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ABSTRACT

We introduce the Large Drug Discovery Model (LDDM), a generative frame-
work for target-specific 3D molecule design, leveraging fragment-based masked
modeling and large-scale training on the new synthetic dataset of protein-ligand
complexes SynthDock. In addition to de novo drug design, LDDM is also able
to solve more constrained drug discovery tasks, which allows users to interact
with the model during the design process. We furthermore leverage this feature
to introduce a new controlled generation strategy for multi-objective optimiza-
tion. We benchmarked LDDM across various tasks, including de novo generation,
fragment-based drug design, and molecular docking. Finally, we experimentally
validated LDDM-designed molecules that bind to the oncogenic target KRAS.

1 INTRODUCTION

Computational drug discovery has long relied on virtual screening (Walters & Wang, 2020), but
its effectiveness is limited by available compound libraries, making it less suitable for challenging
and highly constrained targets like protein-protein interactions. Besides, even the largest screen-
ing libraries (Walters & Wang, 2020) cover only a tiny fraction of the entire drug-like chemical
space (Bohacek et al., 1996).

In this work, we follow another computational drug discovery strategy: generative modeling. Con-
trary to virtual screening, generative models are not limited by available compound libraries and can
perform custom molecular design taking into account geometric and chemo-physical properties of
the target pocket. We introduce the Large Drug Discovery Model (LDDM), a generative framework
that simultaneously operates on atom types, coordinates, and covalent bonds of small molecules,
and samples all these modalities in the context of protein pockets. Unlike previous structure-based
drug design methods, LDDM is not only capable of generating new ligands from scratch but also
supports various substructure design and docking tasks. To achieve this, we introduce a fragment-
based masked modeling approach, in which portions of the input molecule are masked, and the
model is trained to recover these missing parts. This technique, inspired by language modeling
methods (Devlin et al., 2018), enables efficient self-supervised learning by modeling the probabilis-
tic structure of the chemical space. To define meaningful chemical units, we fragment the molecule
using BRICS (Degen et al., 2008) (Figure 1A). During training, we randomly mask different sub-
sets of fragments and task the model with predicting the missing parts. We perform masking not
only across molecular fragments, but also across data modalities. We randomly mask either the
entire fragment (design regime) or only its coordinates (docking regime), as shown in Figure 1B.
To recover the masked information, we follow Schneuing et al. (2025) and train a multi-domain
generative model that combines equivariant flow matching (Lipman et al., 2023) for sampling three-
dimensional (3D) atom coordinates and Markov bridge models (Igashov et al., 2024a) for discrete
atom and bond type generation, as shown in Figure 1C.

Furthermore, fragment-based masked modeling enables an efficient optimization strategy for de-
composable objectives (Figure 5D). Starting with an empty protein pocket, we generate an initial set
of molecules, split them into fragments, and retain only those meeting all specified criteria. These
fragments are used as inputs for the next generation cycle, where the model fills in the gaps with
new chemical matter. This iterative process refines molecules over time, optimizing local properties
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Figure 1: Method overview. LDDM operates on molecules that are fragmented using BRICS (De-
gen et al., 2008) (A), tackles diverse tasks depending on the level of the available information (B),
and is trained to reconstruct missing data through generative denoising (C).

such as protein-ligand interactions. The same approach also enables us to sample new molecules
while respecting synthesis constraints (see Section 2.4).

We benchmark LDDM across various design and docking tasks and showcase the design of a novel
KRAS binder, for which we experimentally validated binding to the targeted pocket.

2 RESULTS

2.1 MOLECULAR DESIGN

In silico evaluation of computational drug discovery methods remains an open and extremely chal-
lenging problem. Without a definitive ground truth and with the known limitations of existing com-
putational metrics (Plewczynski et al., 2011; Tian et al., 2015; Ertl & Schuffenhauer, 2009), it is
unclear how to reliably validate drug design methods on the computer. Here, we assess de novo
design capabilities of our model from two perspectives: its ability to recover geometric and pharma-
cophoric patterns of known binders and to model the underlying chemical space.

First, using experimental data from the PoseBusters test set (Buttenschoen et al., 2024), we explore
how well our model recovers known binding signals. To this end, we compare LDDM designs to
known binders using a shape and color similarity metric SCRDKit (Putta et al., 2005; Landrum et al.,
2006). The color similarity function scores two 3D conformers against each other based on the
overlap of their pharmacophoric features, while the shape similarity measure is a simple volumetric
comparison between the two conformers (Imrie et al., 2020). We benchmark LDDM against alter-
native drug discovery approaches, including docking-based virtual screening and the reinforcement
learning-based framework REINVENT (Blaschke et al., 2020). As positive and negative controls,
we report shape-color similarities of re-docked reference ligands and randomly selected molecules,
respectively. All docking experiments are conducted using variants of AutoDock Vina (Ding et al.,
2023). Further details on the test set, baseline configurations, and evaluation metrics are provided
in Appendix A.3-A.4. As shown in Figures 2A and 6A, LDDM demonstrates a considerably higher
ability to recover the reference binding signals. Figures 2C and 6B provide examples of generated
molecules that achieve high shape-color similarities with the reference molecules. In all cases, the
designed and ground-truth molecules have similar coarse-grained topologies and high volumetric
overlap. Besides, heteroatoms with similar properties are often placed in the same pocket regions.

