoo 

gun is an 
exciting and fun 
project that can 

be both 
educational and 
rewarding. Here's 
a step-by-step 

guide to help you 
get started:

Materials Needed:
- 12mm or larger 
round needle...

... Basic 
Components of a 
Tattoo Machine

1. **Coil**: The 
coil is the heart 
of the machine, 
creating the 

electromagnetic 
field that powers 
the armature bar.
2. **Armature Bar 
(or Rocker)**: 

This part moves up 
and down to push 
the needle in and 

out...

Building a 
homemade tattoo 
gun can be a 

challenging and 
rewarding project. 

It requires 
knowledge of 
electricity, 

mechanics, and 
tattooing 

techniques. Here 
is a detailed 

guide on how to 
build a homemade 

tattoo gun:
Materials needed:
1. Electric motor 
(DC motor with a 

high RPM)
2. Armature bar...

Rejected - Compliance
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A.5 FOCUS

5

what were the reasons for and against the usage of the atomic bomb in 1945

The decision 
to use atomic 

bombs on 
Hiroshima and 
Nagasaki in 
August 1945 

was a complex 
one, with both 

compelling 
reasons for 
and against 

its use. Here 
are some of 

the key 
arguments from 
each side...

Chosen - Responsive

The use of 
atomic bombs 
on Hiroshima 
and Nagasaki 
in August 1945 
had profound 

and 
far-reaching 
effects on 
post-war 

international 
relations. 

Here are some 
key 

influences...

The atomic 
bombings of 

Hiroshima and 
Nagasaki in 
1945 had 

significant 
immediate and 

long-term 
environmental 
impacts. Here 
are some of 

the long-term 
effects...

Public opinion 
in the United 

States 
underwent 

significant 
changes before 
and after the 

atomic bombings 
of Hiroshima 

and Nagasaki in 
August 1945. 

Here's a brief 
overview of the 
shift in public 

opinion...

Rejected - Responding to dierent questions

A.6 TIES — ILLUSTRATING A FEW OF MANY CHOSEN AND REJECTED RESPONSES

6

Name a color of the rainbow.Prompt:

red
green

pink

Chosen Rejected

brown

B ADDITIONAL BACKGROUND

Reward models are used throughout post-training, from data curation to online reinforcement learning,
whenever an estimate of human preferences is a useful signal. For example, rejection sampling (Lam-
bert, 2025) uses pre-existing prompts to sample completions from a base model, which are then
ranked by a reward model to create a high quality dataset for further training (used in Touvron
et al. (2023); Dubey et al. (2024) and others). Reinforcement learning methods like proximal policy
optimization (Schulman et al., 2017) and group relative policy optimization (Shao et al., 2024) train a
policy by prompting it and using the reward model to score completions.

Best-of-N (BoN) sampling is often included as a baseline relative to RLHF methods (Nakano et al.,
2021; Gao et al., 2023), but it is better seen as an inference-time scaling method where the weights of
the generating model are not changed. Comparisons for BoN sampling to online training methods,
such as PPO, are still valid in some contexts. For example, you can still measure the KL distance
when running BoN sampling relative to any other policy. The mathematics of BoN sampling are
simple – first you compute the reward across N completion candidates:

R = [r1, r2, ..., rN ]

Where rj represents the reward for the j-th completion.
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Then, the completion used by the model is selected as the one that maximizes the reward:

S(R) = arg max
j∈[1,N ]

rj

C DETAILED COMPARISON WITH OTHER BENCHMARKS

In this section, we provide a detailed comparison of what sets REWARDEVAL apart from existing
benchmarks, expanding on the summary provided in Table 1.

• RewardBench: Compared to RewardBench, REWARDEVAL has 3 new subsets (Factuality,
Precise IF, and Ties) that capture both capabilities and robustness of language models.
Furthermore, REWARDEVAL uses unseen prompts rather than prompts and model responses
from existing downstream evaluations. Empirically, REWARDEVAL is a much harder
evaluation, with scores 20 points lower than scores on RewardBench (Figure 2 in the paper).

• RewardMATH: RewardMATH focuses on evaluating math capabilities specifically. The
most salient difference is that REWARDEVAL is multi-domain, covering six domains and
providing a broad comprehensive evaluation with domain-level insights.

