
Published as a conference paper at ICLR 2025

FEDERATED CIRCUITS: A UNIFIED FRAMEWORK FOR
SCALABLE AND EFFICIENT FEDERATED LEARNING

Jonas Seng1,∗, Florian Peter Busch1,2, Pooja Prasad3

Devendra Singh Dhami3, Martin Mundt5 Kristian Kersting1,2,4

1Department of Computer Science, Technical University of Darmstadt, Germany
2Hessian Center for AI (hessian.AI), Germany
3Dept. of Mathematics and Computer Science, Eindhoven University of Technology, Netherlands
4German Research Center for AI (DFKI), Germany
5 Department of Mathematics and Computer Science, University of Bremen
∗ jonas.seng@tu-darmstadt.de

ABSTRACT

Probabilistic circuits (PCs) enable us to represent joint distributions over a set of
random variables and can be seen as hierarchical mixture models. This represen-
tation allows for various probabilistic queries to be answered in tractable time.
However, the properties of PCs so far have only been explored in the realm of
tractable probabilistic modeling. In this work, we unveil a deep connection between
PCs and federated learning (FL), leading to federated circuits (FCs)—a novel, flex-
ible, modular, and communication-efficient federated learning (FL) framework that
unifies for the first time horizontal, vertical, and hybrid FL in one framework by
re-framing FL as a density estimation problem over distributed datasets. Also, FCs
allow us to scale tractable probabilistic models (PCs) to large-scale datasets by
recursively partitioning datasets and the model itself across a distributed learning
environment. We empirically demonstrate FC’s versatility in handling horizontal,
vertical, and hybrid FL within a unified framework on multiple classification tasks.
Further, we demonstrate FCs’ capabilities to scale PCs to large-scale datasets on
various real-world image datasets.

1 INTRODUCTION

Probabilistic Circuits (PCs) are a family of models that provide tractable inference for various
probabilistic queries (Poon & Domingos, 2011; Choi et al., 2020). This is achieved by representing
a joint distribution by a computation graph on which certain structural properties are imposed.
These properties of PCs, as well as further optimizations like improving the compactness of PC
representations and tailoring them to specific hardware architectures (Peharz et al., 2020a; Liu
et al., 2024), provide significant computational advantages over traditional probabilistic models such
as Bayesian networks (Pearl, 1985) and allow tractable probabilistic modeling of larger datasets.
However, the model properties of PCs not only allow tractable probabilistic modeling but also have a
deep connection to federated learning (FL). For popular models like neural networks and tree-based
models, designing architectures and training schemes specifically tailored to horizontal, vertical,
and hybrid FL is necessary. This makes existing FL frameworks inflexible and only applicable to
certain scenarios. Designing a framework that unifies all three FL scenarios is considered a non-trivial
endeavor in the Fl community Li et al. (2023a); Wen et al. (2023). Inspired by probabilistic circuits
(PCs), we propose federated circuits (FCs), a novel, flexible, modular, and communication-efficient
FL framework that is capable of handling horizontal, vertical, and hybrid FL scenarios at the same
time. This is achieved by considering FL as a density estimation task and designing a distributed and
modular model architecture akin to PCs: In PCs, sum nodes combine probability distributions over
the same set of variables via a mixture. This resembles the horizontal FL setting (Konečnỳ et al.,
2016; Li et al., 2020), where all clients hold the same features but different samples. In contrast,
the case of vertical FL (Yang et al., 2019; Wu et al., 2020) in which the same samples are shared,
but features are split across clients, can be linked to the product nodes used in PCs, which combine

1

Published as a conference paper at ICLR 2025

+

+

Figure 1: Federated Circuits unify horizontal, vertical, and hybrid FL. FCs reframe FL as a
density estimation task and learn a joint model over a dataset D split into a set of n partitions {Pi}ni=1
s.t. D =

⋃n
i=1 Pi. Each partition is held by a client (i.e., machine) cj , and the resulting federated

circuit (FC) is learned jointly. This approach also allows to scale up tractable probabilistic models.

distributions of a disjoint set of variables. Consequently, the hybrid FL (Zhang et al., 2020) setting,
where both samples and features are separated across clients, can be represented by a combination of
sum and product nodes.

FCs naturally handle all three FL settings and, therefore, also provide a flexible way of scaling up
PCs by learning a joint distribution over a dataset arbitrarily partitioned across a set of clients (see
Fig. 1 for an illustration). Imposing the same structural properties as for PCs, FCs achieve tractable
computation of probabilistic queries like marginalization and conditioning across multiple machines.
To learn FCs, we propose a highly communication-efficient learning algorithm that leverages the
semi-ring structure within the design of FCs. Our experimental evaluation shows that FCs outperform
EiNets (Peharz et al., 2020a) and PyJuice (Liu et al., 2024) on large-scale density estimation tasks,
demonstrating the benefits of scaling up PCs. Additionally, FCs outperform or achieve competing
results on various classification tasks in all federated settings compared to state-of-the-art neural
network-based and tree-based methods, demonstrating its effectiveness and flexibility in FL. We
make the following contributions: (1) We introduce FCs, a modular, communication-efficient, and
scalable FL framework unifying horizontal, vertical, and hybrid FL by mapping the semantics of
PCs to FL. (2) We practically instantiate FCs to FedPCs and demonstrate how the FC framework
can be leveraged to scale up PCs to large real-world datasets. (3) We propose a one-pass training
scheme for FedPCs that is compatible with a broad set of learning algorithms. (4) We provide
extensive experiments demonstrating the effectiveness of our approach for learning large-scale PCs
and performing FL. We consider classification and density estimation on tabular and image data. Our
code is publicly available at https://github.com/J0nasSeng/federated-spn.

2 PRELIMINARIES AND RELATED WORK

In the following, we briefly introduce PCs and FL and give an overview of relevant related work.

Probabilistic Circuits (PCs). PCs encode a probability distribution as a computation graph that
allows for tractable inference of a wide range of queries such as conditioning and marginalization.
The computation graph of PCs consists of sum nodes computing a mixture distribution over a set of
random variables (RVs) and product nodes computing product distributions over sets of RVs (see
App. A.1 for details). Several works have tackled the goal of scaling PCs. Peharz et al. (2020b)
have shown that learned PC structures can be replaced by large, random structures to scale to larger
problems. Changes in the model layout, such as parallelizable layers via einsum-operations (Peharz
et al., 2020a) and a reduction in IO operations (Liu et al., 2024), were also shown to reduce the speed
of computation drastically. Liu et al. (2022) improved the performance of PCs by latent variable
distillation using deep generative models for additional supervision during learning.

