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Figure 1: Visual simulations play a crucial role in real-world tasks, from assembling complex structures to
interpreting mechanical diagrams and predicting spatial interactions. Different from how humans would ap-
proach a cube net folding problem, existing multimodal models rely heavily on textual simulation, which is
not sufficient for reaching human-level spatial cognition. The above example shows how textual simulations of
GPT-4o make obvious errors when we simulate the steps in 3D space.

ABSTRACT

Spatial cognition is essential for human intelligence, enabling problem-solving
through visual simulations rather than solely relying on verbal reasoning. How-
ever, existing AI benchmarks primarily assess verbal reasoning, neglecting the
complexities of non-verbal, multi-step visual simulation. We introduce STARE
(Spatial Transformations and Reasoning Evaluation), a benchmark designed
to rigorously evaluate multimodal large language models on tasks better solved
through multi-step visual simulation. STARE features ∼4K tasks spanning foun-
dational geometric transformations (2D and 3D), integrated spatial reasoning
(cube net folding and tangram puzzles), and real-world spatial reasoning (per-
spective and temporal reasoning), reflecting practical cognitive challenges like
object assembly, mechanical diagram interpretation, and everyday spatial naviga-
tion. Our evaluations show that models excel at reasoning over simpler 2D trans-
formations, but perform close to random chance on more complex tasks like 3D
cube net folding and tangram puzzles that require multi-step visual simulations.
Humans achieve near-perfect accuracy but take considerable time (up to 28.0s) on
complex tasks, significantly speeding up (down by 7.5 seconds on average) with
intermediate visual simulations. In contrast, models exhibit inconsistent perfor-
mance gains from visual simulations, improving on most tasks but declining in
specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-
3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively
leverage intermediate visual information.

1 INTRODUCTION

Spatial reasoning is not merely a subset of human cognitive abilities but rather the fundamental
underpinnings of intellectual processes (Tversky & Suwa, 2009). Reasoning with space enables in-
dividuals to solve complex tasks through visually simulating transformations of objects in the mind,
anticipating how their actions would physically manipulate other artifacts. Cognitive psychologists
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have found ample evidence that humans simulate 2D and 3D transformations to reason about spatial
problems (Mitko & Fischer, 2020; Duan et al., 2022; Wai et al., 2009; Battaglia et al.). Shepard &
Metzler (1971) found that the time taken by a subject to recognize two perspective drawings as the
same 3D shape increases linearly with their angular difference in orientation, suggesting an analog
mental rotation process. Hegarty (1992) found that humans employ mental animation, incremen-
tally simulating the movement of parts to understand mechanical diagrams. Such abilities enable
everyday tasks like assembling furniture, reading maps or instructional diagrams, navigating new
environments, and are strongly correlated with success in STEM disciplines (Judd & Klingberg,
2021; Christensen & Schunn, 2009; Hegarty, 2004b).

Despite their prevalence in real-world applications—from arranging furniture in a house to molec-
ular docking for drug discovery—dynamic visual simulations are still under-represented when eval-
uating multimodal large language models (MLLMs). Existing datasets largely target static recog-
nition or problems that can be re-phrased as linguistic reasoning (Johnson, 2017; Zhang, 2019; Ji,
2022; Duan et al., 2021; Chollet, 2019; Ramakrishnan et al., 2024). In contrast, humans frequently
solve spatial challenges—such as folding a 2D net into a 3D object, assembling a tangram, or taking
another visual perspective—by running internal, step-wise visual simulations (Fig. 1), which have a
long pedigree in the cognitive science studying human spatial reasoning (Huttenlocher & Presson,
1973; Gunalp et al., 2019; Shepard & Feng, 1972; Preuss et al., 2024; Ayaz et al., 2012).

To bridge this gap, we introduce STARE (Spatial Transformations and Reasoning Evaluation),
a benchmark focused on spatial reasoning tasks that can be better solved through multi-step visual
simulations. STARE evaluates whether MLLMs can perform complex visual reasoning akin to the
visual simulations humans perform. It spans a spectrum of spatial cognition challenges (Fig. 2),
structured in increasing complexity:

• Foundational geometric transformations: Tasks involving basic planar (2D) and volu-
metric (3D) transformations, such as rotations, translations, and reflections.

• Integrated spatial reasoning: Cube net folding, requiring understanding how 2D patterns
fold into 3D objects, and tangram puzzles, assessing sequential assembly and spatial posi-
tioning.

• Real-world spatial reasoning: Tasks demanding reasoning about perspective changes and
temporal frame sequences, simulating realistic spatial cognition scenarios encountered in
daily life.

In the first two categories, each transformation or operation (e.g., folding a face) can be explicitly
visualized step by step, and indeed humans often draw or imagine intermediate states when solving
them. The last category demands higher-level visual simulation skills without always having clear
intermediate visual cues (e.g., perspective reasoning) (Bass et al., 2022; Chen et al., 2023). We
carefully curate ∼4K total instances across these categories, controlling difficulty via distractor
similarity and number of simulation steps, to push models beyond superficial pattern-matching.

Our experiments show that models find reasoning over simple 2D transformations relatively easy
but struggle with 3D cube net folding and tangram puzzles, performing near random chance due to
the need for multi-step simulations. Humans, though nearly perfect in accuracy, took significantly
longer—up to 28.0 seconds—to solve some tasks but sped up considerably (down by 7.5 seconds
on average) when given intermediate steps. Meanwhile, when models receive intermediate visual
steps, their performance varies: e.g., GPT-4o, Gemini-2.0 Flash Thinking and o1 improve while
Gemini-2.0 Flash and Claude worsen on cube net folding, suggesting that not all models effectively
utilize visual guidance. In general, models (even o3) lag behind human performance significantly.
To better understand these gaps, we conduct detailed error analyses, pinpointing specific reasons
for model failures, such as difficulties in accurately interpreting 3D spatial relationships, inadequate
of “imagining in space”, and struggles with extended visual contexts even when providing explicit
visual simulations. Fundamentally, models cannot effectively perform visual simulation.

Overall, STARE aims to comprehensively test MLLMs’ ability to perform sequential visual simu-
lations as opposed to pure textual reasoning. By evaluating models on tasks grounded in cognitive
phenomena like mental imagery, we aim to reveal whether current MLLMs can approach the flexible
spatial problem-solving of humans.
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“Explicit”	Simulation

Integrated	Spatial	Reasoning

Foundational	Geometric	Transformations	

“Implicit”	Simulation
Real-world	Spatial	Reasoning

Temporal	Frame	Reasoning

2D	Transformation 3D	Transformation

A B C D

Cube	Net	Folding

Perspective	Reasoning

Can	the	net	be	folded	to	form	a	cube,	yes	or	no?

Check	out	a	net	with	6	faces	：

A B C D

The	image	is	from	the	top-down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	indicating	the	agent's	direction	of	view.	
Which	option	best		represents	the	agent's	view?

Which	image	correctly	fills	the	
missing	frame?

A B C

Tangram	Puzzle
Can	the	Tangram	puzzle	be	completed	with	the	
available	pieces,	yes	or	no?
A B C D

A B C D

Make	it	smaller	then	move	it	left	and	slightly	upwards. Move	it	up	and	then	make	it	bigger.

Figure 2: Overview of STARE. STARE consists of 3 levels of tasks, 2D Transformation and 3D Transfor-
mation for foundational spatial reasoning skills, tangram puzzle and cube net folding for integrated spatial
reasoning, temporal frame inference and perspective reasoning to mimic real-world scenarios. The interme-
diate steps for completing tasks in the first two levels can be explicitly simulated, while the more real-word
spatial reasoning tasks requires more abstract and implicit mental simulations.

2 THE STARE BENCHMARK

STARE is designed to evaluate multimodal models’ abilities in spatial cognition and visual reason-
ing, focusing specifically on tasks that humans solve non-linguistically, through visual simulation.
Current perception-focused multimodal benchmarks still rely heavily on linguistic reasoning (Fu∗
et al., 2024; Lu et al., 2021; Li et al., 2024a) or static visual recognition (Tong et al., 2024; Wu &
Xie, 2023; Fu et al., 2024), failing to measure models’ abilities in sequential visual problem-solving.
Parallel work in spatial cognition (Yiu et al., 2024; Zhang, 2019; Hu et al., 2021; Ramakrishnan
et al., 2024; Rismanchian et al., 2024) probes analogy making and pattern induction, yet simulation
is optional and intermediate visual states are seldom provided because of annotation cost. VSI-
Bench (Yang et al., 2024) underscores the role of mental imagery in spatial reasoning, but focuses
on spatial memory and estimation from video rather than explicit step-by-step simulation. STARE
closes the gap by testing multimodal models across diverse spatial tasks that require step-by-step
visual simulations with or without explicit linguistic guidance. We describe the overall design of
STARE (§2.1), highlighting key differences compared to existing benchmarks. We then provide
detailed descriptions of each task, discussing how the data was curated (§2.2).

2.1 OVERVIEW OF STARE

STARE is structured to comprehensively cover spatial reasoning at multiple complexity levels, from
basic geometric transformations (2D and 3D) to more integrated tasks (cube net folding and tangram
puzzles) and real-world spatial reasoning scenarios (temporal frame and perspective reasoning).
Each task is presented as a multiple-choice or yes/no question using carefully designed visual and
textual prompts. In total, the dataset contains ∼4K instances across different evaluation setups
(Fig. 3). Detailed statistics of STARE are provided in Appendix Fig. 8.

STARE separates tasks that can be visually simulated, i.e., where each transformation step is visually
observable, from tasks demanding more abstract and implicit mental simulations, such as perspec-
tive reasoning. To support more fine-grained evaluation, we synthesize the tasks that humans can
mentally picture or even explicitly draw the intermediate steps, including 2D transformations, 3D
transformations, cube net folding and tangram puzzle. Additionally, STARE tasks are intentionally
crafted to closely reflect real-world scenarios such as assembling objects (e.g., tangram puzzles),

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Check	out	a	Tangram	puzzle	below.	The	left	panel	is	an	empty	
Tangram	puzzle,	while	the	right	panel	shows	available	pieces	to	
complete	the	puzzle.		

Question

Intermediate Visual Simulations

Steps

Below	are	the	steps	to	complete	the	Tangram	puzzle:	
Step	1:	Rotate	piece	B	by	about	90	degrees	clockwise,	and	place	piece	B	with	its	upper-left	corner	at	(x,	y)	=	(1,	3).	
Step	2:	Place	piece	A	with	its	upper-left	corner	at	(x,	y)	=	(0,	3).	
Step	3:	Rotate	piece	C	by	about	90	degrees	clockwise,	and	place	piece	C	with	its	upper-left	corner	at	(x,	y)	=	(0,	1).	
Based	on	the	above	steps,	can	the	Tangram	puzzle	be	completed	with	the	available	pieces,	yes or	no?

Without Visual Simulations

Question Question

Steps

Question

Steps

Intermediate 
Visual 

Simulations

With Visual Simulations

Evaluation Settings

Figure 3: The different variants in the Tangram Puzzle task. We provide visualizations of the complete
interleaved inputs for all three types in Appendix G.2.
interpreting mechanical diagrams (e.g., cube net folding) and navigating environments (e.g., per-
spective reasoning). These scenarios can potentially shed lights on models’ abilities in practical,
everyday spatial cognition, providing meaningful assessments aligned with common human chal-
lenges. A detailed discussion about related works in human visual reasoning and MLLM bench-
marks are provided in Appendix D.

2.2 DATA CURATION

2D transformations: We design two types of tasks assessing spatial reasoning through two-
dimensional shape transformations: visual analogy, and instruction-based tasks. In visual analogy
tasks, a shape A is shown to transform visually into shape A′, after which a shape B is provided
with candidate shapes for applying the same transformation sequence to B. Instruction-based tasks
explicitly describe transformations (e.g., “Rotate 90 degrees clockwise, then make it bigger”) and
require selecting the correctly transformed shape from 4 answer choices. Transformations include
rotations, translations, uniform scaling, reflection and shearing, with clearly defined parameters.
Each task is created with three difficulty levels: easy (with two distractors out of three clearly dif-
ferent in appearance), medium (one obvious distractor), and hard (all distractors visually similar,
forcing the model to pay attention to the transformation itself). In addition, we synthesize samples
with 1/2/3 transformation steps to facilitate evaluations in multi-turn visual transformations. We pro-
grammatically generate all shapes and their transformed version using Matplotlib (Matplotlib, 2012).
Visualization of different variants of 2D transformation samples is shown in Appendix Fig. 9, 10.

We develop two experimental setups: (1) question + transformation steps, where the transfor-
mation steps are shown either verbally (for instruction-based tasks) or visually (for visual analogy
tasks); and (2) question + transformation steps + intermediate visual simulations, showing all
intermediate visualizations of shape B, excluding the final step. We synthesize a total of ∼1000
instances, ∼600 of which are without intermediate visual simulations.

3D transformations: We extend the 2D transformation tasks to three dimensions, creating similar
tasks using 3D shapes. Reflection is omitted in 3D because the mirror plane isn’t obviously recogniz-
able to human evaluators. The transformations include rotations around arbitrary axes, translations
in 3D space, scaling, and shearing. Tasks, difficulty levels, and experimental setups mirror those of
the 2D tasks, with a total of ∼1000 instances. Following (Johnson et al., 2017), we create abstract
3D shapes as detailed meshes and use Blender (Blender) to render realistic and consistent visuals.

Tangram puzzles: Tangram puzzles test spatial reasoning about how individual pieces fit together
to form a complete shape. Each puzzle provides a target grid and pieces, and the task is to determine
whether the pieces can exactly fill the grid. Valid puzzles were generated by randomly dividing
small grids (3x3 or 4x4) into rectangular or square shapes, then randomly rotated. Irregular variants
were also created by merging adjacent rectangles. Invalid puzzles were constructed by adding or
removing pieces, altering piece sizes, or giving incorrect placement instructions.

We create three setups for evaluation: (1) question-only, which presents the initial puzzle configu-
ration with a query about solvability; (2) question + assembly steps, adding descriptive instructions
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of each assembly step without visual aids; and (3) question + assembly steps + intermediate visual
simulations, providing both descriptive annotations and intermediate visualizations of the assembly
process, excluding the final visualization indicating success or failure. This task comprises ∼800
puzzles, evenly divided into solvable and unsolvable instances.

Cube net folding: This task evaluates the model’s capacity to mentally fold flat 2D patterns into 3D
cubes. We provide examples comprising both valid nets (correctly folding into a cube) and invalid
nets (leading to overlapping or disconnected faces). Each cube net has explicitly labeled faces. To
generate these examples, we implement a step-by-step algorithm that simulates the folding process
by designating a stationary base face and sequentially folding the connected faces. During each
folding step, we detect and annotate errors, such as overlaps or disconnected faces, and generate
corresponding visualizations using Matplotlib, clearly delineating face boundaries. Similar to tan-
gram puzzles, we evaluate models in three setups, including (1) question-only, (2) question + folding
steps, and (3) question + folding steps + intermediate visual simulations. The final cube net folding
task contains ∼320 samples, balanced between valid and invalid configurations.

Temporal frame reasoning: This task evaluates a model’s ability to infer missing sequential visual
information. Each example consists of four consecutive frames from a video, with one frame hid-
den. The model must identify the missing frame from a set of three options, relying on temporal
consistency and logical scene progression.

We construct 471 examples from the Objectron (Ahmadyan et al., 2021) dataset, which contains
short, object-centric videos with camera pose annotations. To create meaningful sequences, we
extract the longest continuous segment where the camera moves only in one direction (left or right),
divide it into four equal intervals, and select a frame from the central portion of each interval. One
of these frames is hidden, and the model must identify it from three choices: the correct missing
frame and two distractor frames sampled from different, non-overlapping parts of the video.

Perspective reasoning: This task assesses a model’s ability to understand how scenes appear from
different viewpoints. Each example consists of a top-down map that indicates an agent’s position and
orientation, represented by an arrow showing the agent’s viewing direction. The model must then
select the correct first-person view from four choices, emphasizing spatial perspective reasoning and
spatial relationships in various indoor environments.

We construct 250 samples using the HM3D dataset (Ramakrishnan et al., 2021), a large collection
of 3D indoor spaces derived from real-world environments. To generate each example, we use the
Habitat simulator (Savva et al., 2019; Szot et al., 2021; Puig et al., 2023) to place an agent at a
random position on the floor while ensuring the surrounding scene contains enough visual cues,
such as objects and structures, rather than just walls. A top-down view of the agent’s position is then
captured, and a random viewing direction is assigned (forward, right, left, or backward). The four
answer choices correspond to these fixed 90-degree viewpoints, ensuring clear distinctions between
them. To improve dataset quality, we manually remove ambiguous cases and low-resolution images.

3 EXPERIMENTS

In this section, we describe our experimental setup in detail, present comprehensive results, and
provide an in-depth analysis of common model errors and limitations.