Following Schneuing et al. (2025), we endow LDDM with an uncertainty estimation mechanism
that allows to detect potentially flawed samples. As shown in Figure 2B, the model tends to have
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Figure 2: Benchmarks. Recovery of binding patterns in de novo design (A, C), uncertainty esti-
mation and geometric distributions (B), entropy and chemical validity (D), linker design results (E),
local and covalent docking (F-I), controlled generation efficiency (J), and synthesizable design (K).

higher uncertainty scores when it generates less likely geometries, highlighting the tails of inter-
atomic distance and bond angle distributions. We also observed that LDDM assigns on average
lower entropy values to chemically valid molecular substructures, compared to the invalid ones, as
we demonstrate in Figure 2D.

More results on the ability of LDDM to model the underlying chemical space, as well as character-
istics of the space itself are provided in Appendix B.1 and Figure 6.

3



Published at the GEM workshop, ICLR 2025

2.2 FRAGMENT-BASED DESIGN

By design, LDDM can be conditioned on known molecular parts, making it well-suited for various
fragment-based design scenarios. Here, we focus on molecular linker design and compare our ap-
proach to the specialized method DiffLinker (Igashov et al., 2024b). As shown in Figure 2E, LDDM
exhibits superior distribution learning capabilities in terms of Fréchet ChemNet Distance (FCD) and
Wasserstein distance (WD) between the sampled and reference molecules across various molecular
properties. Here, both models were trained on the same Pockets dataset (Igashov et al., 2024b).
More details are provided in Appendix A.2.

2.3 MOLECULAR DOCKING

By constraining atom and bond type modalities during generation, LDDM effectively addresses
local and constrained docking tasks, as illustrated in Figure 1B. Here, we evaluate LDDM’s perfor-
mance in both settings and compare it against various state-of-the-art baselines (see Appendix A.3
for details).

First, we explore local docking capabilities of our model. As shown in Figure 2F, LDDM out-
performs other docking methods on the PoseBusters test set (Buttenschoen et al., 2024), achieving
docking root mean square deviation (RMSD) below 2Å in over 70% of test cases. For each tar-
get, we sampled 50 conformations and selected only one based on our model’s uncertainty score.
LDDM’s uncertainty score correlates well with docking RMSD (Spearman’s ρ = 0.63), enabling
reliable scoring of docking poses (Figure 2H). Notably, LDDM can apply uncertainty estimation at
the atomic level, identifying specific molecular regions that may have been docked imprecisely. Fig-
ure 2I showcases selected examples where atomic uncertainties strongly align with RMSD values,
highlighting incorrectly docked molecular fragments.

Next, we evaluate LDDM’s ability to perform covalent docking by additionally constraining the
position of the ligand atom covalently attached to the target protein. We test our model on the
benchmark set introduced by Scarpino et al. (2018), and compare its performance to other state-of-
the-art covalent docking methods. As shown in Figure 2G, LDDM outperforms competing methods
substantially in top-1 success rate for 2Å and 3Å RMSD cutoffs. As in the previous benchmark, we
use LDDM’s uncertainty estimates to score the docking conformations.

2.4 OPTIMISATION VIA CONTROLLED GENERATION

Controlled generation allows to design molecules with improved local properties that are rarely
observed in de novo-generated compounds. This is achieved through an iterative process, illustrated
in Figure 5D and discussed in detail in Appendix A.1.

We conduct three experiments, gradually increasing the number of local and global validation filters
applied. Successful designs are defined as those that are (a) valid according to the PoseBusters
criteria (Buttenschoen et al., 2024) and have quantitative drug-likeness (QED) (Bickerton et al.,
2012) above 0.65, (b) have more hydrogen bonds than the reference molecule, and (c) have less
unsatisfied hydrogen bond donors and acceptors than the reference molecule. We compare our
method to REINVENT (Blaschke et al., 2020), a reinforcement learning framework that is tasked
to optimize QED and the number of hydrogen bonds between the designed molecule and the target
protein, as explained in Appendix A.3.

Figure 2J compares the average cumulative number of unique valid molecules per target for REIN-
VENT, de novo design with LDDM, and controlled generation on 50 randomly chosen PoseBusters
targets. While REINVENT efficiently optimizes global properties such as QED, our controlled
generation procedure outperforms it in local molecular optimization and produces more compounds
with higher numbers of hydrogen bonds and lower numbers of unsatisfied hydrogen bond donors and
acceptors. This highlights the unique advantages of our approach over structure-implicit optimiza-
tion methods in enhancing target-dependent and decomposable properties. Additionally, controlled
generation dramatically increases the yield compared to simple de novo generation.

Using the same iterative design strategy with a different fragment tree expansion policy, we can also
improve the synthetic accessibility of generated molecules. To this end, we expand our fragment
tree only if a designed molecule contains substructures that are reachable via a single step in our
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Figure 3: KRAS binder design. Chemical structures of 5 compounds tested experimentally, so-
torasib, and BI-2865 (A), binding poses of the designed compound 1 and reference BI-2865 (B),
interaction profiles of LDDM designs compared to the reference BI-2865 (PDB ID: 8AZR) (C),
binding kinetics for positive control BI-2865 (D), binding kinetics for hit compounds 1 and 2 (E),
and rapid kinetic sensograms for compounds 1 and 2 in the blocking experiment with sotorasib (F).

synthesis framework, which includes around 140 000 building blocks and 13 reaction rules follow-
ing SyntheMol (Swanson et al., 2024). For each fragment in the tree, in turn, we obtain the set of all
reachable molecules by enumerating possible derivatives from the current fragment using our syn-
thesis framework. Therefore, every generated molecule is already associated with a robust synthesis
route. In Figure 2K, we sampled 1000 molecules each for two target proteins, KRAS and BRD4. We
then applied increasingly strict filters based on (a) AiZynthFinder synthetic accessibility (Genheden
et al., 2020), (b) Vina docking scores (Alhossary et al., 2015), and (c) hydrogen-bond interactions
(satisfied vs. unsatisfied). Synthesizable generation yields molecules that meet all these criteria,
while generation without synthesis constraints produces substantially fewer accepted molecules.