Federated Learning (FL). The goal of FL is to collaboratively learn an ML model across clients
without sharing the clients’ data. One distinguishes between horizontal, vertical, and hybrid FL
depending on how data is partitioned. In horizontal FL, a dataset D ∈ Rn×d is partitioned s.t. each
client holds the same d features but different, non-overlapping sets of samples. In vertical FL, D
each client holds the same n samples but different, non-overlapping subsets of the d features. Hybrid
FL combines the characteristics of horizontal and vertical FL (Wen et al., 2023; Li et al., 2023a).
For all three FL settings, specifically tailored methods have been proposed to enable collaborative

2

https://github.com/J0nasSeng/federated-spn

Published as a conference paper at ICLR 2025

learning of models. The most common scheme in horizontal FL is to average the models of all clients
regularly during training (McMahan et al., 2016; Karimireddy et al., 2020a;b; Sahu et al., 2018),
while in vertical and hybrid FL, tree-based and neural models are the predominant choice and are
typically learned by sharing data statistics or feature representations among clients (Kourtellis et al.,
2016; Cheng et al., 2021; Vepakomma et al., 2018; Liu et al., 2019; Ceballos et al., 2020; Chen et al.,
2020; Li et al., 2023b; 2024). Especially in hybrid FL, however, complex training procedures are
required that are highly specialized towards certain model classes.

3 FEDERATED CIRCUITS

In the following, we present federated circuits (FCs), an elegant framework unifying horizontal,
vertical, and hybrid FL. Also, we show how FCs can be leveraged to scale up PCs effectively.

Problem Statement & Modeling Assumptions. Given a dataset D and a set of clients C where each
c ∈ C holds a partition Dc of D; we aim to learn the joint distribution p(X) over random variables
X (i.e., the features of D). The partitioning of D is not further specified. Hence, each client might
only hold a subset of random variables Xc ⊆ X with support Xc. This can be interpreted as each
c ∈ C holding a dataset Dc ∼ pc where pc is a joint distribution over Xc which is related to p(X).
We introduce two critical modeling assumptions relevant for learning a joint distribution p(X) from a
dataset D partitioned across a set of machines.

Assumption 1 (Mixture Marginals). There exists a joint distribution p such that the relation∫
X\XS

p(x) =
∑

l∈L q(L = l) · pS(x|L = l) holds for all x ∈ X . Here, XS ⊆ X is a sub-
set of the union of client random variables X = ∪c∈CXc. Further, X =×c∈C Xc is the support of
X, each pS is defined over XS ⊆ X and q is a prior over a latent L.

Assumption 2 (Cluster Independence). Given disjoint sets of random variables X1, · · · ,Xn and
a joint distribution p(X1, · · · ,Xn), assume that a latent L can be introduced s.t. the joint can be
represented as p(X1, · · · ,Xn) =

∑
l q(L = l)

∏n
i=1 p(Xi|L = l) where q is a prior distribution

over the latent L.

Assumptions 1 and 2 ensure that the client’s data is sufficient to learn the joint p(X) and that
dependencies among features residing on different clients can be learned. See App. B for a discussion.

3.1 BRIDGING PROBABILISTIC CIRCUITS AND FEDERATED LEARNING

We now illustrate an inherent connection between PC semantics and FL. This will allow us to train
PCs on data partitioned over a set of clients and thus greatly increase the scaling potential of PCs.

Sum Nodes & Horizontal FL. In horizontal FL, each client is assumed to hold the same set of
features, i.e., Xc = Xc′ for all c, c′ ∈ C. However, each client holds different samples. The horizontal
FL setting precisely corresponds to the interpretation of sum nodes in PCs: A sum node splits a
dataset into multiple disjoint clusters. This results in a mixture distribution representing the data that
is learned from the disjoint clusters.

Definition 1 (Horizontal FL). Assume a set of samples Dc ∼ pc on each client c ∈ C, a joint
distribution p adhering to Assumption 1 and that Xc = Xc′ for all c, c′ ∈ C s.t. c ̸= c′. We define
horizontal FL as fitting a mixture distribution p̂ =

∑
c∈C q(c) · p̂c such that d(p̂, p) and d(pc, p̂c) are

minimal for all c ∈ C where d is a distance metric and p̂c local distribution estimates.

In contrast to prominent horizontal FL methods which regularly aggregate model parameters during
training, we aggregate distributions. This modular approach aggregating distributions into mixtures,
naturally handles heterogeneous client distributions, leading to robustness against differing client
distributions. Also, since clients can train models independently, communication costs are minimized.

Product Nodes & Vertical FL. In vertical FL, each client is assumed to hold a disjoint set of features,
i.e., Xc ∩Xc′ = ∅ for all c, c′ ∈ C. In contrast to horizontal FL, all clients hold different features
belonging to the same sample instances. There is a semantic connection between vertical FL and PCs.
Product nodes in PCs compute a product distribution defined on a disjoint set of random variables,
thereby separating the data along the feature dimension. This corresponds to the vertical FL setting.
However, a product node assumes the random variables of the child distributions to be independent of

3

Published as a conference paper at ICLR 2025

each other. This is an unrealistic assumption for vertical FL, where features held by different clients
might be statistically dependent. In Sec. 3.2, we exploit Assumption 2 to capture such dependencies.

Definition 2 (Vertical FL). Assume a set of samples Dc ∼ pc on each data owner c ∈ C, the
existence of a joint distribution p adhering to Assumptions 1 and 2 and that Xc ∩Xc′ = ∅ holds
for all c, c′ ∈ C s.t. c ̸= c′. We define vertical FL as estimating a joint distribution p̂ s.t. d(p, p̂) is
minimal and

∫
X\Xc

p̂(x) = p̂c(x) for all x ∈ X where d is a distance metric and p̂c are estimates of
client distributions.

PCs & Hybrid FL. Given Defs. 1 and 2, hybrid FL is a combination of both. In terms of PC
semantics, this amounts to building a hierarchy of fusing marginals and learning mixtures. Provided
with these probabilistic semantics, we can now formally bridge PCs and FL. In the following, we
distinguish between clients C and servers S and define the set of machines participating in training as
N = C ∪ S. Bringing everything together and abstracting from the probabilistic interpretation, we
define federated circuits (FCs) as follows.

Definition 3 (Federated Circuits). A federated circuit (FC) is a tuple (G, ψG , ω) where G = (V,E)
is a rooted, Directed Acyclic Graph (DAG), ψG : V → N assigns each N ∈ V to a client/server
n ∈ N based on the structure of G and ω : V → O assigns an operation o ∈ O to each node N ∈ V
where o : dom(ch(N)) → dom(N) computes the value of N given the values of the children of N.

FCs extend the definition of PCs in the sense that FCs represent a computational graph G = (V,E)
distributed over multiple machines where arbitrary operations can be performed in each node N ∈ V .
Note that through G, FCs also define the structure of a communication network among participating
machines. Also, FCs are not restricted to a probabilistic interpretation. For example, parameterizing
leaves by decision trees yields a bagging model.