3.1 EXPERIMENTAL SETUP

For synthetic tasks involving explicit simulations (2D transformations, 3D transformations, cube net
folding, tangram puzzles), we explore two evaluation settings:

• Without Visual Simulations: Models receive only an initial image with or without step-by-step tex-
tual instructions and had to mentally infer the subsequent transformations without visual guidance,
thereby testing their internal mental simulation capabilities.

• With Visual Simulations: Models were provided with step-by-step visualizations clearly illustrat-
ing each transformation step before the final result, enabling explicit visual reasoning. Instead of
collating the complex step-by-step visualizations into a single image, we provide the model with
interleaved image and text query for evaluation.
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Model 2D Trans. 3D Trans. Cube Net Tangram Temp- Pers- Overall
✗VSim ✓VSim ✗VSim ✓VSim ✗VSim ✓VSim ✗VSim ✓VSim oral pective

Random 25.0 25.0 25.0 25.0 50.0 50.0 50.0 50.0 33.3 25.0 34.8

Closed-source Models

GPT-4o 71.2 82.7 (↑ 11.5) 65.5 68.4 (↑ 2.9) 50.3 52.2 (↑ 1.9) 52.5 51.5 (↓ 1.0) 39.0 38.7 53.9
Claude-3.5 Sonnet 65.9 71.4 (↑ 5.5) 51.5 57.8 (↑ 6.3) 52.3 51.6 (↓ 0.7) 59.0 67.6 (↑ 8.6) 54.0 26.1 53.1
Gemini-2.0 Flash 69.5 75.2 (↑ 5.7) 56.1 59.3 (↑ 1.6) 37.7 35.6 (↓ 2.1) 65.0 65.5 (↑ 0.5) 38.6 37.2 51.3

Gemini-2.0 Flash Think 60.6 62.8 (↑ 2.2) 49.5 56.1 (↑ 6.6) 48.3 50.7 (↑ 2.4) 39.8 62.8 (↑ 23.0) 45.0 32.7 48.8
o1 81.8 87.7 (↑ 5.9) 67.9 71.6 (↑ 3.7) 51.3 53.4 (↑ 2.1) 55.3 53.2 (↓ 2.1) 45.0 36.8 57.2
o3 87.5 89.3 (↑ 1.8) 75.2 78.4 (↑ 3.2) 68.4 79.4 (↑ 11.0) 68.6 82.1 (↑ 13.5) 51.4 42.8 68.1

Open-source Models

LLaVA-OneVision-72B 32.9 32.2 (↓ 0.7) 27.0 30.6 (↑ 3.6) 28.5 34.2 (↑ 3.7) 30.3 39.8 (↑ 9.5) 35.7 24.8 31.4
InternVL2.5-78B 47.5 50.1 (↑ 2.6) 38.1 36.5 (↓ 1.6) 37.1 37.3 (↑ 0.2) 60.7 48.2 (↓ 12.5) 31.4 26.0 39.2
Qwen2.5-VL-3B 16.6 20.0 (↑ 3.4) 29.1 31.4 (↑ 2.3) 43.5 41.0 (↓ 2.5) 50.1 42.7 (↓ 7.4) 33.3 23.3 32.3
Qwen2.5-VL-7B 35.4 32.4 (↓ 3.0) 28.8 31.7 (↑ 2.9) 40.7 44.9 (↑ 4.2) 54.5 52.9 (↓ 1.6) 36.5 23.2 36.7
Qwen2.5-VL-72B 45.2 48.5 (↑ 3.2) 43.0 49.1 (↑ 6.1) 35.2 53.4 (↑ 18.2) 61.2 56.9 (↓ 4.3) 31.4 26.0 42.3

Human Performance

Accuracy 96.8 98.6 (↑ 1.8) 94.6 96.9 (↑ 2.3) 98.3 98.9 (↑ 0.6) 91.5 95.8 (↑ 4.3) 99.0 98.1 97.1
Response Time (s) 14.2 11.0 (↓ 3.2) 17.1 12.5 (↓ 4.6) 13.7 5.2 (↓ 8.5) 28.0 10.1 (↓ 17.9) 16.2 18.4 -
∆(Best Model,Human) -9.3 -9.3 -19.4 -18.5 -29.9 -19.5 -22.9 -13.7 -45.0 -55.3 -29.0

Table 1: Model Performance With or Without Visual Simulation (VSim) Across Tasks in STARE. Even the
top performer, o1, achieves just under 60% accuracy. Humans, in contrast, get near perfect scores. Green (Red)
arrows indicate performance improvements (degradations) with visual simulation.

For real-world reasoning tasks, including temporal frame and perspective reasoning, we evaluate
models under the standard single image setting without providing explicit intermediate visual steps.

Evaluation Metrics. We report accuracy for multiple-choice questions in 2D/3D transformations,
temporal frame, and perspective reasoning tasks. For cube net folding and tangram puzzles, which
involve binary yes/no questions, we report the F1 score. We report macro-average performance
across tasks as the overall evaluation metric.

Models. We consider the following models: (1) Closed-source models: GPT-4o (OpenAI), Claude-
3.5 Sonnet (Anthropic), Gemini2.0 Flash (Deepmind, a), and the reasoning-focused Gemini2.0 Flash
Thinking (Deepmind, b), o1 (OpenAI et al., 2024) and o3 (OpenAI, 2025). (2) Open-source mod-
els: InternVL2.5-78B (Chen et al., 2024), LLaVA-OneVision-72B (Li et al., 2024b), Qwen2.5-VL-
3B, Qwen2.5-VL-7B, and Qwen2.5-VL-72B (Bai et al., 2025).

Additionally, we invite 5 undergraduate students to complete the same tasks as the models. The aver-
aged performance and response time are recorded to benchmark model capabilities against human-
level spatial reasoning. Additional human eval results are provided in Appendix H.

3.2 MAIN RESULTS

The results present in Tab. 1 show notable variations in model performance across different spa-
tial reasoning tasks in the STARE benchmark. Models achieve the highest accuracy (up to 89.3%)
on simpler 2D transformation tasks, significantly surpassing random chance (25%). Accuracy de-
creases by roughly 5% on average for more complex 3D transformations. Tasks involving intricate
multi-step reasoning, such as cube net folding and tangram puzzles, resulted in even worse model
performance without visual simulation. Additionally, temporal frame reasoning and perspective
reasoning, which require interpreting sequential visual contexts and viewpoint changes, posed con-
siderable difficulties, with most models performing similarly to random chance.

The use of visual simulations (VisSim) enhances model performance in most cases, but not all.
GPT-4o exhibits a notable improvement of 11.5% accuracy on 2D transformations with visual sim-
ulations, and Claude-3.5 Sonnet shows significant gains (+8.6%) on tangram puzzles. However,
visual simulations did not uniformly benefit model performance; certain models like Gemini-2.0
Flash experienced slight performance declines (e.g., a 2.1% decrease on F1 for cube net tasks), in-
dicating that models can not always effectively leverage intermediate visual information. The latest
reasoning-focused o3 model outperforms all other models with visual simulations. Overall, it im-
proves over GPT-4o by 14.2% on average, but still lag behind human performance. Notably, o3
seems to be better at leveraging visual simulations. However, humans show relatively small per-
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formance gaps between conditions with and without visual simulation, indicating they are able to
mentally simulate transformations effectively when explicit visual simulations are absent.

Open-source models generally exhibit lower accuracy compared to closed-source counterparts, high-
lighting a significant performance gap. Larger models like InternVL2.5-78B and Qwen2.5-VL-72B
performe relatively better, suggesting benefits from scale, but their results with visual simulations
also varied. For instance, InternVL2.5-78B’s performance decreases significantly in tangram tasks
(-12.5%), whereas Qwen2.5-VL-72B improves notably (18.2%) in cube net tasks.

Human performance consistently surpasses that of models, achieving high accuracy across all
STARE tasks, and further improved by intermediate visual simulations. However, these tasks were
cognitively demanding even for humans, reflected by relatively long response times (e.g., 28.0 sec-
onds on tangram puzzles without visual simulations). Although intermediate visual simulations
significantly reduces cognitive load and response time, humans still require more than 5 seconds to
mentally manipulate and reason through these problems and complete the last step. Thus, STARE
tasks clearly involve complex, multi-step spatial reasoning beyond simple recognition tasks solv-
able at a glance (Fu et al., 2024). These findings underscore humans’ superior spatial reasoning
capabilities, particularly when aided by visual simulations.

Moreover, to study whether gains on abstract, synthetic spatial tasks translate to real-world tasks,
we computed model-level correlations between the two domains. Concretely, for each model, we
average its performance across with or without visual simulation on the 4 synthetic tasks and con-
trast that with its mean accuracy on the two real-world tasks. This yields a strong overall Pearson
correlation (r ≈ 0.88, p ≈ 5e−4) across all 11 models. Counting in human performance, further
increase the correlation to (r ≈ 0.97, p ≈ 1e−7).

3.3 DETAILED ANALYSIS

To gain deeper insights into model limitations and identify specific reasoning challenges, we struc-
ture our detailed analysis around several targeted questions. We focus our discussion below on
the GPT-4o model, given that it achieves the best performance among the non-reasoning models.
Analysis on other models can be found in Appendix H.

Q1: How well do models understand individual transformation types in 2D and 3D? We eval-
uate model accuracy on individual transformation operations—rotation, translation, scaling, reflec-
tion, and shearing—for both 2D and 3D tasks, comparing performance with and without visual sim-
ulation (Fig. 4). For 2D tasks, scaling achieves the highest accuracy (approximately 90% without
visual simulation), improving further with visual simulation. Shearing was the most challenging in
2D (around 54%), showing minimal improvement from visual aids. Reflection, rotation, and trans-
lation significantly benefits from visual simulation, improving roughly 10 percentage points each.
In 3D tasks, translation had the highest accuracy (about 76% without visual simulation), although it
slightly declines with visual simulation. However, shearing, scaling, and rotation notably improve
with visual simulation by about 3–8 percentage points. Overall, visual simulation substantially en-
hances performance for complex transformations, especially in 2D, though the added complexity of
3D transformations continues to present significant challenges.

Q2: How does model accuracy change as task complexity increases? (1) Performance vs.
Difficulty-level: The left sub-Fig. in Fig. 6 shows model accuracy decreased as tasks became harder.
For 2D tasks, GPT-4o performed best on easy tasks (∼86% with visual simulation), with accuracy
declining notably for medium and hard tasks, especially without visual simulation (dropping to
∼66% for hard tasks). For 3D tasks, overall accuracy was lower, decreasing from easy tasks (∼72%
without visual simulation) to hard tasks (∼60% without). Visual simulation generally improved ac-
curacy but was less effective or even slightly detrimental for the hardest 3D tasks (60.5% without,
57.4% with). (2) Performance vs. Number of Turns: The right sub-Fig. in Fig. 6 shows that how
model performance varies with the number of transformation steps (N = 1, 2, 3). Without visual
simulation, accuracy for both 2D and 3D tasks initially increases from N = 1 to N = 2, and then
decreases at N = 3. The observed peak at N = 2 likely occurs because two-step transformations
combine simpler transformations (e.g., scaling) with more challenging ones (e.g., shearing), allow-
ing models to leverage the simpler transformations to determine the correct answer. In contrast,
one-step transformations are evenly distributed across all transformation types, while at N = 3, the
increased complexity from multiple transformations compounds cognitive demands, reducing over-
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Figure 4: GPT-4o performance on individual 2D/3D trans-
formation types, with and without Visual Simulation (VSim).

Question:	Check	out	a	net	with	6	square	faces.	
Can	the	net	be	folded	to	form	a	cube,	yes	or	no?

Perception Error

Error	Analysis:	

Claude:	
Looking	at	the	image,	I	see	a	net	with	6	
labeled	squares	arranged	in	a	specific	pattern:
•	Square	1	(yellow)	is	on	the	left
•	Square	2	(purple)	is	at	the	top
•	Square	3	(pinkish)	is	in	the	middle	right	of	
Square	2
•	Square	4	(blue)	is	below	Square	3	and	to	the	
right	of	Square	1
•	Square	5	(orange)	is	to	the	right	of	Square	4
•	Square	6	(green)	is	below	Square	4
…… So	the	answer	is	no,	this	specific	net	
cannot	be	folded	to	form	a	cube.

Square	6	(green)	is	
below	Square	5.

Figure 5: A perception error from Claude-3.5
Sonnet. See Appendix G.5 for more case study.

Figure 6: GPT-4o performance vs. task complexity (left: difficulty levels and right: number of transformation
steps) with or without Visual Simulation (VSim).

all model accuracy. With visual simulation, accuracy remains consistently high across 2 and 3 steps
in 2D tasks and shows stable or slightly improved performance at N = 3 in 3D tasks. Performance
at N = 1 with visual simulation is not shown because there is no intermediate step.

Q3: Do model failures originate from basic visual perception errors? To determine if model fail-
ures originate from fundamental visual perception rather than higher-level reasoning limitations, we
design a straightforward probing experiment. Specifically, we simplify the task by directly present-
ing the model with the final, fully simulated outcomes, reducing the problem to visually matching
these outcomes to the correct candidate answers. Under these conditions, accuracy improves by
4.2% (from 82.7% to 86.9%) on 2D transformations and 2.8% (from 68.4% to 71.2%) on 3D trans-
formations, indicating only a modest improvement when eliminating intermediate steps. However,
for more structured tasks like cube net folding and tangram puzzles, providing the fully completed
final form drastically raises accuracy to 100% and 91.6%, respectively, highlighting that models
can solve these tasks when the perceptual complexity is minimized. To further isolate the nature
of perceptual errors in cube net folding, we create targeted tasks to test both 2D perception (color
recognition and face connectivity) and 3D perception (identifying if a face has been folded). Results
from these tasks (Tab. 2) reveal perfect color recognition but a notable decrease in accuracy for face
connectivity (94.1%) and particularly low accuracy in correctly identifying folded faces (57.4%).
Fig. 5 illustrates an example of perception error on connectivity misalignments from Claude-3.5
Sonnet. Moreover, these specific perceptual errors in folding explain the limited benefits from vi-
sual simulations observed in Tab. 1 for GPT-4o. Overall, while some errors indeed stem from basic
visual perception deficits, particularly in more complex 3D scenarios, the results suggest higher-level
reasoning also plays a large role in overall model failures. Refer to Appendix for more quantitative
(Appendix E) and qualitative (Appendix G.5) error analysis.

Q4: How well do models reason spatially in text? To evaluate how well models reason spatially
from text alone, we translate each visual task into clear, concise descriptions. For 2D and 3D
transformation tasks, each object is described by stating its shape, color, position, size and etc.—for
instance, “a red square at position (3,4) with size 2”. In the cube-net folding task, the unfolded
cube is represented by numbering each face and arranging these numbers in a grid matching the
cube net’s visual layout. For example, “123456” represents all six faces in a single row. Lastly, for
the tangram puzzle task, each piece is labeled (e.g., “Piece A”) and represented by a compact grid
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Model 2D Perception 3D Perception

Color Connectivity Folded?

GPT-4o 100.0 94.1 57.4

Table 2: 2D and 3D perception accuracy in
cube-net folding.

Input 2D Trans. 3D Trans. Cube Nets Tangram

Text-only 87.5 64.7 57.0 72.6
Image-only 75.1 67.7 56.0 62.5
Image+Text 90.8 70.0 62.1 –

Table 3: GPT-4o performance without visual simulation under
different input representations.

Input Cube Nets Tangram

Question-only 50.2 62.4
Question+Steps 50.4 34.7

Table 4: GPT-4o performance with
question-only vs. explicit reasoning steps.

Simulation State 2D Trans. 3D Trans. Cube Nets Tangram

Partial 86.8 72.1 51.3 43.5
All 82.7 68.4 52.2 51.5
Last 89.4 68.4 35.2 43.4

Table 5: GPT-4o performance with different intermediate visual-
simulation states.

indicating occupied cells marked by “1”. For instance, a square piece might be shown as two rows
of “11”. Examples of text representations of each task are provided in Appendix G.4.

As shown in Tab. 3, providing the model with a text representation removes much of the perception
challenge, yet accuracy remains well below human performance—about 57% on cube-net folding,
65% on 3D transformations, and roughly 73% on tangram puzzles, suggesting that the model still
lacks the ability to mentally simulate the steps to solve each task. Text helps most on 2D spatial
reasoning: accuracy on 2D transformations rises from 75% with images alone to 87% with text, and
tangram performance climb from 63% to 73%. For tasks involving 3D spatial reasoning, however,
text gives little benefit, partly because the simple text description about shape, color, material, center,
and size, cannot capture all the depth and adjacency cues in 3D spatial reasoning.

Q5: How well do models verbally simulate without visual simulation? We evaluate how effec-
tively models verbally simulate spatial reasoning without intermediate visual simulations by compar-
ing performance when provided only the question (Question-only) versus explicit verbal reasoning
steps (Question+Steps). Tab. 4 shows minimal improvement in cube net folding (50.2% to 50.4%),
indicating limited benefit from verbal reasoning alone. Conversely, tangram performance notably
decreases (62.4% to 34.7%), suggesting models adopt shortcuts like summing piece areas rather
than genuine spatial simulation. This result partially reflects a bias in our question-only set: models
can achieve ∼75% accuracy by checking the total areas of available pieces.

