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(® Face 6 folds up to close the bottom of the cube. and Face 3 is on the right (@), they would be opposite, but they
All faces will perfectly align /, forming a six-faced cube with no are adjacent in the net. The correct third step should follow the
overlaps or gaps. net's layout to maintain their connection.

Figure 1: Visual simulations play a crucial role in real-world tasks, from assembling complex structures to
interpreting mechanical diagrams and predicting spatial interactions. Different from how humans would ap-
proach a cube net folding problem, existing multimodal models rely heavily on textual simulation, which is
not sufficient for reaching human-level spatial cognition. The above example shows how textual simulations of
GPT-40 make obvious errors when we simulate the steps in 3D space.

ABSTRACT

Spatial cognition is essential for human intelligence, enabling problem-solving
through visual simulations rather than solely relying on verbal reasoning. How-
ever, existing Al benchmarks primarily assess verbal reasoning, neglecting the
complexities of non-verbal, multi-step visual simulation. We introduce STARE
(Spatial Transformations and Reasoning Evaluation), a benchmark designed
to rigorously evaluate multimodal large language models on tasks better solved
through multi-step visual simulation. STARE features ~4K tasks spanning foun-
dational geometric transformations (2D and 3D), integrated spatial reasoning
(cube net folding and tangram puzzles), and real-world spatial reasoning (per-
spective and temporal reasoning), reflecting practical cognitive challenges like
object assembly, mechanical diagram interpretation, and everyday spatial naviga-
tion. Our evaluations show that models excel at reasoning over simpler 2D trans-
formations, but perform close to random chance on more complex tasks like 3D
cube net folding and tangram puzzles that require multi-step visual simulations.
Humans achieve near-perfect accuracy but take considerable time (up to 28.0s) on
complex tasks, significantly speeding up (down by 7.5 seconds on average) with
intermediate visual simulations. In contrast, models exhibit inconsistent perfor-
mance gains from visual simulations, improving on most tasks but declining in
specific cases like tangram puzzles (GPT-40, ol) and cube net folding (Claude-
3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively
leverage intermediate visual information.

1 INTRODUCTION

Spatial reasoning is not merely a subset of human cognitive abilities but rather the fundamental
underpinnings of intellectual processes (Tversky & Suwal, 2009). Reasoning with space enables in-
dividuals to solve complex tasks through visually simulating transformations of objects in the mind,
anticipating how their actions would physically manipulate other artifacts. Cognitive psychologists
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have found ample evidence that humans simulate 2D and 3D transformations to reason about spatial
problems (Mitko & Fischer, [2020; Duan et al., 2022; [Wai et al., [2009; Battaglia et al.). Shepard &
Metzler| (1971) found that the time taken by a subject to recognize two perspective drawings as the
same 3D shape increases linearly with their angular difference in orientation, suggesting an analog
mental rotation process. |Hegarty| (1992) found that humans employ mental animation, incremen-
tally simulating the movement of parts to understand mechanical diagrams. Such abilities enable
everyday tasks like assembling furniture, reading maps or instructional diagrams, navigating new
environments, and are strongly correlated with success in STEM disciplines (Judd & Klingberg,
20215 Christensen & Schunn, [2009; |[Hegarty, |2004b).

Despite their prevalence in real-world applications—from arranging furniture in a house to molec-
ular docking for drug discovery—dynamic visual simulations are still under-represented when eval-
vating multimodal large language models (MLLMs). Existing datasets largely target static recog-
nition or problems that can be re-phrased as linguistic reasoning (Johnson, [2017; [Zhang|, [2019; Ji,
2022; |Duan et al., 2021} |Chollet, |2019; |Ramakrishnan et al., 2024). In contrast, humans frequently
solve spatial challenges—such as folding a 2D net into a 3D object, assembling a tangram, or taking
another visual perspective—by running internal, step-wise visual simulations (Fig.[I)), which have a
long pedigree in the cognitive science studying human spatial reasoning (Huttenlocher & Presson,
19735 |Gunalp et al.| [2019; |Shepard & Feng| |1972; |Preuss et al., [2024} |Ayaz et al., [2012)).

To bridge this gap, we introduce STARE (Spatial Transformations and Reasoning Evaluation),
a benchmark focused on spatial reasoning tasks that can be better solved through multi-step visual
simulations. STARE evaluates whether MLLMs can perform complex visual reasoning akin to the
visual simulations humans perform. It spans a spectrum of spatial cognition challenges (Fig. 2)),
structured in increasing complexity:

* Foundational geometric transformations: Tasks involving basic planar (2D) and volu-
metric (3D) transformations, such as rotations, translations, and reflections.

* Integrated spatial reasoning: Cube net folding, requiring understanding how 2D patterns
fold into 3D objects, and tangram puzzles, assessing sequential assembly and spatial posi-
tioning.

* Real-world spatial reasoning: Tasks demanding reasoning about perspective changes and
temporal frame sequences, simulating realistic spatial cognition scenarios encountered in
daily life.

In the first two categories, each transformation or operation (e.g., folding a face) can be explicitly
visualized step by step, and indeed humans often draw or imagine intermediate states when solving
them. The last category demands higher-level visual simulation skills without always having clear
intermediate visual cues (e.g., perspective reasoning) (Bass et al., |2022; (Chen et al., 2023). We
carefully curate ~4K total instances across these categories, controlling difficulty via distractor
similarity and number of simulation steps, to push models beyond superficial pattern-matching.

Our experiments show that models find reasoning over simple 2D transformations relatively easy
but struggle with 3D cube net folding and tangram puzzles, performing near random chance due to
the need for multi-step simulations. Humans, though nearly perfect in accuracy, took significantly
longer—up to 28.0 seconds—to solve some tasks but sped up considerably (down by 7.5 seconds
on average) when given intermediate steps. Meanwhile, when models receive intermediate visual
steps, their performance varies: e.g., GPT-40, Gemini-2.0 Flash Thinking and ol improve while
Gemini-2.0 Flash and Claude worsen on cube net folding, suggesting that not all models effectively
utilize visual guidance. In general, models (even 03) lag behind human performance significantly.
To better understand these gaps, we conduct detailed error analyses, pinpointing specific reasons
for model failures, such as difficulties in accurately interpreting 3D spatial relationships, inadequate
of “imagining in space”, and struggles with extended visual contexts even when providing explicit
visual simulations. Fundamentally, models cannot effectively perform visual simulation.

Overall, STARE aims to comprehensively test MLLMs’ ability to perform sequential visual simu-
lations as opposed to pure textual reasoning. By evaluating models on tasks grounded in cognitive
phenomena like mental imagery, we aim to reveal whether current MLLMs can approach the flexible
spatial problem-solving of humans.
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Figure 2: Overview of STARE. STARE consists of 3 levels of tasks, 2D Transformation and 3D Transfor-
mation for foundational spatial reasoning skills, tangram puzzle and cube net folding for integrated spatial
reasoning, temporal frame inference and perspective reasoning to mimic real-world scenarios. The interme-
diate steps for completing tasks in the first two levels can be explicitly simulated, while the more real-word
spatial reasoning tasks requires more abstract and implicit mental simulations.

2 THE STARE BENCHMARK

STARE is designed to evaluate multimodal models’ abilities in spatial cognition and visual reason-
ing, focusing specifically on tasks that humans solve non-linguistically, through visual simulation.
Current perception-focused multimodal benchmarks still rely heavily on linguistic reasoning (Fu

et al, [2024; [Lu et al.| 2021} [Li et al., 2024a)) or static visual recognition (Tong et al. [2024; [Wu &

Xie| [2023;[Fu et al., 2024), failing to measure models’ abilities in sequential visual problem-solving.
Parallel work in spatial cognition (Yiu et all, 2024} [Zhang] 2019} [Hu et al) 2021} Ramakrishnan|
et al.} 2024} Rismanchian et al.} [2024) probes analogy making and pattern induction, yet simulation
is optional and intermediate visual states are seldom provided because of annotation cost. VSI-
Bench underscores the role of mental imagery in spatial reasoning, but focuses
on spatial memory and estimation from video rather than explicit step-by-step simulation. STARE
closes the gap by testing multimodal models across diverse spatial tasks that require step-by-step
visual simulations with or without explicit linguistic guidance. We describe the overall design of
STARE (§2.1), highlighting key differences compared to existing benchmarks. We then provide
detailed descriptions of each task, discussing how the data was curated (§2.2).

2.1 OVERVIEW OF STARE

STARE is structured to comprehensively cover spatial reasoning at multiple complexity levels, from
basic geometric transformations (2D and 3D) to more integrated tasks (cube net folding and tangram
puzzles) and real-world spatial reasoning scenarios (temporal frame and perspective reasoning).
Each task is presented as a multiple-choice or yes/no question using carefully designed visual and
textual prompts. In total, the dataset contains ~4K instances across different evaluation setups
(Fig. [3). Detailed statistics of STARE are provided in Appendix Fig. [§]

STARE separates tasks that can be visually simulated, i.e., where each transformation step is visually
observable, from tasks demanding more abstract and implicit mental simulations, such as perspec-
tive reasoning. To support more fine-grained evaluation, we synthesize the tasks that humans can
mentally picture or even explicitly draw the intermediate steps, including 2D transformations, 3D
transformations, cube net folding and tangram puzzle. Additionally, STARE tasks are intentionally
crafted to closely reflect real-world scenarios such as assembling objects (e.g., tangram puzzles),
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Below are the steps to complete the Tangram puzzle:

Step 1: Rotate piece B by about 9o degrees clockwise, and place piece B with its upper-left corner at (x, y) = (1, 3).
Step 2: Place piece A with its upper-left cornerat (x, y) = (o, 3).

Step 3: Rotate piece C by about 9o degrees clockwise, and place piece C with its upper-left corner at (x, y) = (0, 1).
Based on the above steps, can the Tangram puzzle be completed with the available pieces, yes or no?
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Figure 3: The different variants in the Tangram Puzzle task. We provide visualizations of the complete
interleaved inputs for all three types in Appendix@

interpreting mechanical diagrams (e.g., cube net folding) and navigating environments (e.g., per-
spective reasoning). These scenarios can potentially shed lights on models’ abilities in practical,
everyday spatial cognition, providing meaningful assessments aligned with common human chal-
lenges. A detailed discussion about related works in human visual reasoning and MLLM bench-
marks are provided in Appendix D]

2.2 DATA CURATION

2D transformations: We design two types of tasks assessing spatial reasoning through two-
dimensional shape transformations: visual analogy, and instruction-based tasks. In visual analogy
tasks, a shape A is shown to transform visually into shape A’, after which a shape B is provided
with candidate shapes for applying the same transformation sequence to B. Instruction-based tasks
explicitly describe transformations (e.g., “Rotate 90 degrees clockwise, then make it bigger”) and
require selecting the correctly transformed shape from 4 answer choices. Transformations include
rotations, translations, uniform scaling, reflection and shearing, with clearly defined parameters.
Each task is created with three difficulty levels: easy (with two distractors out of three clearly dif-
ferent in appearance), medium (one obvious distractor), and hard (all distractors visually similar,
forcing the model to pay attention to the transformation itself). In addition, we synthesize samples
with 1/2/3 transformation steps to facilitate evaluations in multi-turn visual transformations. We pro-
grammatically generate all shapes and their transformed version using Matplotlib (Matplotlib,[2012).
Visualization of different variants of 2D transformation samples is shown in Appendix Fig.[9} [I0]

We develop two experimental setups: (1) question + transformation steps, where the transfor-
mation steps are shown either verbally (for instruction-based tasks) or visually (for visual analogy
tasks); and (2) question + transformation steps + intermediate visual simulations, showing all
intermediate visualizations of shape B, excluding the final step. We synthesize a total of ~1000
instances, ~600 of which are without intermediate visual simulations.

3D transformations: We extend the 2D transformation tasks to three dimensions, creating similar
tasks using 3D shapes. Reflection is omitted in 3D because the mirror plane isn’t obviously recogniz-
able to human evaluators. The transformations include rotations around arbitrary axes, translations
in 3D space, scaling, and shearing. Tasks, difficulty levels, and experimental setups mirror those of
the 2D tasks, with a total of ~1000 instances. Following (Johnson et al., [2017), we create abstract
3D shapes as detailed meshes and use Blender (Blender) to render realistic and consistent visuals.

Tangram puzzles: Tangram puzzles test spatial reasoning about how individual pieces fit together
to form a complete shape. Each puzzle provides a target grid and pieces, and the task is to determine
whether the pieces can exactly fill the grid. Valid puzzles were generated by randomly dividing
small grids (3x3 or 4x4) into rectangular or square shapes, then randomly rotated. Irregular variants
were also created by merging adjacent rectangles. Invalid puzzles were constructed by adding or
removing pieces, altering piece sizes, or giving incorrect placement instructions.

We create three setups for evaluation: (1) question-only, which presents the initial puzzle configu-
ration with a query about solvability; (2) question + assembly steps, adding descriptive instructions
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of each assembly step without visual aids; and (3) question + assembly steps + intermediate visual
simulations, providing both descriptive annotations and intermediate visualizations of the assembly
process, excluding the final visualization indicating success or failure. This task comprises ~800
puzzles, evenly divided into solvable and unsolvable instances.

Cube net folding: This task evaluates the model’s capacity to mentally fold flat 2D patterns into 3D
cubes. We provide examples comprising both valid nets (correctly folding into a cube) and invalid
nets (leading to overlapping or disconnected faces). Each cube net has explicitly labeled faces. To
generate these examples, we implement a step-by-step algorithm that simulates the folding process
by designating a stationary base face and sequentially folding the connected faces. During each
folding step, we detect and annotate errors, such as overlaps or disconnected faces, and generate
corresponding visualizations using Matplotlib, clearly delineating face boundaries. Similar to tan-
gram puzzles, we evaluate models in three setups, including (1) question-only, (2) question + folding
steps, and (3) question + folding steps + intermediate visual simulations. The final cube net folding
task contains ~320 samples, balanced between valid and invalid configurations.

Temporal frame reasoning: This task evaluates a model’s ability to infer missing sequential visual
information. Each example consists of four consecutive frames from a video, with one frame hid-
den. The model must identify the missing frame from a set of three options, relying on temporal
consistency and logical scene progression.

We construct 471 examples from the Objectron (Ahmadyan et al., [2021]) dataset, which contains
short, object-centric videos with camera pose annotations. To create meaningful sequences, we
extract the longest continuous segment where the camera moves only in one direction (left or right),
divide it into four equal intervals, and select a frame from the central portion of each interval. One
of these frames is hidden, and the model must identify it from three choices: the correct missing
frame and two distractor frames sampled from different, non-overlapping parts of the video.

Perspective reasoning: This task assesses a model’s ability to understand how scenes appear from
different viewpoints. Each example consists of a top-down map that indicates an agent’s position and
orientation, represented by an arrow showing the agent’s viewing direction. The model must then
select the correct first-person view from four choices, emphasizing spatial perspective reasoning and
spatial relationships in various indoor environments.

We construct 250 samples using the HM3D dataset (Ramakrishnan et al., 2021), a large collection
of 3D indoor spaces derived from real-world environments. To generate each example, we use the
Habitat simulator (Savva et al. 2019; [Szot et al., [2021}; [Puig et al., |2023) to place an agent at a
random position on the floor while ensuring the surrounding scene contains enough visual cues,
such as objects and structures, rather than just walls. A top-down view of the agent’s position is then
captured, and a random viewing direction is assigned (forward, right, left, or backward). The four
answer choices correspond to these fixed 90-degree viewpoints, ensuring clear distinctions between
them. To improve dataset quality, we manually remove ambiguous cases and low-resolution images.