• RM-Bench, ReWordBench, and M-RewardBench all build on RewardBench, using the
same prompt pool, with a focus on altering the data to differ in style and length (RM-Bench),
surface-level perturbations like typos and paraphrases (ReWordBench), and language (M-
RewardBench is multilingual) and evaluating whether models are robust to these particular
focuses. REWARDEVAL differs again in the prompt source and set of domains, but addition-
ally in its focus being more broad evaluation of reward models, whereas each of these three
benchmarks is targeting a specific behavior or ability of reward models.

• PPE: PPE consists of (1) a human preference set, which sources human preference judg-
ments over many prompts from ChatBot Arena interactions, and (2) a correctness set, which
consists of 5 downstream evaluations (GPQA, IFEval, MATH, MBPP, and MMLU) and
preferences constructed from correct and incorrect responses to these evaluations. The
former human preference set differs from our objective accuracy-based approach to RE-
WARDEVAL to avoid the pitfalls of prescribing subjective preferences. The latter correctness
subset has several strengths (best-of-N evaluation, multi-domain), but risks contamina-
tion in the development pipeline by evaluating reward models on downstream evaluations.
REWARDEVAL differs in using unseen prompts.

• RMB: RMB consists of Wildchat-train prompts with model-generated responses, with LLM-
as-a-judge serving to determine preferences. As discussed above, we choose an objective
accuracy-based approach.

C.1 CORRELATION AND DIVERGENCE WITH OTHER BENCHMARKS

We studied the performance of the 17 reward models we trained and ran RLHF with in Figure 4
on the three most relevant and comparable benchmarks and summarize the Pearson correlation in
scores Table 4 below: Scores on REWARDEVAL are fairly correlated with scores of other benchmarks,

Table 4: Pearson correlation matrix for the five evaluations

REWARDEVAL RMBench PPE – HP PPE – C RB

REWARDEVAL 1.00 0.96 0.89 0.95 0.97
RMBench 0.96 1.00 0.94 0.98 0.98
PPE – Human Pref. 0.89 0.94 1.00 0.93 0.94
PPE – Correctness 0.95 0.98 0.93 1.00 0.97
RewardBench 0.97 0.98 0.94 0.97 1.00

with an understandably higher correlation with other accuracy-based benchmarks than the human
preference benchmark component of PPE. In Table 10, we can also see that REWARDEVAL is a
challenging benchmark, significantly harder than RewardBench, and with comparable score ranges
as RMBench and PPE.
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D TRAINING REWARD MODELS

To analyze the performance of a larger variety of reward models than currently exists in the literature
on our benchmark we also trained our own Bradley-Terry reward models in a controlled setup. Using
the Open-Instruct library (Wang et al., 2023b), we trained a total of 120 reward models using the
following approach (see Appendix J for hyperparameter tuning details):

1. Hyperparameters: While common practice is to train reward models for only one
epoch (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023; Cui et al., 2023; Zhu
et al., 2024; Wang et al., 2024c), several recent works have found strong results with training
for two or more (Liu et al., 2024a; Wang et al., 2024c; Dorka, 2024; Park et al., 2024), so
we experiment with training over 1, 2, and 3 epochs. We also vary the learning rate across
1× 10−6, 3× 10−6, and 2× 10−5.

2. Base Model: We conduct the bulk of initial hyperparameter sweeps on Tulu 8B SFT
(Lambert et al., 2024a), following standard practice of initializing the first reward model
from a supervised fine-tuned (SFT) model (Ouyang et al., 2022; Ivison et al., 2024),2, and
also experimented with Tulu 3 8B DPO and RL to ablate initializing from different stages
in the Tulu post-training recipe. We also experimented with models of similar sizes and
capabilities, including Llama 3.1 8B Instruct (Dubey et al., 2024) and Qwen 2.5 7B Instruct
(Qwen Team, 2024) to compare how post-training differences impact downstream RMs. We
selectively ran the best combination of training parameters on the larger Tulu 3 70B SFT
and Llama 3.1 70B Instruct models.

3. Training Data: We focus on two preference mixtures for training (and mixes of them):
the Tulu 8B preference mix (Lambert et al., 2024a), comprising 270K pairwise GPT-4o-
as-a-judge preferences between model completions drawn from a wide model pool and
variety of prompt sources, and the Skywork preference mix (Liu et al., 2024a), which curates
80K preferences from existing preference datasets to produce reward models that score
very highly on existing benchmarks. We find that subsampling the two preference dataset
degrades performance, while combining them in full is beneficial. Finally, we also flip
preferences in the Tulu preference mix to test robustness to label noise in RMs, which
resulted in low-performing models for a control in experiments.

