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Abstract

Hierarchical federated learning (HFL) has emerged
as the architecture of choice for multi-level com-
munication networks, mainly because of its data
privacy protection and low communication cost.
However, existing studies on the convergence anal-
ysis for HFL are limited to the assumptions of full
worker participation and/or i.i.d. datasets across
workers, both of which rarely hold in practice. Mo-
tivated by this, we in this work propose a unified
convergence analysis framework for HFL cover-
ing both full and partial worker participation with
non-i.i.d. data, non-convex objective function and
stochastic gradient. We correspondingly develop
a three-sided learning rates algorithm to mitigate
data divergences issue, thereby realizing better con-
vergence performance. Our theoretical results pro-
vide key insights of why partial participation of
HFL is beneficial in significantly reducing the data
divergences compared to standard FL. Besides, the
convergence analysis allows certain individualiza-
tion for each cluster in HFL indicating that adjust-
ing the worker sampling ratio and round period can
improve the convergence behavior.

1 INTRODUCTION

Federated Learning (FL) [McMahan et al., 2017, Yang et al.,
2019] is a privacy-preserving machine learning paradigm
for substantial decentralized data. FL allows a large number
of workers to collaboratively learn a model with their local
data under the coordination of a centralized server. Formally,
the goal of FL is to solve an optimization problem, which is

min
x∈Rd

f(x) :=
1

m

m∑
i=1

Fi(x), (1)

where Fi(x) is the local (non-convex) loss function param-
eterized by x and m is the number of workers in total. We
can tackle the above problem iteratively in a distributed way,
where most representative algorithm is FedAvg [McMahan
et al., 2017]. Specifically, the workers each train on their
local data, take several gradient steps, and then forward
their locally updated model to the server to be averaged.
This eliminates the need for explicitly sharing sensitive data
with others, thereby providing privacy guarantee. A large
body of work demonstrates the benefits of FedAvg via both
theoretical convergence analysis and empirical experiments
[Li et al., 2019, Wang and Joshi, 2021].

On the other hand, standard FL setting with single cloud is
inapplicable to substantial real world scenarios with low la-
tency requirement. Multi-level network architecture enables
great potential in low latency FL, such as edge computing.
Specifically, edge computing allows worker to transmit the
updated model to local server in the vicinity, thereby sig-
nificantly reducing the transmission latency [Zhang et al.,
2022]. Local severs collect the updated models and send
them to the cloud sever. Besides, multi-level network boosts
the number of connected end devices by providing more
access points in the edge.

To accommodate the multi-level network architecture, a few
works proposed hierarchical FL (HFL). In HFL, workers
are partitioned into multiple groups, with each group gov-
erned by a cluster (local server), and all clusters coordinated
through a master (global server). Specifically, after several
local iterations, workers first send their updated models to
cluster for local aggregation within the belonging cluster.
After several local aggregations, all clusters communicate
with the master for global aggregation among groups. This
two-level aggregation in HFL strikes a subtle balance be-
tween the communication overhead and learning perfor-
mance. Parallel local aggregations ensure ultra-low latency,
while the time-consuming global aggregation embraces ex-
tensive model knowledge.

Very recent, there have been a few works analyzing the



Table 1: A summary of convergence rates of optimization methods for HFL.

Algorithm SGD Non-i.i.d. Partial Worker Convergence Rate1

Liu et al. [2020]2 × ✓ × O( BG
√
mT

)

Castiglia et al. [2020]2 ✓ × × O( 1√
mT

+ mG2

IT
)

Wang et al. [2022]2 ✓ ✓ × O( 1√
mT

+ (M−1)G2+(m−M)I2

T
)

Liu et al. [2022a]3 ✓ × × O( 1√
GT

+ M
mT

)

Ours3 ✓ ✓ ✓ O( 1√
mGT

+ 1
T
)

1 G: global aggregation period (master period); I: local aggregation period (cluster period); m:
number of workers in HFL system; M : number of groups; B is a constant and B > 2.

2 T in these works refer to total number of local iterations.
3 T in these works refer to total number of master rounds.

convergence behavior under HFL scenario. In particular,
Castiglia et al. [2020] considers a two-level FL where the
clusters are organized as a peer-to-peer network. However,
their theoretical results only cover the case of identically and
independently distributed (i.i.d.) data. Liu et al. [2020] con-
siders non-i.i.d. data, but they assume full (non-stochastic)
gradients and the convergence bound is in an exponential
function form. Wang et al. [2022] provides a more system-
atic analysis for HFL, which considers non-convex objec-
tive function, non-i.i.d. data, and stochastic gradient descent
(SGD). They split the overall data heterogeneity (global di-
vergence) into two components, worker-cluster divergence
(i.e., within a group) and cluster-master divergence (i.e.,
among groups). Compared to standard FL, their results show
that local aggregation can help to overcome worker-cluster
divergence.