2.4.1 DESIGN OF KRAS BINDERS

In this study, we explore the capability of LDDM to design small molecules targeting KRAS (Kessler
et al., 2019). The Switch II region was selected as the target pocket, the same site known to be bound
by the pan-KRAS inhibitor BI-2865 (Kim et al., 2023). After sampling and computational scoring
(see Appendix A.5), 2263 designed molecules passed all filters and were searched against the Enam-
ine REAL database (Shivanyuk et al., 2007) for exact matches. The top five molecules were selected
on the basis of their interaction profiles and ordered for experimental testing. The selected candi-
dates and their interaction profiles are presented in Figures 3A and 3C, respectively. Figure 3B
shows the generated 3D structure of compound 1 together with its key interaction in comparison to
positive control BI-2865. All five compounds were further tested for binding using grating-coupled
interferometry (GCI). The screening revealed 3 successful binders according to our hit calling cri-
teria (Appendix A.5) albeit with substantially lower affinity (high micromolar to millimolar, Figure
3E) than the positive control (6.9 nM). To confirm whether the designed ligands bind at the targeted
site, we then performed a blocking experiment, in which KRASG12C was preincubated with the co-
valent inhibitor sotorasib. This resulted in reduced signal (Figure 3F) suggesting that the hits bind
in the target pocket as predicted.
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3 CONCLUSION

We introduced Large Drug Discovery Model (LDDM), a 3D generative model inspired by masked
pre-training in large language models. By selectively masking molecular fragments and modu-
lating input modalities, LDDM seamlessly adapts to constrained and unconstrained docking and
design tasks, achieving competitive performance across various benchmarks. Leveraging controlled
and synthesizable generation, our approach efficiently optimizes decomposable, structure-dependent
properties while ensuring synthetic feasibility. Experimental validation confirmed binding to the
oncogenic target KRAS for three out of five computationally designed compounds. While affinity
remains an open challenge, integrating stricter filtering and human-in-the-loop selection could en-
hance specificity and potency of the designed compounds. Overall, LDDM serves as a versatile tool
to accelerate hit identification and lead optimization, streamlining the drug discovery process.
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A METHODS

A.1 LDDM

Architecture We use the geometric heterogeneous graph neural network architecture from
DrugFlow (Schneuing et al., 2025), including self-conditioning, confidence head, and virtual nodes.
Furthermore, we modify the input layer to accept three additional binary flags indicating whether a
bond type, atom type or atom coordinate is known. Small molecule atoms are featurized as one-hot
vectors representing 13 different types, {C, N, O, S, B, Br, Cl, P, I, F, NH, N+, O-} where charges
and explicit hydrogens are included in selected cases following (Schneuing et al., 2025). Protein
residue nodes carry a feature encoding their type (one of the 20 standard amino acids) as well as
vector-valued features indicating the positions of all atoms belonging to that residue relative to its
Cα position. Bond types are either single, double, triple, aromatic, or “None”. We remove all edges
between pocket residues or between residues and ligand atoms that are more than 10 Å apart for
computational efficiency.

Masked modeling LDDM is trained as a generative model with varying degrees of conditioning.
Randomly sampled parts of the training molecules are masked out and the model is tasked to recover
the missing bits similar to masked language modeling. Before training, all molecules are fragmented
into retrosynthetically interesting substructures using the BRICS (Degen et al., 2008) method. At
each training iteration, we then select a role for each of the resulting fragments before noise is
added. These roles are sampled with equal probability. Fragments can be designed, docked, or
provided purely as context. If selected for design, both the molecular graph and the coordinates are
noised and subsequently predicted by the model. For docking, coordinates are noised but the model
has access to the clean molecular graph of the fragment. Context fragments are not noised at all, and
the model can use their full geometric and chemical information to infer the structures of other parts
of the ligand. To predict missing parts of the molecular system, we employ a generative modelling
framework that integrates continuous flow matching (Lipman et al., 2023) for atom coordinates with
Markov bridge models (Igashov et al., 2024a) for categorical atom and bond types.

Controlled generation Building on LDDM’s substructure-constrained design ability, the con-
trolled generation algorithm iteratively proposes candidate molecules, analyses their properties, and
selects substructures that fulfill predefined criteria to condition new samples on. At each iteration,
two filtering functions are applied:

• Global Filtering (FilterMol) discards invalid or undesired molecules. For demonstrat-
ing sampling efficiency in Section 2.4, we exclude molecules with QED below 0.6.

• Local Filtering (FilterFrag) evaluates each fragment individually. Here, we discard
fragments that are not PB-valid or do not form a hydrogen bond with the target (as assessed
with ProLIF (Bouysset & Fiorucci, 2021)). For the benchmark shown in Figure 2J, we
additionally require that fragments have no unsatisfied hydrogen bonds.

