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Abstract

Test-time compute scaling has demonstrated the ability to improve the perfor-
mance of reasoning language models by generating longer chain-of-thought (CoT)
sequences. However, this increase in performance comes with an increase in com-
putational cost. In this work, we investigate two compute constraint strategies:
(1) reasoning length constraint and (2) model quantization, as methods to reduce
the compute demand of reasoning models and study their impact on their safety
performance. Specifically, we explore two approaches to apply compute constraints
to reasoning models: (1) fine-tuning reasoning models using a length-controlled
policy optimization (LCPO) based reinforcement learning method to satisfy a
user-defined CoT reasoning length, and (2) applying quantization to maximize
the generation of CoT sequences within a user-defined compute constraint. Fur-
thermore, we study the trade-off between the computational efficiency and the
safety of the model. We demonstrate that under a fixed compute budget, quantized
reasoning models, that reason for longer (more reasoning tokens), perform at par
with full-precision reasoning models.

1 Introduction

Existing benchmarks and evaluation protocols fall short of capturing the trade-offs between compute
at test-time i.e. reasoning length and performance i.e. accuracy and safety of large reasoning models
(LRMs). First, they often conflate raw performance with computational cost Xu et al. (2025), either by
increasing model size or by increasing their reasoning budget at inference time Snell et al. (2024). For
example, a leader-board for math problem solving might rank models solely by final answer accuracy,
implicitly rewarding those that might use extremely long chain-of-thought or multiple-sample voting
to get a higher score. Such improvements typically come with higher computational costs, often
scaling with the size (parameters) of LRMs.
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Figure 1: Performance of the baseline L1 model for science and math reasoning skills for increasing
reasoning length. We observe that the performance of the reasoning model improves with an increase
in the number of reasoning tokens for math and science skills.

In practice, such performance differences matter at test-time, yet evaluations rarely report the
average token usage or compute time per question. Only recently have reasoning models such as
S1 Muennighoff et al. (2025) and L1 Aggarwal & Welleck (2025) begun to emphasize efficiency
metrics such as accuracy as a function of the compute budget (tokens). Without these, researchers risk
pursuing methods that yield marginal accuracy gains at disproportionate compute costs. Moreover,
performance is often tied to the number of steps a model takes to complete a task without considering
its size (parameters) or the number of operations per step (FLOPs). For instance, GPT-4, a 1.76
trillion parameters model, might solve a puzzle in 50 steps whereas a much smaller model might
need 500; the compute budget for the two models completing the same task are vastly different.
In addition to model size, quantization can often balance efficiency and performance by reducing
the compute and memory footprint of a model with minimal loss in performance Li et al. (2025).
Therefore, it is necessary to evaluate the performance of reasoning models as a function of both
accuracy and compute efficiency, rather than accuracy alone. While compute constraints such as
reasoning budgets and quantization have been studied, separately, for general, science, and math
reasoning, their combined impact on model skill and safety performance remains unexplored.

In summary, our contributions are:

• We study the impact of test-time compute-constraint methods, such as constrained reasoning length
and quantization, on the skill and safety performance of LRMs;

• We adopt the Length Controlled Policy Optimization reinforcement learning method, presented
in Aggarwal & Welleck (2025), to safety fine-tune a reasoning model with a precise user-defined
length control using the SafeChain dataset Jiang et al. (2025);

• We apply weight quantization (GPTQ) methods on the baseline and safety fine-tuned models and
study its impact on skill and safety performance for increasing reasoning chain-of-thought lengths;

• We analyze the trade-off between the two compute-constraint methods under a compute budget.
• We demonstrate that under a fixed compute budget, quantized reasoning models, that reason for

longer (more reasoning tokens), perform at par with full-precision reasoning models.

2 Related Works

Recent research on scaling laws has established that model performance follows predictable power-
law relationships with respect to the number of parameters, the size of the training dataset, and the
available compute Kaplan et al. (2020).