However, all the aforementioned works only consider full
worker participation (FWP), which is often not possible
in practice. Workers may randomly join or leave the FL
system, making the active worker set stochastic and time-
varying across communication rounds [Yang et al., 2021].
Waiting for all workers’ responses can significantly slow
down the training performance, especially when there are in-
active workers or stragglers. This necessitates us to consider
partial worker participation (PWP), where only a subset
of the workers are chosen in each communication round.
This is especially critical in HFL scenarios, such as edge
computing, where workers may experience availability is-
sues due to battery level, network status, incoming calls, etc.
Therefore, there is a need for a comprehensive analysis and
understanding of HFL with PWP.

In this paper, we present a novel theoretical analysis for HFL
with both FWP and PWP. We follow the setting of Wang
et al. [2022] for HFL, and newly derive the convergence
bound for HFL w.r.t. communication rounds. This bound
is more explicit than their original one [Wang et al., 2022]
which was w.r.t. local iterations. Besides, we develop a
generalized FedAvg with three-sided learning rates for HFL
correspondingly, showing how local aggregation can help
to overcome worker-cluster divergence and how to realize

linear speedup.

Our theoretical results reveal that PWP can facilitate HFL
more effectively than standard FL. Specifically, HFL alle-
viates the additional uncertainty caused by PWP in terms
of both worker-cluster and cluster-master divergences. This
weakening effect yet is only observed on worker-cluster
divergences in HFL with FWP. Therefore, enabling PWP
is especially beneficial when certain data heterogeneity ex-
ists among groups, which is the most general case of HFL
in practice. This suggests a mutual beneficial relationship
between HFL and PWP. Many real world scenarios of HFL
employ PWP to deal with the instability and unavailability
of workers, such as edge computing. While exactly, the hi-
erarchical architecture just provides a suitable showcase for
PWP. Besides, our theoretical results show that HFL can be
customized to a certain degree. Specifically, each cluster can
adjust its worker sampling ratio and round period accord-
ingly to deal with its inner data heterogeneity. A summary
of our result with existing results is shown in Table 1.

We emphasize that our main contribution is to provide a new
unified convergence bound for HFL settings. Our theoretical
results recover the previous results of FL from Yang et al.
[2021] by setting M = 1, I = G, and ϵ = 0, and generalize
existing HFL results to PWP and heterogeneous clusters Ii
and ni. Compared to Wang et al. [2022], our work adopts
the same typical HFL settings, but the convergence analysis
framework is completely different. Specifically, we rederive
a round-level convergence bound for both FWP and PWP,
which is potentially tighter (in the sense of second term, our
O( 1

T ) versus their O(GT )) and more general (aware of some
server-sided optimization) than their iteration-level results.
Compared to Yang et al. [2021], our work shares a similar
algorithmic approach but differs in the analysis method. We
do face several theoretical challenges specialized in HFL
scenario, which has not been considered in existing FL
works. We defer some details on this to Section 4.

We highlight our contributions as follows.

1. We derive a general convergence bound of HFL with
both FWP and PWP, non-i.i.d. data, non-convexity,



and SGD. We correspondingly develop a three-sided
learning rates algorithm.

2. Compared to standard FL, we reveal that PWP can
significantly reduce both worker-cluster divergences
and cluster-master divergence in HFL.

3. We provide certain individualization for HFL by sug-
gesting each cluster flexibly set its worker sampling
ratio and round period to match its inner divergence
for potentially better convergence behavior.

4. We introduce comprehensive and reproducible empir-
ical baselines for comparison. We conduct extensive
numerical experiments on multiple datasets to verify
our theoretical results.

2 RELATED WORKS

A large body work studied the convergence behavior of the
FedAvg algorithm for standard FL. Some works focus on
convex objective functions [Stich, 2019, Wang et al., 2019,
Li et al., 2019], while others consider non-convex objec-
tive functions [Haddadpour et al., 2019, Yu et al., 2019b,
Wang and Joshi, 2021]. There are also works that extend
the theoretical results to non-i.i.d. data case [Li et al., 2019,
Khaled et al., 2019]. Besides, several variants of FedAvg are
proposed and analyzed, such as those that address system
heterogeneity [Li et al., 2020], combine with momentum
[Yu et al., 2019a], or use adaptive optimizers [Reddi et al.,
2020].

For HFL, there have been a few works providing conver-
gence analysis. These include Castiglia et al. [2020], Zhou
and Cong [2019] for i.i.d. data, and Liu et al. [2020] for
non-i.i.d. data with full gradient descent. Wang et al. [2022]
provides a comprehensive analysis framework for HFL, cov-
ering non-convex objective function, non-i.i.d. data, and
SGD. Several variants are also proposed and theoretically
studied, with quantization technique [Liu et al., 2022a], mo-
mentum acceleration [Yang et al., 2023], over-the-air setup
[Aygün et al., 2022], wireless resource allocation [Liu et al.,
2022b], user mobility [Feng et al., 2022], data offloading
[Ganguly et al., 2023], and submodel partitioning [Fang
et al., 2023]. However, all these works assume FWP, and
some even require stronger assumptions such as bounded
gradient. Besides, there are also works on system design
for HFL without convergence guarantees [Luo et al., 2020,
Abad et al., 2020, Briggs et al., 2020].