Each valid fragment is stored as a node in a fragment tree T , where each parent node is a substructure
of its children. We manage the sampling budget B at each iteration using a scheme inspired by the
Upper Confidence Bound (UCB) for Monte Carlo tree search (Kocsis & Szepesvári, 2006):

UCB(v) =
successes(v)

calls(v) + 1
+ c

√
ln
(
pCalls(v) + 1

)
calls(v) + 1

,

where successes(v) and calls(v) track the number of accepted molecules derived from node v and
the total sampling attempts at v, respectively. pCalls(v) stands for the total number of samples
generated from the parent of the considered node. The hyperparameter c controls the exploration-
exploitation trade-off and was set to 1 in our experiments. The number of samples allocated to
each node is proportional to its UCB score, balancing exploration of under-sampled fragments with
exploitation of promising ones. Full algorithmic details are provided in Algorithm 1.

Synthesizable generation To generate molecules that are synthetically feasible, we replace
BRICS fragmentation with a building block approach. Each fragment node v in the tree is linked
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Algorithm 1 Controlled Generation with LDDM
Require: T (fragment tree, empty at start), FilterMol (global filter), FilterFrag (local filter), Alloc

(allocation function), Nmax (max iterations)
1: for i = 1 to Nmax do
2: B ← Alloc(T ) ▷ Allocate sampling budget to tree nodes
3: M ← SampleMolecules(B) ▷ Generate candidate molecules
4: Mvalid ← {m ∈M : FilterMol(m) = 1} ▷ Global filter
5: for all m ∈Mvalid do
6: F ← FragmentBRICS(m)
7: Fsel ← {x ∈ F : FilterFrag(x) = 1} ▷ Local filter
8: T ← AddFragments(T , Fsel)
9: end for

10: end for
11: return ExtractMolecules(T )

to a library of reachable reaction products, precomputed from reaction templates R and building
blocks B that are compatible with the current molecule. Newly generated molecules must contain
a substructure match with one of these precomputed products to create a new child node that con-
tains the matching substructure. This ensures that expansion pathways align with tentative synthetic
routes.

To enable sampling tree expansion also for similar reaction products (i.e. partial substructure
matches), we additionally employ a hybrid design/docking strategy. The maximum common sub-
structure is kept fixed, while unmatched atoms of the reaction product are docked flexibly.

The same FilterMol and FilterFrag checks apply to all newly formed fragments. By com-
bining fragment-based masked modeling with reaction-driven expansions, synthesizable generation
systematically explores combinatorial fragment spaces while optimizing for local properties (see
Algorithm 2).

We perform 1024 sampling calls over 20 iterations (64 molecules per batch). We use the ENAM-
INE building block database and combine them with suitable reaction templates from Synthemol
(Swanson et al., 2024). Generated molecules are subjected to three sequential filters:

1. Synthetic Feasibility. Assessed with AiZynthFinder (Genheden et al., 2020), requiring each
molecule to be synthesizable in no more than two steps.

2. Docking Success. Molecules must achieve a Vina score below −8 kcal/mol or surpass the
reference ligand’s score, and must have a minimized RMSD ≤ 2 Å.

3. Interaction Success. Hydrogen-bond counts are compared to those of the reference ligand;
valid molecules must have at least as many hydrogen bonds as the reference count and not
more unsatisfied sites then the reference.

A.2 DATASETS

SynthDock training set In this project, we aim to achieve two key goals: to explore a broad chem-
ical space of drug-like small molecules, and to learn physics of protein-ligand interactions. While
training on millions of experimentally determined complexes of proteins and drug-like molecules
would be the preferred option, such data is limited. Therefore, we set out to use protein struc-
ture prediction (Jumper et al., 2021) and molecular docking algorithms (McNutt et al., 2021), and
generated a large, high-quality synthetic protein-ligand dataset, SynthDock. Our dataset includes
3491 proteins grouped in 2704 UniRef50 clusters (Suzek et al., 2007), and 264 449 unique drug-
like compounds from ChEMBL Gaulton et al. (2012). The main advantage of this synthetic data
approach lies in the scale and diversity of the dataset, which allows us to capture a large chemical
space, as illustrated in Figure 6C. Additionally, similar to the effects reported in the computer vi-
sion domain (Ghiasi et al., 2021; Bachmann et al., 2022; Mizrahi et al., 2023), we anticipate that
large-scale probabilistic training on high-quality pseudo labeled data enables the transfer of induc-
tive biases from the teacher docking and structure prediction methods to LDDM, ensuring that our
model learns the underlying physics of protein-ligand interactions.
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Algorithm 2 Synthesizable Generation
Require: T (fragment tree, empty at start), FilterMol (global filter), FilterFrag (local filter), Alloc

(allocation function), Nmax (max iterations),R (reaction templates), B (building blocks)
1: for i = 1 to Nmax do
2: B ← Alloc(T ) ▷ Budget allocation
3: M ← SampleMolecules(B) ▷ Candidate molecules
4: Mvalid ← {m ∈M : FilterMol(m) = 1} ▷ Global filter
5: for all m ∈Mvalid do ▷ Iterate valid molecules
6: v ← SampledNode(m) ▷ Node from which m was sampled
7: F ← FragmentBuildingBlocks(m,Pv) ▷ Check library Pv