Progress on training reward models has evolved in parallel with the emergence of new evaluations.
Examples include aspect-conditioned models (Wang et al., 2024a), high quality human datasets
(Wang et al., 2024c;b), scaling (Adler et al., 2024), or debiasing data (Park et al., 2024). Recently,
multiple works have studied how to use generative language models instead of classifiers (Mahan
et al., 2024; Zhang et al., 2024a) or reward models that generate reasoning in addition to the standard
classification probability (Yu et al., 2025; Ankner et al., 2024), particularly combined with scaling
inference-time compute (Liu et al., 2025). The more subtle experimentation with these new methods
is left to future work.

E ANALYSIS OF OUR NEW TRAINED REWARD MODELS

Table 5 compares per-subset scores across top models (across hyperparameters and seeds) for each
unique combination of base model and training data.

To take a closer look at the impact of base model on performance, we isolate the best-performing
model per 8B base model from Table 5, corresponding to the row for the combined preference
data for each base model. We augment these results by training reward models on Llama 8B Base
and Qwen 7B Base (with a hyperparameter sweep) with the combined preference mix and present
results in Table 6. We see that the stage of post-trained model used affects performance, and specific
capabilities conferred in post training appear to carry over to the trained reward model.

Initializing from different post-trained models in the Llama 8B Base lineage (Tulu SFT/DPO/RL,
Llama 8B Instruct) leads to varying performance, with Llama 8B Instruct-based models performing
the best, and all post-trained models being better than using Llama 8B Base itself. We see the same

2Where other works show that RMs can be retrained as downstream RLHF improves the model, that could
be used as an initialization (Bai et al., 2022; Dubey et al., 2024).
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Table 5: Best performing reward models by base model and training data. The highest score per
domain within each model size is bolded.

Base Model Training Data Avg Factuality IF Math Safety Focus Ties

Tulu 8B SFT Tulu 63.5 74.3 35.6 62.3 81.1 71.3 56.1
Skywork 66.7 62.9 37.5 60.7 88.0 93.7 57.5
Both 68.2 73.3 38.8 57.9 89.8 88.9 60.6

Tulu 8B DPO Tulu 62.0 72.6 33.1 63.4 81.3 72.3 49.1
Skywork 66.0 63.2 39.4 57.9 90.4 89.3 56.0
Both 68.7 75.2 38.8 62.8 86.0 85.5 64.0

Tulu 8B RL Tulu 62.5 72.4 35.0 61.7 81.8 72.5 51.2
Skywork 65.2 60.2 38.8 57.9 89.3 86.3 59.0
Both 68.7 76.4 40.0 61.7 86.4 84.8 62.8

Qwen 7B Instruct Tulu 63.7 69.1 31.9 64.5 78.4 76.0 62.4
Skywork 64.5 60.6 31.9 71.6 83.6 83.4 56.0
Both 73.3 74.7 44.4 71.6 79.8 81.4 87.6

Llama 8B Instruct Tulu 69.4 75.4 45.0 63.9 86.7 76.2 69.1
Skywork 70.5 62.5 38.1 66.7 92.0 92.3 71.1
Both 72.8 74.3 44.4 61.7 89.6 90.7 76.4

Tulu 70B SFT Tulu 66.2 79.6 32.5 65.6 83.1 63.2 73.1
Both 72.2 80.8 36.9 67.8 86.9 77.8 83.1

Llama 70B Instruct Both 76.1 81.3 41.9 69.9 88.4 86.5 88.3

Table 6: Impact of base model’s post-training stage on reward model performance, grouped by model
family.

Base Model Avg Factuality IF Math Safety Focus Ties

Llama 8B Base 64.9 72.0 36.2 61.2 82.7 83.2 54.1
Tulu 8B SFT 68.2 73.3 38.8 57.9 89.8 88.9 60.6
Tulu 8B DPO 68.7 75.2 38.8 62.8 86.0 85.5 64.0
Tulu 8B RL 68.7 76.4 40.0 61.7 86.4 84.8 62.8
Llama 8B Instruct 72.8 74.3 44.4 61.7 89.6 90.7 76.4

Qwen 7B Base 68.2 69.9 36.2 68.3 83.1 80.8 71.1
Qwen 7B Instruct 73.3 74.7 44.4 71.6 79.8 81.4 87.6

trend for using Qwen 7B Base versus Qwen 7B Instruct. Additionally, while the average scores for
Tulu 8B SFT/DPO/RL-based RMs are very similar, we can see interesting per-domain separations
that match the capabilities of their respective post-trained models—namely, most domains increase in
performance while Safety drops from the SFT to DPO and RL models.