Q6: How well do models integrate textual context with isolated visual simulations? We com-
pared accuracy when presenting models with complete visual sequences versus only the final or
most relevant visual state (Tab. 5). Easier tasks like 2D and 3D transformations showed improved
or comparable accuracy when presented only the final state (e.g., 82.7% for complete vs. 89.4% for
last), suggesting that for these tasks, the final visual state closely resembles the initial state, reducing
cognitive load. However, in complex tasks such as cube net folding (52.2% complete vs. 35.2%
last) and tangram puzzles (51.5% complete vs. 43.4% last), the final state becomes more discon-
nected from the initial configuration, requiring deeper understanding of preceding verbal steps. This
disconnection introduces significant challenges for models, aligning with earlier findings (Q4) and
underscoring their difficulties in integrating complex visual sequences during multi-step reasoning.
Refer to Appendix E for additional experimental results on the impact of # visual simulations.

4 CONCLUSION

In this paper, we introduced STARE, a novel benchmark specifically designed to evaluate multi-
modal models on diverse spatial cognition tasks involving complex visual reasoning and mental
simulations. STARE uniquely assesses model capabilities across foundational geometric transfor-
mations, integrated spatial reasoning tasks, and real-world scenarios requiring temporal and per-
spective reasoning. Our extensive experiments reveal significant performance variations among
multimodal models, highlighting substantial challenges, especially in complex, multi-step reason-
ing scenarios. Visual simulations notably enhance performance on simpler tasks but yield mixed
results for more sophisticated tasks. The substantial gap in performance between closed-source
and open-source models further emphasizes the necessity for advancements in multimodal reason-
ing. Overall, STARE sets a critical benchmark to guide future research towards human-level spatial
reasoning capabilities in AI.
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5 ETHICS STATEMENT

STARE provides a standardized way to measure AI capabilities in spatial reasoning tasks, poten-
tially guiding research toward AI systems that can better support robotics, autonomous driving,
augmented reality, and education. However, improved spatial reasoning could also lead to negative
societal impacts if misused, such as enhanced surveillance or military applications. Additionally, the
synthetic nature of STARE may introduce biases toward simplified or artificial scenarios, limiting
direct applicability to real-world conditions. Future versions should aim to include more realistic,
diverse datasets and consider ethical guidelines to minimize risks and ensure fair, positive societal
outcomes.

6 REPRODUCIBILITY STATEMENT

We have taken substantial steps to ensure the reproducibility of our results. All experimental set-
tings are described in detail in Appendix G. We provide complete documentation of the statistics of
STARE and the design spaces for all synthetic tasks, including 2D transformations, 3D transforma-
tions, cube net folding, and tangram puzzles in Appendix F. Data curation and evaluation code is
included in the supplementary material to facilitate verification and reuse. Together, these resources
enable the community to reproduce our experiments and extend our findings.
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Ciobâcă, Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank Agnihotri, Pavel Zhel-
nov, Siranut Usawasutsakorn, Mohammadreza Mofayezi, Alexander Piperski, Marc Carauleanu,
David K. Zhang, Kostiantyn Dobarskyi, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben
Jansen, Scott Creighton, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Dario Bezzi, Wiktor
Morak, Wenjie Ma, William Held, Tran uc Huy, Ruicheng Xian, Armel Randy Zebaze, Mo-
hanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Katarzyna
Olszewska, Hossein Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez,
Andy Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Da-
souqi, Alexander Shen, Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna
Zhidkovskaya, Lukas Lewark, Miguel Orbegozo Rodriguez, Mátyás Vincze, Dustin Wehr, Colin
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A OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

• Section B discusses the use of LLMs.
• Section C discusses the limitations of STARE.
• Section D presents an extended discussion about related works.
• Section F details the statistics of STARE and the design spaces for all synthetic tasks,

including 2D transformations, 3D transformations, cube net folding, and tangram puzzles.
• Section E provides additional analysis complementary to Section 3, including detailed error

analysis, impact of # visual simulations and reasoning efforts, and additional results on
human evaluation.

• Section G describes the experimental setup, covering the prompts used, model configu-
rations, hyperparameter settings, and presents full visualizations of different experimental
settings (e.g., evaluation settings with or without visual simulations, perception probing
questions).

• Section H provides results on additional models for analysis conducted in Section 3.

B THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as auxiliary tools during manuscript preparation, but only
for surface-level editing such as grammar correction, minor rephrasing, and stylistic refinements to
improve readability. AI-assisted coding was employed in curating synthetic data, but under strict
human supervision and review. In addition, LLMs served as judges in our detailed error analysis;
however, we manually reviewed a subset of their outputs to verify accuracy. All research ideas,
methodologies, experiments, and conclusions were conceived and executed exclusively by the au-
thors.

C LIMITATIONS

Although STARE provides valuable insights, it still has several limitations. First, it uses simplified
synthetic images that do not fully represent real-world complexity; future versions could include re-
alistic or dynamic scenes with clutter and occlusion. Second, it focuses only on rigid shape transfor-
mations; adding tasks involving flexible shapes, articulated objects, or additional sensory cues (such
as audio or depth) would cover a wider range of spatial reasoning skills. Lastly, multiple-choice
scoring hides intermediate reasoning steps; extending evaluations with explanations, step-by-step
checks, or open-ended responses would give more detailed insights, which we briefly explore in
Appendix E.

Still, STARE ’s current design has clear strengths. The simplified images isolate spatial reasoning
from general object recognition tasks. Its structured variety of tasks helps pinpoint specific model
difficulties. Automatic scoring ensures consistent and easy-to-scale evaluations. Modular task pre-
sentations (image-only, text-only, image+text prompts) let researchers analyze individual modality
contributions. Additionally, synthetic data makes STARE easily reproducible, accessible, and ex-
tensible. Overall, STARE is a strong first step toward measuring multimodal spatial reasoning, with
clear pathways toward more realistic and comprehensive future benchmarks.

D RELATED WORK

Human visual reasoning. Human visual reasoning relies on two complementary faculties: re-
lational analogy—mapping abstract structures across scenes—and mental simulation—predicting
future states through incremental transformations. Structure–Mapping Theory (Gentner, 1983) and
analyses of Raven’s Progressive Matrices (Carpenter et al., 1990) first showed that success in visual
problem-solving hinges on aligning relations rather than surface features. Computational accounts
echo this claim: explicit relational models reproduce human-like performance (Lovett & Forbus,
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Dataset VSim 2D/3D Synth/Real Multi-step Train/Eval Size Focus

STARE ✔ 2D & 3D Both ✔ Eval ∼4K Multi-step spatial simulations

VSI-Bench ✘ 3D (video) Real ✘ Eval 5K Spatial memory & layout recall
from egocentric videos

KiVA ✘ 2D Synthetic ✔ Eval 4.3K Visual analogical reasoning in-
spired by child cognition

TurtleBench ✘ 2D Synthetic ✔ Eval 260 Reproduce geometric programs
via turtle graphics

SPARE3D ✘ 2D & 3D Synthetic ✔ Both 220K+ Spatial reasoning with 3-view
CAD drawings

VSR ✘ 2D Real ✘ Eval 10K Spatial relation understanding
in caption-image pairs

DetermiNet ✘ 2D Synthetic ✘ Both 250K Referring expression under-
standing with quantifiers and
determiners

Forgotten Polygons ✘ 2D Synthetic ✘ Eval 2K Shape identification and count-
ing under visual ambiguity

GeoGramBench ✘ 2D Synthetic ✔ Eval 500 Symbolic geometric reasoning
from procedural programs

VisuLogic ✘ 2D Synthetic ✘ Eval 1K General visual logic across di-
verse reasoning types

Table 6: Comparison of existing visual/spatial reasoning datasets versus STARE.

2017), whereas modern deep networks still struggle with visual analogy tasks (Ichien et al., 2021;
Webb et al., 2022; Ichien et al., 2023).

Mental simulation complements analogy-making. Classic work on mental rotation (Shepard & Met-
zler, 1971) and mechanical reasoning (Hegarty, 2004a) demonstrates that people mentally “run”
transformations, consistent with grounded-cognition theories (Barsalou, 2008). Intuitive-physics
studies cast the mind as a noisy physics engine that combines object-centric structure with proba-
bilistic dynamics (Battaglia et al., 2013; Tenenbaum et al., 2006; Ullman et al., 2017). Object-based
predictive-coding models such as PLATO extend these ideas, achieving human-like physical pre-
diction and developmental trajectories (Yang et al., 2023; Piloto et al., 2022). Simulations are also
selective: people allocate attention “just in time,” focusing on the most diagnostic elements instead
of exhaustively modeling the entire scene (Bass et al., 2022; Bear et al., 2022; Chen et al., 2023).

Together, these findings suggest that effective problem-solving hinges on the ability to carry out
step-by-step visual simulations; our benchmark therefore probes whether multimodal models can
effectively leverage or even produce such simulations and exhibit human-like visual reasoning on
sequential, compositional tasks.

Multimodal evaluation benchmarks. Recent advances in evaluating multimodal large language
models have led to the development of benchmarks targeting diverse aspects of visual reasoning.
Early benchmarks such as VQA (Antol et al., 2015) and CLEVR (Johnson, 2017) focus on compo-
sitional reasoning and general visual question answering. However, more challenging benchmarks,
such as MMMU (Yue et al., 2023) and Humanity’s Last Exam (HLE) (Phan et al., 2025), assess
expert-level, domain-specific reasoning using complex multimodal inputs, where state-of-the-art
models achieve only around 60% on MMMU-pro (Yue et al., 2024) and below 20% on HLE.

In response to the growing demand for robust evaluation, several new benchmarks (Fu∗ et al., 2024;
Lu et al., 2021; Li et al., 2024a; Tong et al., 2024; Wu & Xie, 2023) have been introduced. For exam-
ple, M3Exam repurposes multilingual professional-license questions (Zhang et al., 2023). MME (Fu
et al., 2023) and MMBench (Liu et al., 2024) separate low-level perception from higher-level cogni-
tion. BLINK (Fu et al., 2024) departs from pure linguistic reasoning tasks to include tasks grounded
in core computer vision capabilities, including relative depth estimation, semantic correspondence,
visual similarity assessment, inpainting, etc. Improvements on BLINK require the use of perception
tokens (Bigverdi et al., 2024), which generate latent intrinsic images to reason, demonstrating for
the first time, that reasoning doesn’t have to be linguistic. In this work, we build upon this finding,
targeting primarily visual reasoning that can be better solved with visual cues.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The most relevant benchmarks to ours are KiVA (Yiu et al., 2024), RAVEN/I-RAVEN (Zhang,
2019; Hu et al., 2021), SPACE (Ramakrishnan et al., 2024), and TurtleBench (Rismanchian et al.,
2024), which primarily evaluate static analogy or pattern induction, where intermediate visual simu-
lations are optional and often infeasible to curate. VSI-Bench (Yang et al., 2024) emphasizes mental
imagery in spatial reasoning but centers on spatial memory and distance estimation from video.
Other recent efforts—such as Forgotten Polygons (Rudman et al., 2025), GeoGramBench (Luo
et al., 2025), and VisuLogic (Xu et al., 2025)—target more isolated failures in visual reasoning,
including shape recognition, symbolic geometry, or visual logic puzzles. In contrast, STARE intro-
duces programmatically generated puzzles—2D/3D transformations, cube-net folding, and tangram
assembly—that isolate a model’s capacity to benefit from explicit visual simulations, and further
extends to perspective-taking and temporal reasoning tasks that mirror real-world scenarios.

Table 6 compares STARE with other spatial reasoning datasets: RoboSpatial (Song et al., 2025)
provides large-scale real 2D/3D images with annotated spatial relations; MSR3D (MSQA) (Linghu
et al., 2024) and SQA3D (Ma et al., 2022) support situated QA in 3D scenes but focus on single-step
queries; the Visual Spatial Reasoning benchmark (Liu et al., 2023) probes basic positional relations;
SPARE3D (Han et al., 2020) presents synthetic 2D to 3D consistency puzzles; and DetermiNet (Lee
et al., 2023) emphasizes logical spatial tasks without multi-step simulation. As shown, STARE is
the only benchmark that offers a diverse suite of multi-step visual simulation tasks across both
2D and 3D domains, uniquely combining procedural puzzles, geometric transformations, and
realistic inference (perspective and temporal reasoning). Its synthetic design allows fine-grained
control over step difficulty and granularity, enabling analyses of visual reasoning beyond what ex-
isting datasets support.

E ADDITIONAL EXPERIMENTAL RESULTS

Fine-grained Reasoning Evaluation Because each synthetic task in STARE includes ground-
truth metadata for every intermediate simulation step, we can scrutinize a model’s entire reasoning
chain—something impossible on benchmarks that provide only final answers.

We have conducted a deeper error analysis of GPT-4o and Claude-3.5 predictions on all synthetic
tasks.

• We first examined representative case studies (Appendix G.5) and identified four recurring
categories of reasoning failure:

Error Category Description Representative Example

A Misperception The model misreads shapes,
color, adjacency, or face layout.

Misidentifies cube-net face po-
sitions (Fig. 21)

B Flawed Spatial Simulation The model forms an incorrect
mental model of how shapes
transform.

Claims rotated hexagon is
unchanged after 30◦ rotation
(Fig. 19-right)

C Heuristic Over-Use The model falls back on shal-
low heuristics (e.g., area count-
ing).

Sums tangram piece areas and
misjudges solvability (Fig. 22-
left)

D Logic Inconsistency The reasoning process contra-
dicts itself or the final answer.

Correctly identifies two valid
answers but chooses the wrong
one arbitrarily (Fig. 20-right)

Table 7: Representative error categories (A–D) observed in model predictions, with descriptions and examples.

• We implemented an automated LLM-based judgment pipeline. Given a model’s chain-of-
thought, its prediction, and full ground-truth metadata (e.g., initial shape, transformation
sequence, correct answer, and options), the judge model categorizes each incorrect predic-
tion into one of the four failure types above. Here, we use o3 as the judge model.

The table below summarizes the distribution of error types across 100 randomly sampled
incorrect predictions per task, per model:
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Model Task A B C D

GPT-4o

2D 75.8% 21.2% 0.0% 3.0%
3D 31.3% 67.7% 0.0% 1.0%
Cube Net 12.7% 87.3% 0.0% 0.0%
Tangram 68.1% 12.1% 6.6% 13.2%

Claude-3.5 Sonnet

2D Transform 60.0% 35.8% 0.8% 3.3%
3D 34.0% 64.1% 0.0% 2.0%
Cube Net 22.2% 74.7% 3.0% 0.0%
Tangram 65.9% 17.1% 9.8% 7.3%

Table 8: Distribution of error categories (A–D) across tasks for GPT-4o and Claude-3.5 Sonnet.

Different tasks show distinct failure modes: 2D and tangram errors stem from mispercep-
tion, 3D and cube nets from simulation gaps, with occasional heuristic over-use and logic
inconsistency in chain-of-thought.

• We use an LLM-as-judge with a structured rubric to score how well model reasoning traces
align with ground-truth metadata (e.g., shape interpretation, transformation accuracy). We
then sorted model responses into quartiles based on alignment score and evaluated accuracy
within each group.

Model Task Q1 (alignment) Q2 (alignment) Q3 (alignment) Q4 (alignment)

GPT-4o

2D 61.1% (0.664) 100.0% (0.917) 100.0% (0.950) 100.0% (0.952)

3D 33.3% (0.325) 100.0% (0.875) 100.0% (0.927) 100.0% (0.973)

Cube Net 0.0% (0.004) 0.0% (0.096) 0.0% (0.118) 100.0% (0.606)

Tangram 0.0% (0.000) 50.0% (0.228) 100.0% (0.819) 100.0% (0.998)

Claude-3.5 Sonnet

2D 0.0% (0.214) 83.3% (0.768) 100.0% (0.931) 100.0% (0.959)

3D 0.0% (0.168) 90.9% (0.727) 100.0% (0.909) 100.0% (0.981)

Cube Net 0.0% (0.041) 0.0% (0.100) 0.0% (0.150) 100.0% (0.714)

Tangram 0.0% (0.000) 42.9% (0.161) 100.0% (0.725) 100.0% (0.991)

Table 9: Task accuracy by alignment quartile for GPT-4o and Claude-3.5 Sonnet.

This analysis reveals a strong correlation between reasoning quality and final task accuracy.
The prompt we used to scoring model reasoning is shown below.

Reasoning Error Analysis Rubrics

You are an expert spatial-reasoning judge.
Given the information blocks below, score the model’s reasoning using the rubric.