3  EXPERIMENTS

In this section, we describe our experimental setup in detail, present comprehensive results, and
provide an in-depth analysis of common model errors and limitations.

3.1 EXPERIMENTAL SETUP

For synthetic tasks involving explicit simulations (2D transformations, 3D transformations, cube net
folding, tangram puzzles), we explore two evaluation settings:

o Without Visual Simulations: Models receive only an initial image with or without step-by-step tex-
tual instructions and had to mentally infer the subsequent transformations without visual guidance,
thereby testing their internal mental simulation capabilities.

o With Visual Simulations: Models were provided with step-by-step visualizations clearly illustrat-
ing each transformation step before the final result, enabling explicit visual reasoning. Instead of
collating the complex step-by-step visualizations into a single image, we provide the model with
interleaved image and text query for evaluation.
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2D Trans. 3D Trans. Cube Net Tangram Temp- Pers-
Model Overall
XVSim  v/VSim XVSim vVSim XVSim vVSim XVSim vVSim oral pective
Random 25.0 25.0 25.0 25.0 50.0 50.0 50.0 50.0 333 250 348
Closed-source Models
GPT-40 712 827(111.5) 655 684(129) 503 522(11.9) 525 515(1.0) 390 387 539
Claude-3.5 Sonnet 659 714(155) 515 57.8(163) 523 51.6(L0.7) 59.0 67.6(186) 540 26.1 53.1
Gemini-2.0 Flash 69.5 752(15.7) 56.1 593(11.6) 37.7 356(,2.1) 650 655(105) 386 372 513
Gemini-2.0 Flash Think 60.6 62.8 (12.2) 49.5 56.1(16.6) 483 50.7(124) 39.8 62.8(123.0) 450 327 488
ol 81.8 87.7(159) 679 71.6(13.7) 513 534(12.1) 553 532(21) 450 368 572
03 875 893(11.8) 752 784(132) 684 794(111.0) 68.6 82.1(1135) 514 428 68.1

Open-source Models

LLaVA-OneVision-72B 329 322(/ 0.7) 27.0 30.6(13.6) 285 342(13.7) 303 39.8(19.5 357 248 314

InternVL2.5-78B 475 50.1(126) 381 365(L1.6) 371 373(10.2) 607 482(] 12.5) 314 26.0 39.2
Qwen2.5-VL-3B 16.6  20.0(T34) 29.1 31.4(123) 435 41.0(/25) 501 427(74) 333 233 32.3
Qwen2.5-VL-7B 354 324(13.0) 28.8 31.7(129) 40.7 449(142) 545 529(1.6) 365 232 36.7
Qwen2.5-VL-72B 452 485(13.2) 43.0 49.1(16.1) 352 534(1182) 612 569(.43) 314 260 423
Human Performance

Accuracy 96.8 98.6(T1.8) 946 969(123) 983 989(10.6) 915 958(143) 99.0 98.1 97.1
Response Time (s) 142 11.0(}32) 17.1 125 4.6) 137 52(/ 85 280 101(/179) 162 184 -

A(Best Model, Human) -9.3 -9.3 -19.4 -18.5 -29.9 -19.5 -22.9 -13.7 -45.0 -553  -29.0

Table 1: Model Performance With or Without Visual Simulation (VSim) Across Tasks in STARE. Even the
top performer, o1, achieves just under 60% accuracy. Humans, in contrast, get near perfect scores. Green (Red)
arrows indicate performance improvements (degradations) with visual simulation.

For real-world reasoning tasks, including temporal frame and perspective reasoning, we evaluate
models under the standard single image setting without providing explicit intermediate visual steps.

Evaluation Metrics. We report accuracy for multiple-choice questions in 2D/3D transformations,
temporal frame, and perspective reasoning tasks. For cube net folding and tangram puzzles, which
involve binary yes/no questions, we report the F1 score. We report macro-average performance
across tasks as the overall evaluation metric.

Models. We consider the following models: (1) Closed-source models: GPT-40 (OpenAl), Claude-
3.5 Sonnet (Anthropic)), Gemini2.0 Flash (Deepmind} ja), and the reasoning-focused Gemini2.0 Flash
Thinking (Deepmind, b)), o1 (OpenAl et al.,[2024) and 03 (OpenAll 2025). (2) Open-source mod-
els: InternVL2.5-78B (Chen et al.| 2024), LLaVA-OneVision-72B (Li et al., [2024b), Qwen2.5-VL-
3B, Qwen2.5-VL-7B, and Qwen2.5-VL-72B (Bai et al., |[2025).

Additionally, we invite 5 undergraduate students to complete the same tasks as the models. The aver-
aged performance and response time are recorded to benchmark model capabilities against human-
level spatial reasoning. Additional human eval results are provided in Appendix

3.2 MAIN RESULTS

The results present in Tab. [T] show notable variations in model performance across different spa-
tial reasoning tasks in the STARE benchmark. Models achieve the highest accuracy (up to 89.3%)
on simpler 2D transformation tasks, significantly surpassing random chance (25%). Accuracy de-
creases by roughly 5% on average for more complex 3D transformations. Tasks involving intricate
multi-step reasoning, such as cube net folding and tangram puzzles, resulted in even worse model
performance without visual simulation. Additionally, temporal frame reasoning and perspective
reasoning, which require interpreting sequential visual contexts and viewpoint changes, posed con-
siderable difficulties, with most models performing similarly to random chance.

The use of visual simulations (VisSim) enhances model performance in most cases, but not all.
GPT-40 exhibits a notable improvement of 11.5% accuracy on 2D transformations with visual sim-
ulations, and Claude-3.5 Sonnet shows significant gains (+8.6%) on tangram puzzles. However,
visual simulations did not uniformly benefit model performance; certain models like Gemini-2.0
Flash experienced slight performance declines (e.g., a 2.1% decrease on F1 for cube net tasks), in-
dicating that models can not always effectively leverage intermediate visual information. The latest
reasoning-focused 03 model outperforms all other models with visual simulations. Overall, it im-
proves over GPT-40 by 14.2% on average, but still lag behind human performance. Notably, 03
seems to be better at leveraging visual simulations. However, humans show relatively small per-
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formance gaps between conditions with and without visual simulation, indicating they are able to
mentally simulate transformations effectively when explicit visual simulations are absent.

Open-source models generally exhibit lower accuracy compared to closed-source counterparts, high-
lighting a significant performance gap. Larger models like InternVL2.5-78B and Qwen2.5-VL-72B
performe relatively better, suggesting benefits from scale, but their results with visual simulations
also varied. For instance, InternVL2.5-78B’s performance decreases significantly in tangram tasks
(-12.5%), whereas Qwen2.5-VL-72B improves notably (18.2%) in cube net tasks.

Human performance consistently surpasses that of models, achieving high accuracy across all
STARE tasks, and further improved by intermediate visual simulations. However, these tasks were
cognitively demanding even for humans, reflected by relatively long response times (e.g., 28.0 sec-
onds on tangram puzzles without visual simulations). Although intermediate visual simulations
significantly reduces cognitive load and response time, humans still require more than 5 seconds to
mentally manipulate and reason through these problems and complete the last step. Thus, STARE
tasks clearly involve complex, multi-step spatial reasoning beyond simple recognition tasks solv-
able at a glance (Fu et al.| 2024). These findings underscore humans’ superior spatial reasoning
capabilities, particularly when aided by visual simulations.

Moreover, to study whether gains on abstract, synthetic spatial tasks translate to real-world tasks,
we computed model-level correlations between the two domains. Concretely, for each model, we
average its performance across with or without visual simulation on the 4 synthetic tasks and con-
trast that with its mean accuracy on the two real-world tasks. This yields a strong overall Pearson
correlation (rr ~ 0.88, p ~ 5e~4) across all 11 models. Counting in human performance, further
increase the correlation to (r ~ 0.97, p ~ le~7).

3.3 DETAILED ANALYSIS

To gain deeper insights into model limitations and identify specific reasoning challenges, we struc-
ture our detailed analysis around several targeted questions. We focus our discussion below on
the GPT-40 model, given that it achieves the best performance among the non-reasoning models.
Analysis on other models can be found in Appendix [H]

Q1: How well do models understand individual transformation types in 2D and 3D? We eval-
uate model accuracy on individual transformation operations—rotation, translation, scaling, reflec-
tion, and shearing—for both 2D and 3D tasks, comparing performance with and without visual sim-
ulation (Fig. ). For 2D tasks, scaling achieves the highest accuracy (approximately 90% without
visual simulation), improving further with visual simulation. Shearing was the most challenging in
2D (around 54%), showing minimal improvement from visual aids. Reflection, rotation, and trans-
lation significantly benefits from visual simulation, improving roughly 10 percentage points each.
In 3D tasks, translation had the highest accuracy (about 76% without visual simulation), although it
slightly declines with visual simulation. However, shearing, scaling, and rotation notably improve
with visual simulation by about 3-8 percentage points. Overall, visual simulation substantially en-
hances performance for complex transformations, especially in 2D, though the added complexity of
3D transformations continues to present significant challenges.

Q2: How does model accuracy change as task complexity increases? (1) Performance vs.
Difficulty-level: The left sub-Fig. in Fig. [6]shows model accuracy decreased as tasks became harder.
For 2D tasks, GPT-40 performed best on easy tasks (~86% with visual simulation), with accuracy
declining notably for medium and hard tasks, especially without visual simulation (dropping to
~66% for hard tasks). For 3D tasks, overall accuracy was lower, decreasing from easy tasks (~72%
without visual simulation) to hard tasks (~60% without). Visual simulation generally improved ac-
curacy but was less effective or even slightly detrimental for the hardest 3D tasks (60.5% without,
57.4% with). (2) Performance vs. Number of Turns: The right sub-Fig. in Fig. [] shows that how
model performance varies with the number of transformation steps (/N = 1, 2, 3). Without visual
simulation, accuracy for both 2D and 3D tasks initially increases from N =1 to N = 2, and then
decreases at NV = 3. The observed peak at N = 2 likely occurs because two-step transformations
combine simpler transformations (e.g., scaling) with more challenging ones (e.g., shearing), allow-
ing models to leverage the simpler transformations to determine the correct answer. In contrast,
one-step transformations are evenly distributed across all transformation types, while at N = 3, the
increased complexity from multiple transformations compounds cognitive demands, reducing over-
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Figure 6: GPT-40 performance vs. task complexity (left: difficulty levels and right: number of transformation
steps) with or without Visual Simulation (VSim).

all model accuracy. With visual simulation, accuracy remains consistently high across 2 and 3 steps
in 2D tasks and shows stable or slightly improved performance at N = 3 in 3D tasks. Performance
at N = 1 with visual simulation is not shown because there is no intermediate step.

Q3: Do model failures originate from basic visual perception errors? To determine if model fail-
ures originate from fundamental visual perception rather than higher-level reasoning limitations, we
design a straightforward probing experiment. Specifically, we simplify the task by directly present-
ing the model with the final, fully simulated outcomes, reducing the problem to visually matching
these outcomes to the correct candidate answers. Under these conditions, accuracy improves by
4.2% (from 82.7% to 86.9%) on 2D transformations and 2.8% (from 68.4% to 71.2%) on 3D trans-
formations, indicating only a modest improvement when eliminating intermediate steps. However,
for more structured tasks like cube net folding and tangram puzzles, providing the fully completed
final form drastically raises accuracy to 100% and 91.6%, respectively, highlighting that models
can solve these tasks when the perceptual complexity is minimized. To further isolate the nature
of perceptual errors in cube net folding, we create targeted tasks to test both 2D perception (color
recognition and face connectivity) and 3D perception (identifying if a face has been folded). Results
from these tasks (Tab. 2 reveal perfect color recognition but a notable decrease in accuracy for face
connectivity (94.1%) and particularly low accuracy in correctly identifying folded faces (57.4%).
Fig. [3] illustrates an example of perception error on connectivity misalignments from Claude-3.5
Sonnet. Moreover, these specific perceptual errors in folding explain the limited benefits from vi-
sual simulations observed in Tab. [I| for GPT-40. Overall, while some errors indeed stem from basic
visual perception deficits, particularly in more complex 3D scenarios, the results suggest higher-level
reasoning also plays a large role in overall model failures. Refer to Appendix for more quantitative
(Appendix [E) and qualitative (Appendix [G.3) error analysis.

Q4: How well do models reason spatially in text? To evaluate how well models reason spatially
from text alone, we translate each visual task into clear, concise descriptions. For 2D and 3D
transformation tasks, each object is described by stating its shape, color, position, size and etc.—for
instance, “a red square at position (3,4) with size 2”. In the cube-net folding task, the unfolded
cube is represented by numbering each face and arranging these numbers in a grid matching the
cube net’s visual layout. For example, “123456” represents all six faces in a single row. Lastly, for
the tangram puzzle task, each piece is labeled (e.g., “Piece A”) and represented by a compact grid
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Model 2D Perception 3D Perception Input 2D Trans. 3D Trans. Cube Nets Tangram
Color Connectivity Folded? Text-only 87.5 64.7 57.0 72.6
Image-only 75.1 67.7 56.0 62.5
GPT-40 100.0 94.1 574 Image+Text 90.8 70.0 62.1 -
Table 2: 2D and 3D perception accuracy in Table 3: GPT-40 performance without visual simulation under
cube-net folding. different input representations.
Input Cube Nets  Tangram Simulation State 2D Trans. 3D Trans. Cube Nets Tangram
. Partial 86.8 72.1 51.3 43.5
Question-only 302 624 All 82.7 68.4 522 515
Question+Steps 50.4 34.7 Last 89.4 68.4 35.2 43.4

Table 4: GPT-40 performance with Table 5: GPT-40 performance with different intermediate visual-
question-only vs. explicit reasoning steps. simulation states.

indicating occupied cells marked by “1”. For instance, a square piece might be shown as two rows
of “11”. Examples of text representations of each task are provided in Appendix

As shown in Tab. [3] providing the model with a text representation removes much of the perception
challenge, yet accuracy remains well below human performance—about 57% on cube-net folding,
65% on 3D transformations, and roughly 73% on tangram puzzles, suggesting that the model still
lacks the ability to mentally simulate the steps to solve each task. Text helps most on 2D spatial
reasoning: accuracy on 2D transformations rises from 75% with images alone to 87% with text, and
tangram performance climb from 63% to 73%. For tasks involving 3D spatial reasoning, however,
text gives little benefit, partly because the simple text description about shape, color, material, center,
and size, cannot capture all the depth and adjacency cues in 3D spatial reasoning.

Q5: How well do models verbally simulate without visual simulation? We evaluate how effec-
tively models verbally simulate spatial reasoning without intermediate visual simulations by compar-
ing performance when provided only the question (Question-only) versus explicit verbal reasoning
steps (Question+Steps). Tab. E] shows minimal improvement in cube net folding (50.2% to 50.4%),
indicating limited benefit from verbal reasoning alone. Conversely, tangram performance notably
decreases (62.4% to 34.7%), suggesting models adopt shortcuts like summing piece areas rather
than genuine spatial simulation. This result partially reflects a bias in our question-only set: models
can achieve ~75% accuracy by checking the total areas of available pieces.