Test time compute performance scales with increased compute - the more reasoning tokens a model
can generate, the more accurate its response

Reasoning Models. The emergence of Large Reasoning Models (LRMs) reflects a shift from
treating reasoning as an incidental property of LLMs to deliberately training models to “think before
they answer.” Early methods such as Chain-of-Thought (CoT) prompting Wei et al. (2022), self-
consistency, and more structured approaches like Tree- and Graph-of-Thought Yao et al. (2023);
Besta et al. (2024) demonstrated that extending intermediate reasoning can improve accuracy but at
increasing computational cost Chen et al. (2024). Building on this, LRMs such as OpenAI’s o1 Jaech
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et al. (2024) and DeepSeek-R1 Guo et al. (2025) employ large-scale supervised fine-tuning and
reinforcement learning to explicitly incentivize the generation of long, structured reasoning traces.
This paradigm enables models to decompose complex tasks, explore alternatives, and self-correct,
but also tightly couples performance to test-time computation. The reliance of LRMs on extended
reasoning motivates our study of how compute constraints through length control or quantization
impact their skill and safety trade-offs in practice.

Quantization Quantization is an approach that reduces the precision of model parameters like
weights and activations. It is common for neural networks to be implemented in bfloat16, a format
supported by most neural accelerators. Post-training quantization (PTQ) approaches such as GPTQ
Frantar et al. (2022), GGUF Lin et al. (2016), and ZeroQuant Yao et al. (2022) enable efficient
compression without retraining, while quantization-aware training (QAT) methods such as LR-QAT
Bondarenko et al. (2024) preserve task-specific performance through learnable scaling factors. Recent
work extends these techniques to LLMs, though primarily evaluated on language understanding rather
than reasoning tasks.

3 Method

3.1 Safety Reasoning Length Control

In this work, we fine-tune the baseline - L1-Exact-1.5B reasoning model to improve its safety
performance while training the model on a user-defined reasoning token length. For brevity, we
refer to this baseline model as L1-1.5B. We extend the work done in Aggarwal & Welleck (2025)
and use the length controlled policy optimization (LCPO) reinforcement learning method presented
in Aggarwal & Welleck (2025) to fine-tune the baseline model. We modify the reward function to
combine the (1) safety reward (rs) and (2) the length penalty (rl). The safety reward is determined by
using the Llama-Guard-3 model as a safety judge. The additional safety fine-tuning is requires as the
baseline model (L1-Exact-1.5B) is only fine-tuned for length-control using the DeepScaleR-Preview-
Dataset dataset Luo et al. (2025). We use a learning rate of 1e-6 and a batch size of 64. We train the
model for 300 steps. The dataset used for safety fine-tuning based on the SafeChain dataset Jiang
et al. (2025). The methodology used to generate the dataset is described below.

3.1.1 Dataset Creation

We conduct our training on the L1-Exact-1.5B model Aggarwal & Welleck (2025) using a chain-of-
thought (CoT) style safety dataset called SafeChain Jiang et al. (2025) that can improve a model’s
safety performance while preserving its math and coding performance across all benchmarks.

To enable length control, we augment each prompt in the SafeChain dataset with a target length
instruction.

Xi = xi + "Think for n tokens" (1)

where, xi is the prompt from the SafeChain dataset and Xi is the augmented prompt used for training.
The value n is randomly picked from 0 to 4000 for each prompt.

3.2 Quantization

We conduct a comprehensive investigation into the effects of quantization techniques, in particular
weight-only quantization (GPTQ). GPTQ Frantar et al. (2022) is a one-shot weight quantization
method, based on approximate second-order information and error compensation, that is both highly-
accurate and highly-efficient. We perform INT8 (8-bit) and INT4 (4-bit) quantization of the weights
of the model while leaving the activation operation at the original Bfloat-16. Our initial investigation
is limited to weight-only quantization, we will explore weight-activation and KV-cache quantization
methods in future work.
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4 Evaluation

We evaluate the compute-constrained models along two dimensions. First, we measure the models’
performance, in terms of accuracy and safety, for an increase in reasoning token length. In this work,
we demonstrate results for the following target reasoning lengths - 512, 1024, 2048, 3600. Second,
we measure compute efficiency, in terms of throughput (tokens/sec), and determine the reasoning
time (in seconds) a model takes to generate a fixed number of reasoning tokens.