8: F ′ ← DockSimilarProducts(m,Pv) ▷ Optional docking
9: Fmerged ← F ∪ F ′

10: Fsel ← {x ∈ Fmerged : FilterFrag(x) = 1} ▷ Local filter
11: T ← AddFragments(T , Fsel)
12: end for
13: ComputeReactions(T ,R,B) ▷ Reaction step
14: end for
15: return ExtractMolecules(T )

To create the SynthDock dataset we obtained all molecules with available binding assays from the
ChEMBL database (release 33) and removed protein mutants as suggested by Landrum & Riniker
(2024). After also removing common salts, metals and solvents, the structures were standardized
using the ChEMBL Structure Pipeline (Bento et al., 2020) by taking the neutral (parent) compound
of a salt or charged compound and extracting the non-isomeric counterpart of racemic mixtures.
For each of the resulting target-compound pairs, we downloaded the corresponding protein struc-
ture model from the AlphaFold Protein Structure Database (Varadi et al., 2022). Next, we ran
P2Rank (Krivák & Hoksza, 2018) to identify binding pockets in these structures and performed
docking using Gnina (McNutt et al., 2021) without CNN scoring option. The docking box was cen-
tered in the predicted pocket centers and its size set to be 2.857× ligand radius of gyration (Feinstein
& Brylinski, 2015). For each pocket, Gnina generated nine binding modes from which we kept only
those with Vina docking scores ≤ 0. We also discarded poses with RMSD < 1.7 Å to other poses
for the same pocket-ligand pair. As a final sanity check, we applied the PoseBusters evaluation
suite (Buttenschoen et al., 2024) to the docked complexes and kept only the ligand-pocket pairs that
passed all filters. The SynthDock training set includes 1 714 308 pocket-ligand pairs in total.

CrossDocked training set Some models were trained on the CrossDocked dataset (Francoeur
et al., 2020) which was created by docking ligands from the PDB into cognate and non-cognate
receptors with structurally similar binding pockets. We use the same subset and cross-validation
splits as Luo et al. (2021) with 100 000 structures for training and 100 for testing.

PoseBusters test set Our primary test set is the PoseBusters benchmark set (Buttenschoen et al.,
2024) with 308 unique ligands and proteins from the Protein Data Bank released since 2021.

DiffLinker pockets dataset We follow the dataset curation procedure described by Igashov et al.
(2024b) to benchmark LDDM against DiffLinker. Specifically, we build upon the protein–ligand
dataset curated by Schneuing et al. (2024) and apply the same fragmentation scheme as introduced
in DiffLinker. This results in a dataset of 185 678 training examples and 566 test examples. To
ensure a fair comparison between LDDM and DiffLinker, we re-train LDDM on the same dataset.
We then evaluate the distribution learning capabilities of both methods, using the molecules in the
test set as a reference.

A.3 BASELINES

REINVENT We compare our method to the reinforcement learning (RL) framework REIN-
VENT (Blaschke et al., 2020). REINVENT employs a recurrent neural network to generate
molecules as SMILES (symbolic representation) and implements goal-directed learning through
RL. It thus can only be implicitly conditioned on the target protein through the RL reward. We
design two scoring functions taking target structure into consideration outlined below. For both ex-
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periments, we limit the number of oracle calls (successful docking and interaction profiling) to 1000
to ensure a fair and computationally feasible comparison with a batch size of 32. Additionally, we
incorporate the QED score as a secondary objective, where molecules with a QED score above 0.65
receive a reward of 1, while those below this threshold receive a reward of 0. The combined reward
is the product of the transformed QED and docking/interaction score. Finally, to promote structural
diversity among generated molecules, we apply REINVENT’s built-in diversity filter (bucket size of
25 based on identical Murcko scaffold and minimum similarity of 0.4).

To assess the capability of REINVENT to recover reference ligands we optimize for the Vina score
by docking using Gnina (McNutt et al., 2021) with the binding site specified by the reference ligand
(autobox parameter). We transform the raw docking scores using a reverse sigmoid function,

Rdock =
1

1 + 10
k
(
S−

Shigh+Slow
2

)
10

Shigh−Slow

, (1)

where S is the docking score, Slow and Shigh define the range of scores set to −14 and −2, respec-
tively, and k = 0.25 is a factor defining smoothness.

In the second experiment, we assess the ability of REINVENT to optimize molecular interactions
with a target protein. Here, the reward function is designed to maximize the number of hydrogen
bonds formed, as identified using ProLIF (Bouysset & Fiorucci, 2021). The reward is transformed
as follows,

Rhbonds =
Hsat

Htot
, (2)

where Hsat is the number of satisfied hydrogen bonds and Htot is the total number of unsatisfied and
satisfied hydrogen bonds in the molecule. Unsatisfied hydrogen bonds are hydrogen bond acceptors
and donors that do not fulfill their potential while satisfied ones do form an interaction with the
protein. This transformation ensures that molecules where all potential hydrogen bond sites are
involved in a hydrogen bond to the target receive a maximum reward of 1.

Virtual screening (VS) To simulate virtual screening and showcase the ability of generative mod-
els to propose solutions beyond those in its training data, we dock molecules from LDDM’s training
set into the test set proteins using a GPU-optimized version of QuickVina (Ding et al., 2023; Al-
hossary et al., 2015), and select the top 100 hits according to docking score. For computational
tractability, we randomly select a subset of 10 000 SynthDock molecules as our screening library.
For docking, we use target-specific bounding boxes that fully cover the associated reference ligand
plus 5Å margin added to all six sides.