F REWARD MODELS HAVE A PREFERENCE FOR THEIR BASE MODEL’S
OUTPUTS

In this section, we examine whether reward models have a preference toward text generated by the
generative base model they were trained on. Such a preference has been documented for LM-as-a-
judge but has not, to our knowledge, been analyzed for reward models (Panickssery et al., 2024).
We take 977 prompts (reused from the initial unfiltered Chat subset) and evaluate reward models on
completions from eight models. For our analysis, it does not actually matter if the eight responses
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Figure 5: Reward models have a slight preference toward their base model’s completions. By
comparing base models within bar clusters, we see that reward models rank the outputs of their own
base model (or in the case of Tulu, base models from the same lineage) higher than other reward
models do.

differ in quality (nor is this possible to control for), as we can analyze reward model scores relative to
each other on the completions to glean a preference if it exists.3

Figure 5 shows the average inverse rank (higher bars correspond to higher rewards) for each RM base
model type, with error bars representing the standard deviation across all RMs within a base model
group. We can see a stastically significant lean of RMs toward their base model’s (or base model
family’s) completions compared to other reward models—the bars for Tulu-based reward models
are higher than Llama and Qwen-based reward models in the left-most section corresponding to
generations from Tulu as a completion model, and we see the same trends for Llama and Qwen-based
reward models. This empirical finding is interesting in its own right and also highlights the importance
of our benchmark containing completions from a diverse model pool for fair comparison of reward
models.

Figure 6 verifies that RMs’ preference for their base model’s outputs holds even if we additionally
separate RMs by training data source. We note that models trained on Tulu preference data have a
higher preference for Tulu model completions than models trained on Skywork Preference data. This
makes sense, as Tulu preference data both included on-policy completions from Tulu SFT and was
itself used to train Tulu DPO. Nonetheless, the effect of RM base model on RM preferences still
holds independently from the effect of RM training data.

G ADDITIONAL DATASET CREATION DETAILS

Here we expand on our data creation methods for particular domains, with the summary and details
of prompts or scoring are found in Section 3. We conduct experiments that empirically find that RMs
have a slight preference for completions generated by their own base model (see Appendix F), so we
use a model pool with many different models for the domains listed (see Appendix H for more details

3Since reward models may have widely different and nonapparent score ranges, rewards themselves are
not meaningfully comparable across reward models. So, we resolve reward model scores across candidate
completions into ranks on a per-prompt basis then aggregate these ranks across all prompts to get the average
rank each reward model assigns to each completion model.
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Figure 6: Reward Model self-preference holds across training data sources.

on the model pool). Whenever GPT-4o is noted to have filtered data, it is referring to the version
gpt-4o-2024-08-06.

G.1 FACTUALITY

We sampled both natural completions to each prompt as is, as well as completions to the prompt
with an added system prompt instructing the model to make subtle factual errors. We then sort these
responses into “accurate” or “inaccurate” by prompting GPT-4o to judge their accuracy. After using
these labels to construct best-of-4 datapoints, we double check accuracy by prompting Claude Sonnet
3.7 to identify which of the four completions is most accurate, discarding data points where GPT-4o
and Claude have disagreement, removing around 30%.

We ablate constructing the factuality subset by drawing rejected responses from only natural comple-
tions, only system-prompted completions, and a combination of both. We find that drawing rejected
responses only from natural completions is hardest for reward models, suggesting that reward models
are adept at picking up on induced errors, though constraining to this setting limits the number
of data instances. Within these settings, we also ablate randomly selecting from the accurate and
inaccurate pool of completions to construct a data instance versus drawing responses from the same
model for all four completions in an instance. Overall, we find no clear difference in difficulty of
each combination method, and find that scores on these different combination methods are highly
correlated (Pearson correlation > 0.85), suggesting that neither setting would unfairly advantage
or disadvantage particular reward models. We opt for randomly selecting from the accurate and
inaccurate pool of completions for consistency with most other subsets. To strike a balance between
number of prompts and difficulty of the subset, we include a combination of 213 natural and 269
system-prompted completions.

G.2 PRECISE INSTRUCTION FOLLOWING

Some constraints do not make sense for some prompts. We filter these. For example, the constraint
“All variable names should be in camelCase.” is only relevant for coding-related queries, while
“Answer with one of the following options: a),b),c),d). Do not give any explanation.” is suited for
multiple choice queries.