For PWP, a popular branch of works focuses on the uniform
worker sampling pattern with or without replacement. Some
typical representatives include, for strongly convex objec-
tive function [Li et al., 2019], with proximal term to handle
heterogeneity [Li et al., 2020], with extra communications
to reduce variance introduced by PWP [Karimireddy et al.,
2020]. Then Yang et al. [2021] improves the theoretical re-
sults and achieves a linear speedup with two-sided learning

rates. There are further some works addressing variance-
reducing in PWP via memorized gradients [Jhunjhunwala
et al., 2022] and momentum-based update [Das et al., 2022].
The work by Qu et al. [2022] considers a multi-server FL
with overlapping area setting, also taking into account the
uniform PWP. However, their multi-server scenario differs
from HFL in that global aggregation never takes place in
the training process. Some other works allow for arbitrary
worker sampling probabilities and provide convergence anal-
ysis [Gu et al., 2021, Perazzone et al., 2022, Fraboni et al.,
2023]. However, these works require much stronger assump-
tions, such as Lipschitz Hessian or/and bounded gradient
assumption. Besides, another branch of works considers
arbitrarily asynchronous participation patterns Avdiukhin
and Kasiviswanathan [2021], Yang et al. [2022], Nguyen
et al. [2022], Wang and Ji [2022]. In this paper, we base our
work on uniform sampling with standard assumptions, as
we will elaborate in Section 3 and Section 4.

3 HFL SETUP

Suppose there are m in total workers making up a set V .
In two-level HFL setting, all workers are grouped into M
clusters V1,V2, . . . ,VM . Let mi := |Vi| (i = 1, 2, . . . ,M)
denote the number of workers in each group cluster. There-
fore, we have m =

∑M
i=1 mi. With the cluster policy, the

objective function of Eq. 1 is equivalent to

min
x∈Rd

f(x) :=
M∑
i=1

mi

m
fi(x),

where fi(·) is the averaged loss function of workers in clus-
ter i which is

fi(x) :=
1

mi

∑
j∈Vi

Fj(x).

In HFL, workers conduct multiple SGD iterations
to minimize the local objective function Fj(x) ≜
Eξj∼Dj

[Fj(x, ξj)] w.r.t. model parameters x on their own
dataset Dj . Each cluster i (i = 1, 2, . . . ,M) first averages
the updated parameters from its workers j ∈ Vi every Ii
local iterations (refer to as a cluster round with period Ii).
After several rounds of intra-cluster aggregations, a mas-
ter globally averages the models from all M clusters. This
global aggregation takes place for every G local iterations
(refer to as a master round with period G). Note that G is a
common multiple of {I1, I2, . . . , IM}. Different Ii values
account for potential system heterogeneity (computation
and communication capacity) of devices in different cluster.

We investigate a three-sided learning rates hierarchical
FedAvg, which is essentially a generalization of previ-
ous works [Karimireddy et al., 2020, Reddi et al., 2020,
Yang et al., 2021]. The algorithm is shown in Algorithm 1.
For a natural number m, we use [m] to represent the set



Algorithm 1 HFL with Three-sided Learning Rates

1: Input: η, ηc, ηg , x0, {Vi : i ∈ [M ]}, G, {Ii : i ∈ [M ]},
{ωi : i ∈ [M ]}, {ni : i ∈ [M ]}.

2: Output: Global aggregated model xT .
3: for t = 0 to T − 1 do
4: for each cluster i ∈ [M ] in parallel do
5: for τ = 0 to ωi − 1 do
6: Cluster i samples a subset St,τ

i of workers with
|St,τ

i | = ni.
7: for each worker j ∈ St,τ

i in parallel do
8: for h = 0 to Ii − 1 do
9: Compute a gradient estimate gt,τ,hj .

10: Worker update: xt,τ,h+1
j = xt,τ,hj −ηgt,τ,hj .

11: end for
12: Let ∆̃t,τ

j = xt,τ,0j −xt,τ,Iij = η
∑Ii−1

h=0 gt,τ,hj

13: Send ∆̃t,τ
j to cluster i.

14: end for
15: Cluster i receives ∆̃t,τ

j , j ∈ St,τ
i .

16: Let ∆t,τ
i = 1

ni

∑
j∈St,τ

i
∆̃t,τ

j .

17: Cluster update: xt,τ+1
i = xt,τ

i − ηc∆
t,τ
i .

18: Broadcast xt,τ+1
i to workers in cluster i.

19: end for
20: Let ∆t

i = xt,0i − xt,ωi

i = ηc
∑ωi−1

τ=0 ∆t,τ
i .

21: Send ∆t
i to master.

22: end for
23: Master receives ∆t

i, i ∈ [M ].
24: Let ∆t =

∑M
i

mi

m ∆t
i.

25: Master update: xt+1 = xt − ηg∆
t.

26: Broadcast xt+1 to all workers.
27: end for

{1, 2, . . . ,m}. The Learning rates for worker, cluster, and
master are η, ηc, and ηg, respectively. Note that h, τ , and
t always count for local iteration, cluster round, and mas-
ter round, respectively. We let ωi = G

Ii
denote the num-

ber of cluster rounds for cluster i,∀i ∈ [M ] in a mas-
ter round. We denote the stochastic gradient estimator as
gt,τ,hj = ∇Fj(xt,τ,hj , ξt,τ,hj ), where ξt,τ,hj is the random data
samples from the local dataset Dj at worker j for iteration h
(in cluster round τ and master round t). For a cluster round
τ , ∆̃t,τ

j is the accumulated gradients of worker j, while
∆t,τ

i is the averaged gradients of all participated workers in
cluster i.