Q6: How well do models integrate textual context with isolated visual simulations? We com-
pared accuracy when presenting models with complete visual sequences versus only the final or
most relevant visual state (Tab. [5). Easier tasks like 2D and 3D transformations showed improved
or comparable accuracy when presented only the final state (e.g., 82.7% for complete vs. 89.4% for
last), suggesting that for these tasks, the final visual state closely resembles the initial state, reducing
cognitive load. However, in complex tasks such as cube net folding (52.2% complete vs. 35.2%
last) and tangram puzzles (51.5% complete vs. 43.4% last), the final state becomes more discon-
nected from the initial configuration, requiring deeper understanding of preceding verbal steps. This
disconnection introduces significant challenges for models, aligning with earlier findings (Q4) and
underscoring their difficulties in integrating complex visual sequences during multi-step reasoning.
Refer to Appendix [E] for additional experimental results on the impact of # visual simulations.

4 CONCLUSION

In this paper, we introduced STARE, a novel benchmark specifically designed to evaluate multi-
modal models on diverse spatial cognition tasks involving complex visual reasoning and mental
simulations. STARE uniquely assesses model capabilities across foundational geometric transfor-
mations, integrated spatial reasoning tasks, and real-world scenarios requiring temporal and per-
spective reasoning. Our extensive experiments reveal significant performance variations among
multimodal models, highlighting substantial challenges, especially in complex, multi-step reason-
ing scenarios. Visual simulations notably enhance performance on simpler tasks but yield mixed
results for more sophisticated tasks. The substantial gap in performance between closed-source
and open-source models further emphasizes the necessity for advancements in multimodal reason-
ing. Overall, STARE sets a critical benchmark to guide future research towards human-level spatial
reasoning capabilities in Al
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5 ETHICS STATEMENT

STARE provides a standardized way to measure Al capabilities in spatial reasoning tasks, poten-
tially guiding research toward Al systems that can better support robotics, autonomous driving,
augmented reality, and education. However, improved spatial reasoning could also lead to negative
societal impacts if misused, such as enhanced surveillance or military applications. Additionally, the
synthetic nature of STARE may introduce biases toward simplified or artificial scenarios, limiting
direct applicability to real-world conditions. Future versions should aim to include more realistic,
diverse datasets and consider ethical guidelines to minimize risks and ensure fair, positive societal
outcomes.

6 REPRODUCIBILITY STATEMENT

We have taken substantial steps to ensure the reproducibility of our results. All experimental set-
tings are described in detail in Appendix |G} We provide complete documentation of the statistics of
STARE and the design spaces for all synthetic tasks, including 2D transformations, 3D transforma-
tions, cube net folding, and tangram puzzles in Appendix [[] Data curation and evaluation code is
included in the supplementary material to facilitate verification and reuse. Together, these resources
enable the community to reproduce our experiments and extend our findings.
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A OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

¢ Section [Bldiscusses the use of LLMs.
« Section[Cldiscusses the limitations of STARE.
» Section D] presents an extended discussion about related works.

* Section [F] details the statistics of STARE and the design spaces for all synthetic tasks,
including 2D transformations, 3D transformations, cube net folding, and tangram puzzles.

* Section[E]provides additional analysis complementary to Section[3] including detailed error
analysis, impact of # visual simulations and reasoning efforts, and additional results on
human evaluation.

* Section [G] describes the experimental setup, covering the prompts used, model configu-
rations, hyperparameter settings, and presents full visualizations of different experimental
settings (e.g., evaluation settings with or without visual simulations, perception probing
questions).

* Section [H provides results on additional models for analysis conducted in Section [3]

B THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as auxiliary tools during manuscript preparation, but only
for surface-level editing such as grammar correction, minor rephrasing, and stylistic refinements to
improve readability. Al-assisted coding was employed in curating synthetic data, but under strict
human supervision and review. In addition, LLMs served as judges in our detailed error analysis;
however, we manually reviewed a subset of their outputs to verify accuracy. All research ideas,
methodologies, experiments, and conclusions were conceived and executed exclusively by the au-
thors.

C LIMITATIONS

Although STARE provides valuable insights, it still has several limitations. First, it uses simplified
synthetic images that do not fully represent real-world complexity; future versions could include re-
alistic or dynamic scenes with clutter and occlusion. Second, it focuses only on rigid shape transfor-
mations; adding tasks involving flexible shapes, articulated objects, or additional sensory cues (such
as audio or depth) would cover a wider range of spatial reasoning skills. Lastly, multiple-choice
scoring hides intermediate reasoning steps; extending evaluations with explanations, step-by-step
checks, or open-ended responses would give more detailed insights, which we briefly explore in

Appendix [E|

Still, STARE ’s current design has clear strengths. The simplified images isolate spatial reasoning
from general object recognition tasks. Its structured variety of tasks helps pinpoint specific model
difficulties. Automatic scoring ensures consistent and easy-to-scale evaluations. Modular task pre-
sentations (image-only, text-only, image+text prompts) let researchers analyze individual modality
contributions. Additionally, synthetic data makes STARE easily reproducible, accessible, and ex-
tensible. Overall, STARE is a strong first step toward measuring multimodal spatial reasoning, with
clear pathways toward more realistic and comprehensive future benchmarks.

D RELATED WORK

Human visual reasoning. Human visual reasoning relies on two complementary faculties: re-
lational analogy—mapping abstract structures across scenes—and mental simulation—predicting
future states through incremental transformations. Structure—Mapping Theory (Gentner, |1983)) and
analyses of Raven’s Progressive Matrices (Carpenter et al.,|1990) first showed that success in visual
problem-solving hinges on aligning relations rather than surface features. Computational accounts
echo this claim: explicit relational models reproduce human-like performance (Lovett & Forbus)
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Dataset VSim 2D/3D  Synth/Real Multi-step Train/Eval Size Focus

STARE v 2D&3D Both v Eval ~4K  Multi-step spatial simulations

VSI-Bench X 3D (video) Real X Eval 5K Spatial memory & layout recall
from egocentric videos

KiVA X 2D Synthetic v Eval 43K Visual analogical reasoning in-
spired by child cognition

TurtleBench X 2D Synthetic v Eval 260 Reproduce geometric programs
via turtle graphics

SPARE3D X 2D & 3D  Synthetic v Both 220K+ Spatial reasoning with 3-view
CAD drawings

VSR X 2D Real X Eval 10K Spatial relation understanding
in caption-image pairs

DetermiNet X 2D Synthetic X Both 250K Referring expression under-
standing with quantifiers and
determiners

Forgotten Polygons X 2D Synthetic X Eval 2K  Shape identification and count-

ing under visual ambiguity

GeoGramBench b 4 2D Synthetic (4 Eval 500 Symbolic geometric reasoning
from procedural programs

VisuLogic b 4 2D Synthetic X Eval 1K General visual logic across di-
verse reasoning types

Table 6: Comparison of existing visual/spatial reasoning datasets versus STARE.

2017), whereas modern deep networks still struggle with visual analogy tasks (Ichien et al., 2021}
‘Webb et al., 2022} Ichien et al., 2023)).

Mental simulation complements analogy-making. Classic work on mental rotation (Shepard & Met-
zler| |[1971) and mechanical reasoning (Hegartyl 2004a) demonstrates that people mentally “run”
transformations, consistent with grounded-cognition theories (Barsalou, 2008)). Intuitive-physics
studies cast the mind as a noisy physics engine that combines object-centric structure with proba-
bilistic dynamics (Battaglia et al., 2013} Tenenbaum et al.,|2006; |Ullman et al., 2017). Object-based
predictive-coding models such as PLATO extend these ideas, achieving human-like physical pre-
diction and developmental trajectories (Yang et al., 2023; |Piloto et al., [2022). Simulations are also
selective: people allocate attention “just in time,” focusing on the most diagnostic elements instead
of exhaustively modeling the entire scene (Bass et al.||2022; Bear et al.||2022; |Chen et al., 2023)).

Together, these findings suggest that effective problem-solving hinges on the ability to carry out
step-by-step visual simulations; our benchmark therefore probes whether multimodal models can
effectively leverage or even produce such simulations and exhibit human-like visual reasoning on
sequential, compositional tasks.

Multimodal evaluation benchmarks. Recent advances in evaluating multimodal large language
models have led to the development of benchmarks targeting diverse aspects of visual reasoning.
Early benchmarks such as VQA (Antol et al.,|2015) and CLEVR (Johnson, 2017) focus on compo-
sitional reasoning and general visual question answering. However, more challenging benchmarks,
such as MMMU (Yue et al.l 2023) and Humanity’s Last Exam (HLE) (Phan et al., |2025)), assess
expert-level, domain-specific reasoning using complex multimodal inputs, where state-of-the-art
models achieve only around 60% on MMMU-pro (Yue et al.,|2024) and below 20% on HLE.

In response to the growing demand for robust evaluation, several new benchmarks (Fu™ et al.,2024;
Lu et al., 2021} Li et al.}[2024a; Tong et al.,[2024; Wu & Xie,[2023)) have been introduced. For exam-
ple, M3Exam repurposes multilingual professional-license questions (Zhang et al.|[2023). MME (Fu
et al.}2023) and MMBench (Liu et al.,[2024)) separate low-level perception from higher-level cogni-
tion. BLINK (Fu et al.,[2024) departs from pure linguistic reasoning tasks to include tasks grounded
in core computer vision capabilities, including relative depth estimation, semantic correspondence,
visual similarity assessment, inpainting, etc. Improvements on BLINK require the use of perception
tokens (Bigverdi et al.| [2024), which generate latent intrinsic images to reason, demonstrating for
the first time, that reasoning doesn’t have to be linguistic. In this work, we build upon this finding,
targeting primarily visual reasoning that can be better solved with visual cues.
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The most relevant benchmarks to ours are KiVA (Yiu et al., 2024), RAVEN/I-RAVEN (Zhang,
2019; Hu et al., 2021), SPACE (Ramakrishnan et al., [2024), and TurtleBench (Rismanchian et al.,
2024), which primarily evaluate static analogy or pattern induction, where intermediate visual simu-
lations are optional and often infeasible to curate. VSI-Bench (Yang et al.,|2024) emphasizes mental
imagery in spatial reasoning but centers on spatial memory and distance estimation from video.
Other recent efforts—such as Forgotten Polygons (Rudman et al [2025), GeoGramBench (Luo
et al.l 2025)), and VisuLogic (Xu et al.| |2025)—target more isolated failures in visual reasoning,
including shape recognition, symbolic geometry, or visual logic puzzles. In contrast, STARE intro-
duces programmatically generated puzzles—2D/3D transformations, cube-net folding, and tangram
assembly—that isolate a model’s capacity to benefit from explicit visual simulations, and further
extends to perspective-taking and temporal reasoning tasks that mirror real-world scenarios.

Table [6] compares STARE with other spatial reasoning datasets: RoboSpatial (Song et al.| 2025)
provides large-scale real 2D/3D images with annotated spatial relations; MSR3D (MSQA) (Linghu
et al.,|2024) and SQA3D (Ma et al.,|2022) support situated QA in 3D scenes but focus on single-step
queries; the Visual Spatial Reasoning benchmark (Liu et al.| |2023)) probes basic positional relations;
SPARE3D (Han et al.|[2020) presents synthetic 2D to 3D consistency puzzles; and DetermiNet (Lee
et al., 2023 emphasizes logical spatial tasks without multi-step simulation. As shown, STARE is
the only benchmark that offers a diverse suite of multi-step visual simulation tasks across both
2D and 3D domains, uniquely combining procedural puzzles, geometric transformations, and
realistic inference (perspective and temporal reasoning). Its synthetic design allows fine-grained
control over step difficulty and granularity, enabling analyses of visual reasoning beyond what ex-
isting datasets support.

E ADDITIONAL EXPERIMENTAL RESULTS

Fine-grained Reasoning Evaluation Because each synthetic task in STARE includes ground-
truth metadata for every intermediate simulation step, we can scrutinize a model’s entire reasoning
chain—something impossible on benchmarks that provide only final answers.

We have conducted a deeper error analysis of GPT-40 and Claude-3.5 predictions on all synthetic
tasks.

* We first examined representative case studies (Appendix [G.5)) and identified four recurring
categories of reasoning failure:

Error Category

Description

Representative Example

A Misperception

The model misreads shapes,
color, adjacency, or face layout.

Misidentifies cube-net face po-

sitions (Fig.

B  Flawed Spatial Simulation

The model forms an incorrect
mental model of how shapes
transform.

Claims rotated hexagon is
unchanged after 30° rotation

(Fig. @right)

C  Heuristic Over-Use

The model falls back on shal-
low heuristics (e.g., area count-
ing).

Sums tangram piece areas and
misjudges solvability (Fig. 22}
left)

D Logic Inconsistency

The reasoning process contra-
dicts itself or the final answer.

Correctly identifies two valid
answers but chooses the wrong
one arbitrarily (Fig.@right)

Table 7: Representative error categories (A—D) observed in model predictions, with descriptions and examples.

* We implemented an automated LLM-based judgment pipeline. Given a model’s chain-of-
thought, its prediction, and full ground-truth metadata (e.g., initial shape, transformation
sequence, correct answer, and options), the judge model categorizes each incorrect predic-
tion into one of the four failure types above. Here, we use 03 as the judge model.

The table below summarizes the distribution of error types across 100 randomly sampled
incorrect predictions per task, per model:
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Model Task A B C D
2D 75.8% 21.2% 0.0% 3.0%

GPT-4o0 3D 31.3% 67.7% 0.0% 1.0%
Cube Net 12.7% 87.3% 0.0% 0.0%
Tangram 68.1% 12.1% 6.6% 13.2%
2D Transform 60.0% 35.8% 0.8% 3.3%

Claude-3.5 Sonnet 3D 34.0% 64.1% 0.0% 2.0%
Cube Net 22.2% 74.7% 3.0% 0.0%
Tangram 65.9% 17.1% 9.8% 7.3%

Table 8: Distribution of error categories (A—D) across tasks for GPT-40 and Claude-3.5 Sonnet.

Different tasks show distinct failure modes: 2D and tangram errors stem from mispercep-
tion, 3D and cube nets from simulation gaps, with occasional heuristic over-use and logic
inconsistency in chain-of-thought.

* We use an LLM-as-judge with a structured rubric to score how well model reasoning traces

align with ground-truth metadata (e.g., shape interpretation, transformation accuracy). We
then sorted model responses into quartiles based on alignment score and evaluated accuracy

within each group.

Model Task Q1 (alignment) Q2 (alignment) Q3 (alignment) Q4 (alignment)
2D 61.1% (0.664)  100.0% (0.917) 100.0% (0.950) 100.0% (0.952)
GPTdo 3D 33.3% (0.325)  100.0% (0.875) 100.0% (0.927) 100.0% (0.973)
Cube Net  0.0% (0.004) 0.0% (0.096) 0.0% (0.118)  100.0% (0.606)
Tangram  0.0% (0.000) 50.0% (0.228)  100.0% (0.819)  100.0% (0.998)
2D 0.0% (0.214) 83.3% (0.768)  100.0% (0.931) 100.0% (0.959)
Claude-3.5 Sonnet 3D 0.0% (0.168) 90.9% (0.727)  100.0% (0.909) 100.0% (0.981)
Cube Net  0.0% (0.041) 0.0% (0.100) 0.0% (0.150)  100.0% (0.714)
Tangram  0.0% (0.000) 42.9% (0.161)  100.0% (0.725) 100.0% (0.991)

Table 9: Task accuracy by alignment quartile for GPT-40 and Claude-3.5 Sonnet.

This analysis reveals a strong correlation between reasoning quality and final task accuracy.
The prompt we used to scoring model reasoning is shown below.

You are an expert spatial-reasoning judge.
Given the information blocks below, score the model’s reasoning using the rubric.