3.2 FEDERATED PROBABILISTIC CIRCUITS

We now introduce federated PCs (FedPCs), thereby following the probabilistic interpretation from
Sec. 3.1. We align the PC structure with the communication network structure to form a FedPC.

Definition 4 (Federated PC). A Federated PC (FedPC) is a FC where each leaf node C is a density
estimator and each node N s.t. ch(N) ̸= ∅ is either a sum node (S) or a product node (P).

Note that only the client nodes C hold a dataset, and we only demand the clients to be parameterized
by a density estimator (e.g., PCs). The assignment function ϕ establishes a direct correspondence
between PC semantics and the communication network by transforming the PC’s computation
graph into a distributed computation graph. Hence, G defines the model’s computation and the
communication among participants. Inference is performed as usual in PCs by propagating likelihood
values from the leaf nodes to the root node. Training FedPCs requires adapting the regular training
procedure for PCs because, in FL, clients cannot access other clients’ data while popular training
algorithms like Expectation Maximization (EM) or LearnSPN Gens & Domingos (2013) assume
access to all features and samples. We tackle this with a one-pass training procedure for FedPCs.

One-Pass Training. Our one-pass learning algorithm learns the structure and parameters of FedPCs
such that local models can be trained independently (Algo. 1, Fig. 4). Before training, all clients
c ∈ C share their set of uniquely identifiable features/random variables Xc with a server, resulting in
the feature set indicator matrix M|C|×|X| (Lines 1-2). Feature identifiers can be names of features
such as “account balance” and must correspond to the same random variable on all clients (thus
uniquely identifiable). Then, the server divides the joint feature space X into disjoint subspaces S(j).
For this, we consider the set of distinct column vectors U of M where we denote distinct vectors
as u. Since each column of M indicates the set of clients a feature resides on, we can use each
u ∈ U to compute a set of features that are shared across the same set of clients. This results in |U|
distinct feature sets, denoted by {S(1), . . . ,S(|U|)}. Each OS(j) denotes the set of clients that hold
the features in S(j). (Lines 3-7). This procedure is illustrated in Fig. 4(top) in App. C.

Afterward, the FedPC structure is constructed as shown in Fig. 4(bottom) in App. C: First, we build a
mixture (sum node) for each subspace S(j) where |OS(j) | > 1, i.e., more than one client holds S(j)

(Lines 9-12). Note that this can be seen as aggregating client modules/models into one large mixture.
enabling each client to learn a PC over S(j) independently. After that,|OS(j) | = 1 holds for all

4

Published as a conference paper at ICLR 2025

Algorithm 1: One-Pass Training
Data: Clients C, features X, cluster size K,

FedPC
Result: Trained fedPC

1 Set M = 0|C|×|X| and map = [];
2 Mi,j = 1 if X(j) on client i;
3 for j,u in enum. of distinct columns U do
4 S(j) = {i : i ∈ {1, . . . , |X| ∧ all(u ==

M:,i)}};
5 OS(j) = argwhere(u == 1);
6 map.append(S(j), OS(j));
7 sums = [];
8 for S(j), OS(j) in map do
9 if |OS(j) | > 1 then

10 s = fedPC.add sum(S(j), OS(j));
11 sums.add(s)
12 else
13 client clusters = cluster local data(OS(j) ,

K);
14 products = fedPC.add products(P);
15 for prod in products do
16 prod.children.add(sums);
17 for client, clusters in client clusters do
18 prod.children.add rand subset(clusters);
19 fedPC.add mixture over products(products);
20 fedPC.train clients();
21 fedPC.infer weights();
22 return fedPC

remaining S(j). Also, the scope of the sums
nodes introduced in the FedPC share no fea-
tures with any of the remaining S(j) since
the server divided the feature space into dis-
joint subspaces. Therefore, we introduce
P product nodes to construct the remain-
ing part of the FedPC. To this end, we di-
vide the data of all subspaces S(j) where
|OS(j) | = 1 holds into K clusters (Line 14).
Each client learns a dedicated PC for each
cluster. To ensure that the FedPC spans the
entire feature space of the clients, the chil-
dren of product nodes are set as follows:
Each sum node introduced in the FedPC
becomes a child of each product node. Ad-
ditionally, for each S(j) where |OS(j) | = 1
holds, we randomly select a PC learned over
one of the K clusters s.t. the scope of each
product node spans X, and each PC repre-
senting a cluster is the child of at least one
product node. Then, we build a mixture over
all product nodes using a sum node (Lines
15-20). Note that we seek to construct prod-
uct nodes over independent clusters, which
aligns with the maximum entropy princi-
ple (see App. D.1 for details). Once the
FedPC is constructed, all client-sided PCs
are learned. Since clients learn their PCs in-
dependently, each client can use an arbitrary
learning algorithm (even different ones). As

a last step, the network-sided parameters, i.e., the weights of network-sided sum nodes, of the FedPC
are inferred (Line 21-22). For each sum node S, the weight w(i)

S associated with the i-th child (i.e.,
distribution) of S is set to ρ(Ni)∑

i ρ(Ni)
. Here, ρ(Ni) =

∑
C∈ch(Ni)

|DC| where DC is the dataset used to
train the leaf C. Note that this approach reduces horizontal FL to learning a mixture of the client’s
data distributions and vertical FL to learning a mixture over P product nodes.

Due to the modularity of FCs, clients can learn parts of the final model independently, making FCs
highly communication efficient. See App. C.1 for an analysis of the communication efficiency.

4 EXPERIMENTS

We now empirically evaluate FCs. We consider the scaling capabilities of FedPCs and the performance
of FCs in horizontal, vertical, and hybrid FL. Therefore, we answer the following questions: (Q1) Do
FedPCs effectively scale up PCs, thus yielding more expressive models? (Q2) How do FCs with
different parameterizations perform on classification tasks compared to existing FL methods?

Experimental Setup. To see if FedPCs successfully scale up PCs, we follow Liu et al. (2024)
and perform density estimation on three large-scale, high-resolution image datasets: Imagenet,
Imagenet32 (both 1.2M samples), and CelebA (200K samples). The datasets were partitioned over 2-
16 clients horizontally. We compare FedPCs to EiNets and Pyjuice. To evaluate FCs in FL scenarios,
we selected three tabular datasets that cover various real-world application domains and data regimes.
This includes one credit fraud dataset (∼ 300K samples), a medical dataset (breast cancer detection;
< 1000 samples), and the popular Income dataset (> 1M samples). The selected datasets for FL
cover low-data, medium-data, and large-data regimes (see App. F for more details). We compare FCs
to FedAvg and SplitNN as widely used frameworks for horizontal and vertical FL, parameterized by
the TabNet (Arik & Pfister, 2020) architecture tailored to tabular datasets. Additionally, we compare
FCs to FedTree (Li et al., 2023b) since tree models excel at tabular datasets. For details, see App. F.