In HFL with PWP, each cluster round only includes a certain
subset of workers. We denote St,τ

i as participating worker
index set, which is determined once a new cluster round
τ starts. We have |St,τ

i | = ni, for some ni ∈ (0,mi]. For
the sampling strategy of participating set, we employ two
strategies proposed by Li et al. [2020] and Li et al. [2019],
respectively. Specifically, we select St,τ

i randomly and inde-
pendently, either with replacement (Strategy 1) or without
replacement (Strategy 2). For each member in St,τ

i , we

pick a worker from Vi uniformly at random with probabil-
ity pj = 1

mi
,∀j ∈ Vi. Ultimately, the participation like-

lihood for any worker j ∈ St,τ
i equals to ni

mi
. We denote

the total number of worker sampling size in HFL system as
n =

∑M
i=1 ni.

4 CONVERGENCE ANALYSIS

To establish the convergence theorem, we preset the follow-
ing assumptions.

Assumption 1 (L-Lipschitz Continuous Gradient). There
exists a constant L > 0, such that ||∇Fi(x)−∇Fi(y)|| ≤
L||x − y||,∀i, x, y.

Note that Lipschitz continuous gradient assumption
internally applies to the cluster objective fi(x) and global
objective f(x). For instance, ||∇fi(x) − ∇fi(y)|| =
|| 1
mi

∑
j∈Vi

∇Fj(x) − 1
mi

∑
j∈Vi

∇Fj(y)|| ≤
1
mi

∑
j∈Vi

||∇Fj(x)−∇Fj(y)|| ≤ L||x − y||.
Assumption 2 (Unbiased Local Gradient Estimator). Let
ξhi be a random local data sample in the h-th step at the
i-th worker. The local gradient estimator is unbiased, i.e.,
E[∇Fi(x, ξhi )] = ∇Fi(x),∀i, x, where the expectation is
over all local datasets samples.

Assumption 3 (Bounded Variance). There exists a constant
σ > 0, such that the variance of each local gradient estima-
tor is bounded by E[||∇Fi(x, ξhi )−∇Fi(x)||2] ≤ σ2,∀i, x.

Assumption 4 (Bounded Cluster-Master and Worker-Clus-
ter Divergence). The bounded cluster-master divergence
is expressed as ||∇fi(x) − ∇f(x)||2 ≤ ϵ2,∀i ∈ [M ], x,
while the bounded worker-cluster divergence is ||∇fj(x)−
∇Fi(x)||2 ≤ ϵ2i ,∀i ∈ [M ], j ∈ Vi, x.

The first three assumptions are standard in non-convex op-
timization [Ghadimi and Lan, 2013, Bottou et al., 2018].
Assumption 4 quantifies the heterogeneity of the non-i.i.d.
datasets among different workers and groups. It was first
introduced by Wang et al. [2022] for HFL. The worker-
cluster part measures the data heterogeneity among workers
inside a group, while the cluster-master part measures the
data heterogeneity among groups. In particular, ϵ2 = 0
stands for inter-group i.i.d., and ϵ2i = 0 for intra-group-
i i.i.d., respectively. In standard FL case, Assumption 4
has a simpler form as ||∇Fj(x) − ∇f(x)||2 ≤ ϵ̃2,∀j ∈
[m], x, which is also referred to as bounded global di-
vergence [Yang et al., 2021, Reddi et al., 2020, Wang
et al., 2019, Yu et al., 2019b]. Note that the worker-cluster
and cluster-master divergences are essentially two com-
ponents of the global divergence, since the total variance
is 1

m

∑m
j=1

∥∥∇Fj(x) − ∇f(x)
∥∥2 =

∑M
i=1

mi

m

∥∥∇fi(x) −
∇f(x)

∥∥2 +
∑M

i=1
mi

m
1
mi

∑
j∈Vi

∥∥∇Fi(x) − ∇fi(x)
∥∥2,

implying the asymptotic relation O(ϵ̃2) = O(ϵ2 +∑M
i=1

mi

m ϵ2i ).



4.1 HFL WITH FWP

Consider the problem described in Section 3, we have the
following results for HFL with FWP:

Theorem 1. Under Assumption 1-4, with FWP, let the learn-
ing rates be chosen such that η ≤ 1

10ImaxL
, ηcη ≤ 1

10GL ,

ηgηcη ≤ 1
GL , and 40G2η2cη

2L2 + 100η2L2
∑M

i=1
mi

m I2i <
1
2 , where Imax = maxi Ii, then the sequence of outputs
{xt} generated by Algorithm 1 satisfies

min
t∈[T ]

E
∥∥∇f(xt)

∥∥2 ≤ f0 − f∗
cηgηcηGT

+
1

c

(
Φ1 +Φ2

)
.

where c is a constant, f0 ≜ f(x0), f∗ ≜ f(x∗), and

Φ1 = 9Gη2cη
2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2

+ 40G2η2cη
2L2ϵ2 + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2

+ 75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i , Φ2 =

Lηgηcη

2m
σ2.