Question: {question_text}

Ground Truth
Start shape: {initial_shape_desc}

— {transformation_step-desc} {transformation_outcome_desc}

— {choice_shape_desc}

Correct answer: {gt_answer}

Model Response: {model_response}
Model Final Answer: {model _pred}

Rubric — assign 0 or 1 to each item
1. Shape interpretation
2. Transformation comprehension
3. Spatial simulation accuracy
4. Answer justification (choice evaluation)
5

. Logical consistency

Return JSON
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"shape_interpretation": {"score": 0|1, "details": ""},
"transformation_comprehension": {"score": 0|1, "details": ""},
"spatial_simulation_accuracy": {"score": 0|1, "details": ""},
"answer_justification": {"score": 0|1, "details": ""},
"logical_consistency": {"score": 0|1, "details": ""},
"primary_errors": [],

"overall_assessment": ""

Number of visual simulations vs. Performance, We investigated this question briefly in Table [5
The key insight is that the benefit of visual simulations depends on task complexity and where in the
sequence the decisive information appears. We also conducted a stricter ablation that incrementally
reveals O to 3 simulation frames. The takeaway is straightforward: visual simulations help only
when the model can integrate them; otherwise they add noise.

Because examples have different total chain lengths, the same column mixes complete simulations
for short chains (e.g., all 2—step tasks are already complete at # simulations = 1) and partial simula-
tions for longer ones (e.g., only one of two frames visible at # simulations = 1 for 3—step tasks). If
a model could perfectly integrate every extra frame, scores would rise monotonically. However, the
results above suggest otherwise, especially for more complex tasks. These results again highlight a
core limitation: models lack the capacity to mentally simulate and reason over visual sequences, a
skill that humans perform reliably.

Model Task # of simulations = 0 1 2 3
2D 71.2 78.0 85.6 —
3D 65.5 67.2 69.6 —

GPT-4o Cube Net 50.3 50.5 49.2 49.1
Tangram 52.5 51.7 46.6 54.7
2D 65.9 67.7 75.3 —
3D 51.5 60.8 53.9 —

Claude-3.5 Cube Net 52.3 51.3 51.7 50.0
Tangram 59.0 60.1 62.2 69.0

Table 10: Ablation with 0-3 intermediate simulations. Bold indicates best performance per row.

Reasoning Efforts vs. Performance. In addition to the results of 03 reported in Table [I} we
further report 03 performance across different reasoning efforts (low, auto, high), as it is specifically
optimized to “think with images” and perform extended reasoning.

Task (w/o vs. w/ VSim) 03-Low 03-Auto 03-High Human
2D 88.1/92.3 87.5/89.3 89.7/89.5 96.8/ 98.6
3D 73.71175.3 75.2/78.4 73.9/76.5 94.6/97.0
Cube Net 65.3/71.7 68.4/72.5 66.3/71.1 98.3/99.0
Tangram 68.6/76.5 68.6/ 82.1 66.4/82.8 91.5/95.8
Video-temporal 55.8 514 543 99.0
Perspective 43.6 42.8 44.0 98.1
Overall 67.5 67.5 68.8 97.1

Table 11: Performance of 03 model across different reasoning efforts (Low, Auto, High) compared to human
annotators on STARE tasks. For tasks with visual simulation (VSim), accuracy is reported as “w/o / w/ VSim”.

While 03 outperforms earlier models such as ol and GPT-4o, its performance on STARE remains
significantly below human-level. Notably, 03 leverages visual simulations more effectively than
prior models. However, humans show only small performance gaps between conditions with and
without visual simulation, reflecting their ability to mentally simulate transformations. In contrast,
03 exhibits substantial drops without external visuals, highlighting a key limitation: the inability to
perform internal, structured visual simulation—a core component of human spatial reasoning.

In addition, while 03 has reported to benefit from extended reasoning, simply increasing the reason-
ing efforts from low to high does not guarantee better spatial reasoning.
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Additional Results on Human Evaluation. In Table |l we reported the average human perfor-
mance and average response time for each task across 5 participants. In Tab. wer further report
the standard deviation. Mean accuracy across five annotators is 97.07% with a standard deviation of
0.47, indicating that the questions in STARE are well-defined.

Task Accuracy (%) Time (s)
2D 96.75 + 1.30 14.23 +£1.99
2D + VSim 98.56 + 1.10 10.95 £+ 1.51
3D 94.61 + 1.44 17.06 + 5.08
3D + VSim 96.98 + 0.80 12.53 + 0.65
Cube Net 98.29 + 1.65 13.67 4+ 3.66
Cube Net + VSim 98.86 + 1.46 5.16 £ 0.49
Tangram 91.53 +2.56 27.98 4+ 5.85
Tangram + VSim 95.78 + 1.07 10.08 + 4.20
Temporal 99.03 £ 0.98 16.19 + 3.96
Perspective 98.10 £ 0.17 18.04 - 4.46
Overall 97.07 £+ 0.47 -

Table 12: Task accuracy and response time across STARE benchmark tasks, with and without visual simulation
(VSim).

Correlation Analysis between Synthetic tasks and Real tasks. In Section we briefly dis-
cussed the correlation between averaged model performance on synthetic tasks (including 2D trans-
formation, 3D transformation, cube net folding and tangram puzzle) and that on real-world tasks
(including temporal frame reasoning and perspective reasoning). Fig. [7]shows the averaged model
performance on synthetic and real-world tasks across 11 models and the fitted line with correlation
coefficient r = 0.88.

Claude 3.5 Sonnet ol
= x  Closed-source \GPT‘4° X o
= 7’
< 40 Open-source x X s
o --= Fit line (r = 0.88) o X~ +X Gemini-2.0 Flash
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|9 //
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'
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o 26 Pid Qwen-2.5-VL-3B
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Figure 7: Correlation between model performance on synthetic tasks and that on real-world tasks.

Note that for open-source models, the real-world task performance is close to random guessing
(29%). Removing the open-source models, the correlation coefficient decreased to r ~ 0.58, still
showing a weak but positive correlation between synthetic task performance and real-world task
performance.

F DATA CURATION DETAILS

Fig. [§] presents the overall composition of STARE. Tab. [T3]details the number of instances for each
task in STARE, further broken down by whether the input contains an explicit intermediate visual
simulations.
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Perspective Tangram Puzzle Vsim
Temporal G UeF
Tangram Puzzle
12.0%
13.5%
18.3%
28.8%
2D Text Instruct 8.5% RSR ISR 3.0% Folding Nets Vsim
4.9% Folding Nets
5.6%
2D Text Instruct Vsim
3D Va Vsim
7.8%
2D Va 5.29%
2D Va Vsim .
3D Text Instruct Vsim
3D Text Instruct

RSR: Real-world Spatial Reasoning

FGT: Foundational Geometric Transformations

ISR: Integrated Spatial Reasoning

Figure 8: Data Statistics of STARE.
Task category Without visual simulation = With visual simulation  Total
Foundational Geometric Transformations
2D transformations 639 423 1,062
3D transformations 612 408 1,020
Integrated Spatial Reasoning
Cube net folding 193 120 313
Tangram puzzle 532 289 821
Real-world Spatial Reasoning

Perspective reasoning 250 - 250
Temporal frame reasoning 471 - 471
Total 2,697 1,240 3,937

Table 13: Dataset statistics grouped by task category and by the presence of full intermediate visual simulation.

Below, we summarize the design space of data curation for synthetic tasks, including (1) 2D Trans-
formations ( ; (2) 3D Transformations (§F2); (3) Cube Net Folding (§F3); and (4) Tangram
Puzzles ( ;

F.1 2D TRANSFORMATIONS
Shape generation. Shapes are selected from a fixed set and assigned properties as follows:

» Types: Circle, Square, Rectangle, Triangle, Ellipse, Hexagon, Pentagon.
¢ Colors: Face color is a random RGB tuple (r, g,b € [0, 1]); edge color is fixed (black).
* Center & Size: All shapes are centered at (0, 0). For circles, squares, triangles, hexagons,
and pentagons, size is a scalar drawn from [30, 35]; for rectangles and ellipses, size is a
tuple (width in [30, 35], height in [20, 25]).
Transformations. A sequence of randomly sampled operations is applied to the shapes:

* Rotate:
— Squares: £30°, £60° (avoiding 90°).
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— Hexagons: £30°, £90°.
— Others: +30°, +60°, or £90°.

Rotation is applied w.r.t the shape’s center.

* Flip: Horizontal (about y = 0) or vertical (about x = 0); not applied when the shape is

centered at (0, 0) for symmetric shapes such as square, circle and etc.

* Translate: (dz,dy) with dz,dy € {—30,—10,0,10,30} with constraints to ensure a

nonzero translation.

* Scale: Factors chosen from {0.5, 2.0}, ensuring the resultant size is within roughly [10, 40].

* Shear: Parameters (shear,, shear, ) are drawn from approximately [—1, 1], with constraints
to ensure a perceptible skew. Shear is excluded for 2D text instructed transformation tasks,
as human participants find it hard to describe the degree of shear such that they can differ-

entiate among the answer candidates.

Number of Transformation Steps. The final dataset contains instances with 1, 2, or 3 transforma-

tion steps.

Easy

Q)

e @

Imagine transforming a pentagon step by step.
<shapeB_image>

Follow these changes:
Rotate the pentagon by 30 degrees counter-
clockwise around its center.

After these transfor i which of the foll
shapes best represents the final result? For
reference, the black dots in each panel of the
figures indicate the origin.

®

Hard

Imagine transforming a circle step by step.
<shapeB_image>

Follow these changes: - Reduce the size of the
circle, making it smaller. <shapeB_step_o> After
these transformations, which of the following
shapes best represents the final result? For
reference, the black dots in each panel of the
figures indicate the origin.

&) ®) © ©

3-step Hard (w/ VisSim)

.l . m .

Imagine transforming a square step by step. <shapeB_image> Follow these
changes: - Shift the square to the right by a significant amount and slightly
upward. <shapeB_step_o> - Reduce the size of the square, making it smaller.
<shapeB_step_1> - Rotate the square by 60 degrees clockwise around its center.

<shapeB_step_2> After these ti ions, which of the
best represents the final result? For reference, the black dots in each panel of
the figures indicate the origin.

®

following shapes

© ©

= . ® ‘

g

AANESVIA IR

Medium

Imagine transforming a triangle step by step.
<shapeB_image>

Follow these changes: - Reduce the size of the
triangle, making it smaller. <shapeB_step_o>
After these transformations, which of the
following shapes best the final
result? For reference, the black dots in each
panel of the figures indicate the origin.

©)

2-step Hard

Imagine transforming a hexagon step by step.
<shapeB_image>

Follow these changes: - Rotate the hexagon by 30
degrees clockwise around its center.
<shapeB_step_o> - Shift the hexagon to the left by
asignificant amount and significantly upward.
<shapeB_step_1> After these transformations,
which of the following shapes best rep the
final result? For reference, the black dots in each
panel of the figures indicate the origin.

w ® © ©
Easy (w/ Vis Analogy)

p=0 s Observe the transformation pattern of
Shape A through steps o to 1.

I ’ <question_image>

Apply the same transformation
sequence to Shape B and determine
the final shape at step 3.
=== et <image_for_B> For reference, the

black dots in each panel of the figures
indicate the origin. Select the correct

‘ ? answer choice that matches the
expected transformation result.
<answer_choices>

(@) ® ©

» < P

Figure 9: Design space of 2D Transformations (1).
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Medium (w/ Vis Analogy)

Observe the transformation pattern
of Shape A through steps o to 1.
= ' <question_image> Apply the same
transformation sequence to Shape B
and determine the final shape at
step 3. <image_for_B> For reference,
the black dots in each panel of the
figures indicate the origin. Select the
correct answer choice that matches
? the expected transformation result.

<answer_choices>

Hard Hard

Hard

") ®) © ©)

& @ |:| _

Figure 10: Design space of 2D Transformations (2).

F.2 3D TRANSFORMATIONS

Shape generation. 3D objects are loaded from external blend files and instantiated with random

properties defined in a JSON file. Their attributes include:

» Types: Various 3D models such as cube, sphere, cone, cylinder, torus, pyramid, etc.

* Colors & Materials: Colors are sampled from a predefined set, and materials are selected

from external files.

* Size & Location: Objects are assigned a size scalar (from the JSON-specified values) and
an initial 3D location (typically near the origin), with adjustments to ensure they remain

above the ground plane.
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Transformations. A sequence of randomly sampled operations is applied to the objects in 3D space:

¢ Translate:

(73T Y3 i)

— Axis selection: Randomly choose one or more axes from x, y, and z (e.g., “x”, “xy”,

CLINT3

“XZ , yZ”).
— Displacement: Translations are applied with discrete displacements: along x and y by

=+2 units and along z by +1 unit, with constraints to keep the object above the ground
(z > 0).

¢ Rotate:

— Axis: A single rotation axis is chosen randomly from x, y, or z.

— Angle: The rotation angle is drawn from a discrete set (typically +30°, £60°, or
£90°), with the range sometimes adjusted for specific shapes (e.g., cubes or pyra-
mids).

— Rotation is applied about the object’s center.

* Shear:

— Plane: The shear operation is applied along one of three directional pairs: z,, ., or
Yz-

— Factors: Two shear factors are sampled uniformly from the interval [0.2, 1.0], with an
enforced minimum difference (approximately 0.4) to ensure a perceptible skew.

¢ Scale:

— Factor: A uniform scaling factor is chosen from 0.5, 2.0, either reducing or enlarging
the object while keeping its final size within acceptable bounds.

* Flip:

— Direction: The object is reflected along a principal axis—{flipped horizontally (reflec-
tion across the x-axis) or vertically (reflection across the y-axis).

All transformation operations are applied sequentially, updating the object’s 3D coordinates (includ-
ing its bounding box and center) to reflect the cumulative effects.

Number of Transformation Steps. Instances are generated with transformation sequences com-
prising 1, 2, or 3 steps, where each step randomly selects one of the available operations. This
multi-step approach enables a diverse design space of 3D transformations, as the operations can
compound in various orders and combinations.

F.3 CUBE NET FOLDING

Net Representation. Cube nets are represented as collections of faces, where each face is defined
by its vertices in 3D space. Additional attributes include:

» Face Geometry: Each face is a polygon (typically a quadrilateral) with vertex coordinates
stored as NumPy arrays.

* Connectivity: A mapping of face connections identifies which faces share common edges,
serving as potential hinges.

* Visual Attributes: Faces are rendered with colors (sampled from a colormap) and labeled
with their keys for easy identification.

Folding Operations. The folding process simulates converting a 2D cube net into a 3D cube via a
sequence of rotation operations:

* Shared Edge Detection: The algorithm locates the common edge between a candidate face
and an already folded face. A tolerance is used to robustly identify two shared vertices.

* Rotation Calculation: Using the shared edge as a hinge, a rotation is computed with a
fixed magnitude of 90° (i.e. +/2 radians). The sign of the angle is chosen by comparing
the candidate face’s center (projected onto the hinge’s perpendicular plane) with the desired
direction toward the cube’s center, which is derived from the base face.
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* Recursive Propagation: The rotation is applied not only to the candidate face but also
recursively to all connected faces that have not been folded yet, ensuring that the entire net
adjusts consistently.

Folding Sequence and Visualization. The design space supports iterative, step-by-step folding,
with each step comprising:

* Candidate Selection: Among the faces not yet folded, the algorithm picks one that is

connected to an already folded face.

* Folding Parameters: It computes the rotation axis (the shared edge) and the appropriate
90° rotation (with correct sign) to fold the face into its 3D position.

* Instruction Generation: Each fold is described in natural language (e.g., “Fold face 2
upwards towards face 3”) based on changes in the face’s center relative to the cube’s base.