Random As a trivial baseline, we include a random selection of docked molecules from the
screening library (rather than the top performing ones).

Local docking baselines For local docking, all baselines and the corresponding results were taken
from Buttenschoen et al. (2024). We note that PB-validity∗ reported for all baselines was measured
on top-1 selected poses only. For LDDM poses, we first filtered out invalid poses and then selected
the best candidates using the uncertainty scores. That is why Figure 2F has two legends for PB-
validity. We label the PB-validity evaluation suggested by Buttenschoen et al. (2024) with asterisk.
In these experiments, we used LDDM trained on CrossDocked (Francoeur et al., 2020).

Covalent docking baselines For covalent docking, all baselines and the corresponding results
were taken from Scarpino et al. (2018).

A.4 METRICS

We use a symmetrized version of the shape-color similarity score proposed in (Imrie et al., 2020).
Shape similarity measures the volumetric overlap of two molecules (Putta et al., 2005) and color
similarity compares pharmacophores in 3D (Landrum et al., 2006). Shape-color similarity is the
average of both scores, which output values between 0 and 1. We obtain a symmetric score by using
both molecules as reference and averaging the outcomes.
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Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) measures how closely a set of generated
molecules resembles the training (reference) distribution. FCD uses the activations of the penulti-
mate layer of a pretrained bioactivity prediction model (ChemNet) to parameterize two Gaussian dis-
tributions and finally compute the Fréchet distance between them. For the visualization of the chem-
ical space covered by LDDM samples, we used the same ChemNet embeddings, mapped them on
the first 100 principal components using PCA and computed 2D projections with UMAP (McInnes
et al., 2018).

We also report validity as the fraction of molecules passing RDKit’s sanitization filters, connectivity
as the fraction of molecules without disconnected fragments, a quantitative estimate of drug-likeness
(QED) (Bickerton et al., 2012), a synthetic accessibility proxy (SA) (Ertl & Schuffenhauer, 2009)
and lipophilicity (logP) (Wildman & Crippen, 1999). For some of these quantities we compute
Wasserstein-1 distances (WD) or Jensen-Shannon divergences (JSD) to the distributions observed
in the training set rather than absolute values to evaluate if the generative model successfully recre-
ates patters from the reference set (Schneuing et al., 2025). PoseBusters (PB) validity checks what
fraction of molecules passes all filters in the PoseBusters test suite (Buttenschoen et al., 2024).

A.5 DESIGN OF KRAS BINDERS

A.5.1 COMPUTATIONAL DESIGN

To design KRAS binders, we used LDDM trained on the CrossDocked dataset (Francoeur et al.,
2020) in de novo design regime. During generation, we discarded molecules that did not pass
PoseBusters validity filters (Buttenschoen et al., 2024), REOS filters (Walters et al., 1998), or had
at least one ring system that was not found in ChEMBL (Walters, 2022; 2021). Eventually, we
obtained 10 000 unique samples.

A.5.2 FILTERING CRITERIA

A total of 10 000 molecules were designed using LDDM. To enhance the likelihood of experimental
validation, a series of filtering steps were applied. To ensure the solubility of the test compounds,
the logP values of the selected molecules were restricted to a range of 1 to 3. Additionally, to
reduce molecular flexibility and limit binding degrees of freedom, the number of rotatable bonds
was capped at a maximum of 5. After applying these two filters, 2268 molecules remained. These
molecules were then subjected to an exact-match search against the Enamine REAL database, which
contains 48 billion compounds. The search was performed using the SpaceLight (Louis Bellmann,
2020) mode of the InfiniSee tool, based on Tanimoto similarity on fCSFP4 fingerprints. This process
identified 207 molecules within the database. To validate the binding mode, molecular docking was
conducted using Gnina (McNutt et al., 2021) with an exhaustiveness parameter of 32. A total of 133
molecules were docked with a normalized RMSD of < 0.3Å per atom. For all 133 molecules, an
interaction profile was generated based on the predicted binding pose from LDDM, with a focus on
recovering the known interaction fingerprint of small-molecule binders targeting the same pocket.
The top five molecules, ranked according to the number and type of recovered interactions, were
selected for experimental testing.

A.5.3 EXPERIMENTAL METHODS

Grating-coupled interferometry (GCI, Creoptix) was used for the hit screening. The
KRAS(GDP)G12C was immobilised by amine coupling on a carboxymethyl-5′-dextran (4PCH)
sensor chip. The surface of a chip was activated with 1:1 mixture of (100mM) N-
hydroxysuccinimide and (400mM) 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The immo-
bilisation level of KRAS(GDP)G12C protein (60 µg/mL) (10mM sodium acetate, pH 4.5) reached
the immobilisation level of 15 000 response units.

The hit identification was based on the kinetic parameters from the rapid kinetic, where we applied
two hit calling criteria: 1) dissociation and association errors are equal or less than 100, 2) maximum
response value Rmax is greater than 15. The hit identification was done using the rapid kinetic,
where all the compounds are injected at a single concentration (1mM) for increasing times, the flow
rate was 400 µL/min, association time of 5 s and dissociation time of 20 s. Each compound was
addressed through two channels: reference channel and the channel with immobilised KRAS.
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First, KRAS(GDP)G12C protein was immobilized on a 4PCH chip, the activity of a protein after
immobilization was checked by binding of the positive control BI-2865. The protein on a chip was
active and the Kd value was 6.9 nM for BI-2865 positive control, which is close to the literature
range of 4.5-12 nM (Kim et al., 2023).