4.1 Evaluated Benchmarks

We evaluate the compute-constrained models using science, math, and safety representative reasoning
benchmarks: GPQA Diamond Rein et al. (2024) consists of 198 PhD-level science questions from
Biology, Chemistry, and Physics. MATH500 Hendrycks et al. (2021) is a benchmark consisting of
competition-level math problems of varying difficulty. AIME2025 Hendrycks et al. (2020) contains
30 problems from the AIME1 and AIME2 math jam. Following previous work Aggarwal & Welleck
(2025), we evaluate our model on the same subset selected by OpenAI Achiam et al. (2023). In
addition to these three common science and math reasoning benchmarks, we evaluated the safety
performance of the reasoning models using the StrongReject dataset Souly et al. (2024), a state-of-
the-art safety evaluation dataset with 60 jailbreak queries. For all benchmarks, we generate a sample
for each question with a temperature of 0 (greedy) to measure accuracy. Through these benchmarks,
we can evaluate the reasoning ability of LLMs from different perspectives.

4.2 Safety Evaluator

Our safety evaluation work builds on the prior work Jaech et al. (2024); Jiang et al. (2025). We
consider the LLama-Guard Chi et al. (2024) evaluator to generate a safety score based on the work
done in Jiang et al. (2025) to assess the effectiveness of four state-of-the-art safety evaluators -
Llama-guard Chi et al. (2024), Refusal String Matching (RS-Matching) Zou et al. (2023), OpenAI
Moderation API Kivlichan et al. (2024), and HarmBench Mazeika et al. (2024).

4.3 Metric

We evaluate the models in terms of their math and science reasoning skill and safety. We measure
the accuracy of the models’ math and science skills using the pass@1 score and measure the safety
performance of the models’ using the safe@1 score. We define these performance metrics as follows:

4.3.1 Skill Evaluation

We use the pass@1 metric to evaluate the skill and safety performance of the reasoning models
discussed in this work. We define the pass@1 score as shown in Equation 2:

pass@1 =
1

K
·

K∑
i=1

pi (2)

where pi is a binary score that indicates whether a response yi to a query qi is correct for skill tasks.

4.3.2 Safety Evaluation

We use the safe@1 metric to evaluate the skill and safety performance of the reasoning models
discussed in this work. As described in Guo et al. (2025); Jiang et al. (2025) we define the safe@1
score as shown in Equation 3:

safe@1 =
1

K
·

K∑
i=1

si (3)

where si is a binary score, generated using a state-of-the-art evaluator, that indicates whether a
response yi to a query qi is correct for skill tasks and safe (1) or not (0) for safety tasks. We generate
the safe score (s) using the Llama-Guard-3-8B Chi et al. (2024) evaluator.
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4.4 Evaluation Protocol

We evaluate our compute constraint approaches using the following methods: (1) we evaluate
the overall performance (skill and safety reasoning) when generating responses at different target
lengths. In our experiments, target lengths are selected from {512, 1024, 2048, 3600} tokens; (2) we
evaluate the overall performance (skill and safety reasoning) of the quantized models when generating
responses at different target lengths.

4.5 Reasoning Length Controlled Compute-Constraint

4.5.1 Science and Math Skill Evaluation

We start by evaluating the baseline L1 model using science and math skill datasets. We choose the
AIME, GPQA, and LSAT reasoning datasets to evaluate L1 as they have not been used in the training
of the L1 model. Figure 1 shows the performance of the L1 model for an increasing number of
reasoning tokens (512, 1024, 2048, and 3600). We observe that the reasoning performance of the L1
model scales with an increase in reasoning tokens used to generate an answer. While the reasoning
performance scales linearly for the GPQA and LSAT datasets, we observe that the evaluation on the
AIME dataset scales well for reasoning tokens below 2048 tokens and evens out for larger reasoning
lengths. The key trend we want to highlight here is that an increase in reasoning length increases the
performance of these models.

5 Results

5.1 Baseline

We evaluate our compute-constrained reasoning model against the following baseline models:

• L1-Qwen-1.5B: a LCPO-based fined-tuned version of Agentic-24K with a context length of
4K. The model serves as a fair baseline for a reasoning length controlled model. For brevity,
we refer to this model as L1-1.5B.

• L1-Qwen-8B: a LCPO-based fined-tuned version of Agentic-24K with a context length
of 4K. The model serves as a fair baseline for a reasoning length constrained model. For
brevity, we refer to this model as L1-8B.

5.2 Reasoning Length Controlled Compute-Constraint

5.2.1 Science and Math Skill Evaluation

We start by evaluating the baseline L1 model using science and math skill datasets. We choose the
AIME, GPQA, and LSAT reasoning datasets to evaluate L1 as they have not been used in the training
of the L1 model.