* 3D Rendering: After each step, the current state of the net is visualized using a 3D plot
(with Poly3DCollection) and saved as an image.

Perturbation and Validity. To enrich the design space and introduce challenge:

* Perturbations: Selected folding steps can be intentionally altered by inverting the rotation
angle or modifying the rotation axis. This simulates errors or variations, yielding nets that
might fold incorrectly.

 Validity Checks: Functions are provided to verify that folded faces do not overlap, that
shared edges are consistently maintained, and that face connections remain intact. These
checks ensure that the final folded cube is geometrically valid.

Dataset Generation and Perception Tasks. Beyond simulating the folding process, the design
space incorporates mechanisms to create annotated datasets:

* Instructional Sequences: Detailed, step-by-step folding instructions (with corresponding
images) are generated, supporting tasks that require understanding the folding procedure.

* Perception Variants: Additional tasks query the observer’s perception—such as verifying
if a particular face has been folded or determining the connectivity between faces—using
intermediate folding images.

Randomness and Parameter Control. Stochastic elements pervade the folding simulation:

* Random seeds govern the selection of candidate faces, the decision to perturb a folding
step, and the choice of rotation adjustments.

 This randomness ensures that a diverse range of cube nets and folding sequences are pro-
duced, which is crucial for generating robust datasets and for studying perception and rea-
soning in 3D folding tasks.

F.4 TANGRAM PUZZLE

Segmentation. The puzzle begins with an iterative segmentation algorithm that splits a full rectan-
gular board into smaller pieces. The process is governed by a minimum piece size and a maximum
number of pieces. At each segmentation step, the algorithm:

* Selects a splittable rectangle based on its area.

» Chooses a split direction (horizontal if the height is greater or vertical otherwise) and a split
line ensuring both resulting pieces exceed the minimum size.

* Records each split as an action with details (original rectangle, split line, and direction) that
form the basis for later textual instructions.

Piece Generation & Attributes. Each tangram piece is defined by its board coordinates (e.g., (r0,
rl, c0, c1))and derived properties such as area and dimensions. Additionally:

* Colors: Pieces are assigned unique, randomly generated colors.
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* Visualization: Grid lines and labels are overlaid on each piece to indicate its boundaries
and area, facilitating clear visualization during reassembly.

Scrambling and Transformation. Once segmented, pieces are scrambled to increase puzzle com-
plexity. This involves applying a series of random transformation operations:

* Rotation: Each piece is rotated by a discrete angle chosen from 0°, 30°, 60°, 90°.
* Translation: Pieces are repositioned into non-overlapping cells on a larger canvas.

* Flip: In some reassembly variants, horizontal or vertical flips are applied to further ran-
domize the piece orientations.

G EXPERIMENTAL DETAILS

G.1 MODELS AND SETTINGS

To expedite response generation, we use the VLLM (Kwon et al. [2023)) library, an open-source
tool for fast LLM inference and serving. For all other cases, we load models directly using the
Transformers (Wolf et al., [2020)) library. All model sources are official and listed in Tab. [Ef} When
evaluating different models, we use default hyperparameter values unless otherwise specified,
with detailed parameter settings provided in Tab. [I4] For all models, we explicitly prompt it with
Think step-by-step, and then put your final answer in \"\\boxed{}\".
to encourage chain-of-thought reasoning and for easier answer parsing.

Model Parameter Setting Source URL
GPT-40 temperature = 0.0 chatgpt-4o-latest https://platform.openai.
com
Claude 3.5 Sonnet temperature = 0.0 claude-3-5-sonnet https://www.anthropic.com/
Gemini 2.0 Flash temperature = 0.0 gemini-2.0-flash-exp |https://ai.google.dev/
Gen%ﬁ; nzk,?nl;laSh temperature = 0.0 tlgfr?lill?llg_—ze)?ﬁg}lg https://ai.google.dev/
OpenAl ol temperature = 0.0 01-2024-12-17 https://platform.openai.
com
OpenAl 03 reasoning-efforts=auto 03-2025-04-16 https://platform.openai.
com

do_sample=True,

Qwen2.5-VL-3B temperature = 0.7

local checkpoint https://huggingface.
co/Qwen/Qwen2.

5-VL-3B-Instruct

do_sample=True,

Qwen2.5-VL-7B temperature = 0.7

local checkpoint https://huggingface.
co/Qwen/Qwen2.

5-VL-7B-Instruct

do_sample=True,

Qwen2.5-VL-72B temperature = 0.7

local checkpoint https://huggingface.
co/Qwen/Qwen2 .

5-VL-72B-Instruct

do_sample=True,

LLaVA-Onevision-72B temperature = 0.7

local checkpoint https://huggingface.
co/llava-hf/

llava-onevision—-gqwen2-72b-ov-hf

do_sample=True,

InternVL2.5-78B temperature = 0.7

local checkpoint https://huggingface.co/
OpenGVLab/InternVL2_5-78B

Table 14: The sources of models used in the experiments and the hyperparameters configuration.
G.2 VISUALIZATION OF EVALUATION SETTINGS
Fig.s [[THIZ] provide full visualizations of evaluation settings illustrated in Fig. [3] In addition, we

show an example of how real-world spatial reasoning task — temporal frame reasoning is evaluated
without visual simulation in Fig.
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https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf
https://huggingface.co/OpenGVLab/InternVL2_5-78B
https://huggingface.co/OpenGVLab/InternVL2_5-78B
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Check out an Tangram puzzle below. The left panel is an empty Tangram puzzle, while the right
panel shows available pieces to complete the puzzle.

Without Visual Simulations

The 3@ Tangram Board

c
N A 8 @ Question
2 | !
1 | |

Check out an Tangram puzzle below. The left panel is an empty Tangram puzzle, while the right
panel shows available pieces to complete the puzzle.

Without Visual Simulations

c
L Question
Steps
Below are the steps to complete the Tangram puzzle:

Step 1: Rotate piece B by about go degrees clockwise, and place piece B with its upper-left
cornerat (x,y) = (1, 3).

Step 2: Place piece A with its upper-left corner at (x, y) = (o, 3).

Step 3: Rotate piece C by about go degrees clockwise, and place piece C with its upper-left
cornerat (x,y) = (0,1).

Based on the above steps, can the Tangram puzzle be completed with the available pieces, yes or
no?

Figure 11: Examples of Tangram Puzzle under “without Visual Simulations” Evaluation Setting (top: question-
only, bottom: question+assembly steps).

‘The 3x3 Tangram Board

Check out an Tangram puzzle below: The left panel is an empty Tangram puzzle, while the right
panel shows available pieces to complete the puzzle.

“The 343 Tangram Board c

T With Visual Simulations
Question Intermediate
Visual
Below are the steps to complete the Tangram puzzle: Steps Simulations

o e 3 Tngram Bt bl Pocos

T
Step 1: Rotate piece B by about go degrees

clockwise, and place piece B with its upper-

left cornerat (x, y) = (1, 3). : |

<
Step 2: Place piece A with its upper-left E
cornerat (x,y) = (0, 3). A

T

of

Step 3: Rotate piece C by about go degrees clockwise, and place piece C with its upper-left corner
at (x,y) = (0,1).

Based on the above steps, can the Tangram puzzle be completed with the available pieces, yes or
no?

Figure 12: Example of Tangram Puzzle under “with Visual Simulations” Evaluation Setting.

Question

You see 4 sequential frames of a video, but one is missing (marked with "?').
Choose which of the images in the second row correctly fills the missing frame.
Remember, the camera only moves in one direction (left or right) in the video.

It -
Without Visual Simulations

Question

Choose the correct missing frame.

B [o]

Figure 13: Examples of Temporal Frame Reasoning under “without Visual Simulations” Evaluation Setting.
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G.3 VISUALIZATIONS OF PERCEPTION PROBING QUESTIONS

In Fig. 5] Claude demonstrates a perceptual error: while it correctly identifies all face colors, it
incorrectly perceives face 6 to be positioned beneath face 4, when it is actually located beneath
face 5. Such errors prompt an important question regarding task performance: for challenging tasks
like cube net folding, to what extent does the low performance stem from perceptual inaccuracies
rather than deficiencies in simulation capabilities or an inability to correctly interpret simulation
outcomes? We design probing questions to evaluate model performance 2D and 3D perception on
cube nets (Fig.[T4), which reveals that model fail substantially on 3D perception (Tab. [2)), which may
be the main bottleneck in understanding intermediate visualizations in cube net folding (Tab. [T)).

2D Perception (Color) 2D Perception (Connectivity)

Question: What color is face 5 in the

cube net shown in the image? Question: In the cube net shown in

the image, is face 2 directly connected

) ?
A. Light orange to face 3, yes or no?

B. Yellow
C. Light purple
D. Lightred

3D Perception (Folded?)

Question: In the cube net folding
o..‘. process shown below, has face 6 been

folded towards 1 yet, yes or no?

Figure 14: Exemplary questions on cube nets to probe model performance on 2D and 3D perception.

G.4 VISUALIZATIONS OF STARE TASK IN DIFFERENT REPRESENTATIONS

Fig.s [I5HIg] provide concrete examples of the input modalities evaluated in STARE. For every task
family we visualize the image-only variant (the original format in STARE), the text-only variant
(compact symbolic description that can be consumed without vision), and—where applicable—the
combined image+text variant that concatenates the two.

* 2D and 3D transformations. In the text-only panels, each object is serialized as
<shape>, <color>, <x,y>, <size>, with attributes separated by commas (e.g.,
“square, red, (3, 4), 27). The image+text panels place the same textual de-
scription beneath the image, so that language and vision can be attended to jointly.

* Cube-net folding. We flatten the cube into a 2D grid and enumerate its faces from 1 to 6.
The text-only representation thus becomes a short digit string (e.g., “123456”) or a block
array that mirrors the spatial arrangement of the net.

* Tangram puzzle. Because rotations in the image cannot be expressed succinctly in the
image-+text setting, we show only image-only and text-only variants. Each piece is labeled
alphabetically and encoded by a binary occupancy grid—rows of “1” indicate filled cells,
yielding a representation that is both human-readable and unambiguous for MLLMs.

Together, these examples clarify the correspondence between the natural visual stimuli and the
stripped-down symbolic forms used in our text-only experiments, as introduced in Section[3.3]
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Image-only

Imagine transforming a triangle step by step.

Follow these changes:

] ) L Image+Text
+ Shift the triangle to the left by a significant amount and
slightly upward.

<

@ ®) © ©)

> <«

Imagine transforming a triangle step by step.

After these transformations, which of the following shapes
best represents the final result? For reference, the black
dots in each panel of the figures indicate the origin.

Initially, you see a triangle located at (0.00, 0.00), 54.4 - 51.9
units, RGB(0.03, 0.32, 0.97).

<

After these transformations, which of the following shapes best represents the final
result? For reference, the black dots in each panel of the figures indicate the origin.

Follow these changes:

+ Shift the triangle to the left by a significant amount and
slightly upward.

» <« P 9q

A. atriangle located at (-3.29, -1.24), 23.3 « 30.6 units, RGB(0.03, 0.32, 0.97).

Text-only
Imagine transforming a triangle step by step.
Initially, you see a triangle located at (0.00, 0.00), 54.4 « 51.9 units, RGB(0.03, 0.32, 0.97).
The answer choices are:
Follow these changes:
« Shift the triangle to the left by a significant amount and slightly upward.
B. a triangle located at (-30.00, 10.00), 54.4 - 51.9 units, RGB(0.03, 0.32, 0.97).

After these transformations, which of the following shapes best represents the final

result? C. atriangle located at (-6.33, 2.58), 45.9 ~ 57.8 units, RGB(0.2, 0.2, 0.18).

The answer choices are: D. a triangle located at (8.00, 2.57), 54.4 - 51.9 units, RGB(0.95, 0.22, 0.67).
A. atriangle located at (-3.29, -1.24), 23.3 « 30.6 units, RGB(0.03, 0.32, 0.97).

B. a triangle located at (-30.00, 10.00), 54.4 ~ 51.9 units, RGB(0.03, 0.32, 0.97).

C. atriangle located at (-6.33, 2.58), 45.9 ~ 57.8 units, RGB(0.2, 0.2, 0.18).

D. a triangle located at (8.00, 2.57), 54.4 - 51.9 units, RGB(0.95, 0.22, 0.67).

Figure 15: Visualizations of 2D transformations (w/ text instructions) in different representations (upper left:
image-only, lower left: text-only, right: image+text).

Image-only

Imagine transforming a pyramid step by step.

Follow these changes:
Image+Text
* Move the object up 9
Imagine transformii id step by step.
After these transformations, which of the following shapes magine transiorming a pyramic step by step
best represents the final result? For reference, the black
dots in each panel of the figures indicate the origin.

A 3 c D )

Text-only

Initially, you see a large pyramid located at (0.00, 0.00,
0.80), size large, red made of MyMetal.

Follow these changes:

* Move the object up

After these transformations, which of the following shapes best represents the final
result? For reference, the black dots in each panel of the figures indicate the origin.

A B c o

Imagine transforming a pyramid step by step.

Initially, you see a large pyramid located at (0.00, 0.00, 0.80), size large, red made of

MyMetal.
Follow these changes:
+ Move the object up.

After these transformations, which of the following shapes best represents the final
result?

The answer choices are:

A. a large pyramid located at (0.00, 0.00, 0.80), size large, red made of Material_0.
B. a large cylinder located at (0.00, 0.00, 1.09), size large, red made of Material_0.
C. a large torus located at (0.00, 0.00, 0.20), size large, red made of Material_0.

D. a large pyramid located at (0.00, 0.00, 1.80), size large, red made of Material_0.

The answer choices are:

A. a large pyramid located at (0.00, 0.00, 0.80), size large, red made of Material_0.
B. a large cylinder located at (0.00, 0.00, 1.09), size large, red made of Material_0.
C. a large torus located at (0.00, 0.00, 0.20), size large, red made of Material_0.

D. a large pyramid located at (0.00, 0.00, 1.80), size large, red made of Material_0.

Figure 16: Visualizations of 3D transformations (w/ text instructions) in different representations (upper left:
image-only, lower left: text-only, right: image+text).
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Image-only

Check out a net with 6 faces below:

Here are the steps to fold the net with face 4 as the base:
Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2

Step 4: Fold face 6 downwards towards face 2

Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Text-only
Check out a net with 6 faces below:
12
4
53
6

Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2
Step 4: Fold face 6 downwards towards face 2
Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Image+Text

Check out a net with 6 faces below:

2>
7 4
.-
The net above can be represented the following in text:

12
4
53
6

Here are the steps to fold the net with face 4 as the base:
Step 1: Fold face 2 upwards

Step 2: Fold face 5 upwards

Step 3: Fold face 3 inwards towards face 2

Step 4: Fold face 6 downwards towards face 2

Step 5: Fold face 1 inwards towards face 4

Based on the above steps, can the net be folded to form a cube, yes or no?

Figure 17: Visualizations of cube net folding in different representations (upper left: image-only, lower left:

text-only, right: image+text).

Image-only

Check out a Tangram puzzle below.
Available Pieces

The 3x3 Tangram Board

822

o
13 T H 3

The left panel is an empty Tangram puzzle, while the right panel shows available pieces
to complete the puzzle. Keep in mind that you can rotate or flip the pieces.

Can the Tangram puzzle be completed with the available pieces, yes or no?

Text-only

Tangram-Style Text Puzzle Can you use all of the following pieces—rotating or flipping
them as needed—to exactly fill a 3x3 square without overlaps or gaps?

Target board: a 3x3 grid
Available pieces:

Piece A:

"

Piece B:

n

1

Piece C:
111

For each piece, the grid cells it occupies are marked with 1s and the rest with Os.