5

Published as a conference paper at ICLR 2025

64x64x3 RVs 32x32x3 RVs
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
R

un
tim

es

Einet
PyJuice
FedPC (2 cl.)
FedPC (4 cl.)
FedPC (8 cl.)
FedPC (16 cl.)

Figure 2: FedPCs speed up training due to
parallel training on separate data partitions (here
64x64 and 32x32 images respectively).

CelebA Imagenet32 Imagenet
EiNet -3.42 ± 0.06 -3.71 ± 0.04 -3.73 ± 0.04

PyJuice -2.98 ± 0.02 -3.60 ± 0.01 -3.43 ± 0.02

FedPC (2 cl.) -2.87 ± 0.05 -2.66 ± 0.02 -3.12 ± 0.02

FedPC (4 cl.) -2.84 ± 0.05 -2.56 ± 0.03 -3.01 ± 0.03

FedPC (8 cl.) -2.76 ± 0.04 -2.50 ± 0.03 -2.97 ± 0.02

FedPC (16 cl.) -2.68 ± 0.03 -2.45 ± 0.04 -2.90 ± 0.03

Table 1: FedPCs outperform EiNets and
PyJuice on density estimation tasks. FedPCs
achieve better results on density estimation tasks
on three challenging image datasets (CelebA, Im-
agenet32, and Imagenet) because they can learn
large models distributed across multiple machines.
Results reported in nats (higher is better). Best in
bold, 2nd best underlined.

Figure 3: FCs are competitive to prominent FL methods in all settings. FCs achieve competitive
performance on various classification tasks compared to prominent horizontal/vertical FL baselines.
FCs also naturally handle hybrid FL without performance drops.

(Q1) FedPCs effectively scale up PCs. To examine whether FedPCs can be leveraged to scale up
PCs effectively, we trained an EiNet, PyJuice, and FedPC on CelebA, Imagenet32, and Imagenet.
All models used the Poon-Domingos (PD) architecture. FedPCs were parameterized with EiNets,
and data was distributed among {2, 4, 8, 16} clients. The FedPC client models and baseline models
were selected to ensure that each fits within a single GPU (see App. F for system details). Einets
and FedPCs were parameterized with Gaussian leave distributions, while PyJuice models were
parameterized with Categorical distributions. The parameterizations were chosen based on empirical
observations. For FedPC training, the images were randomly distributed horizontally, with each client
holding approximately equally large subsets. Client models of FedPCs and all baselines were trained
with EM. In Tab. 1, we show nats normalized over samples and dimensions achieved by EiNets,
PyJuice, and FedPC on the test set. It can be seen that with an increasing number of participating
clients and, thus, a larger model, the density estimation performance also increases on all three
datasets. We posit that this is because larger models exhibit higher expressivity, allowing them to
capture statistical characteristics of the data better than smaller models. Also, higher nats scores
achieved on the test set by larger models indicate that no overfitting appeared due to more model
parameters. However, note that more exhaustive scaling will likely lead to overfitting. Finding the
optimal model size/number of clients in a principled way is beyond the scope of this work and is left
for future endeavors. Besides better modeling performance, training time is reduced significantly
with more clients (see relative runtimes in Fig. 2). FedPCs thus efficiently scale PCs to large datasets.

(Q2) FCs achieve state of the art classification results in FL. FCs can be parameterized with differ-
ent models in the leaves. We examine two parameterizations to solve a federated classification task on
three tabular datasets. First, we use the FedPC (FC [PC]), which can be used to solve discriminative
tasks leveraging tractable computation of conditionals in PCs. The second FC parameterization we
examine is decision trees (FC [DT]), representing an instantiation of a bagging model. To see how
FCs perform in federated classification tasks, we compare FCs to well-known methods for horizontal
FL and vertical FL. The experiments were conducted on tabular datasets covering various real-world
application domains and distribution properties. We employ TabNet and FedTree as strong baselines.
In the horizontal FL setting, TabNet was trained using FedAvg; in the vertical FL setting, it was
trained in a SplitNN fashion (Ceballos et al., 2020). The results were compared against our one-pass
training. FCs yield comparable or even better results than the selected baselines on all datasets (see
Fig 3; App. G) while being significantly more flexible compared to the baselines.

6

Published as a conference paper at ICLR 2025

5 CONCLUSION

In this work, we introduced federated circuits that hinge on an inherent connection between PCs and
FL. We demonstrated that FCs naturally handle horizontal, vertical, and hybrid FL. Also, the training
speed and expressivity of PCs can be increased by learning PCs on scale via FCs. Our framework
allows for the seamless integration of various models on the client side, maintaining the relevance of
FCs for FL and scaling of probabilistic models.

ACKNOWLEDGEMENTS

This work is supported by the Hessian Ministry of Higher Education, Research, Science and the Arts
(HMWK; projects “The Third Wave of AI”). Further, this work was supported from the National
High-Performance Computing project for Computational Engineering Sciences (NHR4CES).

The Eindhoven University of Technology authors received support from their Department of Mathe-
matics and Computer Science and the Eindhoven Artificial Intelligence Systems Institute.

REFERENCES

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning, 2020.

Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth
Vepakomma, and Ramesh Raskar. Splitnn-driven vertical partitioning. CoRR, abs/2008.04137,
2020.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. VAFL: a method of vertical asynchronous
federated learning. CoRR, abs/2007.06081, 2020.

K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang. Secureboost: A lossless
federated learning framework. IEEE Intelligent Systems, 36:87–98, 2021.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. 2020.

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In Proceedings
of the 30th International Conference on Machine Learning, volume 28, pp. 873–880. PMLR, 2013.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 5132–5143. PMLR, 2020b.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, and Arinto Murdopo. Vht: Vertical
hoeffding tree. In 2016 IEEE International Conference on Big Data (Big Data), 2016.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 35:3347–3366, 2023a.

Qinbin Li, Zhaomin Wu, Yanzheng Cai, Ching Man Yung, Tianyuan Fu, Bingsheng He, et al. Fedtree:
A federated learning system for trees. Proceedings of Machine Learning and Systems, 5, 2023b.

Qinbin Li, Chulin Xie, Xiaojun Xu, Xiaoyuan Liu, Ce Zhang, Bo Li, Bingsheng He, and Dawn
Song. Effective and efficient federated tree learning on hybrid data. In The Twelfth International
Conference on Learning Representations, 2024.