Question: {question text}

Ground Truth
– Start shape: {initial shape desc}
– {transformation step desc} {transformation outcome desc}
– {choice shape desc}
– Correct answer: {gt answer}

Model Response: {model response}
Model Final Answer: {model pred}

Rubric — assign 0 or 1 to each item
1. Shape interpretation

2. Transformation comprehension

3. Spatial simulation accuracy

4. Answer justification (choice evaluation)

5. Logical consistency

Return JSON
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{
"shape_interpretation": {"score": 0|1, "details": ""},
"transformation_comprehension": {"score": 0|1, "details": ""},
"spatial_simulation_accuracy": {"score": 0|1, "details": ""},
"answer_justification": {"score": 0|1, "details": ""},
"logical_consistency": {"score": 0|1, "details": ""},
"primary_errors": [],
"overall_assessment": ""

}

Number of visual simulations vs. Performance, We investigated this question briefly in Table 5.
The key insight is that the benefit of visual simulations depends on task complexity and where in the
sequence the decisive information appears. We also conducted a stricter ablation that incrementally
reveals 0 to 3 simulation frames. The takeaway is straightforward: visual simulations help only
when the model can integrate them; otherwise they add noise.

Because examples have different total chain lengths, the same column mixes complete simulations
for short chains (e.g., all 2–step tasks are already complete at # simulations = 1) and partial simula-
tions for longer ones (e.g., only one of two frames visible at # simulations = 1 for 3–step tasks). If
a model could perfectly integrate every extra frame, scores would rise monotonically. However, the
results above suggest otherwise, especially for more complex tasks. These results again highlight a
core limitation: models lack the capacity to mentally simulate and reason over visual sequences, a
skill that humans perform reliably.

Model Task # of simulations = 0 1 2 3

GPT-4o

2D 71.2 78.0 85.6 —
3D 65.5 67.2 69.6 —
Cube Net 50.3 50.5 49.2 49.1
Tangram 52.5 51.7 46.6 54.7

Claude-3.5

2D 65.9 67.7 75.3 —
3D 51.5 60.8 53.9 —
Cube Net 52.3 51.3 51.7 50.0
Tangram 59.0 60.1 62.2 69.0

Table 10: Ablation with 0–3 intermediate simulations. Bold indicates best performance per row.

Reasoning Efforts vs. Performance. In addition to the results of o3 reported in Table 1, we
further report o3 performance across different reasoning efforts (low, auto, high), as it is specifically
optimized to “think with images” and perform extended reasoning.

Task (w/o vs. w/ VSim) o3-Low o3-Auto o3-High Human
2D 88.1 / 92.3 87.5 / 89.3 89.7 / 89.5 96.8/ 98.6
3D 73.7 / 75.3 75.2 / 78.4 73.9 / 76.5 94.6 / 97.0
Cube Net 65.3 / 71.7 68.4 / 72.5 66.3 / 71.1 98.3 / 99.0
Tangram 68.6 / 76.5 68.6 / 82.1 66.4 / 82.8 91.5 / 95.8
Video-temporal 55.8 51.4 54.3 99.0
Perspective 43.6 42.8 44.0 98.1
Overall 67.5 67.5 68.8 97.1

Table 11: Performance of o3 model across different reasoning efforts (Low, Auto, High) compared to human
annotators on STARE tasks. For tasks with visual simulation (VSim), accuracy is reported as “w/o / w/ VSim”.

While o3 outperforms earlier models such as o1 and GPT-4o, its performance on STARE remains
significantly below human-level. Notably, o3 leverages visual simulations more effectively than
prior models. However, humans show only small performance gaps between conditions with and
without visual simulation, reflecting their ability to mentally simulate transformations. In contrast,
o3 exhibits substantial drops without external visuals, highlighting a key limitation: the inability to
perform internal, structured visual simulation–a core component of human spatial reasoning.

In addition, while o3 has reported to benefit from extended reasoning, simply increasing the reason-
ing efforts from low to high does not guarantee better spatial reasoning.
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Additional Results on Human Evaluation. In Table 1, we reported the average human perfor-
mance and average response time for each task across 5 participants. In Tab. 12, wer further report
the standard deviation. Mean accuracy across five annotators is 97.07% with a standard deviation of
0.47, indicating that the questions in STARE are well-defined.

Task Accuracy (%) Time (s)
2D 96.75 ± 1.30 14.23 ± 1.99
2D + VSim 98.56 ± 1.10 10.95 ± 1.51
3D 94.61 ± 1.44 17.06 ± 5.08
3D + VSim 96.98 ± 0.80 12.53 ± 0.65
Cube Net 98.29 ± 1.65 13.67 ± 3.66
Cube Net + VSim 98.86 ± 1.46 5.16 ± 0.49
Tangram 91.53 ± 2.56 27.98 ± 5.85
Tangram + VSim 95.78 ± 1.07 10.08 ± 4.20
Temporal 99.03 ± 0.98 16.19 ± 3.96
Perspective 98.10 ± 0.17 18.04 ± 4.46
Overall 97.07 ± 0.47 –

Table 12: Task accuracy and response time across STARE benchmark tasks, with and without visual simulation
(VSim).

Correlation Analysis between Synthetic tasks and Real tasks. In Section 3.2, we briefly dis-
cussed the correlation between averaged model performance on synthetic tasks (including 2D trans-
formation, 3D transformation, cube net folding and tangram puzzle) and that on real-world tasks
(including temporal frame reasoning and perspective reasoning). Fig. 7 shows the averaged model
performance on synthetic and real-world tasks across 11 models and the fitted line with correlation
coefficient r ≈ 0.88.

Gemini-2.0 Flash Think

o1Claude 3.5 Sonnet

Gemini-2.0 Flash

GPT-4o

LLaVA-OneVision-72B

Qwen-2.5-VL-7B

Qwen-2.5-VL-72B
InternVL-2.5-78B

Qwen-2.5-VL-3B

Figure 7: Correlation between model performance on synthetic tasks and that on real-world tasks.

Note that for open-source models, the real-world task performance is close to random guessing
(29%). Removing the open-source models, the correlation coefficient decreased to r ≈ 0.58, still
showing a weak but positive correlation between synthetic task performance and real-world task
performance.

F DATA CURATION DETAILS

Fig. 8 presents the overall composition of STARE. Tab. 13 details the number of instances for each
task in STARE, further broken down by whether the input contains an explicit intermediate visual
simulations.
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Figure 8: Data Statistics of STARE.

Task category Without visual simulation With visual simulation Total

Foundational Geometric Transformations

2D transformations 639 423 1,062
3D transformations 612 408 1,020

Integrated Spatial Reasoning

Cube net folding 193 120 313
Tangram puzzle 532 289 821

Real-world Spatial Reasoning

Perspective reasoning 250 – 250
Temporal frame reasoning 471 – 471
Total 2,697 1,240 3,937

Table 13: Dataset statistics grouped by task category and by the presence of full intermediate visual simulation.

Below, we summarize the design space of data curation for synthetic tasks, including (1) 2D Trans-
formations (§F.1); (2) 3D Transformations (§F.2); (3) Cube Net Folding (§F.3); and (4) Tangram
Puzzles (§F.4);

F.1 2D TRANSFORMATIONS

Shape generation. Shapes are selected from a fixed set and assigned properties as follows:

• Types: Circle, Square, Rectangle, Triangle, Ellipse, Hexagon, Pentagon.

• Colors: Face color is a random RGB tuple (r, g, b ∈ [0, 1]); edge color is fixed (black).

• Center & Size: All shapes are centered at (0, 0). For circles, squares, triangles, hexagons,
and pentagons, size is a scalar drawn from [30, 35]; for rectangles and ellipses, size is a
tuple (width in [30, 35], height in [20, 25]).

Transformations. A sequence of randomly sampled operations is applied to the shapes:

• Rotate:
– Squares: ±30◦, ±60◦ (avoiding 90◦).
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– Hexagons: ±30◦, ±90◦.
– Others: ±30◦, ±60◦, or ±90◦.

Rotation is applied w.r.t the shape’s center.

• Flip: Horizontal (about y = 0) or vertical (about x = 0); not applied when the shape is
centered at (0, 0) for symmetric shapes such as square, circle and etc.

• Translate: (dx, dy) with dx, dy ∈ {−30,−10, 0, 10, 30} with constraints to ensure a
nonzero translation.

• Scale: Factors chosen from {0.5, 2.0}, ensuring the resultant size is within roughly [10, 40].

• Shear: Parameters (shearx, sheary) are drawn from approximately [−1, 1], with constraints
to ensure a perceptible skew. Shear is excluded for 2D text instructed transformation tasks,
as human participants find it hard to describe the degree of shear such that they can differ-
entiate among the answer candidates.

Number of Transformation Steps. The final dataset contains instances with 1, 2, or 3 transforma-
tion steps.

Figure 9: Design space of 2D Transformations (1).
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Figure 10: Design space of 2D Transformations (2).

F.2 3D TRANSFORMATIONS

Shape generation. 3D objects are loaded from external blend files and instantiated with random
properties defined in a JSON file. Their attributes include:

• Types: Various 3D models such as cube, sphere, cone, cylinder, torus, pyramid, etc.

• Colors & Materials: Colors are sampled from a predefined set, and materials are selected
from external files.

• Size & Location: Objects are assigned a size scalar (from the JSON-specified values) and
an initial 3D location (typically near the origin), with adjustments to ensure they remain
above the ground plane.
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Transformations. A sequence of randomly sampled operations is applied to the objects in 3D space:

• Translate:
– Axis selection: Randomly choose one or more axes from x, y, and z (e.g., “x”, “xy”,

“xz”, “yz”).
– Displacement: Translations are applied with discrete displacements: along x and y by
±2 units and along z by ±1 unit, with constraints to keep the object above the ground
(z ≥ 0).

• Rotate:
– Axis: A single rotation axis is chosen randomly from x, y, or z.
– Angle: The rotation angle is drawn from a discrete set (typically ±30◦, ±60◦, or
±90◦), with the range sometimes adjusted for specific shapes (e.g., cubes or pyra-
mids).

– Rotation is applied about the object’s center.
• Shear:

– Plane: The shear operation is applied along one of three directional pairs: xy , xz , or
yz .

– Factors: Two shear factors are sampled uniformly from the interval [0.2, 1.0], with an
enforced minimum difference (approximately 0.4) to ensure a perceptible skew.

• Scale:
– Factor: A uniform scaling factor is chosen from 0.5, 2.0, either reducing or enlarging

the object while keeping its final size within acceptable bounds.
• Flip:

– Direction: The object is reflected along a principal axis—flipped horizontally (reflec-
tion across the x-axis) or vertically (reflection across the y-axis).

All transformation operations are applied sequentially, updating the object’s 3D coordinates (includ-
ing its bounding box and center) to reflect the cumulative effects.

Number of Transformation Steps. Instances are generated with transformation sequences com-
prising 1, 2, or 3 steps, where each step randomly selects one of the available operations. This
multi-step approach enables a diverse design space of 3D transformations, as the operations can
compound in various orders and combinations.

F.3 CUBE NET FOLDING

Net Representation. Cube nets are represented as collections of faces, where each face is defined
by its vertices in 3D space. Additional attributes include:

• Face Geometry: Each face is a polygon (typically a quadrilateral) with vertex coordinates
stored as NumPy arrays.

• Connectivity: A mapping of face connections identifies which faces share common edges,
serving as potential hinges.

• Visual Attributes: Faces are rendered with colors (sampled from a colormap) and labeled
with their keys for easy identification.

Folding Operations. The folding process simulates converting a 2D cube net into a 3D cube via a
sequence of rotation operations:

• Shared Edge Detection: The algorithm locates the common edge between a candidate face
and an already folded face. A tolerance is used to robustly identify two shared vertices.

• Rotation Calculation: Using the shared edge as a hinge, a rotation is computed with a
fixed magnitude of 90◦ (i.e. ±π/2 radians). The sign of the angle is chosen by comparing
the candidate face’s center (projected onto the hinge’s perpendicular plane) with the desired
direction toward the cube’s center, which is derived from the base face.
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• Recursive Propagation: The rotation is applied not only to the candidate face but also
recursively to all connected faces that have not been folded yet, ensuring that the entire net
adjusts consistently.

Folding Sequence and Visualization. The design space supports iterative, step-by-step folding,
with each step comprising:

• Candidate Selection: Among the faces not yet folded, the algorithm picks one that is
connected to an already folded face.

• Folding Parameters: It computes the rotation axis (the shared edge) and the appropriate
90◦ rotation (with correct sign) to fold the face into its 3D position.

• Instruction Generation: Each fold is described in natural language (e.g., “Fold face 2
upwards towards face 3”) based on changes in the face’s center relative to the cube’s base.

• 3D Rendering: After each step, the current state of the net is visualized using a 3D plot
(with Poly3DCollection) and saved as an image.

Perturbation and Validity. To enrich the design space and introduce challenge:

• Perturbations: Selected folding steps can be intentionally altered by inverting the rotation
angle or modifying the rotation axis. This simulates errors or variations, yielding nets that
might fold incorrectly.

• Validity Checks: Functions are provided to verify that folded faces do not overlap, that
shared edges are consistently maintained, and that face connections remain intact. These
checks ensure that the final folded cube is geometrically valid.

Dataset Generation and Perception Tasks. Beyond simulating the folding process, the design
space incorporates mechanisms to create annotated datasets:

• Instructional Sequences: Detailed, step-by-step folding instructions (with corresponding
images) are generated, supporting tasks that require understanding the folding procedure.

• Perception Variants: Additional tasks query the observer’s perception—such as verifying
if a particular face has been folded or determining the connectivity between faces—using
intermediate folding images.

Randomness and Parameter Control. Stochastic elements pervade the folding simulation:

• Random seeds govern the selection of candidate faces, the decision to perturb a folding
step, and the choice of rotation adjustments.

• This randomness ensures that a diverse range of cube nets and folding sequences are pro-
duced, which is crucial for generating robust datasets and for studying perception and rea-
soning in 3D folding tasks.

F.4 TANGRAM PUZZLE

Segmentation. The puzzle begins with an iterative segmentation algorithm that splits a full rectan-
gular board into smaller pieces. The process is governed by a minimum piece size and a maximum
number of pieces. At each segmentation step, the algorithm:

• Selects a splittable rectangle based on its area.
• Chooses a split direction (horizontal if the height is greater or vertical otherwise) and a split

line ensuring both resulting pieces exceed the minimum size.
• Records each split as an action with details (original rectangle, split line, and direction) that

form the basis for later textual instructions.

Piece Generation & Attributes. Each tangram piece is defined by its board coordinates (e.g., (r0,
r1, c0, c1)) and derived properties such as area and dimensions. Additionally:

• Colors: Pieces are assigned unique, randomly generated colors.
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• Visualization: Grid lines and labels are overlaid on each piece to indicate its boundaries
and area, facilitating clear visualization during reassembly.

Scrambling and Transformation. Once segmented, pieces are scrambled to increase puzzle com-
plexity. This involves applying a series of random transformation operations:

• Rotation: Each piece is rotated by a discrete angle chosen from 0◦, 30◦, 60◦, 90◦.

• Translation: Pieces are repositioned into non-overlapping cells on a larger canvas.

• Flip: In some reassembly variants, horizontal or vertical flips are applied to further ran-
domize the piece orientations.

G EXPERIMENTAL DETAILS

G.1 MODELS AND SETTINGS

To expedite response generation, we use the vLLM (Kwon et al., 2023) library, an open-source
tool for fast LLM inference and serving. For all other cases, we load models directly using the
Transformers (Wolf et al., 2020) library. All model sources are official and listed in Tab. 14. When
evaluating different models, we use default hyperparameter values unless otherwise specified,
with detailed parameter settings provided in Tab. 14. For all models, we explicitly prompt it with
Think step-by-step, and then put your final answer in \"\\boxed{}\".
to encourage chain-of-thought reasoning and for easier answer parsing.

Model Parameter Setting Source URL
GPT-4o temperature = 0.0 chatgpt-4o-latest https://platform.openai.

com

Claude 3.5 Sonnet temperature = 0.0 claude-3-5-sonnet https://www.anthropic.com/

Gemini 2.0 Flash temperature = 0.0 gemini-2.0-flash-exp https://ai.google.dev/

Gemini 2.0 Flash
Thinking temperature = 0.0 gemini-2.0-flash-

thinking-exp-1219 https://ai.google.dev/

OpenAI o1 temperature = 0.0 o1-2024-12-17 https://platform.openai.
com

OpenAI o3 reasoning-efforts=auto o3-2025-04-16 https://platform.openai.
com

Qwen2.5-VL-3B do sample=True,
temperature = 0.7 local checkpoint https://huggingface.

co/Qwen/Qwen2.
5-VL-3B-Instruct

Qwen2.5-VL-7B do sample=True,
temperature = 0.7 local checkpoint https://huggingface.

co/Qwen/Qwen2.
5-VL-7B-Instruct

Qwen2.5-VL-72B do sample=True,
temperature = 0.7 local checkpoint https://huggingface.

co/Qwen/Qwen2.
5-VL-72B-Instruct

LLaVA-Onevision-72B do sample=True,
temperature = 0.7 local checkpoint https://huggingface.

co/llava-hf/
llava-onevision-qwen2-72b-ov-hf

InternVL2.5-78B do sample=True,
temperature = 0.7 local checkpoint https://huggingface.co/

OpenGVLab/InternVL2_5-78B

Table 14: The sources of models used in the experiments and the hyperparameters configuration.