Instructions:
« You must place every cell of each piece somewhere in the grid.
 Pieces may be rotated in 90° i or flipped hori vertically.

Question: Is it possible to fill the 3x3 board exactly with these pieces? (Yes or No)

Figure 18: Visualizations of tangram in different representations (left: image-only, right: text-only).

G.5 CASE STUDY

Fig. [I9] presents error cases on 2D transformation tasks from ol and GPT-40. The ol explanation
correctly identifies that a regular hexagon rotated 30° counter-clockwise will have a vertex pointing
straight up, so it chooses panel B, but its justification overlooks potential differences in size, color, or
shape variants among the answer choices. GPT-40, meanwhile, mistakenly claims the hexagon looks
“exactly the same” after a 30° rotation (confusing 60° symmetry with 30°) and vacillates between
panels A and C, revealing it doesn’t fully grasp the visual outcome of the specified rotation.
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O1 Error on 2D Transformation

Question: Imagine transforming a hexagon
step by step. Follow these changes:

- Rotate the hexagon by 30 degrees
counter-clockwise around its center.

After these transformations, which of the

following shapes best represents the final
result?

@@ o

o1
Solution Sketch:

©

1. A regular hexagon in the “flat-top” orientation (as in panel A) hasa
horizontal edge along the top.

2. Rotating it \(30”\circ\) counterclockwise around its center puts one
of its vertices directly upward, without changing its size.

3. Among the choices given, panel B shows precisely that same
hexagon reoriented by \(30"\circ\), matching both the new £\
orientation and the same overall size.

Therefore, the final shape after the specified rotation is the one shown
in panel B.

Error Analysis:

Model only focuses on the detail “one of its vertices directly upwards”
while ignore the differences in size, color and shape.

X—

GPT-4o0 Error on 2D Transformation 8

J

GPT-40:
To solve this problem, we need to visualize a transformation of a
hexagon through rotation:

1. **Initial Hexagon**: Start with a regular hexagon centered at the
origin (black dot).
2. **Rotation by 30 Degrees Counter-Clockwise**:

- A regular hexagon has six sides and rotational symmetry through
angles of \(60”\circ\) (each internal angle is \ (120" \circ\)).

- Rotating the hexagon by \(30”\circ\) counter-clockwise will result
in the hexagon looking exactly the same due to its symmetry.

- Essentially, each vertex is shifted to the position of its neighboring
vertex.

After considering these steps, the shape and size of the hexagon remain
unchanged, just its orientation. Since it’s a regular hexagon, it will A
look the same after a \(30”\circ\) rotation.

Now referring to the images provided:

- **(A)**: This looks identical to a regular hexagon, which could match
the rotated state of the hexagon due to its symmetry.

- **(B)**: This appears to be a distorted pentagon, not a suitable match.
- **(C)**: This also looks like a regular hexagon but in purple.

- **(D)**: This looks like a smaller version of (C).

Assuming the only transformation was a rotation, neither the size nor
shape should change beyond orientation.

Based on these considerations, the best option that represents a
regular hexagon after rotation is both (A) and (C). Given that the
original hexagon is most likely the same size and color as shown
in (A) based on typical transformation descriptions, the most direct
match without size or color changes mentioned would be (A).

Error Analysis:
Model does not know what the shape would look like after 30 degree
rotation.

Figure 19: Error cases of ol and GPT-40 on 2D transformation.

Fig. presents error cases on 3D transformation tasks from ol and GPT-40. The ol response
accurately places the torus up and left of the origin and selects panel A, but it overlooks that mate-
rial/appearance differences could also rule out that choice. GPT-40 correctly sees that both panels
A and D share the required displacement, yet it arbitrarily favors D, giving a justification (“clearer
displacement”) unrelated to the stated transformation criteria, so its final selection is wrong despite

partially sound reasoning.

Question: Imagine transforming a torus step
by step. Follow these changes:

- Move the object to the left along the y-axis
and up

After these transformations, which of the

following shapes best represents the final
result?

A B Cc D
o1:

Step by step:

« “Left along the y-axis” (as shown in the panels) places the torus to the
viewer'’s left of the black dot.

+ “Up” raises it above that black dot.

 Among the choices, only panel A shows the torus both leftward )
and above the origin.

Error Analysis:

Model only focuses on the detail “the torus both leftward and above the
origin” while ignore the differences in material

-

GPT-40 Error on 3D Transformation 8

J/

-

GPT-40:
To solve this problem, we need to perform the given transformations on
the torus and determine the final position.

1. Initial State: The torus is at the origin, as indicated by the black dot.

2. Transformation:

- Move the torus to the left along the y-axis: In standard coordinate
systems, moving leftwards means decreasing the y-coordinate. So, the
torus is moved negatively along the y-axis.

- Move the torus up: This involves increasing the z-coordinate,
moving the torus upward.

3. Analysis of Options:

- A: The torus is positioned to the left and up, which matches the
transformation requirements.

- B: The torus is directly at the origin, which does not match any
transformations.

- C: The torus is at the origin, which does not match any
transformations.

- D: The torus is positioned both to the left and up, which matches
the transformation requirements.

Both A and D match the transformations described. However, option
D shows a clearer displacement compared to A for both axes.

A

Therefore, after considering these movements: D

Error Analysis:

Model correctly recognizes A and D are with the same transformation,
but chooses D for the wrong reason.

Figure 20: Error cases of ol and GPT-40 on 3D transformation.
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On cube net folding task, besides the perception error from Claude in Fig.[5]and the text simulation
error from GPT-4o0 in Fig. [T} when provided with intermediate visual simulation, models like GPT-
4o still struggles with understanding the intermediate visual cues. In Fig. 2T} GPT-4o asserts that
face 1 becomes the cube’s top surface, whereas face 1 is actually enclosed between faces 6 and 3.
This misrepresentation of face adjacency highlights GPT-40’s difficulty in maintaining accurate 3D
spactial cognition, which led to the wrong final result. This observation aligns with the conclusion
from the perception probing test on cube nets in Section [3.3] where GPT-4o fails substantially on
3D perception than 2D perception.

Fail to Understand Visual Simulation e

Question: Here are the steps to fold the net with face 2 as the base:
Step 1: Fold face 6 upwards

Step 2: Fold face 3 downwards

Step 3: Fold face 1 inwards towards face 6

Step 4: Fold face 4 downwards towards face 1

Intermediate Visual . Step 5: Fold face 5 downwards towards face 1

Based on the above steps, can the net be folded to form a cube, yes or no?

¢

Simulation:

(1] "
' (T GPT-40:
% To determine if the net can be folded into a cube, let's verify each step:
1. Initial Structure:
[2] ’ - Faces touching face 2:1, 3, 6.
’ - Stand up 6 and 3 makes them upright walls connected to face 2.
‘.g‘ - Faces 4and 5 are connected to face 6. A

2. Step 1: Fold face 6 upwards:
- Face 6 stands up next to face 2.
- Faces 4 and 5 are now connected to face 6 above face 2.
3. Step 2: Fold face 3 upwards:
- Face 3 stands up opposite face 6 and next to face 2.
4. Step 3: Fold face 1 inwards towards face 6:
- Face 1 moves inward and is now covering part of the top of A

o
&

Lo ATl e the cube-like structure.
Face1is not 5. Position at this step:
covering the top of - Face 6 is vertical.
the cube, rather - Face 3 is vertical opposite face 6.
connected to both - Face 1 is starting to cover the top. A

face 6 and face 3.

;I“he final answer is: \ (\boxed{\text{Yes}}\)

Figure 21: A error case from GPT-40 on cube net folding, where the model fails to understand the intermediate
visual simulation.

For tangram puzzles, the left example of Fig. [22]shows how Claude takes a shortcut by conducting
an area-based feasibility check, correctly noting that the 4 x 4 board contains 16 unit squares, but it
erroneously counts the L-shaped piece C as 5 rather than its actual 7 squares. This miscalculation re-
duces the summed piece area to 14 instead of the correct 16, leading to conclude—incorrectly—that
the puzzle cannot be completed. The right example of Fig. 22] shows how Claude fails to reason
about the piece positions when given clear step-by-step instructions. Claude correctly interprets the
coordinate instructions and board dimensions, yet its spatial reasoning falters when projecting how
the rotated pieces occupy the grid. It underestimates the extents of pieces B and D, inventing over-
laps and gaps that never arise, and therefore erroneously concludes the puzzle cannot be completed.
This error stems from an inaccurate mental simulation of spatial relationships.
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Perception Error X

Thegx4Tangram Board Question: Can the Tangram puzzle be completed

with the available pieces, yes or no?

Claude:
Let me solve this step by step.

1) First, let's observe the puzzle and pieces:
*The board is 4x4
* We have 3 pieces: A, B,and C
* Piece A is a 1x3 rectangle (coral color)
* Piece B is a 2x3 rectangle (pink)
* Piece C is a 2x3 L-shaped piece (purple) )

° 1 2 3 4

Available Pieces
B
; ‘
c

2) Let's calculate the total area:
*The board is 4x4 = 16 squares
* Piece A: 1x3 = 3 squares
* Piece B: 2x3 = 6 squares
* Piece C: 2X3 -1 = 5 squares
* Total area of pieces: 3 + 6 + 5 = 14 squares

Ja

3) Since the board has 16 squares but our pieces only

Error Analysis: cover 14 squares, it's impossible to complete the
Piece C B puzzle. We would have 2 squares left uncovered no
iece C contain 2x3 + matter how we arrange the pieces.
1=17squares
4) Even if we try different rotations and arrangements,
c

we can never cover all 16 squares with pieces that sum
to only 14 squares.

>

L

\boxed{No}

-

The 3x3 Tangram Board

o ' 2

Available Pieces
B:2x2
Az

Diix
G

Error Analysis:
After step 1: Piece B
takes up position (1,1)

3

G3)

After step 4: Piece D
takes up position (1,0)

3

G

3

[T]

Fail to Simulate in Text

Question: Below are the steps to complete the Tangram puzzle:
Step 1: Rotate piece B by about go degrees clockwise, and place

piece B with its upper-left corner at (x, y) = (3, 3).

Step 2: Rotate piece C by about 9o degrees clockwise, and place
piece C with its upper-left cornerat (x, y) = (0,1).

Step 3: Rotate piece A by about 9o degrees clockwise, and place

piece A with its upper-left cornerat (x, y) = (o, 3).

Step 4: Rotate piece D by about 9o degrees clockwise, and place
piece D with its upper-left cornerat (x, y) = (1,1).

Based on the above steps, can the Tangram puzzle be completed
with the available pieces, yes or no?

Claude:
Let me solve this step by step.

1) First, let's understand the dimensions:
*The board is 3x3
* Total area needed to be filled = g square units

2) Let's calculate the total area of the available pieces:
* Piece A (2x1) = 2 square units
* Piece B (2x2) = 4 square units
* Piece C (1x1) = 1 square unit
* Piece D (1x2) = 2 square units
* Total area of pieces = 9 square units
* This matches the board area, which is promising
3) Let's follow the steps and check if the pieces overlap or leave
gaps:
* After Step 1: Piece B takes up positions (1,1)-(2,2) £\
* After Step 2: Piece C takes up position (0,1)
* After Step 3: Piece A takes up positions (0,2)-(0,3)
* After Step 4: Piece D takes up positions (1,0)-(2,0) &

4) Checking for overlaps and gaps:
* There are overlaps between some pieces
* For example, Piece B and Piece A would overlap
* Also, some parts of the 3x3 grid would remain unfilled

5) Therefore, following these specific placement instructions:
* The pieces will overlap
* Not all squares will be covered
*The puzzle cannot be completed as instructed

\boxed{\text{No}}

J

Figure 22: Left: A perception error case from Claude on tangram puzzle. Right: An error case from Claude on
tangram puzzle, which failed to simulate the intermediate steps even when step-by-step instructions are given.

Fig. 23] presents two error cases from Claude on temporal frame reasoning. In the left example,
Claude correctly inferred the camera’s left-to-right movement across the given frames, yet it mis-
evaluated the viewpoints depicted in the answer choices and consequently selected the wrong com-
pletion frame. In the right example, the model erred even earlier, misconstruing the direction of
camera motion itself; this foundational misinterpretation then led to an incorrect choice despite a

seemingly systematic rationale.
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Claude Error on Temporal Reasoning

Claude Error on Temporal Reasoning

Question: Which image correctly fills the missing frame? Question: Which image correctly fills the missing frame?

LY ==

A B c A B c

Claude:

Let me solve this step by step:

1) Looking at <Image 1>, I can see a bottle on a wooden floor being
photographed from different angles.

Claude:

Let me solve this step by step:

1) Looking at the first 3 frames in Image 1:
- Frame 1: Shows a table and chair from one angle A
- Frame 2: Camera moves slightly to the right, showing similar view

2) Analyzing the motion: - Frame 3: Camera continues moving right, showing more of the chair

- Frame 1: Bottle is viewed more from the left

- Frame 2: Camera moves more to the right

- Frame 3: Camera continues moving right

- Frame 4: Missing frame (should show continued rightward motion)

2) The missing frame (marked with '?') should be the last frame in this
sequence, continuing the right-moving motion.

3) Looking at options in Image 2:

- Option A: Shows the initial view (same as first frame)
A - Option B: Shows a middle view of the chair
- Option C: Shows the chair from furthest right angle

3) Looking at the options in <Image 2>:

- Option A: Shows a view from the left side

- Option B: Shows a middle/centered view

- Option C: Shows a view from the right side

4) Since the camera is moving right consistently:
- The missing frame should show the chair from the most rightward angle
- This would complete the smooth motion from left to right
- Option C shows exactly this view

4) Since the camera motion in the original sequence moves from left
to right, and we need to continue this motion after frame 3, we need
the view that shows the bottle from the furthest right angle.

5) Option C shows the bottle from the rightmost angle, which would

LA " 3 5) Option C is the only one that would logically complete the sequence,
maintain the consistent rightward camera movement of the sequence.

showing the final rightmost view of the chair.

Error Analysis: Error Analysis:
Model correctly recognizes the camera motion, however fail to interpret Model fail to recognize the camera motion of the video.
the camera view angle of the answer choices. N /)

Figure 23: Error case on temporal frame reasoning.

Fig. 24] presents an error for perspective reasoning from GPT-40. GPT-40 misprojects the agent’s
top-down pose into egocentric space: it assumes the arrowed direction is pointing towards a curved
seating area and therefore selects option A. A correct geometric mapping should conclude that the
agent would instead stand next to the curved seating area. This error underscores the model’s diffi-
culty in reason about perspective changing in 3D space.

38



Under review as a conference paper at ICLR 2026

GPT-4o0 Error on Perspective Reasoning Q

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

Which option best represents the
agent's view?

GPT-40:

Let me solve this step by step:

1) Looking at Image 1, I see a top-down view of what appears to be an
interior space, with a red square and arrow indicating a viewpoint and
direction.

2) The arrow appears to be pointing towards what looks like a A
curved or semi-circular seating area.

3) Looking at the four options in Image 2:

- Image A shows a curved seating area with a view into another room
- Image B shows a central area with a rug

- Image C shows a curved seating area with columns

- Image D shows a straight seating area near a wall

4) From the agent's position and direction in Image 1, they would be
looking directly at a curved seating arrangement, with a view into
another space beyond.

5) Comparing this expected view with the options, Image A most
closely matches what we would expect to see from that position and
direction, showing a curved seating area with a view through to
another space.

Error Analysis:
Model simply cannot understand the visual details from the top-down
view image.