Figure 2: Performance of the baseline L1 and its post-training quantized models for skill based
reasoning tasks - (a) GPQA, (b) LSAT and (c) AIME.

Figure 2 shows the performance of the L1 model for an increasing number of reasoning tokens (512,
1024, 2048, and 3600). We observe that the reasoning performance of the L1 model scales with an
increase in reasoning tokens used to generate an answer. While the reasoning performance scales
linearly for the GPQA and LSAT datasets, we observe that the evaluation on the AIME dataset scales
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well for reasoning tokens below 2048 tokens and evens out for larger reasoning lengths. The key
trend we want to highlight here is that an increase in reasoning length increases the performance of
LRMs.
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Figure 3: (a) Performance of the baseline L1 and SL1 (Safety fine-tuned L1) under varying reasoning
token budgets; (b) performance of SL1-1.5B and SL1-8B models for BF16 (circle), INT8 (square)
and INT4 (triangle) weight precision.

5.2.2 Safety Evaluation

In this section, we quantitatively assess the safety reasoning capability of the baseline L1 model.
Figure 3 (a) illustrates the safety performance of the baseline L1-1.5B model when evaluated using
the StrongReject Souly et al. (2024) dataset for increasing reasoning length. The safe@1 score
(defined in Section 4.3.2) indicates the percentage of safe (1) or unsafe (0) responses to jailbreak
queries from the StrongReject dataset. This score is generated using the Llama-Guard-3 Chi et al.
(2024) safety evaluator.

From Figure 3 (a) we observe that the safety performance of the baseline L1-1.5B model does
not match the state-of-the-art safety performance of similar 1.5B models Jiang et al. (2025). This
is expected, as the baseline L1 model has been finetuned using only science and math reasoning
skill-based datasets. To address this poor safety performance, we fine-tune the baseline L1-1.5B
and L1-8B models (S-L1) using the LCPO RL method and the Safechain Jiang et al. (2025) dataset.
Training is performed for 300 iterations using the VeRL engine. We train the model using reasoning
traces with target lengths between 1 and 4000 tokens. Figure 3 (a) and (b) (circle) illustrate the
improved safety performance of the safety fine-tuned L1-1.5B and L1-8B models. For the rest of this
work, we refer to safety fine-tuned models as SL1.

5.3 Quantization Compute-Constraint

In this section, we study the impact of quantization-based compute constraints on the performance of
reasoning models. We evaluate the reasoning models for skill and safety performance.

5.3.1 Science and Math Skill Evaluation

Figure 2 illustrates the performance of the post-training weight quantized L1 model for LSAT, AIME
and GPQA reasoning datasets. We compare the performance of the full-precision L1 model with two
levels of weight quantization - INT8 and INT4. Using post-training quantization method (GPTQ), we
create the Q8L1 (INT8) and Q4L1 (INT4) models.

We make two observations: (1) the reasoning performance of the L1, Q8L1, and Q4L1 models
improves with an increase in reasoning length, but this effect is less profound as we increase the
quantization level from INT8 to INT4, and (2) the performance of the INT4 quantized model drops
significantly for all three evaluated skill datasets, irrespective of the reasoning length. Due to
observation two, we limit our study to INT8 quantized models.

5.3.2 Safety Evaluation

Figure 3 B illustrates the safety performance of the SL1-1.5B and SL1-8B models in comparison to
its INT8 and INT4 weight quantized implementations. First, observe that the safety performance of
the baseline and quantized models improves with an increase in reasoning length. Second, we observe
a significant drop in performance of the 4-bit quantized model (SL1) for safety. For a reasoning
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Model AIME (tokens/s) StrongReject (tokens/s)

SL-1.5B 42.11 71.60
Q8-SL-1.5B 69.19 107.33
SL-8B 23.18 31.04
Q8-SL-8B 37.21 45.10

Table 1: Average throughput (tokens/s) of the evaluated models on the AIME and StrongReject
datasets.

length of 512, the safe@1 score drops from 40% to 10%, making the quantized model far more
susceptible to jailbreak queries. However, the safety performance of the 8-bit quantized model does
not deteriorate significantly. We observe a 3-7% drop in safety performance of the 8-bit quantized
models when compared to the baseline.