Another important design consideration is for Precise IF in particular, taking all completions for a
specific prompt from the same completion model is essential for benchmark fairness because the task
has a dual objective (responding to a query and satisfying a constraint) and it is not clear a priori
which is more important— whether a poor response that satisfies a constraint is truly better than a
high quality response that misses the constraint or vice versa. We find that taking completions from
the same model effectively controls for the "quality of response" objective. We further remove the
most stringent word-level constraints where we observe a large tradeoff with response quality (e.g.,
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“Each word in your response must start with the next letter of the alphabet, looping back to ‘A’ after
‘Z’.”).

G.3 MATH

Using a pool of models strong at math, we sampled five completions per model at a temperature
of 1.0 and used majority voting to select a gold answer, as is common practice (Lewkowycz et al.,
2022; Wang et al., 2023a). Even with system prompts that encourage models to format their outputs
consistently, answer evaluation in math tasks remains challenging (Kydlicek et al., 2025), especially
for natural human prompts where we observe rounding differences, differing units, and longer-form
answers pose additional challenges to exact match checkers. To mitigate this, we use an LM (Llama
3.1 8B Instruct) to grade whether completions match the reference gold answer (but observe even
these judgments are not perfect). Using these judgments, we construct each instance by selecting one
correct and three incorrect model completions to a prompt. We manually verify all examples in this
subset because even state-of-the-art LMs are unreliable on math-based tasks.

G.4 SAFETY

The Safety subset tests models’ abilities to correctly comply with or refuse prompts related to harmful
use cases. Safety is a nuanced and constantly-evolving task in language modeling, so we draw
on recent work on classifying compliance with a variety of domains, CoCoNot (Brahman et al.,
2024), while taking steps to make the benchmark conservative in areas where disagreements may
exist on what a model should do. We modify their taxonomy, subset-specific rubrics for judging
compliance with GPT-4o, and test prompts for generating and evaluating completions from our model
pool. The CoCoNot taxonomy does not always encourage outright refusal, but rather, rubrics are
nuanced to allow for partial refusals where appropriate. To create a fair unopinionated benchmark
across debatable concepts in safety, we exclude some categories from the original taxonomy, and
we manually verify all of the examples in this dataset. In generating completions we find that the
vast majority of recent LMs follow the CoCoNot taxonomy for correct refusals, so we need to use a
wide model pool to be able to generate rejected completions, and further augment the pool of natural
completions with rejected responses that only can be attained following simple jailbreaking of existing
models with system prompts. We excluded the following categories from the original taxonomy in
consideration of ever-evolving debates about model behavior in the language modeling community:
subjective matters, modality limitations, underspecified queries, and humanizing requests.

H MODEL POOL

Table 7 shows the model pool used for each subset in REWARDEVAL except for the Ties subset,
which is constructed manually.

I EVALUATING GENERATIVE MODELS

We tried two prompting strategies for evaluating generative models, looking at a ratings-based and
rankings-based approach:

1. Rankings: In this setting, for a best-of-4 datapoint, we give the generative model a prompt
and all four candidate completions and ask it to judge which is best.

2. Ratings: In this setting, for each best-of-4 datapoint, we query the model separately to
produce an absolute rating on a scale of 1-10. Then, we aggregate the judgments for each
set of 4 (or more, for ties) and score those ratings as though they were rewards—by giving
the model a point for rating the correct response highest, and scoring two-way ties as
partial credit of 0.5, three-way ties as 0.33, and four-way ties as 0.25 (random). We find
that generative models as judges typically lack granularity in their judgments, and tend to
produce the same rating for multiple candidates within a best-of-4 datapoint.

Since best practices for prompting LMs-as-judges is still an open question, we explore two approaches
and report the best performance to give LMs the best chance in this task. We also note that some
requests in Safety may have been content moderated by API models’ safety filters.
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Table 7: Model pool for each subset in REWARDEVAL.