J
Figure 24: Error case on perspective reasoning.

Figure 2527 presents error cases from Gemini-2.0-Flash(-Thinking), ol and GPT-40. on temporal
frame reasoning.

Figure [30[29] presents errors for perspective reasoning from Gemini-2.0-Flash(-Thinking), ol and
Claude.
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(€4

o Error on Temporal Reasoning

Question: Which image correctly fills the missing frame?

GPT-40:

To solve which image fits in the missing sequence, we need to observe
the movement of the camera and orientation of the chair in the
images from <Image 1> and match it with the options in <Image 2>.

1. Orientation and Position Analysis:

- In the first frame of <Image 1>, the chair is on the left side of the
TV stand.

- In the third frame, the chair is further to the right but still not in
front of the couch.

- In the fourth frame, the chair has moved next to the couch, with
more of the couch visible.

2. Direction of Movement:
- Observing the transition of the chair from the first to the fourth
frame, the camera appears to move from left to right.

3. Identifying Correct Frame:

- For the second frame (the missing one), the chair should be
positioned between the locations seen in the first and third frames.

- Option B in <Image 2> shows this position. The camerais g
between the starting position and the subsequent move.

Therefore, the correct image to fill in the missing frame is

\(\boxed{B}\).

Error Analysis:

Model fails to identify that Option B is really the same as the first frame.
And Option A is the same as the last frame.

J

GPT-40:

To solve this problem, we need to determine which image correctly fills the
missing frame in the sequence given in Image 1. We have images labeled A,
B, and C to choose from in Image 2.

### Analysis of Image 1

1. First Frame: Shows the laptop on a desk with the wall visible to the right.
2. Second Frame: The camera has moved to the left as more of the wall
on the right side is visible. £\

3. Third Frame: Missing frame.

4. Fourth Frame: The camera seems to have moved further left, with a
lamp visible to the right.

### Choices in Image 2

- A: Shows the laptop with a large portion of the right wall visible.

- B: Shows the laptop with a lot of wall visible behind it, similar to a
position further left than the first frame.

- C: Shows the laptop with the lamp close to it, which suggests it's a
frame further left than all previous.

### Determine the Order and Direction:
- The movement seems to be progressing from right to left as more of the
left side (the lamp) becomes visible in subsequent frames.

### Comparison:

- From Right to Left:
- 1st Frame: Most of the right wall visible.
- 2nd Frame: Wall is more to the left, but space still visible on the right.
- 4th Frame: Lamp visible, implying maximum left position.

- Missing Frame Analysis:
- Given that the camera moves from right to left:
- A: Seems to show more of the right wall (first frame position).
- B: Fits between the first two frames—it's between mostly right wall
visibility and the lamp.
- C: Shows the lamp, indicating a further left position than the final
frame.

The best fit for the missing frame, which should logically be between the
current second and fourth frames (moving left), is B.

Error Analysis:
Model fail to recognize the camera motion of the video, and the relative
camera angle change between the answer choices and the provided

\ﬁ'ames.

Figure 25: Error cases from GPT-40 on temporal frame reasoning.
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Gemini Error on Temporal Reasoning

Question: Which image correctly fills the missing frame?

A

Gemini-2.0-Flash-Thinking:

Step-by-step analysis:

1. Analyze the given frames (Image 1, frames 2, 3, 4): Observe the
position of the chair in each frame.

- Frame 2: Chair is positioned slightly to the right and viewed from the
right-front.

- Frame 3: Chair is more centered and viewed more from the front.

- Frame 4: Chair is positioned slightly to the left and viewed from the
left-front.

2. Deduce camera movement direction: The change in chair position
from right to center to left as we go from Frame 2 to Frame 3 to Frame 4
suggests a leftward camera movement.

3. Determine the expected view for the missing frame (Frame 1): If the
camera is moving left, Frame 1, which precedes Frame 2, should be taken
from a position further to the right than Frame 2. This means Frame 1
should show the chair from a more right-side perspective compared to
Frame 2.

4. Examine the options (Image 2, A, B, C): Compare each option with the
expected view for Frame 1.

- Option A: Shows the chair from a right-front perspective, £}
similar to Frame 2, but potentially slightly more from the right.
This is consistent with being a frame taken from a position further to the
right than Frame 2 in a leftward camera movement.

- Option B: Shows a side view of the chair. This is significantly
different from the views in Frames 2, 3, and 4 and is unlikely to fitina
sequence with them resulting from a simple left or right camera
movement.

- Option C: Shows the chair from a right-front perspective, but it
appears to be slightly more frontal than Option A and Frame 2. If we are
moving left, we expect to progress from a more right view to a less right
view. Option C being more frontal than Frame 2 makes it less likely to be
a frame taken from a position further to the right than Frame 2.

5. Compare Option A with Frame 2: Option A shows the chair from a
slightly more right angle than Frame 2. This is consistent with a leftward
camera movement, where Frame 1 (Option A) is taken from a position to
the right of Frame 2.

6. Conclusion: Option A is the most plausible choice for the missing
frame as it logically precedes Frame 2 in a sequence of frames taken with
a leftward moving camera.

Error Analysis:

Model correctly recognizes the camera motion, however fail to interpret
the camera view angle of the answer choices.

J

Gemini Error on Temporal Reasoni

Question: Which image correctly fills the missing frame?

Gemini-2.0-Flash:

The given image <Image 1> has four frames, with the third frame missing
and denoted by a '?'. The possible options for filling the frame are A, B and
C from <Image 2>.

The frames show a bed with a book lying on it. From <Image 1>, the first
frame shows the book on the bed with a red cushion next to the book.

The second frame shows the book, and part of the cushion moved upwards.
‘We need to find a frame which fits between the second and the fourth
images.

The fourth frame from <Image 1> shows the book has moved rightwards
along the bed and the cushion is visible to the left of the book.

From the second image, we can see that:

A: Shows a book on the bed and a cushion. The orientation is a bit different
to the first image in the first image set.

B: Shows the book on the bed, with the cushion moved to the right, and it
appears to be showing a position similar to the missing third frame.
C: The book is on the bed, but it appears to be in the fourth position.
This does not correctly fill the gap.

So the missing frame should be the one showing the book slightly to the
right from the second frame. Therefore, the option B fills the gap.

Error Analysis:

Model does well on perception, correctly describes the given frames, and
the provided answer choices, but fail to reason which one is the missing
frame.

-

Figure 26: Error cases from Gemini models on temporal frame reasoning.
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01 Error on Temporal Reasoning

O1 Error on Temporal Reasoning

Question: Which image correctly fills the missing frame? Question: Which image correctly fills the missing frame?

77

on: o:

1. Look at the three “known” frames and notice how, from the first to 1. From the three _known_ frames in the first image set, you can see
the last, the camera’s viewpoint sweeps around the chair from one the camera starting on one side of the book and ending on the
side toward the other. opposite side.

2. In particular, the first and last of those frames are taken from 2. Because the problem states the camera moves smoothly (in
roughly the “left-rear” and “right-front” of the chair, respectively one direction only), there must be a “bridge” view between g
(the trash bin moves from left-background to the more left-looking frame and the more right-looking
right-background). frame.

3. The missing third frame thus must be the “straight-behind” A 3. Comparing the candidate views A, B, and C, view B is the “middle”
view that lies between those two in a continuous left-to-right perspective (roughly head-on to the book) and thus logically fits
sweep. between the more left-angled and right-angled frames.

4. Of the candidates, only B is the direct “behind the chair” shot
(backrest nearest the camera). Hence, the missing frame is B. Hence, the missing frame is (B).

Error Analysis: Error Analysis:
Model is good at perception but can not reason about the direction of the Model fail to understand the frame sequence in the first image set.
rotation.

J G J
Figure 27: Error cases from ol on temporal frame reasoning.

ol Error on Perspective Reasoning ol Error on Perspective Reasoning

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

Which option best represents the
agent's view?

‘Which option best represents the
agent's view?

A B C D

o1: o

1. From the overhead view, the red arrow is clearly placed near 1. From the top-down view, note that the agent (red square) is
the bedroom door, pointing out toward the hallway (the A positioned near the top side of the living space and is facing “down”
turquoise-floored space). toward a large built-in cabinet or bar on the opposite wall.

2. Among the four candidate images, only Image C shows the 2. Among the four candidate views , D is the only one that shows that
viewpoint from inside the bedroom _looking out_ through the large shelving/bar unit straight ahead, which aligns with the red
open door toward a blue/turquoise-floored corridor. arrow’s direction in the overhead.

3. Therefore, Image C matches the agent’s viewing direction in the Hence the agent’s view is best represented by D.
overhead plan.

Error Analysis:
Error Analysis: Model understands the arrow direction but points to the wrong object.
Model fails to understand the agent location. G

& %
Figure 28: Error case from ol on perspective reasoning.
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Error on Perspective Reasoning —\

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

‘Which option best represents the
agent's view?

o1:
1. In the top-down view, the red square (agent) is near the upper
hallway.
. The red arrow indicates the agent is facing “up” along that hallway.
3. Among the four candidate photos (A, B, C, D), only option D
shows a hallway view with a door straight ahead, matching £\
the agent’s position and orientation in the top-down image.

N

Error Analysis:
Model understand the agent location but hallucinates about the objects.

A J

Claude Error on Perspective Reasoning —

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

‘Which option best represents the
agent's view?

Claude:
Let me solve this step by step:

1) First, let's understand what we see in Image 1:
- It's a top-down view of what appears to be a room or space
- There's a red square (representing an agent's position)
- There's a red arrow showing which direction the agent is looking

2) The arrow in Image 1 is pointing roughly towards what appears to
be a longer wall/section of the room.

3) Looking at the four images (A, B, C, D) in Image 2:

- All images show what appears to be an attic or room with wooden
furniture and storage

- They all have white/light colored sloped ceilings

- They're taken from different angles/positions

4) Analyzing the perspective of each image:
- Image A shows a view down a space with furniture on the left
- Image B shows more cluttered storage area
- Image C shows a similar view but from opposite direction
- Image D shows what appears to be the end of the room

5) Comparing the direction of view in Image 1 with these perspectives:
- The red arrow's direction in Image 1 aligns with the A
perspective shown in Image A
- Image A shows a straight view down the room, which matches
the arrow's direction

Therefore, the image that best represents the agent's view is Image A.

Error Analysis:

Model correctly describes the details of the top-down view, the agent
position, and the answer choices, but fail to reason (or does not reason)

what the first-person view of the agent looks like

.

Figure 29: Error case from ol and Claude on perspective reasoning.
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Gemini Error on Perspective Reasoning ﬂ Gemini Error on Perspective Reasoning 8

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

Question: The image is from the top-
down view of a scene with a red square
indicating an agent and a red arrow
indicating the agent's direction of view.

Which option best represents the

O ‘Which option best represents the
agent's view?

agent's view?

Gemini 2.0 Flash:
The agent's view in <Image 1> is looking straight at a staircase f}
going down.

Gemini 2.0 Flash Thinking:
The user is asking to identify the image from <Image 2> that
represents the view of the agent in <Image 1>.

The agent is also facing in a direction perpendicular to another A

A ! First, let's analyze <Image 1> to understand the agent's position and
room opening on the I'Ight.

viewing direction within the scene.

- <Image 1> is a top-down view of a scene.

- The red square indicates the position of the agent.

- The red arrow indicates the direction the agent is facing and viewing.

Among the images A, B, C, and D in <Image 2>, image C depicts a
staircase.

The staircase in image C appears to be going down from the

e e o From <Image 1>, we can observe:

- The agent is located in a room that appears to have a white ceiling
fan (visible in the top right of the right-hand side of <Image 1>).

- The agent is positioned near a doorway, looking into another
room.

- The direction of the arrow suggests the agent is looking from a
room into an adjacent room.

The view in image C has a wall on the right side.

Therefore, the answer is C.

Error Analysis: - The room the agent is looking into appears to contain a sofa and a
Model fails to understand agent position from the top-down view. TV (visible on the left-hand side of the left-hand side of <Image 1>).
k j Now, let's examine each image in <Image 2> to determine which one

matches the agent's view described above.

Image A: This image shows an outdoor scene with a door and greenery.
This does not match the indoor setting implied by the agent's
location in <Image 1>.

Image B: This image shows an indoor scene. We can identify:

- A white ceiling fan in the upper portion of the image.

- Asofaand a TV in the main view.

- The perspective suggests looking from a doorway into a room
containing the sofaand TV.

This scene closely aligns with the description derived from <Image
1>

Image C: This image shows an outdoor scene with an umbrella and
outdoor furniture. This does not match the indoor setting implied by
the agent's location in <Image 1>.

Image D: This image shows an outdoor scene with a fence and plants.
This does not match the indoor setting implied by the agent's
location in <Image 1>.

Based on this analysis, Image B is the only image in <Image 2> that
depicts an indoor scene consistent with the agent's position and
viewing direction in <Image 1>. It shows a view from a doorway into a
room with a white ceiling fan, a sofa, and a TV, which matches the
scene implied by the top-down view.

Error Analysis:

Model correctly describes the details of the top-down view, and the
kanswer choices, but fail understand the agent position and the agent view.J

Figure 30: Error case from Gemini models on perspective reasoning.
H COMPLETE ANALYSIS RESULTS ON OTHER MODELS

Model Performance on 2D/3D Individual Transformation Types. Tab. [I3] presents model accu-
racy across 2D visual analogy and text instruction tasks. Across the nine subtasks, adding visual
simulation lifted accuracy for every model except in a few narrow cases, and the size of the gain
correlates strongly with baseline capability. Closed-source leaders that were already solid on the
raw pixel tasks—ol (~ +3 points overall) and GPT-40 (~ +8 points)—were pushed into the mid-80
s and low-90 s, effectively reaching ceiling on the text-instruction variants, where gains were biggest
(e.g., GPT-40 jumps +25 points on “Reflection” and +18 points on both “Rotation” and “Transla-
tion”). Mid-tier proprietary models such as Gemini 2.0 Flash (~ +5 points) and its “Flash Thinking”
mode (~ +5.5 points) benefited even more on instructions than on analogies, narrowing the gap to
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GPT-4-class systems. Open-source vision-language models lag a full generation behind—the best
of them (InternVL 2.5-78B) still sits below 55% on average after simulation—but they, too, record
healthy boosts of 6-12 points, chiefly on the analogy side. The lone regression is GPT-40’s -5 pt dip
on “Reflection” analogies, suggesting that simulation may occasionally overwrite a correct latent
heuristic. Overall, the pattern indicates that visual simulation chiefly helps models convert verbal
transformation instructions into precise spatial operations, while stronger base perception/reasoning
models harvest the largest absolute improvements and approach human-like proficiency.

Tab. 16| presents model accuracy across 3D visual analogy and text instruction tasks. Visual sim-
ulation gives 3D spatial reasoning a measurable—but more uneven—boost than in 2D: averaged
over all eight subtasks, every proprietary model gains between ~+2 points (GPT-40, ol) and +6
points (Claude-3.5 Sonnet, Gemini-Flash Thinking), while the open-source field improves by ~
+4-7 points—except InternVL, which slips a point. Gains concentrate in the conceptually harder
operations: across models, Shearing (both analogy +6.6 points and instruction +6.6 points) and
Rotation-instruction ( +6.4 points) see the largest lifts, whereas Translation under visual analogy
actually falls slightly (-0.9 points), echoing a smaller 2D reflection dip. Even after simulation,
closed-source leaders plateau in the high-60s to mid-70s on most 3D subtasks—roughly 15 points
below their 2D ceilings—indicating that depth-aware transformations remain a major bottleneck.
Open-source VL models still trail a full generation (<45% average), but their sharper relative gains
suggest they, too, leverage synthetic roll-outs to bridge language and geometry.