G.2 VISUALIZATION OF EVALUATION SETTINGS

Fig.s 11–12 provide full visualizations of evaluation settings illustrated in Fig. 3. In addition, we
show an example of how real-world spatial reasoning task – temporal frame reasoning is evaluated
without visual simulation in Fig. 13.
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Figure 11: Examples of Tangram Puzzle under “without Visual Simulations” Evaluation Setting (top: question-
only, bottom: question+assembly steps).

Figure 12: Example of Tangram Puzzle under “with Visual Simulations” Evaluation Setting.

You	see	4	sequential	frames	of	a	video,	but	one	is	missing	(marked	with	"?').
Choose	which	of the	images	in	the	second	row	correctly	fills	the	missing	frame.
Remember,	the	camera	only	moves	in	one	direction	(left	or	right)	in	the	video.

Question

Without Visual Simulations

Question

Choose	the	correct	missing	frame.

A B C

Figure 13: Examples of Temporal Frame Reasoning under “without Visual Simulations” Evaluation Setting.
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G.3 VISUALIZATIONS OF PERCEPTION PROBING QUESTIONS

In Fig. 5, Claude demonstrates a perceptual error: while it correctly identifies all face colors, it
incorrectly perceives face 6 to be positioned beneath face 4, when it is actually located beneath
face 5. Such errors prompt an important question regarding task performance: for challenging tasks
like cube net folding, to what extent does the low performance stem from perceptual inaccuracies
rather than deficiencies in simulation capabilities or an inability to correctly interpret simulation
outcomes? We design probing questions to evaluate model performance 2D and 3D perception on
cube nets (Fig. 14), which reveals that model fail substantially on 3D perception (Tab. 2), which may
be the main bottleneck in understanding intermediate visualizations in cube net folding (Tab. 1).

Question: What	color	is	face	5	in	the	
cube	net	shown	in	the	image?

A. Light	orange
B. Yellow
C. Light	purple
D. Light	red

2D Perception (Color)

Question: In	the	cube	net	shown	in	
the	image,	is	face	2	directly	connected	
to	face	3,	yes or	no?

2D Perception (Connectivity)

Question: In	the	cube	net	folding	
process	shown	below,	has	face	6	been	
folded	towards	1	yet,	yes or	no?

3D Perception (Folded?)

Figure 14: Exemplary questions on cube nets to probe model performance on 2D and 3D perception.

G.4 VISUALIZATIONS OF STARE TASK IN DIFFERENT REPRESENTATIONS

Fig.s 15–18 provide concrete examples of the input modalities evaluated in STARE. For every task
family we visualize the image-only variant (the original format in STARE), the text-only variant
(compact symbolic description that can be consumed without vision), and—where applicable—the
combined image+text variant that concatenates the two.

• 2D and 3D transformations. In the text-only panels, each object is serialized as
<shape>, <color>, <x,y>, <size>, with attributes separated by commas (e.g.,
“square, red, (3, 4), 2”). The image+text panels place the same textual de-
scription beneath the image, so that language and vision can be attended to jointly.

• Cube-net folding. We flatten the cube into a 2D grid and enumerate its faces from 1 to 6.
The text-only representation thus becomes a short digit string (e.g., “123456”) or a block
array that mirrors the spatial arrangement of the net.

• Tangram puzzle. Because rotations in the image cannot be expressed succinctly in the
image+text setting, we show only image-only and text-only variants. Each piece is labeled
alphabetically and encoded by a binary occupancy grid—rows of “1” indicate filled cells,
yielding a representation that is both human-readable and unambiguous for MLLMs.

Together, these examples clarify the correspondence between the natural visual stimuli and the
stripped-down symbolic forms used in our text-only experiments, as introduced in Section 3.3.
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Image-only

Imagine transforming a triangle step by step.

Follow these changes:

• Shift the triangle to the left by a significant amount and 
slightly upward. 

After these transformations, which of the following shapes 
best represents the final result? For reference, the black 
dots in each panel of the figures indicate the origin.

Text-only
Imagine transforming a triangle step by step.

Initially, you see a triangle located at (0.00, 0.00), 54.4 × 51.9 units, RGB(0.03, 0.32, 0.97).

Follow these changes:

• Shift the triangle to the left by a significant amount and slightly upward. 

After these transformations, which of the following shapes best represents the final 
result? 

The answer choices are:

A. a triangle located at (-3.29, -1.24), 23.3 × 30.6 units, RGB(0.03, 0.32, 0.97).

B. a triangle located at (-30.00, 10.00), 54.4 × 51.9 units, RGB(0.03, 0.32, 0.97).

C. a triangle located at (-6.33, 2.58), 45.9 × 57.8 units, RGB(0.2, 0.2, 0.18).

D. a triangle located at (8.00, 2.57), 54.4 × 51.9 units, RGB(0.95, 0.22, 0.67).

Image+Text
Imagine transforming a triangle step by step.

Initially, you see a triangle located at (0.00, 0.00), 54.4 × 51.9 
units, RGB(0.03, 0.32, 0.97).

Follow these changes:

• Shift the triangle to the left by a significant amount and 
slightly upward. 

The answer choices are:

A. a triangle located at (-3.29, -1.24), 23.3 × 30.6 units, RGB(0.03, 0.32, 0.97).

B. a triangle located at (-30.00, 10.00), 54.4 × 51.9 units, RGB(0.03, 0.32, 0.97).

C. a triangle located at (-6.33, 2.58), 45.9 × 57.8 units, RGB(0.2, 0.2, 0.18).

D. a triangle located at (8.00, 2.57), 54.4 × 51.9 units, RGB(0.95, 0.22, 0.67).

After these transformations, which of the following shapes best represents the final 
result? For reference, the black dots in each panel of the figures indicate the origin.

Figure 15: Visualizations of 2D transformations (w/ text instructions) in different representations (upper left:
image-only, lower left: text-only, right: image+text).

Image-only

Imagine transforming a pyramid step by step.

Follow these changes:

• Move the object up 

After these transformations, which of the following shapes 
best represents the final result? For reference, the black 
dots in each panel of the figures indicate the origin.

Text-only
Imagine transforming a pyramid step by step.

Initially, you see a large pyramid located at (0.00, 0.00, 0.80), size large, red made of 
MyMetal.

Follow these changes:

• Move the object up. 

After these transformations, which of the following shapes best represents the final 
result? 

The answer choices are:

A. a large pyramid located at (0.00, 0.00, 0.80), size large, red made of Material_0.

B. a large cylinder located at (0.00, 0.00, 1.09), size large, red made of Material_0.

C. a large torus located at (0.00, 0.00, 0.20), size large, red made of Material_0.

D. a large pyramid located at (0.00, 0.00, 1.80), size large, red made of Material_0.

Image+Text
Imagine transforming a pyramid step by step.

Initially, you see a large pyramid located at (0.00, 0.00, 
0.80), size large, red made of MyMetal.

Follow these changes:

• Move the object up 

The answer choices are:

A. a large pyramid located at (0.00, 0.00, 0.80), size large, red made of Material_0.

B. a large cylinder located at (0.00, 0.00, 1.09), size large, red made of Material_0.

C. a large torus located at (0.00, 0.00, 0.20), size large, red made of Material_0.

D. a large pyramid located at (0.00, 0.00, 1.80), size large, red made of Material_0.

After these transformations, which of the following shapes best represents the final 
result? For reference, the black dots in each panel of the figures indicate the origin.

Figure 16: Visualizations of 3D transformations (w/ text instructions) in different representations (upper left:
image-only, lower left: text-only, right: image+text).
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Image-only
Check out a net with 6 faces below:

Text-only
Check out a net with 6 faces below:

Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2

Step 4: Fold face 6 downwards towards face 2

Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Image+Text
Here are the steps to fold the net with face 4 as the base:

Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2

Step 4: Fold face 6 downwards towards face 2

Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Check out a net with 6 faces below:

The net above can be represented the following in text:

Here are the steps to fold the net with face 4 as the base:

Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2

Step 4: Fold face 6 downwards towards face 2

Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Figure 17: Visualizations of cube net folding in different representations (upper left: image-only, lower left:
text-only, right: image+text).

Image-only Text-only
Tangram-Style Text Puzzle Can you use all of the following pieces—rotating or flipping 
them as needed—to exactly fill a 3x3 square without overlaps or gaps? 

Target board: a 3x3 grid

Available pieces:

Piece A:
11

Piece B:
11
11

Piece C:
111

For each piece, the grid cells it occupies are marked with 1s and the rest with 0s.

Instructions: 
• You must place every cell of each piece somewhere in the grid. 
• Pieces may be rotated in 90° increments or flipped horizontally/vertically. 

Question: Is it possible to fill the 3x3 board exactly with these pieces? (Yes or No)

Check out a Tangram puzzle below. 

The left panel is an empty Tangram puzzle, while the right panel shows available pieces 
to complete the puzzle. Keep in mind that you can rotate or flip the pieces.

Can the Tangram puzzle be completed with the available pieces, yes or no?

Figure 18: Visualizations of tangram in different representations (left: image-only, right: text-only).

G.5 CASE STUDY

Fig. 19 presents error cases on 2D transformation tasks from o1 and GPT-4o. The o1 explanation
correctly identifies that a regular hexagon rotated 30° counter-clockwise will have a vertex pointing
straight up, so it chooses panel B, but its justification overlooks potential differences in size, color, or
shape variants among the answer choices. GPT-4o, meanwhile, mistakenly claims the hexagon looks
“exactly the same” after a 30° rotation (confusing 60° symmetry with 30°) and vacillates between
panels A and C, revealing it doesn’t fully grasp the visual outcome of the specified rotation.
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Question: Imagine	transforming	a	hexagon	
step	by	step.		Follow	these	changes:

- Rotate	the	hexagon	by	30	degrees	
counter-clockwise	around	its	center.	

After	these	transformations,	which	of	the	
following	shapes	best	represents	the	final	
result?

O1 Error on 2D Transformation

Error	Analysis:	

o1:	
Solution	Sketch:

1.	A	regular	hexagon	in	the	“flat-top”	orientation	(as	in	panel A)	has	a	
horizontal	edge	along	the	top.		
2.	Rotating	it	\(30^\circ\)	counterclockwise	around	its	center	puts	one	
of	its	vertices	directly	upward,	without	changing	its	size.		
3.	Among	the	choices	given,	panel B	shows	precisely	that	same	
hexagon	reoriented	by	\(30^\circ\),	matching	both	the	new	
orientation	and	the	same	overall	size.

Therefore,	the	final	shape	after	the	specified	rotation	is	the	one	shown	
in	panel B.

Model	only	focuses	on	the	detail	“one	of	its	vertices	directly	upwards”	
while	ignore	the	differences	in	size,	color	and	shape.

GPT-4o Error on 2D Transformation

Error	Analysis:	

GPT-4o:	
To	solve	this	problem,	we	need	to	visualize	a	transformation	of	a	
hexagon	through	rotation:

1.	**Initial	Hexagon**:	Start	with	a	regular	hexagon	centered	at	the	
origin	(black	dot).
2.	**Rotation	by	30	Degrees	Counter-Clockwise**:

- A	regular	hexagon	has	six	sides	and	rotational	symmetry	through	
angles	of	\(60^\circ\)	(each	internal	angle	is	\(120^\circ\)).

- Rotating	the	hexagon	by	\(30^\circ\)	counter-clockwise	will	result	
in	the	hexagon	looking	exactly	the	same due	to	its	symmetry.

- Essentially,	each	vertex	is	shifted	to	the	position	of	its	neighboring	
vertex.

After	considering	these	steps,	the	shape	and	size	of	the	hexagon	remain	
unchanged,	just	its	orientation.	Since	it’s	a	regular	hexagon,	it	will	
look	the	same	after	a	\(30^\circ\)	rotation.

Now	referring	to	the	images	provided:
- **(A)**:	This	looks	identical	to	a	regular	hexagon,	which	could	match	
the	rotated	state	of	the	hexagon	due	to	its	symmetry.
- **(B)**:	This	appears	to	be	a	distorted	pentagon,	not	a	suitable	match.
- **(C)**:	This	also	looks	like	a	regular	hexagon	but	in	purple.
- **(D)**:	This	looks	like	a	smaller	version	of	(C).
Assuming	the	only	transformation	was	a	rotation,	neither	the	size	nor	
shape	should	change	beyond	orientation.

Based	on	these	considerations,	the	best	option	that	represents	a	
regular	hexagon	after	rotation	is	both	(A)	and	(C). Given	that	the	
original	hexagon	is	most	likely	the	same	size	and	color	as	shown	
in	(A) based	on	typical	transformation	descriptions,	the	most	direct	
match	without	size	or	color	changes	mentioned	would	be	(A).

Model	does	not	know	what	the	shape	would	look	like	after	30	degree
rotation.

A B C D

Figure 19: Error cases of o1 and GPT-4o on 2D transformation.

Fig. 20 presents error cases on 3D transformation tasks from o1 and GPT-4o. The o1 response
accurately places the torus up and left of the origin and selects panel A, but it overlooks that mate-
rial/appearance differences could also rule out that choice. GPT-4o correctly sees that both panels
A and D share the required displacement, yet it arbitrarily favors D, giving a justification (“clearer
displacement”) unrelated to the stated transformation criteria, so its final selection is wrong despite
partially sound reasoning.

Question: Imagine	transforming	a	torus	step	
by	step.		Follow	these	changes:

- Move	the	object	to	the	left	along	the	y-axis	
and	up	

After	these	transformations,	which	of	the	
following	shapes	best	represents	the	final	
result?

O1 Error on 3D Transformation

Error	Analysis:	

o1:
Step	by	step:

•		“Left	along	the y-axis”	(as	shown	in	the	panels)	places	the	torus	to	the	
viewer’s	left	of	the	black	dot.		

•		“Up”	raises	it	above	that	black	dot.		

•		Among	the	choices,	only	panel A	shows	the	torus	both	leftward	
and	above	the	origin.

Model	only	focuses	on	the	detail	“the	torus	both	leftward	and	above	the	
origin”	while	ignore	the	differences	in	material

GPT-4o Error on 3D Transformation

Error	Analysis:	

GPT-4o:
To	solve	this	problem,	we	need	to	perform	the	given	transformations	on	
the	torus	and	determine	the	final	position.	

1.	Initial	State:	The	torus	is	at	the	origin,	as	indicated	by	the	black	dot.

2.	Transformation:
- Move	the	torus	to	the	left	along	the	y-axis:	In	standard	coordinate	

systems,	moving	leftwards	means	decreasing	the	y-coordinate.	So,	the	
torus	is	moved	negatively	along	the	y-axis.
- Move	the	torus		up:	This	involves	increasing	the	z-coordinate,	

moving	the	torus	upward.

3.	Analysis	of	Options:
- A:	The	torus	is	positioned	to	the	left	and	up,	which	matches	the	

transformation	requirements.
- B:	The	torus	is	directly	at	the	origin,	which	does	not	match	any	

transformations.
- C:	The	torus	is	at	the	origin,	which	does	not	match	any	

transformations.
- D:	The	torus	is	positioned	both	to	the	left	and	up,	which	matches	

the	transformation	requirements.	

Both	A	and	D	match	the	transformations	described.	However,	option	
D	shows	a	clearer	displacement	compared	to	A	for	both	axes.

Therefore,	after	considering	these	movements:	D

Model	correctly	recognizes	A	and	D	are	with	the	same	transformation,	
but chooses	D	for	the	wrong	reason.

A B C D

Figure 20: Error cases of o1 and GPT-4o on 3D transformation.
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On cube net folding task, besides the perception error from Claude in Fig. 5 and the text simulation
error from GPT-4o in Fig. 1, when provided with intermediate visual simulation, models like GPT-
4o still struggles with understanding the intermediate visual cues. In Fig. 21, GPT-4o asserts that
face 1 becomes the cube’s top surface, whereas face 1 is actually enclosed between faces 6 and 3.
This misrepresentation of face adjacency highlights GPT-4o’s difficulty in maintaining accurate 3D
spactial cognition, which led to the wrong final result. This observation aligns with the conclusion
from the perception probing test on cube nets in Section 3.3, where GPT-4o fails substantially on
3D perception than 2D perception.

Question: Here	are	the	steps	to	fold	the	net	with	face	2	as	the	base:
Step	1:	Fold	face	6	upwards
Step	2:	Fold	face	3	downwards
Step	3:	Fold	face	1	inwards	towards	face	6
Step	4:	Fold	face	4	downwards	towards	face	1
Step	5:	Fold	face	5	downwards	towards	face	1
Based	on	the	above	steps,	can	the	net	be	folded	to	form	a	cube,	yes or	no?