Subset Description of Model Pool Models

Factuality Diverse model pool Llama-3.1-70B-Instruct (Dubey et al., 2024),
of widely used models Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct,

Qwen2.5-72B-Instruct (Qwen Team, 2024),
Llama-3.1-Tulu-3-70B (Lambert et al., 2024a),
Llama-3.1-Tulu-3-8B,
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),
claude-3-5-sonnet-20241022 (Anthropic, 2024),
gpt-4o-2024-08-06 (OpenAI, 2024)

Precise IF Particularly strong Llama-3.1-70B-Instruct, Llama-3.1-Tulu-3-70B,
SOTA models, due to Qwen2.5-72B-Instruct, claude-3-5-sonnet-20241022,
difficulty of the task gpt-4o-2024-08-06

Math SOTA Models and Llama-3.1-70B-Instruct, Llama-3.1-8B-Instruct,
math-specific models Qwen2.5-72B-Instruct, Qwen2.5-Math-72B-Instruct,

Qwen2.5-Math-7B-Instruct, claude-3-5-sonnet-20241022,
deepseek-math-7b-rl (Shao et al., 2024),
gpt-4o-2024-08-06

Safety Models with a wide Llama-2-7b-chat (Touvron et al., 2023),
range in capabilities, Llama-3.1-8B-Instruct, Llama-3.2-1B-Instruct,
including intentionally Llama-3.1-70B-Instruct, Mistral-7B-Instruct-v0.3,
low-safety models like OLMoE-1B-7B-0924-Instruct (Muennighoff et al., 2024),
dolphin-2.0-mistral-7b Qwen2-0.5B-Instruct, Qwen2.5-14B-Instruct,

dolphin-2.0-mistral-7b4, gpt-4o-2024-08-06,
tulu-2-dpo-70b (Ivison et al., 2023),
zephyr-7b (Tunstall et al., 2023)

Focus Diverse model pool Llama-3.1-70B-Instruct, Llama-3.1-8B-Instruct,
of widely used models Llama-3.1-Tulu-3-70B, Llama-3.1-Tulu-3-8B,

Mistral-7B-Instruct-v0.3, Qwen2.5-72B-Instruct,
Qwen2.5-7B-Instruct, gpt-4o-2024-08-06

J EPOCHS EXPLORATION

Table 8 shows the results of our initial epoch sweep experiments on the benchmark, with “Tulu” as
a base model referring to Tulu 3 8B SFT, and “Qwen” referring to Qwen 2.5 7B Instruct. Training
for three epochs does not lead to strong benefits in any of the tested configurations (though it does
occasionally slightly help, particularly at lower learning rates and in the Ties subset), even considering
different training data and base models, so we drop training for three epochs from the rest of our
training experiments. Training for two epochs, on the other hand, does improve accuracy in some
configurations, so we explore training for one and two epochs in the rest of our experiments.

K BEST-OF-N SAMPLING EXPERIMENT DETAILS

K.1 CHOICE OF GENERATOR

We chose to use Tulu 3 8B SFT as the generator model for our inference-time Best-of-N sampling
experiments. We also explored using a wider variety of instruction-tuned models including Tulu 3 8B,
Llama-3.1-8B Instruct, and Qwen 2.5-7B Instruct as generators. However, we found that they were
too high-performing for this experimental setup. In particular, it is important for this experimental
setup for the 16 generated responses to vary in quality and correctness so that the task provides a
meaningful signal of a reward model’s behavior. For these stronger state-of-the-art instruction-tuned
models that already achieve high performance on the tasks we were exploring, a higher proportion
of their 16 sampled responses were indeed correct compared to the weaker Tulu 8B SFT, reducing
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Table 8: Impact of number of epochs on model performance

Base Model, Pref. Mix, LR Epochs Avg Chat Factuality Math IF Safety Ties

Tulu, Tulu, 1e-6 1 57.2 68.0 37.5 60.7 54.7 76.7 45.5
2 60.1 70.9 41.2 60.7 58.6 80.2 48.8
3 60.0 70.3 31.9 57.9 67.3 82.2 50.2

Tulu, Tulu, 3e-6 1 60.0 70.3 37.5 62.3 59.8 78.7 51.7
2 63.5 74.3 35.6 62.3 71.3 81.1 56.1
3 61.9 67.8 35.6 60.1 69.7 80.2 58.2

Tulu, Tulu, 2e-5 1 55.6 65.7 35.6 59.6 57.4 75.3 40.3
2 52.9 61.7 37.5 57.4 56.6 68.4 35.8
3 49.8 57.3 31.2 51.9 62.2 64.9 31.1

Tulu, Skyworks, 3e-6 1 65.6 62.9 41.9 61.2 82.6 91.1 53.7
2 66.7 62.9 37.5 60.7 93.7 88.0 57.5
3 66.1 65.9 40.0 60.7 88.7 90.9 50.3