Model 2D Transformations w/ Visual Analogy 2D Transformations w/ Text Instruction
Reflection Rotation Shearing Scaling Translation Reflection Rotation Scaling Translation
Without Visual Simulation
GPT-40 82.1 69.8 53.7 88.5 72.0 65.8 67.8 90.6 73.3
Claude-3.5 Sonnet 75.0 60.9 55.8 87.4 71.2 63.8 58.9 85.9 66.5
Gemini2.0 Flash 85.7 63.8 51.0 84.4 71.4 65.8 62.3 88.4 70.3
Gemini2.0 Flash Thinking 52.4 489 46.9 71.9 55.1 63.2 60.6 83.0 67.8
ol 92.9 70.7 59.2 833 84.0 89.5 78.1 92.2 92.2
LLaVA-OneVision 7.1 259 32.7 24.4 254 31.7 33.1 51.0 34.6
Qwen2.5-VL-72B 57.1 38.8 34.7 64.4 423 29.3 49.6 62.5 38.8
InternVL2.5-78B 35.7 414 34.7 45.6 36.6 41.5 51.1 75.0 51.9
With Visual Simulation
GPT-40 76.9 72.8 54.8 91.9 80.0 91.2 86.0 93.2 91.5
Claude-3.5 Sonnet 73.1 70.9 50.0 85.5 73.9 559 72.9 83.8 73.9
Gemini2.0 Flash 73.1 70.9 59.5 85.5 74.5 79.4 74.8 90.5 78.2
Gemini2.0 Flash Thinking 61.5 68.2 40.5 71.0 56.4 70.6 68.2 89.2 73.9
ol 80.8 80.6 54.8 87.1 84.2 100 93.5 94.6 97.6
LLaVA-OneVision 15.4 30.1 31.0 30.6 24.8 20.6 41.1 48.6 339
Qwen2.5-VL-72B 65.4 56.3 35.7 71.0 57.0 41.2 40.2 60.8 39.4
InternVL2.5-78B 69.2 43.7 333 59.7 473 50.0 53.3 73.0 53.9

Table 15: Model Performance With or Without Visual Simulation across 2D Transformation types in Visual
Analogy and Text Instruction Tasks.
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3D Transformations w/ Visual Analogy 3D Transformations w/ Text Instruction

Model
Rotation Shearing Scaling Translation Rotation Shearing Scaling Translation
Without Visual Simulation
GPT-40 60.7 55.7 76.0 80.1 60.1 46.9 71.1 71.2
Claude-3.5 Sonnet 50.0 46.2 63.3 62.6 45.9 404 55.6 534
Gemini2.0 Flash 542 53.9 63.3 73.0 55.86 44.44 61.90 51.63
Gemini2.0 Flash Thinking ~ 42.4 43.6 61.5 63.8 37.8 32.7 525 55.7
ol 65.6 58.1 76.7 85.6 61.3 46.3 70.5 73.9
LLaVA-OneVision 18.8 29.1 28.9 253 27.0 19.4 41.0 30.7
Qwen2.5-VL-72B 36.5 40.2 61.1 46.6 36.9 333 47.6 45.1
InternVL2.5-78B 31.2 30.8 51.1 374 37.8 324 60.0 40.5
With Visual Simulation

GPT-40 64.3 64.3 78.2 76.0 62.6 54.7 75.3 68.5
Claude-3.5 Sonnet 51.2 59.5 69.2 59.7 55.6 48.0 64.5 59.3
Gemini2.0 Flash 46.4 64.3 62.8 68.2 60.9 49.5 64.9 56.1
Gemini2.0 Flash Thinking ~ 50.0 47.6 60.3 66.7 48.5 46.7 59.1 59.3
ol 63.1 63.1 76.9 79.8 69.7 50.7 79.6 74.1
LLaVA-OneVision 274 28.6 32.1 29.5 27.3 26.7 452 352
Qwen2.5-VL-72B 46.4 54.8 69.2 55.0 45.5 34.7 48.4 46.3
InternVL2.5-78B 31.0 28.6 43.6 32.6 434 37.3 57.0 40.7

Table 16: Model Performance With or Without Visual Simulation across 3D Transformation types in Visual
Analogy and Text Instruction Tasks.

Task complexity vs. performance. Tab. [I8]presents model performance across different task diffi-
culties for 2D and 3D transformations. Adding visual simulation helps most when tasks get tougher,
but the effect differs by setting. For 2D text instructions tasks, we observe big boost — closed-source
models jump about 10-20 points on medium and hard tasks, often hitting 90%+. For 2D visual
analogy tasks, we observe smaller lift—several points on easy, up to 10 points on medium/hard. For
3D tasks, only a few-point gain, and some models slip on the hardest visual analogy tasks, showing
3D reasoning is still hard. Open-source MLLMs stay well behind; their scores move up and down
unpredictably, meaning they haven’t yet learned to use the simulated views well.

Tab. [I7| presents model performance across different number of transformation steps for 2D and 3D
transformations. Models struggle more as the number of transformation steps grows, and visual
simulation mainly fixes that. Without simulation, accuracy often peaks at one or two steps and drops
at three—especially in 3D visual-analogy, where GPT-4o falls from 73% (N = 2) to 49% (N = 3).
When simulation is added, scores for the multi-step cases (N = 2-3) jump 1015 points for the top
proprietary systems and a few points for open-source ones, erasing most of the earlier decline in 2D
tasks and cutting the 3D drop roughly in half. Single-step problems were already easy for the best
models and see little change. Overall, simulation is most useful for longer, instruction-driven chains
of transforms, while depth-heavy 3D sequences remain the hardest setting.
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2D Visual Analogy 2D Text Instruction 3D Visual Analogy 3D Text Instruction

Model

N=1 N=2 N=3 N=I N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3

Without Visual Simulation
GPT-40 60.46 74.84 73.86 67.27 77.56 73.55 62.75 73.37 48.69 63.07 63.40 60.78
Claude-3.5 Sonnet 63.73 75.82 65.69 65.17 65.02 60.61 45.10 57.35 57.35 50.98 55.23 45.75
Gemini2.0 Flash 64.71 73.53 68.53 63.96 76.24 70.25 61.76 60.78 63.73 46.08 56.86 56.86
Gemini2.0 Flash Thinking 54.58 52.94 55.56 61.71 67.33 71.07 47.71 53.92 57.19 45.59 50.00 20.59
ol 66.7 814 824 820 89.1 893 66.67 72.55 77.45 61.76 66.67 62.75
LLaVA-OneVision 30.39 26.47 24.51 49.57 33.70 31.53 25.49 28.43 22.55 30.39 30.39 24.51
InternVL2.5-78B 43.14 34.31 42.16 61.74 52.17 5045 40.2 29.41 36.27 34.31 48.04 40.2
Qwen2.5-VL-72B 50.00 45.10 41.18 55.65 36.96 40.54 48.04 42.16 45.10 38.24 43.14 41.18
With Visual Simulation

GPT-40 - 7843 7353 - 88.04 90.57 - 7059 7255 - 61.76 68.63
Claude-3.5 Sonnet - 7059 7059 - 71.74 72.64 - 56.86 57.84 -  65.69 50.98
Gemini2.0 Flash - 69.6 735 - 8043 77.40 - 6176 5980 - 61.76 53.92
Gemini2.0 Flash Thinking -  46.08 58.82 - 79.35 67.92 - 5588 60.78 - 5392 53.92
ol - 734 853 - 946 97.2 - 70.6 755 - 70.6  69.6
LLaVA-OneVision - 3039 2549 - 38.04 3491 - 2843 2843 - 36.27 2941
InternVL2.5-78B - 3922 5196 - 56.52 52.83 - 2549 3529 - 46.08 39.22
Qwen2.5-VL-72B - 5196 58.82 - 4348 41.51 - 49.02 5882 - 47.06 43.14

Table 17: Model Performance With or Without Visual Simulation across number of transformation steps (N)
in 2D/3D Visual Analogy and Text Instruction Tasks.

2D Visual Analogy 2D Text Instruction 3D Visual Analogy 3D Text Instruction

Model

easy medium hard easy medium hard easy medium hard easy medium hard

Without Visual Simulation

GPT-40 804 673 614 762 704 713 742 649 657 69.0 63.1 552
Claude-3.5 Sonnet 76.5 6677 62.1 68.7 61.8 594 549 544 505 556 52.0 444
Gemini 2.0 Flash 784 637 647 750 672 673 67.6 59.8 58.8 569 529 50.0
Gemini 2.0 Flash Think 66.3 523 444 655 694 654 546 539 503 48.0 447 46.1
ol 833 775 69.6 90.6 81.1 89.1 784 70.6 677 69.6 647 56.9
LLaVA-OneVision 226 324 265 395 463 292 255 206 304 314 284 255
InternVL 2.5-78B 45.1 402 343 632 509 500 324 343 392 480 373 373

Qwen 2.5-VL-72B 57.8 402 382 509 417 417 559 402 392 422 382 422

With Visual Simulation

GPT-40 809 794 677 91.6 894 869 809 750 588 75.0 647 559
Claude-3.5 Sonnet 765 721 632 789 652 721 677 529 515 662 574 515
Gemini 2.0 Flash 794 721 632 817 864 672 647 588 588 574 559 603
Gemini 2.0 Flash Think 54.4 559 47.1 76.1 742 689 72.1 544 485 632 485 50.0
ol 809 824 750 944 985 951 853 69.1 647 735 750 618
LLaVA-OneVision 36.8 19.1 279 394 349 344 265 206 382 456 250 279
InternVL 2.5-78B 574 441 353 648 485 492 235 279 397 559 279 441

Qwen 2.5-VL-72B 72.1 50.0 44.1 59.2 303 36.1 632 50.0 485 47.1 441 441

Table 18: Model Performance With or Without Visual Simulation across different difficulty levels in 2D/3D
Visual Analogy and Text Instruction Tasks.

2D and 3D Perception Probing with Cube Nets. Tab. [I9] presents model performance on 2D
and 3D perception probing questions about cube nets, in comparison to the success rate on cube
net folding task. The results show that success on cube-net folding is driven by a model’s 3D
perception, not its 2D eyesight. All closed-source systems (and several open-source ones) already
read colors and 2D face connectivity at or near ceiling, yet their cube-net scores diverge sharply.
When we compare cube accuracy ( XVSim column) with each perceptual measure, the strongest
linear relationship is with the 3D “Folded?” test (Pearson r == 0.89), while 2D connectivity (r = 0.68)
and color (r = 0.72) are weaker. Gemini Flash illustrates the pattern: it pairs the top 3D perception
score (69%) with the best cube-net performance (65%), whereas GPT-40 and InternVL match its
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2D vision but lag 10-20 points on both 3D perception and cube folding. In short, being able to
judge how faces come together in depth—rather than recognizing colors or flat adjacencies—largely
determines how well a model can reason about folded cubes.

Model 2D Perception 3D Perception ‘ Cube Net Performance
Color Connectivity Folded? ‘ XVSim V' Vsim

Random 25.0 50.0 50.0 ‘ 50.5 50.5
Closed-source Models

GPT-40 100.0 94.1 57.4 52.5 49.1

Gemini-2.0-Flash 100.0 84.9 68.8 65.0 65.5

Gemini-2.0-Flash-Thinking 99.0 494 543 39.8 62.8
Open-source Models

LLaVA-OneVision 88.0 10.0 22.0 28.5 34.2

InternVL 2.5-78B 92.0 86.0 40.2 43.5 41.0

Qwen 2.5-VL-72B 96.0 81.7 42.1 35.2 534

Table 19: 2D and 3D perception performance in cube net folding.

Question-only vs. Question+Steps As shown in Tab. adding explicit reasoning steps (“Q +
Steps”) has opposite effects on cube-net tasks for the two model groups: open-source models gain,
while closed-source ones do not. The three open-source VL models jump a mean + 20 points on
cube nets (driven by LLaVA’s + 40 pts), whereas the five proprietary models average a small decline
(-1 pt, with mixed signs). On tangram puzzles, however, the pattern converges: every model—open
or closed—drops sharply once reasoning steps are included, with average losses of about -24 pts for
closed-source and -19 pts for open-source models. Again, the trivial solution on tangram puzzles
would be comparing the total areas of all available pieces and the grid area, which can easily lead to
75% performance. This result suggest that the models cannot leverage explicit text reasoning steps.

Model Cube Nets Tangram Puzzles
Q-only Q+Steps A Q-only Q+Steps A
Closed-source Models
GPT-40 50.2 50.4 +0.2 62.4 34.7 -27.7
Claude-3.5 Sonnet 51.5 46.4 -5.1 71.1 419 -29.2
Gemini-2.0 Flash 474 51.5 +4.1 72.8 59.8 -13.0
Gemini-2.0 Flash Thinking 47.2 49.6 +2.4 429 353 -7.6
ol 56.0 47.0 -7.0 73.5 29.6 -43.9
Open-source Models
LLaVA-OneVision 0.0 40.5 +40.5 30.3 14.6 -15.7
InternVL 2.5-78B 33.2 414 +8.2 69.5 51.7 -17.8
Qwen 2.5-VL-72B 29.0 41.6 +12.6 72.3 47.7 -24.6

Table 20: Model performance on question-only prompts versus prompts that include explicit reasoning steps
(Q+Steps). A values are Q+Steps performance - Q-only performance.

Intermediate Visual Simulation States vs. Performance

Tab.2T]summarizes extended results on varying the slice of intermediate visual simulation presented
to the model across different tasks. Across models, which slice of the simulation you show matters,
and the “best slice” shifts with task type. For 2D transformations, most closed-source models and
the stronger open-source one (InternVL) peak when they see only the last intermediate state, gaining
2-6 points over the full roll-out; showing every intermediate frame (“all”’) often drags accuracy down
a few points. For 3D transformations, the pattern flips—accuracy is usually highest with “all” states
(= +2-4 points over “partial”’), while the last-only view tends to erase that gain, especially for
GPT-40, Gemini Flash, and ol. For cube nets, no single view helps every model. Scores barely
change with “all” frames, and last-only often hurts closed-source models (-8 points on average) yet
uniquely rescues LLaVA (+11 points). For Tangram puzzles, seeing “all” steps is consistently best:
every model but LLaVA jumps 7-24 points versus the partial view, whereas last-only falls back
to—or below—the partial baseline. Overall, for more complex tasks, models struggle to leverage
intermediate visual states effectively.
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Model 2D Transformation 3D Transformation Cube Nets Tangram Puzzles
Partial All  Last Partial All Last Partial All  Last Partial All Last
Closed-source Models
GPT-40 86.8 82.8 894 72.1 684 68.4 51.3 522 352 43.5 51.5 434
Claude-3.5-Sonnet 67.8 714  70.7 54.9 57.8 559 58.7 51.6 46.8 43.5 67.6 433
Gemini-2.0-Flash 75.4 752 793 61.0 59.3  57.8 40.5 35.6 41.5 63.8 65.5 582
ol 89.3 87.7 934 70.1 716 652 54.4 534 454 34.8 532 46.0
Open-source Models
LLaVA-OneVision 28.3 322 318 25.5 30.6 294 402 342 456 449 40.2 398
InternVL 2.5-78B 48.3 545 56.6 32.3 36.5 40.2 34.7 373 378 54.3 48.2 41.8
Qwen 2.5-VL-72B 444 485 444 48.7 49.1 436 419 534 423 49.0 56.7 443

Table 21: Model performance with partial, all, and last intermediate visual simulations.
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