SL1 - 8B Model

SL1 - 1.5B Model

Figure 4: Trade-off between compute constraint methods with a fixed compute budget. (a) Evaluation
of the SL1 model (BF16 and INT8) using the AIME dataset; (b) Evaluation of the SL1 model (BF16
and INT8) using the StrongReject dataset.

5.4 Impact of Compute Constraints on Reasoning

In this section, we study the impact of the two chosen compute constraint methods on skill and safety
performance. We also detail the trade-off between the two methods, with an aim to demonstrate that
full precision and quantized models can show similar performance with-in a fixed compute budget
-by varying their reasoning token lengths. To relate the performance of the model to its compute
budget, we propose observing the reasoning time, i.e., the inference time (seconds) for the model
to generate reasoning tokens. This metric combines the throughput (tokens/s) of a model with the
number of reasoning tokens it is afforded within the compute budget.

We report the throughput (tokens/s) of the SL1 and Q8SL1 models in Table 1. The throughput is
measured separately (average length of the queries (tokens) varies) for a batch size of 1 on an A100
GPU with a GPU utilization of 0.6. Details on the experimental setup used can be found in Section 4.
Figure 4 illustrates the performance of the full precision and quantized versions of SL1 model. The
skill and safety reasoning performance of the model is measured as a function of the total compute
(tokens) needed to generate an answer. The compute budget is measured as the reasoning time in
seconds (x-axis) needed to generate a fixed number of tokens (512, 1024, 2048, and 3600) in this
experiment. We calculate the compute budget by multiplying the throughput (tokens/s) of the model
for a given dataset by the total number of reasoning tokens.

In Figure 4 (column one) we observe the evaluation of L1 and Q8L1 models using the AIME dataset.
For a reasoning length of 512 tokens, the L1 and QL1 models have a similar accuracy. However,
the reasoning time (seconds) of the Q8L1-1.5B model of 7.355 seconds is 39.32% lower than the
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reasoning time of the L1 (BF16) model at 12.13 seconds. This is also true for a reasoning length of
1024 tokens. In the case of a reasoning length of 2048 tokens, the L1 model has a higher pass@1
accuracy of 12.66% when compared to the B8SL1 model with 10.92%. However, we observe that the
SL1 model reasons for 48.54 seconds, a 119.98% increase in compute budget when compared to the
B8L1 model at 22.06 seconds. In figure 4 (a), we highlight that the L1 model reasoning for 1024
tokens (green square) has a similar performance (1%) to a Q8SL1 model reasoning for 2048 tokens
(orange triangle) with a similar compute budget. Similarly, in figure 4 (c) we highlight that the L1
model reasoning for 1024 tokens (green square) has a similar performance (1%) to a Q8SL1 model
reasoning for 1024 tokens (orange triangle) with a 16.66% smaller compute budget.

In Figure 4 (a) we see the evaluation of SL1-1.5B and Q8SL1-1.5B models using the StrongReject
dataset. We observe that the QSL1 model reasoning for 2048 tokens (red triangle) has a safety
performance similar (1.4% drop in safety score) to the SL1 model reasoning for 1024 tokens (blue
square). In this scenario, both the models even have a similar compute budget of 19.08 seconds and
14.91 seconds for the Q8SL1 and SL1 models, respectively. This is further highlighted with the
SL1-8B and Q8SL1-8B models. We observe that the QSL1-8B model for a reasoning length of 2048
(triangle) has a safety performance similar (2% drop in safety score) to the SL1-8B model reasoning
for 2048 tokens (blue square) with a compute budget 16.4% lower.

6 Conclusions
In this work, we study how compute constraints affect the safety performance of reasoning models.
We explore two methods to apply compute constraints: (1) a Length Controlled Policy Optimization
(LCPO), a simple reinforcement learning-based method that enables user-defined control over rea-
soning length, and (2) weight quantization, which reduces the compute demands of the reasoning
model and ensures their execution within a user-defined compute budget, namely, inference time.
We further demonstrate that within a fixed compute budget (reasoning time), a quantized reasoning
model can perform at par with a full-precision model. This is because within the fixed compute
budget, the quantized model can generate more reasoning tokens and hence compensate for the loss
in performance observed due to quantization.
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