7

Published as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In The Eleventh International Conference on Learning Representations, 2022.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A
systems perspective, 2024.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang
Yang. A communication efficient vertical federated learning framework. CoRR, abs/1912.11187,
2019.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. CoRR, abs/1602.05629, 2016.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kris-
tian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In
Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine,
CA, USA, pp. 15–17, 1985.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical
properties of sum-product networks. In Artificial Intelligence and Statistics, pp. 744–752. PMLR,
2015a.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On Theoretical Prop-
erties of Sum-Product Networks. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceedings
of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38, pp.
744–752. PMLR, 2015b.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344.
PMLR, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. pp. 337–346.
AUAI Press, 2011.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith. On
the convergence of federated optimization in heterogeneous networks. CoRR, abs/1812.06127,
2018.

Raquel Sánchez-Cauce, Iago Parı́s, and Francisco Javier Dı́ez. Sum-product networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3821–3839, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on
federated learning: challenges and applications. Int. J. Mach. Learn. & Cyber., pp. 513—-535,
2023.

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving
vertical federated learning for tree-based models. arXiv preprint arXiv:2008.06170, 2020.

8

Published as a conference paper at ICLR 2025

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Xinwei Zhang, Wotao Yin, Mingyi Hong, and Tianyi Chen. Hybrid federated learning: Algorithms
and implementation. CoRR, abs/2012.12420, 2020.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational inference for
sum-product networks. In International Conference on Machine Learning (ICML), volume 48, pp.
1310–1318, 2016.

9

Published as a conference paper at ICLR 2025

A PRELIMINARIES

A.1 PROBABILISTIC CIRCUITS

Peharz et al. (2015b) define a PC over random variables X as a tuple (G, ϕ) where G = (V,E)
is a rooted, Directed Acyclic Graph (DAG) and ϕ : V → 2X is the scope function assigning a
subset of random variables to each node in G. For each internal node N of G, the scope is defined
as ϕ(N) = ∪N′∈ch(N)ϕ(N

′). Each leaf node L computes a distribution/density over its scope. All
internal nodes of G are either a sum node S or a product node P where each sum node computes a
convex combination of its children, i.e. S =

∑
N∈ch(S) wS,NN, and each product node computes a

product of its children, i.e. P =
∏

N∈ch(P) N. To ensure tractability, a PC must be decomposable.
Decomposability requires that for all P ∈ V it holds that ϕ(N) ∩ ϕ(N′) = ∅ where N,N′ ∈ ch(P).
To further ensure that a PC represents a valid distribution, smoothness must hold, i.e., for each sum
S ∈ V it holds that ϕ(N) = ϕ(N′) where N,N′ ∈ ch(S) (Poon & Domingos, 2011; Peharz et al.,
2015a; Sánchez-Cauce et al., 2021).

B DISCUSSION ON ASSUMPTIONS

As a preliminary to FCs, we introduced two assumptions that allowed us to construct the FC
framework. Here, we provide some more background on these assumptions. For clarity, let us state
the assumptions again.

Assumption 1 (Mixture Marginals). There exists a joint distribution p such that the relation∫
X\XS

p(x) =
∑

l∈L q(L = l) · pS(x|L = l) holds for all x ∈ X . Here, XS ⊆ X is a subset
of the union of client random variables X = ∪c∈CXc. Further, X =×c∈C Xc is the support of X,
each pS is defined over XS ⊆ X and q is a prior over a latent L.

Assumption 2 (Cluster Independence). Given disjoint sets of random variables X1, · · · ,Xn and
a joint distribution p(X1, · · · ,Xn), assume that a latent L can be introduced s.t. the joint can be
represented as p(X1, · · · ,Xn) =

∑
l q(L = l)

∏n
i=1 p(Xi|L = l) where q is a prior distribution

over the latent L.

Assumption 1 ensures that the data that resides on all participating clients is sufficient to learn p(X),
at least in the limit of infinite samples available. To illustrate, consider a subset of variables XS ⊆ X
shared among all clients and its complement XS− = X\XS . Assumption 1 ensures that the marginal∫
XS−

p(X) is representable as a mixture of all client distributions pc(XS) over XS . If Assumption 1
would not hold, the information stored on the clients’ data partitions would not be sufficient to learn
p(X).

There is also a PC perspective on this assumption. For this, let us introduce the induced tree
representation of PCs from (Zhao et al., 2016):
Definition 5. Induced Trees (Zhao et al., 2016). Given a complete and decomposable PC s over
X = {X1, . . . , Xn}, T = (TV , TE) is called an induced tree PC from s if

1. N ∈ TV where N is the root of s.

2. for all sum nodes S ∈ TV , exactly one child of S in s is in TV , and the corresponding edge
is in TE .

3. for all product node P ∈ TV , all children of P in s are in TV , and the corresponding edges
in TE .

We can use Def. 5 to represent decomposable and complete PCs as mixtures (Zhao et al., 2016).
Proposition 1 (Induced Tree Representation). Let τs be the total number of induced trees in s. Then
the output at the root of s can be written as

∑τs
t=1

∏
(k,j)∈TtE

wkj

∏n
i=1 pt(Xi = xi), where Tt is

the t-th unique induced tree of s and pt(Xi) is a univariate distribution over Xi in Tt as a leaf node.

Using Prop. 1, we see that any decomposable and smooth PC can be represented as a mixture without
any hierarchy, i.e., we can collapse the PC structure into a structure of depth one. Since marginalizing

10

Published as a conference paper at ICLR 2025

over a decomposable and smooth PC yields another decomposable and smooth PC again, and since
the marginalized PC can be represented as an induced tree, Assumption 1 is a standard assumption in
the PC literature.

A key assumption in FL is that data cannot be exchanged among clients. However, dependencies
among variables residing on different clients might still exist. Assumption 2 enables learning
“hidden” dependencies between features partitioned over clients while keeping data private. Note
that independence is only assumed within clusters in the data. Thus, the latent variable (which can
be thought of as ”cluster selectors“) allows capturing dependencies among variables residing on
different clients. Distributions of the form in Assumption 2 are strictly more expressive than the
product distribution, thus allowing for more complex modeling.

Also, Assumption 2 can be viewed from a PC perspective. In popular structure learning algorithms
such as LearnSPN Gens & Domingos (2013), a PC is learned by alternating data clustering with
testing for independent subsets of features. Thus, the ultimate goal of algorithms like LearnSPN
is to find clusters in which subsets of random variables are considered independent in order to
maximize log-likelihood. Therefore, Assumption 2 is closely related to LearnSPN and, thus, a
common assumption in PC modeling.

C TRAINING ALGORITHM DETAILS

++ +

+

+

+

+

Figure 4: One-Pass Training Visualized. (Top) First, the matrix M is initialized, representing which
features are held by which client. Feature subsets are constructed by considering distinct column
vectors u of M that represent the same set of clients. This forms a mapping indicating which features
are modeled as a mixture over clients. (Bottom) This mapping is utilized by forming mixtures over
different clients sharing the same feature set via sum nodes. Features that are not shared over multiple
clients will be clustered into K clusters (here K = 2). The FedPC is formed by creating product
nodes containing all sum nodes from the previous steps and at least one of the K clusters. Lastly, the
root node is inserted.