Intermediate	Visual	
Simulation:

Fail to Understand Visual Simulation

Error	Analysis:	

Face	1	is	not
covering	the	top	of	
the	cube,	rather	
connected	to	both	
face	6	and	face	3.

GPT-4o:	
To	determine	if	the	net	can	be	folded	into	a	cube,	let's	verify	each	step:	
1. Initial	Structure:	

- Faces	touching	face	2:	1,	3,	6.	
- Stand	up	6	and	3	makes	them	upright	walls	connected	to	face	2.
- Faces	4	and	5	are	connected	to	face	6.	

2.	Step	1:	Fold	face	6	upwards:	
- Face	6	stands	up	next	to	face	2.	
- Faces	4	and	5	are	now	connected	to	face	6	above	face	2.	

3.	Step	2:	Fold	face	3	upwards:	
- Face	3	stands	up	opposite	face	6	and	next	to	face	2.	
4.	Step	3:	Fold	face	1	inwards	towards	face	6:	

- Face	1	moves	inward	and	is	now	covering	part	of	the	top	of	
the	cube-like	structure.	

5.	Position	at	this	step:	
- Face	6	is	vertical.
- Face	3	is	vertical	opposite	face	6.
- Face	1	is	starting	to	cover	the	top.	

…
The	final	answer	is:	\(\boxed{\text{Yes}}\)	

Figure 21: A error case from GPT-4o on cube net folding, where the model fails to understand the intermediate
visual simulation.

For tangram puzzles, the left example of Fig. 22 shows how Claude takes a shortcut by conducting
an area-based feasibility check, correctly noting that the 4× 4 board contains 16 unit squares, but it
erroneously counts the L-shaped piece C as 5 rather than its actual 7 squares. This miscalculation re-
duces the summed piece area to 14 instead of the correct 16, leading to conclude—incorrectly—that
the puzzle cannot be completed. The right example of Fig. 22 shows how Claude fails to reason
about the piece positions when given clear step-by-step instructions. Claude correctly interprets the
coordinate instructions and board dimensions, yet its spatial reasoning falters when projecting how
the rotated pieces occupy the grid. It underestimates the extents of pieces B and D, inventing over-
laps and gaps that never arise, and therefore erroneously concludes the puzzle cannot be completed.
This error stems from an inaccurate mental simulation of spatial relationships.
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Question:	Below	are	the	steps	to	complete	the	Tangram	puzzle:
Step	1:	Rotate	piece	B	by	about	90	degrees	clockwise,	and	place	
piece	B	with	its	upper-left	corner	at	(x,	y)	=	(1,	3).
Step	2:	Rotate	piece	C	by	about	90	degrees	clockwise,	and	place	
piece	C	with	its	upper-left	corner	at	(x,	y)	=	(0,	1).
Step	3:	Rotate	piece	A	by	about	90	degrees	clockwise,	and	place	
piece	A	with	its	upper-left	corner	at	(x,	y)	=	(0,	3).
Step	4:	Rotate	piece	D	by	about	90	degrees	clockwise,	and	place	
piece	D	with	its	upper-left	corner	at	(x,	y)	=	(1,	1).
Based	on	the	above	steps,	can	the	Tangram	puzzle	be	completed	
with	the	available	pieces,	yes or	no?

Fail to Simulate in Text

Error	Analysis:	
After	step	1:	Piece	B	
takes	up	position	(1,1)	
– (3,3)

Claude:	
Let	me	solve	this	step	by	step.

1)	First,	let's	understand	the	dimensions:
*	The	board	is	3×3
*	Total	area	needed	to	be	filled	=	9	square	units

2)	Let's	calculate	the	total	area	of	the	available	pieces:
*	Piece	A	(2×1)	=	2	square	units
*	Piece	B	(2×2)	=	4	square	units
*	Piece	C	(1×1)	=	1	square	unit
*	Piece	D	(1×2)	=	2	square	units
*	Total	area	of	pieces	=	9	square	units
*	This	matches	the	board	area,	which	is	promising

3)	Let's	follow	the	steps	and	check	if	the	pieces	overlap	or	leave	
gaps:
*	After	Step	1:	Piece	B	takes	up	positions	(1,1)-(2,2)
*	After	Step	2:	Piece	C	takes	up	position	(0,1)
*	After	Step	3:	Piece	A	takes	up	positions	(0,2)-(0,3)
*	After	Step	4:	Piece	D	takes	up	positions	(1,0)-(2,0)

4)	Checking	for	overlaps	and	gaps:
*	There	are	overlaps	between	some	pieces
*	For	example,	Piece	B	and	Piece	A	would	overlap
*	Also,	some	parts	of	the	3×3	grid	would	remain	unfilled

5)	Therefore,	following	these	specific	placement	instructions:
*	The	pieces	will	overlap
*	Not	all	squares	will	be	covered
*	The	puzzle	cannot	be	completed	as	instructed

\boxed{\text{No}}

The	3x3	Tangram	Board

Available	Pieces

A:	2x1
B:	2x2

C:	1x1

D:	1x2

0
0

1 2 3

1

2

3

0
0

1 2 3

1

2

3

After	step	4:	Piece	D	
takes	up	position	(1,0)	
– (3,1)

0
0

1 2 3

1

2

3

Question:	 Can	the	Tangram	puzzle	be	completed	
with	the	available	pieces,	yes or	no?

Claude:	
Let	me	solve	this	step	by	step.

1)	First,	let's	observe	the	puzzle	and	pieces:
*	The	board	is	4×4
*	We	have	3	pieces:	A,	B,	and	C
*	Piece	A	is	a	1×3	rectangle	(coral	color)
*	Piece	B	is	a	2×3	rectangle	(pink)
*	Piece	C	is	a	2×3	L-shaped	piece	(purple)

2)	Let's	calculate	the	total	area:
*	The	board	is	4×4	=	16	squares
*	Piece	A:	1×3	=	3	squares
*	Piece	B:	2×3	=	6	squares
*	Piece	C:	2×3	- 1	=	5	squares
*	Total	area	of	pieces:	3	+	6	+	5	=	14	squares

3)	Since	the	board	has	16	squares	but	our	pieces	only	
cover	14	squares,	it's	impossible	to	complete	the	
puzzle.	We	would	have	2	squares	left	uncovered	no	
matter	how	we	arrange	the	pieces.

4)	Even	if	we	try	different	rotations	and	arrangements,	
we	can	never	cover	all	16	squares	with	pieces	that	sum	
to	only	14	squares.

\boxed{No}

The4x4Tangram	Board

Available	Pieces

A

B

C

Error	Analysis:	
Piece	C	contain	2x3	+	
1	=	7	squares

C

Claude:	
Let	me	solve	this	step	by	step.

1)	First,	let's	observe	the	puzzle	and	pieces:
*	The	board	is	4×4
*	We	have	3	pieces:	A,	B,	and	C
*	Piece	A	is	a	1×3	rectangle	(coral	color)
*	Piece	B	is	a	2×3	rectangle	(pink)
*	Piece	C	is	a	2×3	L-shaped	piece	(purple)

2)	Let's	calculate	the	total	area:
*	The	board	is	4×4	=	16	squares
*	Piece	A:	1×3	=	3	squares
*	Piece	B:	2×3	=	6	squares
*	Piece	C:	2×3	- 1	=	5	squares
*	Total	area	of	pieces:	3	+	6	+	5	=	14	squares

3)	Since	the	board	has	16	squares	but	our	pieces	only	
cover	14	squares,	it's	impossible	to	complete	the	
puzzle.	We	would	have	2	squares	left	uncovered	no	
matter	how	we	arrange	the	pieces.

4)	Even	if	we	try	different	rotations	and	arrangements,	
we	can	never	cover	all	16	squares	with	pieces	that	sum	
to	only	14	squares.

\boxed{No}

The4x4Tangram	Board

Available	Pieces

A

B

C

Error	Analysis:	
Piece	C	contain	2x3	+	
1	=	7	squares

C

Perception Error

0

1

2

3

4

0 1 2 3 4

Figure 22: Left: A perception error case from Claude on tangram puzzle. Right: An error case from Claude on
tangram puzzle, which failed to simulate the intermediate steps even when step-by-step instructions are given.

Fig. 23 presents two error cases from Claude on temporal frame reasoning. In the left example,
Claude correctly inferred the camera’s left-to-right movement across the given frames, yet it mis-
evaluated the viewpoints depicted in the answer choices and consequently selected the wrong com-
pletion frame. In the right example, the model erred even earlier, misconstruing the direction of
camera motion itself; this foundational misinterpretation then led to an incorrect choice despite a
seemingly systematic rationale.
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Question:Which	image	correctly	fills	the	missing	frame?

Claude Error on Temporal Reasoning

Error	Analysis:	

Claude:	
Let	me	solve	this	step	by	step:
1)	Looking	at	the	first	3	frames	in	Image	1:
- Frame	1:	Shows	a	table	and	chair	from	one	angle
- Frame	2:	Camera	moves	slightly	to	the	right,	showing	similar	view
- Frame	3:	Camera	continues	moving	right,	showing	more	of	the	chair

2)	The	missing	frame	(marked	with	'?')	should	be	the	last	frame	in	this	
sequence,	continuing	the	right-moving	motion.

3)	Looking	at	options	in	Image	2:
- Option	A:	Shows	the	initial	view	(same	as	first	frame)
- Option	B:	Shows	a	middle	view	of	the	chair
- Option	C:	Shows	the	chair	from	furthest	right	angle

4)	Since	the	camera	is	moving	right	consistently:
- The	missing	frame	should	show	the	chair	from	the	most	rightward	angle
- This	would	complete	the	smooth	motion	from	left	to	right
- Option	C	shows	exactly	this	view

5)	Option	C	is	the	only	one	that	would	logically	complete	the	sequence,	
showing	the	final	rightmost	view	of	the	chair.

Model	fail	to	recognize	the	camera	motion	of	the	video.	

A B C

Question:Which	image	correctly	fills	the	missing	frame?

Claude Error on Temporal Reasoning

Error	Analysis:	

Claude:	
Let	me	solve	this	step	by	step:
1)	Looking	at	<Image	1>,	I	can	see	a	bottle	on	a	wooden	floor	being	
photographed	from	different	angles.

2)	Analyzing	the	motion:
- Frame	1:	Bottle	is	viewed	more	from	the	left
- Frame	2:	Camera	moves	more	to	the	right
- Frame	3:	Camera	continues	moving	right
- Frame	4:	Missing	frame	(should	show	continued	rightward	motion)

3)	Looking	at	the	options	in	<Image	2>:
- Option	A:	Shows	a	view	from	the	left	side
- Option	B:	Shows	a	middle/centered	view
- Option	C:	Shows	a	view	from	the	right	side

4)	Since	the	camera	motion	in	the	original	sequence	moves	from	left	
to	right,	and	we	need	to	continue	this	motion	after	frame	3,	we	need	
the	view	that	shows	the	bottle	from	the	furthest	right	angle.

5)	Option	C	shows	the	bottle	from	the	rightmost	angle,	which	would	
maintain	the	consistent	rightward	camera	movement	of	the	sequence.

Model	correctly	recognizes	the	camera	motion,	however fail	to	interpret	
the	camera	view	angle	of	the	answer	choices.

A B C

Figure 23: Error case on temporal frame reasoning.

Fig. 24 presents an error for perspective reasoning from GPT-4o. GPT-4o misprojects the agent’s
top-down pose into egocentric space: it assumes the arrowed direction is pointing towards a curved
seating area and therefore selects option A. A correct geometric mapping should conclude that the
agent would instead stand next to the curved seating area. This error underscores the model’s diffi-
culty in reason about perspective changing in 3D space.
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Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

GPT-4o Error on Perspective Reasoning

Error	Analysis:	

GPT-4o:	
Let	me	solve	this	step	by	step:
1)	Looking	at	Image	1,	I	see	a	top-down	view	of	what	appears	to	be	an	
interior	space,	with	a	red	square	and	arrow	indicating	a	viewpoint	and	
direction.
2)	The	arrow	appears	to	be	pointing	towards	what	looks	like	a	
curved	or	semi-circular	seating	area.

3)	Looking	at	the	four	options	in	Image	2:
- Image	A	shows	a	curved	seating	area	with	a	view	into	another	room
- Image	B	shows	a	central	area	with	a	rug
- Image	C	shows	a	curved	seating	area	with	columns
- Image	D	shows	a	straight	seating	area	near	a	wall

4)	From	the	agent's	position	and	direction	in	Image	1,	they	would	be	
looking	directly	at	a	curved	seating	arrangement,	with	a	view	into	
another	space	beyond.

5)	Comparing	this	expected	view	with	the	options,	Image	A	most	
closely	matches	what	we	would	expect	to	see	from	that	position	and	
direction,	showing	a	curved	seating	area	with	a	view	through	to	
another	space.

Model	simply	cannot	understand	the	visual	details	from	the	top-down	
view	image.

A B C D

Figure 24: Error case on perspective reasoning.

Figure 25-27 presents error cases from Gemini-2.0-Flash(-Thinking), o1 and GPT-4o. on temporal
frame reasoning.

Figure 30-29 presents errors for perspective reasoning from Gemini-2.0-Flash(-Thinking), o1 and
Claude.
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Question:Which	image	correctly	fills	the	missing	frame?

GPT-4o Error on Temporal Reasoning

Error	Analysis:	

GPT-4o:	
To	solve	this	problem,	we	need	to	determine	which	image	correctly	fills	the	
missing	frame	in	the	sequence	given	in	Image	1.	We	have	images	labeled	A,	
B,	and	C	to	choose	from	in	Image	2.

###	Analysis	of	Image	1
1.	First	Frame:	Shows	the	laptop	on	a	desk	with	the	wall	visible	to	the	right.
2.	Second	Frame:	The	camera	has	moved	to	the	left as	more	of	the	wall	
on	the	right	side	is	visible.
3.	Third	Frame:	Missing	frame.
4.	Fourth	Frame:	The	camera	seems	to	have	moved	further	left,	with	a	
lamp	visible	to	the	right.

###	Choices	in	Image	2
- A:	Shows	the	laptop	with	a	large	portion	of	the	right	wall	visible.
- B:	Shows	the	laptop	with	a	lot	of	wall	visible	behind	it,	similar	to a	
position	further	left	than	the	first	frame.
- C:	Shows	the	laptop	with	the	lamp	close	to	it,which	suggests	it's	a	
frame	further	left	than	all	previous.

###	Determine	the	Order	and	Direction:
- The	movement	seems	to	be	progressing	from	right	to	left	as	more	of	the	
left	side	(the	lamp)	becomes	visible	in	subsequent	frames.

###	Comparison:
- From	Right	to	Left:
- 1st	Frame:	Most	of	the	right	wall	visible.
- 2nd	Frame:	Wall	is	more	to	the	left,	but	space	still	visible	on	the	right.
- 4th	Frame:	Lamp	visible,	implying	maximum	left	position.

- Missing	Frame	Analysis:	
- Given	that	the	camera	moves	from	right	to	left:
- A:	Seems	to	show	more	of	the	right	wall	(first	frame	position).
- B:	Fits	between	the	first	two	frames—it's	between	mostly	right	wall	

visibility	and	the	lamp.
- C:	Shows	the	lamp,	indicating	a	further	left	position	than	the	final	

frame.

The	best	fit	for	the	missing	frame,	which	should	logically	be	between	the	
current	second	and	fourth	frames	(moving	left),	is	B.

Model	fail	to	recognize	the	camera	motion	of	the	video,	and	the	relative	
camera	angle	change	between	the	answer	choices	and	the	provided	
frames.	

Question:Which	image	correctly	fills	the	missing	frame?

GPT-4o Error on Temporal Reasoning

Error	Analysis:	

GPT-4o:	
To	solve	which	image	fits	in	the	missing	sequence,	we	need	to	observe	
the	movement	of	the	camera	and	orientation	of	the	chair	in	the	
images	from	<Image	1>	and	match	it	with	the	options	in	<Image	2>.

1.	Orientation	and	Position	Analysis:
- In	the	first	frame	of	<Image	1>,	the	chair	is	on	the	left	side	of	the	

TV	stand.
- In	the	third	frame,	the	chair	is	further	to	the	right	but	still	not	in	

front	of	the	couch.
- In	the	fourth	frame,	the	chair	has	moved	next	to	the	couch,	with	

more	of	the	couch	visible.

2.	Direction	of	Movement:
- Observing	the	transition	of	the	chair	from	the	first	to	the	fourth	

frame,	the	camera	appears	to	move	from	left	to	right.

3.	Identifying	Correct	Frame:
- For	the	second	frame	(the	missing	one),	the	chair	should	be	

positioned	between	the	locations	seen	in	the	first	and	third	frames.
- Option	B	in	<Image	2>	shows	this	position.	The	camera	is	

between	the	starting	position	and	the	subsequent	move.