Proof. Please refer to Appendix C. Here the core technique
we use is the mutual bounding of worker-cluster parameter
MSEs (WC-MSE) ∥xt,τ,h

j − xt,τ
i ∥2 and cluster-master pa-

rameter MSEs (CM-MSE) ∥xt,τ
i − xt∥2, as shown in our

derived Lemma 3 and 4. This may seem counterintuitive
at first, since we may expect that it is only CM-MSE be-
ing bounded by WC-MSE, but not the contrary. However,
this mutual bounding is exactly the maximal knowledge
on MSEs when no stronger assumption is available (e.g.,
bounded gradient or convexity assumption). We creatively
leverage this to further derive Lemma 5, which analyti-
cally provides a universal bound of WC-MSE. Then, with
Lemma 5, we achieve the final convergence bound for HFL
and recover the desired weakening effect.

Remark 1. The convergence bound in Theorem 1 contains
two parts: a vanishing term f0−f∗

cηgηcηGT that decreases as T
increases, and other constants that depend on the problem
instance configuration rather than T . The decaying rate of
the vanishing term matches that of typical SGD methods.
The constant part can be further categorized into two com-
ponents Φ1 and Φ2 (this manual partition is for better com-
parison with subsequent results from PWP case). Φ1 reveals
how the master and cluster periods G, Ii interact with SGD
noise σ2 and divergences ϵ2, ϵ2i . Φ2 covers all the impact
of master learning rate ηg for the constant part, which only
acts on σ2.

Remark 2. Theorem 1 shows how local aggregation of
HFL helps to overcome divergences. The overall diver-
gences for HFL are O(η2η2cG

2ϵ2 + η2
∑M

i=1
mi

m I2i (ϵ
2 +

ϵ2i )), originating from the constant component Φ1. In con-
trast, the corresponding divergence part in standard FL is
O(η2G2ϵ̃2) = O(η2G2ϵ2+η2G2

∑M
i=1

mi

m ϵ2i ) [Yang et al.,
2021]. We suppose ηc = O(1) for fair comparison, then
we simplify the divergences of HFL in asymptotic sense
as O(η2G2ϵ2 + η2

∑M
i=1

mi

m I2i ϵ
2
i ). This indicates that local

aggregation of HFL can weaken the impacts of the worker-
cluster part of the global divergence since G ≥ Ii,∀i ∈ [M ].
The weakening effect here matches the iteration-level con-
vergence results of HFL from Wang et al. [2022]. Besides,
our three-sided learning rates algorithm provides more flexi-
bility here, since only the worker learning rate η interacts
with the cluster-master divergence ϵi. This may allow a
decoupling of learning, and we can thus adjust ηc and η
according to divergences for probably better convergence.
For example, larger ϵi and smaller ϵ may prefer a smaller η
for stability as well as a larger ηc for acceleration.

Corollary 1. Let η = 1√
TGL

, ηc = O(1), and ηg =
√
Gm.

The convergence rate of the HFL with FWP in Algorithm 1
is O( 1√

mGT
+ 1

T ).

Remark 3. The HFL with FWP achieves a linear speedup
O( 1√

mGT
) with proper learning rate settings as shown in

Corollary 1 as long as T ≥ mG. This resembles the results
of standard FL from Yang et al. [2021]. To provide some
flexibility, we set ηc = O(1) as we discussed in Remark 2,
without impairing the linear speedup property.

4.2 HFL WITH PWP

Next, we analyze the convergence behavior for HFL with
PWP, for which we have following results:

Theorem 2. Under Assumption 1-4, with PWP, let the learn-
ing rates be chosen such that η ≤ 1

10ImaxL
, ηcη ≤ 1

10GL ,
and ηgηcη ≤ 1

GL , then the sequence of outputs {xt} gener-
ated by Algorithm 1 satisfies

min
t∈[T ]

E
∥∥∇f(xt)

∥∥2 ≤ f0 − f∗
cηgηcηGT

+
1

c

(
Φ1 +Φ2 +Φ3

)
,

where c is a constant, f0 ≜ f(x0), f∗ ≜ f(x∗), and for
both sampling strategies

Φ1 = 9Gη2cη
2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2

+ 40G2η2cη
2L2ϵ2 + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2

+ 75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i , Φ2 =

1

2
Lηgηcη

M∑
i=1

m2
i

m2ni
σ2.

For strategy 1 (with replacement), let learning rates ad-
ditionally satisfy 40G2η2cη

2L2 + 100η2L2
∑M

i=1
mi

m I2i +



10ηgηcηL
∑M

i=1
m2

i

m2ni
Ii <

1
2 , it then holds that

Φ3 =
3

4
ηgηcηL

M∑
i=1

m2
i

m2ni
σ2 +

15

2
ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2
i

+ 10ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2.