C.1 ANALYSIS OF COMMUNICATION EFFICIENCY

As a key requirement for efficient training when learning models at scale on partitioned data, we now
analyze the communication efficiency of FedPCs.

Horizontal FL. Assume a client set C where each client holds a model with M parameters. Further,
assume models are aggregated K times during training (K communication rounds). Then, model
aggregation-based algorithms like FedAvg commonly used in horizontal FL send O(M · |C| ·K) mes-
sages over the network as each client sends M model parameters to a server in each communication
round. Training FedPCs with one-pass training, in contrast, only requires O(|C| · (M + 1)) messages
over the network as models are learned locally and independently, followed by setting the parameters
(O(|C|) messages) of the sum nodes and aggregating the model on the server (O(M |C|) messages).

Vertical FL. In vertical settings, SplitNN-like architectures are commonly used. Assume training a
SplitNN architecture for E epochs that output a feature vector of size F for each sample of a dataset
with S samples, vertically distributed over clients C. The training requires sending O(E · |C| · F · S)
messages over the network. In contrast, with one-pass training of FedPCs, each client learns a

11

Published as a conference paper at ICLR 2025

dedicated PC with M parameters for each of the K clusters that are learned. The last layer of the
FedPC is a mixture of P products of clusters. The mixture parameters are set after training each
client’s model. Aggregating the learned models and setting the network-sided mixture parameters
requires O(K ·M · |C| + P) messages to be sent. If (K ·M + P

|C|) < (E · F · S) holds, training
FedPCs is more communication efficient than training SplitNN-like architectures. In practice, this
is likely to hold: The number of clusters is usually smaller than 100 while feature vectors can have
hundreds of dimensions (i.e., F > 100). Further, models should have fewer parameters than samples
in the dataset to ensure generalization (i.e., M < S). P can be set to an arbitrary value, depending on
|C| and the data. App. E provides more details and an intuition on communication costs.

Hybrid FL. In hybrid FL, FedPCs are trained on several subspaces: Some exist on all or a subset of
clients (denoted as Rs) and some are only available on one client (denoted as Rd). Further denote
communication costs of FedPCs in horizontal FL and vertical FL as Ch and Cv , respectively. Since
the training procedure in hybrid cases essentially performs horizontal FL on shared feature spaces and
vertical FL on disjoint feature spaces, O(|Rs| · Ch + |Rv| · Cv) messages are sent over the network
during training.

D PROOFS

In this section we give full proofs for our propositions in the paper.

D.1 FEDPCS AND PRINCIPLE OF MAXIMUM ENTROPY

Assumption 2 aligns with the principle of maximum entropy: we aim to find the joint distribution with
maximum entropy within clusters while allowing for dependencies among clients’ random variables
and ensuring the marginals for each client are preserved. Although multiple joint distributions can
preserve the marginals, non-maximal entropy solutions introduce additional assumptions or prior
knowledge, limiting flexibility. By assuming independence of all variables within a cluster, we
efficiently construct the maximum entropy distribution via a mixture of product distributions. For
independent variables, the product distribution maximizes entropy, as can be shown by leveraging the
joint and conditional differential entropy. Given random variables X = X1, . . . , Xn and a density p
defined over support X = X1 × · · · × Xn, the joint differential entropy is defined as:

h(X) =

∫
X
p(x1, . . . , xn) logp(x1, . . . , xn) (1)

The conditional differential entropy for two sets of random variables X and Y and a joint distribution
p(X,Y) defined over support X × Y is defined analogously:

h(X|Y) =

∫
X ,Y

p(x,y) logp(x|y) (2)

Given two sets of random variables X, Y with densities p(X) and p(Y) and support X , Y respec-
tively, the joint p(X,Y) = p(X) ·p(Y) is the maximum entropy distribution if X and Y are mutually
independent.

Proof. We consider the two cases that X and Y are mutually independent and that they are not
mutually independent. The joint entropy can be written as h(X,Y) = h(X|Y) + h(Y). In the case
of mutual independence, this reduces to h(X,Y) = h(X) + h(Y). Hence it has to be shown that
h(X|Y) < h(X) holds if X and Y are not mutually independent:

h(X|Y) < h(X)

≡−
∫
X ,Y

p(x,y)logp(x|y) < −
∫
X ,Y

p(x,y)logp(x)

≡−
(∫

X ,Y
p(x,y)logp(x|y)−

∫
X ,Y

p(x,y)logp(x)
)
< 0

≡−
(∫

X ,Y
p(x,y)log

p(x|y)
p(x)

)
< 0

12

Published as a conference paper at ICLR 2025

Since X ⊥⊥ Y holds where ⊥⊥ means mutual independence, p(x|y)
p(x) ̸= 1 at least for some x,y. Since

the mutual independence I(X,Y) =
∫
X ,Y p(x,y)log p(x,y)

p(x)·p(y) can be represented as I(X,Y) =

h(X)−h(X|Y), I(X,Y) ≥ 0 holds and −
(∫

X ,Y p(x,y)logp(x|y)
p(x)

)
= h(X|Y)−h(X) it follows

that h(X) > h(X|Y).

13

Published as a conference paper at ICLR 2025

E COMMUNICATION EFFICIENCY

Communication efficiency is a critical property when it comes to learning models across multiple
machines, as it is done in FL. Here, in addition to our theoretical results, we more intuitively provide
further details on the communication efficiency of FCs. For that, we plot the communication cost in
Megabytes (MB) required to train a FedPC vs. FedAvg/SplitNN in horizontal/vertical FL settings
with datasets of different sizes (1M and 100M samples). Regardless of the number of samples in the
dataset, FedPCs are more communication efficient compared to our baselines in both horizontal and
vertical settings (see Fig. 5).

0 2000 4000 6000 8000 10000
Number Clients

5

0

5

10

15

20

25

Co
mm
un
ic
at
io
n
Lo
ad
 (
MB
)
(l
og
-s
ca
le
)

Communication Cost w.r.t. Number of Clients

100M samples; 50M param.
1M samples; 0.5M param.
FedPC vertical
FedPC horizontal
FedAvg horizontal
SplitNN vertical

Figure 5: FedPCs are communication-efficient. We compare communication cost in Megabytes
(MB) sent over the network during one full training of a model (0.5M/50M parameters) on a dataset
(1M/100M samples) using results from Section 3.4. Results are shown on log-scale. It can be seen
that FedPCs significantly reduce communication cost of training.

F EXPERIMENTAL DETAILS

Experimental Setup. To see if FedPCs, an instantiation of FCs, successfully scale up PCs, we
follow Liu et al. (2024) and perform density estimation on three large-scale, high-resolution image
datasets: Imagenet, Imagenet32 (both 1.2M samples), and CelebA (200K samples). The datasets
were partitioned over 2-16 clients horizontally. We compare FedPCs to EiNets and Pyjuice.