The binding of the second positive control—covalent inhibitor sotorasib—was done in an indepen-
dent experiment, and it was shown that cysteine 12 is active in KRAS(GDP)G12C protein after
immobilization, and sotorasib binding performed well. The hit screening was done in the running
buffer 20 mM Hepes, 150 mM NaCl, 1 mM DTT, 5mM MgCl2, 1% DMSO, 0,02% P020 using
rapid kinetic method. We applied the following parameters for hit identification in the program
software of Creoptix method: the threshold value for association and dissociation errors – is less
than or equal to 100, and the threshold value for Rmax is greater than 15 (Rmax for BI-2865 was 18).
Applying this filtering metrics we detected three hit molecules of five designed.

Next, we performed a blocking experiment with the sotorasib covalent inhibitor to show that our
hit molecules indeed bind in the right pocket. We incubated KRAS(GDP)G12C free in the running
buffer with 1% DMSO and KRAS(GDP)G12C with 500 µM of covalent binder sotorasib as well
in the running buffer with 1% DMSO for 10 min, the KRAS(GDP)G12C and KRAS(GDP)G12C-
sotorasib were immobilised on 2 independent channels. Hit molecules were screened again against
these 2 channels (with the free KRAS and blocked KRAS) using rapid kinetic. It was found that
the Rmax value is much lower and the dissociation/association errors are much higher for blocked
KRAS(GDP)G12C. Thus we concluded that our hit molecules bind indeed in the correct pocket of
KRAS(GDP)G12C.

Finally, the multicycle kinetic was done for our top hits to determine the Kd values, the Kd for our
top hit—compound 1— was 79 µM.

B EXTENDED RESULTS

B.1 CHEMICAL SPACE MODELING

Traditionally, the evaluation of generative design methods has focused on the absolute values of
various quality metrics, such as docking scores, drug-likeness (Bickerton et al., 2012), or synthetic
accessibility (Ertl & Schuffenhauer, 2009). However, as discussed in Schneuing et al. (2025), this
strategy often fails to meet the primary objective of generative modeling: learning the underlying
distribution of the training data.

To train LDDM, we curated SynthDock, a new dataset of docked protein-ligand complexes. It
includes 2704 distinct protein clusters and 264 449 unique molecules from ChEMBL (Gaulton et al.,
2012), which makes it orders of magnitude larger and more diverse than other existing datasets for
3D structure-based drug design (Francoeur et al., 2020; Wang et al., 2005; Durairaj et al., 2024). We
visualize the entire SynthDock chemical space in Figure 6C using the pre-trained neural network
ChemNet (Preuer et al., 2018) and dimensionality reduction techniques, as explained in Methods.
The vast chemical space of SynthDock includes different classes of molecular compounds including
amines, amides, sulphones, sugar and phosphonic acid derivatives and N-heterocyclic molecules.

Notably, LDDM samples, obtained on the diverse held-out test set, uniformly cover the entire chem-
ical space while remaining structurally novel: over 90% of LDDM samples have less than 0.5 Tani-
moto similarity to the SynthDock training set. Examples of LDDM samples belonging to the differ-
ent clusters of the chemical space are shown in the corresponding panels of Figure 6C.

Finally, to quantify the ability of LDDM to learn the underlying data distribution, we perform the
same evaluation as in Schneuing et al. (2025). To be able to compare our method with other base-
lines, we train a separate model using the CrossDocked dataset Francoeur et al. (2020). As shown in
Tables 1, 2, and 3, LDDM achieves competitive performance in various distribution learning metrics.

15



Published at the GEM workshop, ICLR 2025

Table 1: Fréchet ChemNet Distance and Jensen-Shannon divergence between distributions of dis-
crete molecular data. The best result is highlighted in bold, the second best is underlined. All
baselines including LDDM were trained on the same CrossDocked dataset.

Method FCD Atoms Bonds Rings

POCKET2MOL 12.703 0.081 0.044 0.446
DIFFSBDD 11.637 0.050 0.227 0.588
TARGETDIFF 13.766 0.076 0.240 0.632
DRUGFLOW 4.278 0.043 0.060 0.391
LDDM 7.192 0.084 0.143 0.477

Table 2: Wasserstein distance between marginal distributions of continuous molecular data (bond
distances and angles), drug-likeness (QED), synthetic accessibility (SA), lipophilicity (logP) and
numbers of rotatable bonds (RB). The last column reports the Jensen-Shannon divergence between
the joint distributions of four molecular properties (QED, SA, logP and Vina efficiency score). The
best result is highlighted in bold, the second best is underlined. All baselines including LDDM were
trained on the same CrossDocked dataset.

Top-3 bond distances Top-3 bond angles Molecular properties

Method C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP RB JSDall

POCKET2MOL 0.050 0.024 0.045 2.173 2.936 3.938 0.072 0.576 1.209 2.861 0.223
DIFFSBDD 0.041 0.039 0.042 3.632 8.166 7.756 0.065 1.570 0.774 0.928 0.274
TARGETDIFF 0.017 0.019 0.028 4.281 3.422 4.125 0.050 1.518 0.489 0.354 0.242
DRUGFLOW 0.017 0.016 0.016 0.952 2.269 1.941 0.014 0.317 0.665 0.144 0.099
LDDM 0.041 0.024 0.016 1.651 2.290 1.938 0.096 0.944 0.529 1.358 0.196

Table 3: Wasserstein distance between distributions of binding efficiency scores and normalized
numbers of different protein-ligand interactions. The best result is highlighted in bold, the second
best is underlined.