For strategy 2 (without replacement), let learning rates ad-
ditionally satisfy 40G2η2cη

2L2 + 100η2L2
∑M

i=1
mi

m I2i +

10ηgηcηL
∑M

i=1
m2

iαi

m2ni
Ii <

1
2 , where αi =

mi−ni

mi−1 , it then
holds that

Φ3 =
3

4
ηgηcηL

M∑
i=1

m2
iαi

m2ni
σ2 +

15

2
ηgηcηL

M∑
i=1

m2
iαi

m2ni
Iiϵ

2
i

+ 10ηgηcηL

M∑
i=1

m2
iαi

m2ni
Iiϵ

2.

Proof. Please refer to Appendix D. Regarding PWP, the
core technique we use here is uncertainty redirection. In
HFL, as the worker sampling occurs at each cluster round,
the resulting uncertainty within a single master round accu-
mulates across both multiple clusters and multiple rounds
of a certain cluster. We creatively derive Lemma 6 to trans-
form the corresponding accumulated uncertainty term A2

in Eq. 32. We first decompose the impact of PWP among
different clusters (inter-cluster) and then further decompose
among different cluster rounds (intra-cluster). All these are
carefully conducted via equality substitution. Besides, WC-
MSE and CM-MSE shall both have their partial versions
(not just reused from full case). We thus thoroughly renew
our deduction for the partial case, consolidate it with the
bounds for the full case, and present the results in Lemma 3
and 5. This further induces an additional variance term Ψt,τ

i .
We decompose it w.r.t. sampling strategy (Eq. 46 and 56)
and merge into some resulting terms of Lemma 6, finally
deriving the compact convergence bound 1.

Remark 4. The convergence bound in Theorem 2 shows
certain consistency with that of Theorem 1, as they share the
same constant component Φ1. The uncertainty introduced by
PWP contributes to amplifying constant Φ2, and incurring
an additional Φ3. Especially, for sampling strategy 2 with
sampling size ni = mi,∀i ∈ [M ], Theorem 2 would as
expected, recover exactly the same convergence bound with
the FWP case.

Corollary 2 (Minimum Convergence Rate). Let η = 1√
TGL

,

ηc = O(1), and ηg =
√
Gmκmin, where κmin = mini

ni

mi
.

The minimum convergence rate of the HFL with PWP in

1In FL with PWP, the analysis is much explicit due to the
absence of intermediate cluster aggregation (thus there is no accu-
mulation effect of A2 term or additional randomness left in MSE
term).

Algorithm 1 for both sampling strategies is O( Imax√
mκminGT

+
1
T ).

Remark 5. HFL with PWP can at least achieve a linear
speedup O( Imax√

mκminGT
) with proper learning rate settings

as shown in Corollary 2. The minimum convergence rate of
the HFL system is bottlenecked by the minimal sampling
rate κmin and the maximal cluster period Imax.

Note that the minimum convergence rate mentioned above
is just the loosest estimation. In the following, we will show
a more typical case.

Corollary 3. Suppose ni

mi
= n

m , Ii = I, ∀i ∈ [M ], and let
η = 1√

TGL
, ηc = O(1), and ηg =

√
Gn. The convergence

rate of the hierarchical FL with PWP in Algorithm 1 for
both sampling strategies is O( I√

nGT
+ 1

T ).

Remark 6. When all clusters have the same (or close) sam-
pling rates and round period, a linear speedup O( I√

nGT
)

can be guaranteed by setting the learning rates as shown
in Corollary 3. Note that the convergence rate here has a
smaller first term than that of standard FL with PWP, which
is O(

√
G√
nT

+ 1
T ) (Corollary 2 from Yang et al. [2021]). This

indicates the additional benefit of PWP on HFL. However,
this homogeneous setting2 of HFL may not necessarily lead
to the optimal convergence rate, which depends on the spe-
cific worker-cluster divergence ϵ2i . We will subsequently
discuss this further.

Remark 7. The convergence rate bound for HFL with PWP
has the same structure (in order sense) as the full case,
but with a larger variance. This is consistent with the re-
sults for standard FL [Yang et al., 2021]. Uniform sampling
(with/without replacement) yields a good approximation
of the entire intra-group worker distribution in expectation,
thereby reducing the risk of distribution deviation incurred
by PWP.

4.3 OVERCOME DIVERGENCE

We now exclusively elaborate how the weakening effect for
overcoming divergences in HFL, as shown in FWP case
(Remark 2), can be enhanced with PWP. Specifically, we
focus on the additional divergences resulting from PWP
(covered by component Φ3) in HFL, denoted as ΘH . For
strategy 1, we have

ΘH = O(ηgηcη

M∑
i=1

m2
i

m2ni
Ii(ϵ

2
i + ϵ2)),

2Similar setting is also considered in Qu et al. [2022] for multi-
server federated learning (but non-hierarchical), where they refer to
as unbiased PWP. However, here we do not exclusively emphasize
this, since it could be inherently covered by our theoretical results.



Table 2: Communication time (s) and iterations (×104) to achieve target test accuracy with 20% workers participating.