To evaluate FCs in FL scenarios, we selected three tabular datasets that cover various application
domains and data regimes present in the real world: one credit fraud dataset (∼ 300K samples), a
medical dataset (breast cancer detection; < 1000 samples), and the popular Income dataset (> 1M
samples). The selected datasets for FL cover low-data, medium-data, and large-data regimes (see
App. F for more details). Both balanced (breast cancer) and imbalanced (income, credit) datasets are
included in our evaluation. We selected tabular datasets as they are well suited to investigate FCs in
horizontal, vertical, and hybrid settings and represent various real-world applications. We compare
FCs to multiple strong and widely used baselines. As a neural network architecture parameterization,
we use TabNet (Arik & Pfister, 2020) which is tailored to tabular datasets. We train the networks
with the widely used FedAvg (horizontal FL) and SplitNN (vertical FL) frameworks. Additionally,
we compare FCs to FedTree (Li et al., 2023b) since tree models excel at tabular datasets.

F.1 DATASETS

The following describes the datasets used in our experiments. If not stated differently, the datasets
were distributed across clients as follows:

In horizontal cases, we either split samples randomly across clients (done for all binary classification
tasks) or we distribute a subset of the dataset corresponding to a certain label (e.g. the 0 in MNIST)
to one client.

14

Published as a conference paper at ICLR 2025

In vertical cases, we split tabular datasets randomly along the feature-dimension, i.e. each client
gets all samples but a random subset of features assigned. For image data, we split the images into
non-overlapping patches which were then distributed to the clients.

In hybrid cases, we split tabular datasets along both, the feature and the sample-dimension. We do
this s.t. at least two clients have at least one randomly chosen feature in commeon (but hold different
samples thereof). For image data, we split images into overlapping patches, sample a subset of the
dataset and assign the resulting subsets to clients.

Income Dataset. We used the Income dataset from https://www.kaggle.com/datasets/
wenruliu/adult-income-dataset. This dataset represents a binary classification problem
with 14 features and approximate 450K samples in the train and 900 samples in the test set. We
encoded discrete variables to numerical values using TargetEncoder from sklearn. Additionally,
missing values were imputed using the median of the corresponding feature. Further we standardized
all features.

Breast Cancer Dataset. We used the Breast Cancer dataset from https://www.kaggle.com/
datasets/uciml/breast-cancer-wisconsin-data. It represents a binary classifica-
tion problem with 31 features and 570 samples. We split the dataset into 450 training samples and
120 test samples. We standardized all features for training.

Credit Dataset. We used the Give Me Some Credit dataset from https://www.kaggle.com/
c/GiveMeSomeCredit. The dataset represents a binary classification task with 10 features, 1.5M
training samples and 100K test samples. We encoded discrete variables to numerical values using
TargetEncoder from sklearn. Additionally, missing values were imputed using the median of the
corresponding feature. Further we standardized all features.

MNIST. We used the MNIST dataset provided by pytorch. It contains 70K hand-written digits
between 0 and 9 as 28x28 images (60K train, 10K test). We standardized all features as preprocessing.

Imagenet/Imagenet32. We used the Imagenet dataset provided by pytorch. It consists of about 1.2M
images showing objects of 1000 classes. The images come in different resolutions; we resized each
image to 64x64 (Imagenet) and 32x32 (Imagenet32) pixels, applied center cropping, and standardized
all features as preprocessing. We distributed all images randomly across clients.

F.2 DISCRETIZATION

In our experimental setup, FCs and Einets were parameterized with Gaussian leaves and fitted on
RGB image data. Since image data is discrete (takes integer values from 0-255) and Gaussians are
defined over a continuous domain and thus define a probability density rather than a probability mass
function, we have to discretize the Gaussian leaves to obtain the probability for a given image x.
Therefore, we construct 255 buckets, discretizing a Gaussian with parameters µ and σ by computing
the probability mass as p(x) = Φ(

x−µ+ 1
255

σ) − Φ(x−µ
σ). Since the probabilistic semantics of PCs

holds for densities and probability mass functions, the computation graph will remain fixed.

F.3 HYPERPARAMETERS

The following tables show the setting of all relevant hyperparameters for each dataset and FL setting.

FL-Setting Dataset Structure Threshold min num instances glueing

horizontal
Income learned 0.3 200 -
Credit learned 0.5 200 -
Cancer learned 0.4 300 -

vertical
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

hybrid
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

Table 2: Hyperparameters used in our experiments for all tabular datasets.

15

https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/GiveMeSomeCredit

Published as a conference paper at ICLR 2025

MNIST Imagenet(32) CelebA
num epochs 5 25 10
batch size 64 64 64

online em frequency 5 10 10
online em stepsize 0.1 0.25 0.25

Structure poon-domingos poon-domingos poon-domingos
pd num pieces 4 4 4

K 10 120 120
Leaf Distribution Gaussian Gaussian Gaussian

min var 1 · 10−3 1 · 10−3 1 · 10−3

max var 1 · 10−7 1 · 10−7 1 · 10−7

Table 3: Hyperparameters used in our experiments for image datasets.

F.4 HARDWARE

All experiments were conducted on Nvidia DGX machines with Nvidia A100 (40GB) GPUs, AMD
EPYC 7742 64-Core Processor and 2TiB of RAM.

G FURTHER RESULTS

Here, we provide further experimental details on FCs.

FedPCs learn joint distributions over partitioned data in less time. First, we validate that FedPCs
correctly and efficiently perform density estimation on partitioned datasets distributed over multiple
clients. To this end, multiple datasets were distributed over a set of clients corresponding to horizontal
(5 clients), vertical (2 clients), and hybrid FL (2 clients). To demonstrate that FedPCs are also
robust against label shifts, a common regime in FL, each client received data from only a subset of
classes in the horizontal case, and local PCs were learned over the client samples. In the vertical
case, we split data s.t. feature spaces of clients are disjoint, but each client holds the same samples.
In hybrid settings, data was distributed s.t. both feature- and sample-spaces among clients have
overlaps (but no full overlap). For all tabular datasets, the leaves of the FedPC were parameterized
with MSPNs (Molina et al., 2018), a member of the PC model family capable of performing density
estimation on mixed data domains (i.e., continuous and discrete random variables). We chose MSPNs
as the centralized models, which were learned using LEARNSPN, a recursive greedy structure learning
algorithm for SPNs Gens & Domingos (2013). For MNIST, EiNets with Gaussian densities were
used as PC instantiations in all settings. Note that FedPCs were chosen to approximately match the
size of centralized models, i.e., no model upscaling was performed.