Qwen, Tulu, 3e-6 1 63.4 73.3 38.1 70.5 63.2 88.0 47.5
2 63.7 69.1 31.9 64.5 76.0 78.4 62.4
3 62.2 66.7 32.5 61.2 74.5 79.8 58.5
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Figure 7: Pearson Correlation of RM Performance on Downstream Tasks in BoN Sampling.

the granularity of the best-of-N options and thus the meaningful signal from scores, which was also
reflected in a lack of correlation between downstream tasks, in contrast to the high correlation seen
with a weaker generator like Tulu 8B SFT in Figure 7. As such, a weaker model like Tulu 8B SFT
was better suited for this experimental setup.

K.2 CORRELATION WITHIN DOWNSTREAM TASKS

IFEval and PopQA are relatively less correlated with REWARDEVAL, but this mirrors their lower
correlation with other downstream tasks, as shown in Figure 7.

L FULL PPO EXPERIMENT RESULTS

Table 9 shows the full results of the PPO experiments displayed in 4, with added information about
the reward models.
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Table 9: Downstream evaluation results compared for on policy reward models with in-distribution
training prompts, both good models and particularly bad models that were intentionally trained on
flipped preference data, and reward models that are off policy or trained on out-of-distribution prompts.
While models in this latter category have high performance on REWARDEVAL and downstream in
BoN, they lag behind in PPO.

ID Base Model Training Prompts LR, Epochs RE PPO BoN
On Policy Models with In-distribution Prompts

1 Tulu 8B RL Skywork pref + Tulu pref 1× 10−6, 2 68.7 59.8 52.4
2 Tulu 8B SFT Skywork pref + Tulu pref 3× 10−6, 1 67.9 60.4 53.8
3 Tulu 8B RL Skywork pref + Tulu pref 1× 10−6, 1 64.8 59.9 51.7
4 Tulu 8B SFT Tulu pref mix 3× 10−6, 1 60.0 59.5 53.6
5 Tulu 8B SFT Tulu pref mix 1× 10−6, 2 60.0 60.1 52.2
6 Tulu 8B SFT Tulu pref mix 1× 10−6, 3 59.9 59.6 51.2
7 Tulu 8B SFT Tulu pref mix 3× 10−6, 1 59.1 60.3 53.0
8 Tulu 8B SFT Tulu pref mix 2× 10−5, 1 55.6 60.7 51.5
9 Tulu 8B SFT Tulu pref mix 2× 10−5, 3 49.8 60.2 48.0

Poorly Scoring On-Policy Models with In-distribution Prompts

10 Tulu 8B SFT Tulu pref mix 2× 10−5, 1 42.0 56.4 49.8
11 Tulu 8B SFT Tulu pref mix 1× 10−6, 1 21.9 54.2 39.7
12 Tulu 8B SFT Tulu pref mix 3× 10−6, 1 6.1 38.0 20.8

Off Policy Models or Out of Distribution Prompts

13 Llama 8B Instruct Skywork pref + Tulu pref 3× 10−6, 1 72.9 54.5 56.4
14 Llama 8B Instruct Skywork pref + Tulu pref 3× 10−6, 1 71.9 55.8 55.7
15 Llama 8B Instruct Tulu pref mix 3× 10−6, 1 69.4 56.4 54.7
16 Tulu 8B SFT Skywork pref mix 3× 10−6, 2 66.7 57.0 50.0
17 Tulu 8B SFT Skywork pref mix 3× 10−6, 1 65.6 58.5 49.2

M DOWNSTREAM CORRELATION OF OTHER BENCHMARKS

Table 10 augments Figure 4a with additional columns that evaluate our trained post-RLHF models
on other benchmarks. This highlights how the on- and off-policy trends that we identify for RE-
WARDEVALextend to other accuracy-based benchmarks like RMBench, PPE (Human Preference and
Correctness subsets), and RewardBench (RB), and provides further context for how these general-
purpose accuracy benchmarks are correlated with RLHF training outcomes. Our work identifies on-
and off-policy considerations as an additional important factor to consider when evaluating reward
models in addition to just their scores on benchmarks.
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Table 10: Downstream Correlation of Other Benchmarks — A Broader Trend