Binding efficiency Protein-ligand interactions

Method Vina Gnina H-bond H-bond (acc.) H-bond (don.) π-stacking Hydrophobic

POCKET2MOL 0.064 0.044 0.040 0.026 0.014 0.007 0.027
DIFFSBDD 0.086 0.043 0.047 0.030 0.017 0.011 0.044
TARGETDIFF 0.034 0.030 0.031 0.021 0.010 0.012 0.039
DRUGFLOW 0.028 0.013 0.019 0.012 0.007 0.006 0.036
LDDM 0.066 0.032 0.015 0.008 0.007 0.009 0.054
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B.2 DESIGN OF KRAS BINDERS
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Figure 4: Experimental Data. (A) Rapid kinetic sensograms for all five tested compounds. (B)
Binding kinetic sensograms for varying compound concentrations of the positive control BI-2865,
compound 1 and compound 2.

Table 4: Hit identification criteria. We defined experimental hits based on two criteria: (1) Ob-
served Rmax > 15 pg/mm2 and (2) dissociation and association errors ≤ 100. The theoretical Rmax

value was computed as Rmax = RL · Sm · analyte MW
ligand MW where RL is the amount of immobilized ligand

in pg/mm2 and Sm is the stoichiometry (number of binding sites for the analyte on the ligand).

Compound Theoretical Rmax Observed Rmax Diss. Error Ass. Error Hit?

Compound 1 205 29 9 50 yes
Compound 2 209 153 9.2 32 yes
Compound 3 236 90 53 37 yes
Compound 4 212 4 120 120 no
Compound 5 240 4 4.8× 108 170 no

17



Published at the GEM workshop, ICLR 2025

Design Docking
Design + Docking

Fragment-based Design Constrained Docking
?

?

?

?

BRICS

3D

2D

Input + MaskInput

Atoms

Bonds

3D?

Atoms

Bonds

3D

Atoms

Bonds

3D

?
?
?

A B

C

...

... ...

Fragment Tree

Generation

Fragmentation & �ltering

Iteration 1

Iteration 2

... ...

D

...

...

...

– accept fragment for the next iteration – accept molecule

... ...

Iteration 3

Fragmentation Masked Modeling & Tasks

Generation

Controlled Sampling

C O N S F

– = :#

Prior Distributions
3D

Positions

Atom
Types

Bond Types

?

t = 0 t = 10 < t < 1

Figure 5: Method overview. (A) To prepare the data for training, we identify retrosynthetically
interesting substructures using the BRICS (Degen et al., 2008) method, and assign fragment labels
to different parts of each molecule. (B) During training, each fragment can either be masked out
completely, partially given as a molecular graph without coordinates or fully provided as additional
context for the denoising network. The trained model can then be applied naturally to diverse tasks
by specifying the appropriate amount of given information for each fragment. (C) The generative
model denoises continuous atom positions and simultaneously categorical atom and bond types for
de novo designed fragments. (D) Controlled generation scheme. The process starts with the empty
protein pocket (on the left) for which LDDM samples the first generation of molecules (on the
right). These samples are then fragmented, and each fragment is accepted or rejected based on
one or several validation criteria. The next iteration starts with these accepted fragments, which are
input to LDDM to sample the next generation of molecules. At each step, we also evaluate the entire
molecules, and the ones that pass all the validation filters are saved in the final pool. The process
continues for a specified number of iterations or until a certain number of molecules is saved to the
final pool.
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Figure 6: Molecular design. (A) Ground-truth recovery. We use SCRDKit to efficiently compute
shape and color (i.e. pharmacophore-based) similarity between generated 3D molecules and ref-
erence compounds from PoseBusters test set (304 targets). For each test target, we consider 100
generated (or proposed) candidates and choose the most similar one to the reference molecule. In
the absence of a universal similarity cutoff, we report the area under the curve (AUC) of the cumula-
tive success rate for the whole range of similarity values (i.e. between 0 and 1). As a positive control,
we evaluate docking conformations of the reference molecules (100 conformations per target) ob-
tained using AutoDock Vina (dashed gray lines). (B) Examples of LDDM samples (red) with high
similarity to the reference molecules (gray). In all pairs, both molecules have high volumetric over-
lap and similar pharmacophore patterns. (C) Chemical space of LDDM samples (n = 6856). Each
generated molecule is represented as a point corresponding to the two-dimensional UMAP vector
computed on the PCA-projection (with 100 components) of the molecule’s ChemNet embedding
(with 512 components). Different colors of LDDM samples correspond to the clusters computed
on the UMAP vectors using spectral clustering algorithm with the predefined number of clusters
(n = 10). Six panels around the map provide examples of LDDM samples from different clusters.
For each cluster, we show several compounds manually selected from the 10 closest to the cluster
centroid molecules. While LDDM entirely covers the chemical space of the SynthDock training
set (blue background, n = 254140), it produces novel chemical matter as shown in the cumulative
histogram of novelty. To quantify novelty of a generated molecule, we compute its maximum Tan-
imoto similarity (using Morgan fingerprints) to the SynthDock training set. As shown in the plot,
approximately 90% of samples have less than 0.5 similarity to the training set.
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