Tab. 4 compares log-likelihood scores and relative runtime of centralized training of a PC on the
full datasets with log-likelihood scores and relative runtimes achieved by FedPC in different FL
settings. FedPCs successfully reproduce the results of centralized PCs on tabular datasets while being
tremendously faster in training. This validates our approach and we answer (Q1) affirmatively.

Log-Likelihood Relative Runtime
cent horizontal vertical hybrid cent horizontal vertical hybrid

MNIST 3352±3.5 3350±3.2 3351±3.8 3349±3.7 1.0 0.07±0.01 0.13±0.01 0.13±0.02

Income −11.5±0.1 −11.4±3.5 −11.9±3.3 −12.0±1.5 1.0 0.17±0.02 0.236±0.01 0.21±0.02

Cancer −38.9±0.3 −38.5±1.1 −38.6±0.5 −38.7±1.5 1.0 0.21±0.07 0.35±0.05 0.35±0.1

Credit −12.8±1.0 −13.1±0.5 −12.5±2.3 −12.5±1.3 1.0 0.42±0.05 0.31±0.09 0.40±0.13

Table 4: FedPCs speed up training while retaining model performance. We trained PCs in a
centralized setting (cent.) and in all FL settings (using FedPCs) on different datasets and the same
structure learning algorithm. We find that FedPCs tremendously speed up training while there is
no reduction in log-likelihood. This demonstrates that PCs can be learned in federated settings (for
MNIST, log densities are reported). We report relative runtime where centralized runtime is 1.0.

One-pass training retains performance. To see how the proposed one-pass training compares
to training PCs with standard optimization algorithms such as EM, we define an FL setup where

16

Published as a conference paper at ICLR 2025

data exchange is allowed. This is necessary as we have to train the PC and FedPC architecture
with EM to compare to our one-pass procedure. We used RAT-SPNs (Peharz et al., 2020b) as leaf
parameterizations of the FedPC. Then, we trained a FedPC using standard EM (i.e., data exchange
was allowed) and another FedPC with the same FedPC architecture on a vertically split dataset using
our one-pass procedure. We report the final average log-likelihood of the test dataset, both for EM
training and one-pass training (see Tab. 5). It can be seen that there is no significant decrease in
log-likelihood in any case. Interestingly, the one-pass training seems even to be better than EM. We
suspect that that it is easier to solve the subtasks of local training independently instead of jointly
optimizing all parameters of the FedPC. Hence, our results indicate that one-pass training is preferable
since it is communication efficient. one-pass training can be used instead of the more costly EM
scheme.

EM one-pass
Synth. Data −53.6± 1.3 −53.2± 1.2

Income −18.5± 0.1 −18.0± 0.5
Breast-Cancer −52.3± 0.2 −55.7± 0.2

Credit −26.7± 1.2 −28.3± 0.4

Table 5: One-pass training retains performance. We trained the same FedPC architecture on
various datasets using EM and one-pass training in a vertical setting. The average log-likelihood
value of the hold-out test set across 10 runs is reported.

FL Classification Results. We compare FCs to several baselines in horizontal, vertical, and hybrid FL.
In horizontal FL, we compare against FedAvg (using TabNet (Arik & Pfister, 2020)) and FedTree (Li
et al., 2023b); in vertical FL, we compare against SplitNN (also using TabNet) and FedTree. In hybrid
FL, we compare different parameterizations of FCs (FedPCs and FCs parameterized with decision
trees). We find that FCs are competitive or outperforming the selected baselines in all FL settings
(see Tab. 6). This makes them a very flexible FL framework that still yields high-performing models.

Cancer Credit Income
Acc. F1 Acc. F1 Acc. F1

H
or

iz
on

ta
lF

L

FedAvg [TabNet] (5 cl.) 0.92± 0.03 0.92± 0.03 0.71± 0.11 0.48± 0.04 0.68± 0.06 0.51± 0.03
FedAvg [TabNet] (10 cl.) 0.92± 0.04 0.91± 0.05 0.56± 0.12 0.47± 0.06 0.64± 0.06 0.52± 0.03

FedTree (5 cl.) 0.93± 0.01 0.92± 0.01 0.91± 0.01 0.63± 0.01 0.88± 0.01 0.82± 0.02
FedTree (10 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (5 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.02 0.68± 0.02 0.87± 0.02 0.80± 0.01

FC [PC] (10 cl.) 0.95± 0.02 0.95± 0.02 0.93± 0.01 0.66± 0.02 0.87± 0.01 0.80± 0.02
FC [DT] (5 cl.) 0.95± 0.03 0.93± 0.02 0.92± 0.01 0.67± 0.01 0.89± 0.01 0.83± 0.01

FC [DT] (10 cl.) 0.95± 0.02 0.93± 0.03 0.92± 0.01 0.97± 0.02 0.89± 0.01 0.83± 0.02
SplitNN [TabNet] - - - - - -

V
er

tic
al

FL

SplitNN [TabNet] (2 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.56± 0.25 0.42± 0.17
SplitNN [TabNet] (3 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.62± 0.20 0.56± 0.16

FedTree (2 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.02 0.87± 0.01 0.80± 0.01
FedTree (3 cl.) 0.93± 0.01 0.92± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (2 cl.) 0.96± 0.01 0.96± 0.01 0.92± 0.01 0.67± 0.01 0.84± 0.02 0.74± 0.01
FC [PC] (3 cl.) 0.95± 0.01 0.95± 0.01 0.92± 0.01 0.66± 0.02 0.84± 0.01 0.74± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.83± 0.02 0.67± 0.02
FC [DT] (3 cl.) 0.95± 0.01 0.95± 0.03 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.67± 0.02

FedAvg [TabNet] - - - - - -

H
yb

ri
d

FL

FC [PC] (2 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.01 0.82± 0.02 0.71± 0.01
FC [PC] (3 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.02 0.80± 0.01 0.70± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.66± 0.02
FC [DT] (3 cl.) 0.96± 0.01 0.96± 0.01 0.93± 0.01 0.54± 0.02 0.82± 0.02 0.66± 0.02

FedAvg [TabNet] - - - - - -
SplitNN [TabNet] - - - - - -

FedTree - - - - - -

Table 6: All Classification results of FL experiments. Here, we show the detailed performances of
FC, FedAvg, and SplitNN in all three FL settings. It can be seen that FCs, while being much more
flexible than our baselines, still achieve competitive or better results on various classification tasks.

17

	Introduction
	Preliminaries and Related Work
	Federated Circuits
	Bridging Probabilistic Circuits and Federated Learning
	Federated Probabilistic Circuits

	Experiments
	Conclusion
	Preliminaries
	Probabilistic Circuits

	Discussion on Assumptions
	Training Algorithm Details
	Analysis of Communication Efficiency

	Proofs
	FedPCs and Principle of Maximum Entropy

	Communication Efficiency
	Experimental Details
	Datasets
	Discretization
	Hyperparameters
	Hardware

	Further Results