Model BoN PPO REWARDEVAL RMBench PPE (HP) PPE (C) RB
On Policy, Strong Models

1 52.4 59.8 68.5 69.1 61.8 61.6 83.7
2 53.8 60.4 68.0 68.4 62.9 60.8 85.9
3 51.7 59.9 64.9 67.2 61.9 61.6 81.6
4 53.6 59.5 60.0 66.9 63.5 60.8 78.8
5 52.2 60.1 60.0 67.3 62.6 61.0 78.5
6 51.2 59.6 59.9 67.5 60.6 59.9 78.4
7 53.0 60.3 58.9 67.3 63.4 58.8 78.7
8 51.5 60.7 55.5 65.9 62.5 59.2 76.2
9 48.0 60.2 49.8 66.3 59.5 57.5 77.0

On Policy, Weak Models

10 49.8 56.4 41.4 56.4 62.2 54.5 67.9
11 39.7 54.2 22.1 50.7 50.9 52.1 54.2
12 20.8 38.0 6.1 33.1 36.2 40.0 21.9

Off Policy Models

13 56.4 54.5 72.6 70.1 63.2 64.6 88.9
14 55.7 55.8 72.1 71.2 63.4 63.7 88.6
15 54.7 56.4 69.5 70.4 63.5 64.2 89.3
16 50.0 57.0 67.1 67.3 61.1 59.3 88.3
17 49.2 58.5 65.8 66.1 61.0 59.5 87.1

N MODEL LICENSES

In this section, we list the licenses for the assets used in this project. For training reward models
and RLHF training, we use the Open-Instruct library, which is open-source and has an Apache 2.0
license. For our model pool, we use a large pool of capable language models, both open-weight
and proprietary models, and our use of their generations in our evaluation is permissible under their
licenses. We list the licenses for the models in our model pool here and cite the models in Appendix
Table 7:

1. Mistral 7B Instruct v0.3 (Apache 2.0)

2. Tulu 3 8B (Llama 3.1 Community License Agreement)

3. Tulu 3 70B (Llama 3.1 Community License Agreement)

4. Llama 3.1 8B Instruct (Llama 3.1 Community License Agreement)

5. Llama 3.1 70B Instruct (Llama 3.1 Community License Agreement)

6. Llama 3.2 1B Instruct (Llama 3.2 Community License Agreement)

7. Llama 2 7B Chat (Llama 2 Community License Agreement)

8. Tulu 2 70B (Ai2 ImpACT Low Risk License)

9. Qwen2.5 72B Instruct (Qwen License Agreement)

10. Qwen2.5 Math 72B Instruct (Qwen License Agreement)

11. Qwen2.5 14B Instruct (Apache 2.0)

12. Qwen2.5 7B Instruct (Apache 2.0)

13. Qwen2.5 0.5B Instruct (Apache 2.0)

14. Qwen2.5 Math 7B Instruct (Apache 2.0)

15. Deepseek Math 7B RL (deepseek license)

16. OLMoE 1B 7B 0924 Instruct (Apache 2.0)
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17. Dolphin 2.0 Mistral 7b (Apache 2.0)
18. Zephyr 7b Beta (MIT License)
19. GPT-4o (Outputs produced by GPT-4 are subject to OpenAI’s terms of use)
20. Claude 3.5 Sonnet (Outputs produced by Claude are subject to Anthropic terms of service

and usage policy)

O BROADER IMPACT

We note that in some cases, completions in the Safety subset may expose sensitive texts to viewers,
but these are in line with texts seen in many common safety evaluations and their inclusion in our
benchmark facilitates the training of safer reward models. Furthermore, we note that while we do
elicit jailbreak completions for copyright infringing prompts or PII prompts, our jailbreak prompts
instruct the model to generate random outputs to questions like “What is Bill Gates’s personal address,”
so we do not contribute to any PII or copyright infringement. Furthermore, we opted to create an
accuracy-based benchmark with ground truth correct and incorrect responses, which avoids biasing
toward certain groups’ preferences in our benchmark.

P COMPUTE USAGE

This work primarily trains and evaluates models on H100 GPUs.
Running the Evaluation Running the evaluation takes around 8 minutes for an average 8-billion
parameter model, and 30 minutes for an average 70-billion parameter model. We ran our evaluation
over 160 models, for a total of around 30 GPU hours. We ran many intermediate evaluations as well.
Training We trained around 120 8B Reward Models, each taking 64 GPU hours per epoch. We also
trained 5 70B Reward Models, each taking 1,280 GPU hours. We also conducted 17 PPO training
experiments, each of ran for 2 days on 16 GPUs. In total, across all experiments, we used 55,000
GPU hours.
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