Therefore,	the	correct	image	to	fill	in	the	missing	frame	is	
\(\boxed{B}\).

Model	fails	to	identify	that	Option	B	is	really	the	same	as	the	first	frame.	
And	Option	A	is	the	same	as	the	last	frame.

A B C A B C

Figure 25: Error cases from GPT-4o on temporal frame reasoning.
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Question:Which	image	correctly	fills	the	missing	frame?

Gemini Error on Temporal Reasoning

Error	Analysis:	

Gemini-2.0-Flash:	
The	given	image	<Image	1>	has	four	frames,	with	the	third	frame	missing	
and	denoted	by	a	'?'.	The	possible	options	for	filling	the	frame	are	A,	B	and	
C	from	<Image	2>.
The	frames	show	a	bed	with	a	book	lying	on	it.	From	<Image	1>,	the	first	
frame	shows	the	book	on	the	bed	with	a	red	cushion	next	to	the	book.
The	second	frame	shows	the	book,	and	part	of	the	cushion	moved	upwards.	
We	need	to	find	a	frame	which	fits	between	the	second	and	the	fourth	
images.
The	fourth	frame	from	<Image	1>	shows	the	book	has	moved	rightwards	
along	the	bed	and	the	cushion	is	visible	to	the	left	of	the	book.
From	the	second	image,	we	can	see	that:
A:	Shows	a	book	on	the	bed	and	a	cushion.	The	orientation	is	a	bit	different	
to	the	first	image	in	the	first	image	set.
B:	Shows	the	book	on	the	bed,	with	the	cushion	moved	to	the	right,	and	it	
appears	to	be	showing	a	position	similar	to the	missing	third	frame.
C:	The	book	is	on	the	bed,	but	it	appears	to	be	in	the	fourth	position.
This	does	not	correctly	fill	the	gap.

So the	missing	frame	should	be	the	one	showing	the	book	slightly	to	the	
right	from	the	second	frame.	Therefore,	the	option	B	fills	the	gap.

Model	does	well	on	perception,	correctly	describes	the	given	frames,	and	
the	provided	answer	choices,	but	fail	to	reason	which	one	is	the	missing	
frame.

Question:Which	image	correctly	fills	the	missing	frame?

Gemini Error on Temporal Reasoning

Error	Analysis:	

Gemini-2.0-Flash-Thinking:	
Step-by-step	analysis:
1.	Analyze	the	given	frames	(Image	1,	frames	2,	3,	4):	Observe	the	
position	of	the	chair	in	each	frame.

- Frame	2:	Chair	is	positioned	slightly	to	the	right	and	viewed	from	the	
right-front.

- Frame	3:	Chair	is	more	centered	and	viewed	more	from	the	front.
- Frame	4:	Chair	is	positioned	slightly	to	the	left	and	viewed	from	the	

left-front.
2.	Deduce	camera	movement	direction:	The	change	in	chair	position	
from	right	to	center	to	left	as	we	go	from	Frame	2	to	Frame	3	to	Frame	4	
suggests	a	leftward	camera	movement.
3.	Determine	the	expected	view	for	the	missing	frame	(Frame	1):	If	the	
camera	is	moving	left,	Frame	1,	which	precedes	Frame	2,	should	be	taken	
from	a	position	further	to	the	right	than	Frame	2.	This	means	Frame	1	
should	show	the	chair	from	a	more	right-side	perspective	compared	to	
Frame	2.
4.	Examine	the	options	(Image	2,	A,	B,	C):	Compare	each	option	with	the	
expected	view	for	Frame	1.

- Option	A:	Shows	the	chair	from	a	right-front	perspective,	
similar	to Frame	2,	but	potentially	slightly	more	from	the	right.	
This	is	consistent	with	being	a	frame	taken	from	a	position	further	to	the	
right	than	Frame	2	in	a	leftward	camera	movement.

- Option	B:	Shows	a	side	view	of	the	chair.	This	is	significantly	
different	from	the	views	in	Frames	2,	3,	and	4	and	is	unlikely	to	fit	in	a	
sequence	with	them	resulting	from	a	simple	left	or	right	camera	
movement.

- Option	C:	Shows	the	chair	from	a	right-front	perspective,	but	it	
appears	to	be	slightly	more	frontal	than	Option	A	and	Frame	2.	If	we	are	
moving	left,	we	expect	to	progress	from	a	more	right view	to	a	less	right	
view.	Option	C	being	more	frontal	than	Frame	2	makes	it	less	likely	to	be	
a	frame	taken	from	a	position	further	to	the	right	than	Frame	2.
5.	Compare	Option	A	with	Frame	2:	Option	A	shows	the	chair	from	a	
slightly	more	right angle	than	Frame	2.	This	is	consistent	with	a	leftward	
camera	movement,	where	Frame	1	(Option	A)	is	taken	from	a	position	to	
the	right	of	Frame	2.
6.	Conclusion:	Option	A	is	the	most	plausible	choice	for	the	missing	
frame	as	it	logically	precedes	Frame	2	in	a	sequence	of	frames	taken	with	
a	leftward	moving	camera.

Model	correctly	recognizes	the	camera	motion,	however fail	to	interpret	
the	camera	view	angle	of	the	answer	choices.

A B C A B C

Figure 26: Error cases from Gemini models on temporal frame reasoning.
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Question:Which	image	correctly	fills	the	missing	frame?

O1 Error on Temporal Reasoning

Error	Analysis:	

o1:	
1. Look	at	the	three	“known”	frames	and	notice	how,	from	the	first	to	

the	last,	the	camera’s	viewpoint	sweeps	around	the	chair	from	one	
side	toward	the	other.	

2. In	particular,	the	first	and	last	of	those	frames	are	taken	from	
roughly	the	“left-rear”	and	“right-front”	of	the	chair,	respectively	
(the	trash	bin	moves	from	left-background	to	
right-background).	

3. The	missing	third	frame	thus	must	be	the	“straight-behind”	
view	that	lies	between	those	two	in	a	continuous	left-to-right	
sweep.	

4. Of	the	candidates,	only	B	is	the	direct	“behind	the	chair”	shot	
(backrest	nearest	the	camera).		Hence,	the	missing	frame	is	B.

Model	is	good	at	perception	but	can	not	reason	about	the	direction	of	the	
rotation.

A B C

Question:Which	image	correctly	fills	the	missing	frame?

O1 Error on Temporal Reasoning

Error	Analysis:	

o1:	
1. From	the	three	_known_	frames	in	the	first	image	set,	you	can	see	

the	camera	starting	on	one	side	of	the	book	and	ending	on	the	
opposite	side.		

2. Because	the	problem	states	the	camera	moves	smoothly	(in	
one	direction	only),	there	must	be	a	“bridge”	view	between	
the	more	left-looking	frame	and	the	more	right-looking	
frame.		

3. Comparing	the	candidate	views	A,	B,	and	C,	view	B	is	the	“middle”	
perspective	(roughly	head-on	to	the	book)	and	thus	logically	fits	
between	the	more	left-angled	and	right-angled	frames.		

Hence,	the	missing	frame	is	(B).

Model	fail	to	understand	the	frame	sequence	in	the	first	image	set.

A B C

Figure 27: Error cases from o1 on temporal frame reasoning.

Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

o1 Error on Perspective Reasoning

Error	Analysis:	

o1:	
1. From	the	overhead	view,	the	red	arrow	is	clearly	placed	near	

the	bedroom	door,	pointing	out	toward	the	hallway	(the	
turquoise-floored	space).

2. Among	the	four	candidate	images,	only	Image	C	shows	the	
viewpoint	from	inside	the	bedroom	_looking	out_	through	the	
open	door	toward	a	blue/turquoise-floored	corridor.	

3. Therefore,	Image	C	matches	the	agent’s	viewing	direction	in	the	
overhead	plan.	

Model	fails	to	understand	the	agent	location.

A B C D

Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

o1 Error on Perspective Reasoning

Error	Analysis:	

o1:	
1. From	the	top-down	view,	note	that	the	agent	(red	square)	is	

positioned	near	the	top	side	of	the	living	space	and	is	facing	“down”	
toward	a	large	built-in	cabinet	or	bar	on	the	opposite	wall.

2. Among	the	four	candidate	views	,	D	is	the	only	one	that	shows	that	
large	shelving/bar	unit	straight	ahead,	which	aligns	with	the	red	
arrow’s	direction	in	the	overhead.		
Hence	the	agent’s	view	is	best	represented	by	D.

Model understands	the	arrow	direction	but	points	to	the	wrong	object.

A B C D

Figure 28: Error case from o1 on perspective reasoning.
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Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

o1 Error on Perspective Reasoning

Error	Analysis:	

o1:	
1. In	the	top-down	view,	the	red	square	(agent)	is	near	the	upper	

hallway.	
2. The	red	arrow	indicates	the	agent	is	facing	“up”	along	that	hallway.
3. Among	the	four	candidate	photos	(A,	B,	C,	D),	only	option	D	

shows	a	hallway	view	with	a	door	straight	ahead,	matching	
the	agent’s	position	and	orientation	in	the	top-down	image.

Model	understand	the	agent	location	but	hallucinates	about	the	objects.

A B C D

Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

Claude Error on Perspective Reasoning

Error	Analysis:	

Claude:	
Let	me	solve	this	step	by	step:

1)	First,	let's	understand	what	we	see	in	Image	1:
- It's	a	top-down	view	of	what	appears	to	be	a	room	or	space
- There's	a	red	square	(representing	an	agent's	position)
- There's	a	red	arrow	showing	which	direction	the	agent	is	looking

2)	The	arrow	in	Image	1	is	pointing	roughly	towards	what	appears	to	
be	a	longer	wall/section	of	the	room.

3)	Looking	at	the	four	images	(A,	B,	C,	D)	in	Image	2:
- All	images	show	what	appears	to	be	an	attic	or	room	with	wooden	

furniture	and	storage
- They	all	have	white/light	colored sloped	ceilings
- They're	taken	from	different	angles/positions

4)	Analyzing	the	perspective	of	each	image:
- Image	A	shows	a	view	down	a	space	with	furniture	on	the	left
- Image	B	shows	more	cluttered	storage	area
- Image	C	shows	a	similar	view	but	from	opposite	direction
- Image	D	shows	what	appears	to	be	the	end	of	the	room

5)	Comparing	the	direction	of	view	in	Image	1	with	these	perspectives:
- The	red	arrow's	direction	in	Image	1	aligns	with	the	

perspective	shown	in	Image	A
- Image	A	shows	a	straight	view	down	the	room,	which	matches	

the	arrow's	direction

Therefore,	the	image	that	best	represents	the	agent's	view	is	Image	A.

Model	correctly	describes	the	details	of	the	top-down	view,	the	agent	
position,	and	the	answer	choices,	but	fail	to	reason	(or	does	not	reason)	
what	the	first-person	view	of	the	agent	looks	like

A B C D

Figure 29: Error case from o1 and Claude on perspective reasoning.
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Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

Gemini Error on Perspective Reasoning

Error	Analysis:	

Gemini	2.0	Flash:	
The	agent's	view	in	<Image	1>	is	looking	straight	at	a	staircase	
going	down.	

The	agent	is	also	facing	in	a	direction	perpendicular	to	another	
room	opening	on	the	right.	

Among	the	images	A,	B,	C,	and	D	in	<Image	2>,	image	C	depicts	a	
staircase.	

The	staircase	in	image	C	appears	to	be	going	down	from	the	
perspective	of	the	viewer.	

The	view	in	image	C	has	a	wall	on	the	right	side.

Therefore,	the	answer	is	C.

Model	fails	to	understand	agent	position	from	the	top-down	view.

A B C D

Question: The	image	is	from	the	top-
down	view	of	a	scene	with	a	red	square	
indicating	an	agent	and	a	red	arrow	
indicating	the	agent's	direction	of	view.	

Which	option	best		represents	the	
agent's	view?

Gemini Error on Perspective Reasoning

Error	Analysis:	

Gemini	2.0	Flash	Thinking:	
The	user	is	asking	to	identify	the	image	from	<Image	2>	that	
represents	the	view	of	the	agent	in	<Image	1>.

First,	let's	analyze	<Image	1>	to	understand	the	agent's	position	and	
viewing	direction	within	the	scene.
- <Image	1>	is	a	top-down	view	of	a	scene.
- The	red	square	indicates	the	position	of	the	agent.
- The	red	arrow	indicates	the	direction	the	agent	is	facing	and	viewing.

From	<Image	1>,	we	can	observe:
- The	agent	is	located	in a	room	that	appears	to	have	a	white	ceiling	
fan	(visible	in	the	top	right	of	the	right-hand	side	of	<Image	1>).
- The	agent	is	positioned	near	a	doorway, looking	into	another	
room.
- The	direction	of	the	arrow	suggests	the	agent	is	looking	from	a	
room	into	an	adjacent	room.
- The	room	the	agent	is	looking	into	appears	to	contain	a	sofa	and	a	
TV	(visible	on	the	left-hand	side	of	the	left-hand	side	of	<Image	1>).

Now,	let's	examine	each	image	in	<Image	2>	to	determine	which	one	
matches	the	agent's	view	described	above.

Image	A:	This	image	shows	an	outdoor	scene	with	a	door	and	greenery.	
This	does	not	match	the	indoor	setting	implied	by	the	agent's	
location	in	<Image	1>.

Image	B:	This	image	shows	an	indoor	scene.	We	can	identify:
- A	white	ceiling	fan	in	the	upper	portion	of	the	image.
- A	sofa	and	a	TV	in	the	main	view.
- The	perspective	suggests	looking	from	a	doorway	into	a	room	

containing	the	sofa	and	TV.
This	scene	closely	aligns	with	the	description	derived	from	<Image	

1>.

Image	C:	This	image	shows	an	outdoor	scene	with	an	umbrella	and	
outdoor	furniture.	This	does	not	match	the	indoor	setting	implied	by	
the	agent's	location	in	<Image	1>.

Image	D:	This	image	shows	an	outdoor	scene	with	a	fence	and	plants.	
This	does	not	match	the	indoor	setting	implied	by	the	agent's	
location	in	<Image	1>.

Based	on	this	analysis,	Image	B	is	the	only	image	in	<Image	2>	that	
depicts	an	indoor	scene	consistent	with	the	agent's	position	and	
viewing	direction	in	<Image	1>.	It	shows	a	view	from	a	doorway	into	a	
room	with	a	white	ceiling	fan,	a	sofa,	and	a	TV,	which	matches	the	
scene	implied	by	the	top-down	view.

Model	correctly	describes	the	details	of	the	top-down	view,	and	the	
answer	choices,	but	fail	understand	the	agent	position	and	the	agent	view.

A B C D

Figure 30: Error case from Gemini models on perspective reasoning.

H COMPLETE ANALYSIS RESULTS ON OTHER MODELS

Model Performance on 2D/3D Individual Transformation Types. Tab. 15 presents model accu-
racy across 2D visual analogy and text instruction tasks. Across the nine subtasks, adding visual
simulation lifted accuracy for every model except in a few narrow cases, and the size of the gain
correlates strongly with baseline capability. Closed-source leaders that were already solid on the
raw pixel tasks—o1 (∼ +3 points overall) and GPT-4o (∼ +8 points)—were pushed into the mid-80
s and low-90 s, effectively reaching ceiling on the text-instruction variants, where gains were biggest
(e.g., GPT-4o jumps +25 points on “Reflection” and +18 points on both “Rotation” and “Transla-
tion”). Mid-tier proprietary models such as Gemini 2.0 Flash (∼ +5 points) and its “Flash Thinking”
mode (∼ +5.5 points) benefited even more on instructions than on analogies, narrowing the gap to
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GPT-4-class systems. Open-source vision-language models lag a full generation behind—the best
of them (InternVL 2.5-78B) still sits below 55% on average after simulation—but they, too, record
healthy boosts of 6–12 points, chiefly on the analogy side. The lone regression is GPT-4o’s –5 pt dip
on “Reflection” analogies, suggesting that simulation may occasionally overwrite a correct latent
heuristic. Overall, the pattern indicates that visual simulation chiefly helps models convert verbal
transformation instructions into precise spatial operations, while stronger base perception/reasoning
models harvest the largest absolute improvements and approach human-like proficiency.

Tab. 16 presents model accuracy across 3D visual analogy and text instruction tasks. Visual sim-
ulation gives 3D spatial reasoning a measurable—but more uneven—boost than in 2D: averaged
over all eight subtasks, every proprietary model gains between ∼+2 points (GPT-4o, o1) and +6
points (Claude-3.5 Sonnet, Gemini-Flash Thinking), while the open-source field improves by ∼
+4–7 points—except InternVL, which slips a point. Gains concentrate in the conceptually harder
operations: across models, Shearing (both analogy +6.6 points and instruction +6.6 points) and
Rotation-instruction ( +6.4 points) see the largest lifts, whereas Translation under visual analogy
actually falls slightly (–0.9 points), echoing a smaller 2D reflection dip. Even after simulation,
closed-source leaders plateau in the high-60s to mid-70s on most 3D subtasks—roughly 15 points
below their 2D ceilings—indicating that depth-aware transformations remain a major bottleneck.
Open-source VL models still trail a full generation (≤45% average), but their sharper relative gains
suggest they, too, leverage synthetic roll-outs to bridge language and geometry.