Standard FL (P ) HFL (G, I)

MNIST
Setting 10 50 100 50, 10 100, 10 100, 50

Communication Time 15.95 11.48 9.91 1.5 1.54 1.09
Iterations (×104) 1.46 5.27 9.09 1.38 1.4 5.15

FEMNIST
Setting 20 100 200 100, 20 200, 20 200, 100

Communication Time 8.92 3.03 2.78 0.93 1.01 0.34
Iterations (×104) 0.73 1.24 2.24 0.77 0.82 1.3

CIFAR-10
Setting 10 50 250 50, 10 250, 10 250, 50

Communication Time 399.77 113.03 54.27 49.29 50.57 18.79
Iterations (×104) 1.24 1.76 4.23 1.54 1.58 2.93

and for strategy 2, we have

ΘH = O(ηgηcη

M∑
i=1

m2
iαi

m2ni
Ii(ϵ

2
i + ϵ2)).

For standard FL, Theorem 2 of Yang et al. [2021] indicates
that the additional divergence part resulting from partial
worker participation is, for sampling strategy 1, we have

ΘS = O(
1

n
ηgηGϵ̃2), (2)

and for sampling strategy 2, we have

ΘS = O(
α

n
ηgηGϵ̃2), (3)

where α = m−n
m−1 . Here we merge their quadratic term for

better analysis.

With PWP, the weakening effect is observed for both the
worker-cluster and cluster-master part. Taking strategy 1 as
example, when ni

mi
= n

m , Ii = I, ∀i ∈ [M ] and ηc = O(1),
it always holds in the asymptotic sense that

ΘH = O(ηgη

M∑
i=1

mi

mn
I(ϵ2i + ϵ2))

= O(
1

n
ηgηIϵ̃

2) < O(
1

n
ηgηGϵ̃2) = ΘS .

The same holds for strategy 2. Compared to standard FL, this
suggests that setting the same (or close) sampling rates for
all clusters can consistently reduce additional divergences.
As we discussed in Remark 2, this weakening effect yet is
only observed on worker-cluster divergences in HFL with
FWP. In fact, the bound O( 1nηgηIϵ̃

2) indicates that this
weakening effect can always restrict the global divergences
ϵ̃2 to only being intensified by I rather than G, regardless
of the specific grouping setting (i.e., grouping-agnostic).
Therefore, PWP can probably guarantee the performance
of HFL with G, I to be close to that of standard FL with
aggregation period I . We empirically verify this superiority
of HFL with PWP from our experiments in Section 5.

Though ni

mi
= n

m ,∀i ∈ [M ] may not be the optimal solution,
it can be used as a priori to serve as a sufficient condition for

reducing additional divergences. Note that we can flexibly
set ni

mi
to match Ii and ϵi accordingly for a better weakening

effect. For instance, in practice, some clusters may inher-
ently have larger inner divergence. In this case, enabling a
larger sampling size and a smaller round period (if possible)
could probably ensure a more effective convergence.

5 NUMERICAL EXPERIMENTS

We conduct extensive experiments to validate our theoretical
results. We defer some results to Appendix E. All reported
results are averaged over five random realizations.

Table 3: Per-round communication time between worker
and cluster.

Model
CNN

(MNIST)
CNN

(FEMNIST)
PreAct ResNet-18

RTT (ms) 1.09±0.17 2.45±0.56 32.11±6.32

5.1 DATASET

In our experiments, we choose three real datasets: MNIST,
FEMNIST, and CIFAR-10. We partition the three datasets
in non-i.i.d. manner, with details as follows

• MNIST. The MNIST dataset LeCun et al. [1998] con-
sists of images of handwritten digits 0-9, with 60,000
training samples and 10,000 test samples. We distribute
the training data to m = 100 workers uniformly. We
restrict each worker to have training samples of no
more than 2 class of digits, to provide certain data
heterogeneity.

• FEMNIST. FEMNIST is a federated version of the
EMNIST dataset proposed by LEAF Caldas et al.
[2018]. We follow the non-i.i.d. preprocessing protocol
of Wang et al. [2022], where the training set consists
of 34,659 samples distributed to m = 156 workers and
the test set consists of 4,973 samples.

• CIFAR-10. The CIFAR-10 dataset Krizhevsky et al.
[2009] consists of 32× 32 color images in 10 classes,



with 50,000 training samples and 10,000 test samples.
Like we do in MNIST, we distribute the training data to
m = 100 workers uniformly and restrict each worker
to have training samples of no more than 4 class, to
provide certain data heterogeneity.

For the group non-i.i.d. setting, we restrict each group to
have worker training samples of no more than 4 classes on
MNIST, while no more than 6 classes on CIFAR-10.

5.2 IMPLEMENTATION DETAILS

We use Python 3.7 with PyTorch 1.8.1 to implement all
our models and HFL algorithm3. We set the learning rates
η = 0.01, ηc = 1 and ηg = 1. The local SGD mini-batch of
each worker is set to 20.

We use CNNs for both MNIST and FEMNIST datasets.
Specifically, for MNIST, we use CNN model composed of
two convolutional layers and two fully connected layers.
For FEMNIST, we use the same architecture as Wang et al.
[2022]. For CIFAR-10, we use PreAct ResNet-18 He et al.
[2016].