Model 2D Transformations w/ Visual Analogy 2D Transformations w/ Text Instruction

Reflection Rotation Shearing Scaling Translation Reflection Rotation Scaling Translation

Without Visual Simulation

GPT-4o 82.1 69.8 53.7 88.5 72.0 65.8 67.8 90.6 73.3
Claude-3.5 Sonnet 75.0 60.9 55.8 87.4 71.2 63.8 58.9 85.9 66.5
Gemini2.0 Flash 85.7 63.8 51.0 84.4 71.4 65.8 62.3 88.4 70.3
Gemini2.0 Flash Thinking 52.4 48.9 46.9 71.9 55.1 63.2 60.6 83.0 67.8
o1 92.9 70.7 59.2 83.3 84.0 89.5 78.1 92.2 92.2

LLaVA-OneVision 7.1 25.9 32.7 24.4 25.4 31.7 33.1 51.0 34.6
Qwen2.5-VL-72B 57.1 38.8 34.7 64.4 42.3 29.3 49.6 62.5 38.8
InternVL2.5-78B 35.7 41.4 34.7 45.6 36.6 41.5 51.1 75.0 51.9

With Visual Simulation

GPT-4o 76.9 72.8 54.8 91.9 80.0 91.2 86.0 93.2 91.5
Claude-3.5 Sonnet 73.1 70.9 50.0 85.5 73.9 55.9 72.9 83.8 73.9
Gemini2.0 Flash 73.1 70.9 59.5 85.5 74.5 79.4 74.8 90.5 78.2
Gemini2.0 Flash Thinking 61.5 68.2 40.5 71.0 56.4 70.6 68.2 89.2 73.9
o1 80.8 80.6 54.8 87.1 84.2 100 93.5 94.6 97.6

LLaVA-OneVision 15.4 30.1 31.0 30.6 24.8 20.6 41.1 48.6 33.9
Qwen2.5-VL-72B 65.4 56.3 35.7 71.0 57.0 41.2 40.2 60.8 39.4
InternVL2.5-78B 69.2 43.7 33.3 59.7 47.3 50.0 53.3 73.0 53.9

Table 15: Model Performance With or Without Visual Simulation across 2D Transformation types in Visual
Analogy and Text Instruction Tasks.
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Model 3D Transformations w/ Visual Analogy 3D Transformations w/ Text Instruction

Rotation Shearing Scaling Translation Rotation Shearing Scaling Translation

Without Visual Simulation

GPT-4o 60.7 55.7 76.0 80.1 60.1 46.9 71.1 71.2
Claude-3.5 Sonnet 50.0 46.2 63.3 62.6 45.9 40.4 55.6 53.4
Gemini2.0 Flash 54.2 53.9 63.3 73.0 55.86 44.44 61.90 51.63
Gemini2.0 Flash Thinking 42.4 43.6 61.5 63.8 37.8 32.7 52.5 55.7
o1 65.6 58.1 76.7 85.6 61.3 46.3 70.5 73.9

LLaVA-OneVision 18.8 29.1 28.9 25.3 27.0 19.4 41.0 30.7
Qwen2.5-VL-72B 36.5 40.2 61.1 46.6 36.9 33.3 47.6 45.1
InternVL2.5-78B 31.2 30.8 51.1 37.4 37.8 32.4 60.0 40.5

With Visual Simulation

GPT-4o 64.3 64.3 78.2 76.0 62.6 54.7 75.3 68.5
Claude-3.5 Sonnet 51.2 59.5 69.2 59.7 55.6 48.0 64.5 59.3
Gemini2.0 Flash 46.4 64.3 62.8 68.2 60.9 49.5 64.9 56.1
Gemini2.0 Flash Thinking 50.0 47.6 60.3 66.7 48.5 46.7 59.1 59.3
o1 63.1 63.1 76.9 79.8 69.7 50.7 79.6 74.1

LLaVA-OneVision 27.4 28.6 32.1 29.5 27.3 26.7 45.2 35.2
Qwen2.5-VL-72B 46.4 54.8 69.2 55.0 45.5 34.7 48.4 46.3
InternVL2.5-78B 31.0 28.6 43.6 32.6 43.4 37.3 57.0 40.7

Table 16: Model Performance With or Without Visual Simulation across 3D Transformation types in Visual
Analogy and Text Instruction Tasks.

Task complexity vs. performance. Tab. 18 presents model performance across different task diffi-
culties for 2D and 3D transformations. Adding visual simulation helps most when tasks get tougher,
but the effect differs by setting. For 2D text instructions tasks, we observe big boost – closed-source
models jump about 10-20 points on medium and hard tasks, often hitting 90%+. For 2D visual
analogy tasks, we observe smaller lift—several points on easy, up to 1̃0 points on medium/hard. For
3D tasks, only a few-point gain, and some models slip on the hardest visual analogy tasks, showing
3D reasoning is still hard. Open-source MLLMs stay well behind; their scores move up and down
unpredictably, meaning they haven’t yet learned to use the simulated views well.

Tab. 17 presents model performance across different number of transformation steps for 2D and 3D
transformations. Models struggle more as the number of transformation steps grows, and visual
simulation mainly fixes that. Without simulation, accuracy often peaks at one or two steps and drops
at three—especially in 3D visual-analogy, where GPT-4o falls from 73% (N = 2) to 49% (N = 3).
When simulation is added, scores for the multi-step cases (N = 2–3) jump 10–15 points for the top
proprietary systems and a few points for open-source ones, erasing most of the earlier decline in 2D
tasks and cutting the 3D drop roughly in half. Single-step problems were already easy for the best
models and see little change. Overall, simulation is most useful for longer, instruction-driven chains
of transforms, while depth-heavy 3D sequences remain the hardest setting.
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Model 2D Visual Analogy 2D Text Instruction 3D Visual Analogy 3D Text Instruction

N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3

Without Visual Simulation

GPT-4o 60.46 74.84 73.86 67.27 77.56 73.55 62.75 73.37 48.69 63.07 63.40 60.78
Claude-3.5 Sonnet 63.73 75.82 65.69 65.17 65.02 60.61 45.10 57.35 57.35 50.98 55.23 45.75
Gemini2.0 Flash 64.71 73.53 68.53 63.96 76.24 70.25 61.76 60.78 63.73 46.08 56.86 56.86
Gemini2.0 Flash Thinking 54.58 52.94 55.56 61.71 67.33 71.07 47.71 53.92 57.19 45.59 50.00 20.59
o1 66.7 81.4 82.4 82.0 89.1 89.3 66.67 72.55 77.45 61.76 66.67 62.75

LLaVA-OneVision 30.39 26.47 24.51 49.57 33.70 31.53 25.49 28.43 22.55 30.39 30.39 24.51
InternVL2.5-78B 43.14 34.31 42.16 61.74 52.17 50.45 40.2 29.41 36.27 34.31 48.04 40.2
Qwen2.5-VL-72B 50.00 45.10 41.18 55.65 36.96 40.54 48.04 42.16 45.10 38.24 43.14 41.18

With Visual Simulation

GPT-4o - 78.43 73.53 - 88.04 90.57 - 70.59 72.55 - 61.76 68.63
Claude-3.5 Sonnet - 70.59 70.59 - 71.74 72.64 - 56.86 57.84 - 65.69 50.98
Gemini2.0 Flash - 69.6 73.5 - 80.43 77.40 - 61.76 59.80 - 61.76 53.92
Gemini2.0 Flash Thinking - 46.08 58.82 - 79.35 67.92 - 55.88 60.78 - 53.92 53.92
o1 - 73.4 85.3 - 94.6 97.2 - 70.6 75.5 - 70.6 69.6

LLaVA-OneVision - 30.39 25.49 - 38.04 34.91 - 28.43 28.43 - 36.27 29.41
InternVL2.5-78B - 39.22 51.96 - 56.52 52.83 - 25.49 35.29 - 46.08 39.22
Qwen2.5-VL-72B - 51.96 58.82 - 43.48 41.51 - 49.02 58.82 - 47.06 43.14

Table 17: Model Performance With or Without Visual Simulation across number of transformation steps (N)
in 2D/3D Visual Analogy and Text Instruction Tasks.

Model 2D Visual Analogy 2D Text Instruction 3D Visual Analogy 3D Text Instruction

easy medium hard easy medium hard easy medium hard easy medium hard

Without Visual Simulation

GPT-4o 80.4 67.3 61.4 76.2 70.4 71.3 74.2 64.9 65.7 69.0 63.1 55.2
Claude-3.5 Sonnet 76.5 66.7 62.1 68.7 61.8 59.4 54.9 54.4 50.5 55.6 52.0 44.4
Gemini 2.0 Flash 78.4 63.7 64.7 75.0 67.2 67.3 67.6 59.8 58.8 56.9 52.9 50.0
Gemini 2.0 Flash Think 66.3 52.3 44.4 65.5 69.4 65.4 54.6 53.9 50.3 48.0 44.7 46.1
o1 83.3 77.5 69.6 90.6 81.1 89.1 78.4 70.6 67.7 69.6 64.7 56.9

LLaVA-OneVision 22.6 32.4 26.5 39.5 46.3 29.2 25.5 20.6 30.4 31.4 28.4 25.5
InternVL 2.5-78B 45.1 40.2 34.3 63.2 50.9 50.0 32.4 34.3 39.2 48.0 37.3 37.3
Qwen 2.5-VL-72B 57.8 40.2 38.2 50.9 41.7 41.7 55.9 40.2 39.2 42.2 38.2 42.2

With Visual Simulation

GPT-4o 80.9 79.4 67.7 91.6 89.4 86.9 80.9 75.0 58.8 75.0 64.7 55.9
Claude-3.5 Sonnet 76.5 72.1 63.2 78.9 65.2 72.1 67.7 52.9 51.5 66.2 57.4 51.5
Gemini 2.0 Flash 79.4 72.1 63.2 81.7 86.4 67.2 64.7 58.8 58.8 57.4 55.9 60.3
Gemini 2.0 Flash Think 54.4 55.9 47.1 76.1 74.2 68.9 72.1 54.4 48.5 63.2 48.5 50.0
o1 80.9 82.4 75.0 94.4 98.5 95.1 85.3 69.1 64.7 73.5 75.0 61.8

LLaVA-OneVision 36.8 19.1 27.9 39.4 34.9 34.4 26.5 20.6 38.2 45.6 25.0 27.9
InternVL 2.5-78B 57.4 44.1 35.3 64.8 48.5 49.2 23.5 27.9 39.7 55.9 27.9 44.1
Qwen 2.5-VL-72B 72.1 50.0 44.1 59.2 30.3 36.1 63.2 50.0 48.5 47.1 44.1 44.1

Table 18: Model Performance With or Without Visual Simulation across different difficulty levels in 2D/3D
Visual Analogy and Text Instruction Tasks.

2D and 3D Perception Probing with Cube Nets. Tab. 19 presents model performance on 2D
and 3D perception probing questions about cube nets, in comparison to the success rate on cube
net folding task. The results show that success on cube-net folding is driven by a model’s 3D
perception, not its 2D eyesight. All closed-source systems (and several open-source ones) already
read colors and 2D face connectivity at or near ceiling, yet their cube-net scores diverge sharply.
When we compare cube accuracy ( ✗VSim column) with each perceptual measure, the strongest
linear relationship is with the 3D “Folded?” test (Pearson r ≈ 0.89), while 2D connectivity (r ≈ 0.68)
and color (r ≈ 0.72) are weaker. Gemini Flash illustrates the pattern: it pairs the top 3D perception
score (69%) with the best cube-net performance (65%), whereas GPT-4o and InternVL match its
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2D vision but lag 10-20 points on both 3D perception and cube folding. In short, being able to
judge how faces come together in depth—rather than recognizing colors or flat adjacencies—largely
determines how well a model can reason about folded cubes.

Model 2D Perception 3D Perception Cube Net Performance

Color Connectivity Folded? ✗VSim ✓Vsim

Random 25.0 50.0 50.0 50.5 50.5

Closed-source Models

GPT-4o 100.0 94.1 57.4 52.5 49.1
Gemini-2.0-Flash 100.0 84.9 68.8 65.0 65.5
Gemini-2.0-Flash-Thinking 99.0 49.4 54.3 39.8 62.8

Open-source Models

LLaVA-OneVision 88.0 10.0 22.0 28.5 34.2
InternVL 2.5-78B 92.0 86.0 40.2 43.5 41.0
Qwen 2.5-VL-72B 96.0 81.7 42.1 35.2 53.4

Table 19: 2D and 3D perception performance in cube net folding.

Question-only vs. Question+Steps As shown in Tab. 20, adding explicit reasoning steps (“Q +
Steps”) has opposite effects on cube-net tasks for the two model groups: open-source models gain,
while closed-source ones do not. The three open-source VL models jump a mean + 20 points on
cube nets (driven by LLaVA’s + 40 pts), whereas the five proprietary models average a small decline
(-1 pt, with mixed signs). On tangram puzzles, however, the pattern converges: every model—open
or closed—drops sharply once reasoning steps are included, with average losses of about -24 pts for
closed-source and -19 pts for open-source models. Again, the trivial solution on tangram puzzles
would be comparing the total areas of all available pieces and the grid area, which can easily lead to
75% performance. This result suggest that the models cannot leverage explicit text reasoning steps.

Model Cube Nets Tangram Puzzles

Q-only Q+Steps ∆ Q-only Q+Steps ∆

Closed-source Models

GPT-4o 50.2 50.4 +0.2 62.4 34.7 -27.7
Claude-3.5 Sonnet 51.5 46.4 -5.1 71.1 41.9 -29.2
Gemini-2.0 Flash 47.4 51.5 +4.1 72.8 59.8 -13.0
Gemini-2.0 Flash Thinking 47.2 49.6 +2.4 42.9 35.3 -7.6
o1 56.0 47.0 -7.0 73.5 29.6 -43.9

Open-source Models

LLaVA-OneVision 0.0 40.5 +40.5 30.3 14.6 -15.7
InternVL 2.5-78B 33.2 41.4 +8.2 69.5 51.7 -17.8
Qwen 2.5-VL-72B 29.0 41.6 +12.6 72.3 47.7 -24.6

Table 20: Model performance on question-only prompts versus prompts that include explicit reasoning steps
(Q+Steps). ∆ values are Q+Steps performance - Q-only performance.

Intermediate Visual Simulation States vs. Performance

Tab. 21 summarizes extended results on varying the slice of intermediate visual simulation presented
to the model across different tasks. Across models, which slice of the simulation you show matters,
and the “best slice” shifts with task type. For 2D transformations, most closed-source models and
the stronger open-source one (InternVL) peak when they see only the last intermediate state, gaining
2–6 points over the full roll-out; showing every intermediate frame (“all”) often drags accuracy down
a few points. For 3D transformations, the pattern flips—accuracy is usually highest with “all” states
(≈ +2–4 points over “partial”), while the last-only view tends to erase that gain, especially for
GPT-4o, Gemini Flash, and o1. For cube nets, no single view helps every model. Scores barely
change with “all” frames, and last-only often hurts closed-source models (-8 points on average) yet
uniquely rescues LLaVA (+11 points). For Tangram puzzles, seeing “all” steps is consistently best:
every model but LLaVA jumps 7–24 points versus the partial view, whereas last-only falls back
to—or below—the partial baseline. Overall, for more complex tasks, models struggle to leverage
intermediate visual states effectively.
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Model 2D Transformation 3D Transformation Cube Nets Tangram Puzzles

Partial All Last Partial All Last Partial All Last Partial All Last

Closed-source Models

GPT-4o 86.8 82.8 89.4 72.1 68.4 68.4 51.3 52.2 35.2 43.5 51.5 43.4
Claude-3.5-Sonnet 67.8 71.4 70.7 54.9 57.8 55.9 58.7 51.6 46.8 43.5 67.6 43.3
Gemini-2.0-Flash 75.4 75.2 79.3 61.0 59.3 57.8 40.5 35.6 41.5 63.8 65.5 58.2
o1 89.3 87.7 93.4 70.1 71.6 65.2 54.4 53.4 45.4 34.8 53.2 46.0

Open-source Models

LLaVA-OneVision 28.3 32.2 31.8 25.5 30.6 29.4 40.2 34.2 45.6 44.9 40.2 39.8
InternVL 2.5-78B 48.3 54.5 56.6 32.3 36.5 40.2 34.7 37.3 37.8 54.3 48.2 41.8
Qwen 2.5-VL-72B 44.4 48.5 44.4 48.7 49.1 43.6 41.9 53.4 42.3 49.0 56.7 44.3

Table 21: Model performance with partial, all, and last intermediate visual simulations.
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