For the communication time, we follow the emulation of
Wang et al. [2022]. Specifically, we measure the round-trip
time (RTT) of transmitting the model between an end device
(worker) and a nearby server (cluster). Due to resource
limitation, we simply assume the worker-master RTT is ten
times as the worker-cluster one (which basically matches
Wang et al. [2022], Liu et al. [2020]). The estimated worker-
cluster RTT is presented in Table 3.

5.3 COMMUNICATION OVERHEAD

Table 2 presents a comparison between standard FL and HFL
on three datasets, all with PWP. P stands for aggregation
period of standard FL. The target test accuracy are 95% for
MNIST, 80% for FEMNIST, and 85% for CIFAR-10. By
default, we uniformly partition workers into 4 groups.

We observe that HFL can benefit the training process in
terms of reducing communication overhead. HFL basically
shows a similar convergence performance to its standard FL
counterpart with P = I , even when G is large. In particu-
lar, on FEMNIST, the total number of iterations (×104) of
standard FL for P = 20 is 0.73, only slightly less than
0.77 and 0.82, from HFL with G = 100, I = 20 and
G = 200, I = 20, respectively. Note that on MNIST, HFL
is even better. On the other hand, HFL requires much less
communication time (about only one-tenth) to achieve cer-
tain target test accuracy, due to the ultra-low communication
latency granted by parallel local aggregations.

3Our code is available at https://github.com/
cardistryj/HFL.

5.4 WEAKENING EFFECT

Fig. 1 shows the convergence curves in terms of test accu-
racy on MNIST. Group i.i.d. stands for small cluster master
divergence grouping, i.e., ϵ2 ≈ 0, while group non-i.i.d. for
large ϵ2 setting. For PWP, we always keep 20% sampling
rate.

We first focus on FWP. From Fig. 1(c), we observe that
the convergence performance of HFL with G and I is be-
tween that of standard FL with P = I and with P = G
(also referred to as “sandwitch" behavior from Wang et al.
[2022]). This matches the weakening effect of local aggre-
gation on worker-cluster divergences as we discussed in
Remark 2. Note that the performance gap between HFL and
its standard FL counterpart with P = I originates from the
amplified impact of ϵ2 by G as shown in our Theorem 1
(σ2 is also negligible compared to non-i.i.d. divergences).
To verify this, we refer to the corresponding curves in Fig.
1(a), observing almost the same convergence trends (e.g.,
G = 50, I = 10 and G = 100, I = 10 versus P = 10). Es-
sentially, it is the group i.i.d. setting with ϵ2 ≈ 0 that makes
the impact of G trivial and eliminates the aforementioned
performance gap.

With insights above, we next check on PWP. For group i.i.d.
setting in Fig. 1(b), the curve patterns show high consistency
with those in Fig. 1(a), where there is also no performance
gap between HFL and its standard FL counterpart with
P = I . Still, PWP introduces additional randomness, re-
sulting in zigzagging curves and slower convergence. For
group non-i.i.d. setting, the results are more significant. The
curve patterns in Fig. 1(d), instead resembles those in Fig.
1(b) (while unlike those in Fig. 1(c)), i.e., without noticeable
performance gap. This exactly matches the enhanced weak-
ening effect with PWP on global divergences (especially
the cluster-master part) as we discussed in the last part of
Section 4.2. Intuitively, PWP pushes the convergence behav-
ior of HFL with G, I to the optimal upper boundary of the
“sandwitch” (i.e., standard FL with P = I). Therefore, it
could always be a beneficial choice for HFL to enable PWP.

5.5 COMPARISON WITH OTHER METHODS

We conduct comparison experiments on MNIST dataset to
justify the effectiveness of our proposed three-sided learning
rates HFL algorithm. We use the group non-i.i.d. setting with
4 groups and 20% workers participating. The round periods
are set to G = 100, I = 10.

We mainly consider three works as follows

• Hier-Local-QSGD [Liu et al., 2022a]: An HFL opti-
mization algorithm with model quantization to reduce
communication overhead. We conduct quantization by
converting the weights from fp32 into int8. RTT for
the quantized model is 0.37±0.1ms.

https://github.com/cardistryj/HFL
https://github.com/cardistryj/HFL
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Figure 1: Test Accuracy w.r.t. iterations on MNIST. (a) Group i.i.d. with full participation; (b) Group i.i.d. with partial
participation; (c) Group non-i.i.d. with full participation; (d) Group non-i.i.d. with partial participation.

Table 4: Comparison among different methods to achieve target accuracy on MNIST.

Iterations (×104) Communication Time
Hier-Local-QSGD 3.57 1.32

HierMo 0.24 0.47
MLL-SGD (fully-connected) 2.23 2.43

MLL-SGD (ring) 3.1 3.38
HierFedAvg 2.22 2.42

Ours (ηc = 1, ηg = 2) 1.95 2.13
Ours (ηc = 1, ηg = 3) 1.68 1.83
Ours (ηc = 3, ηg = 1) 0.29 0.32
Ours (ηc = 5, ηg = 1) 0.22 0.24
Ours (ηc = 3, ηg = 2) 0.57 0.62

Table 5: Impact of cluster period and sampling number to achieve target test accuracy on MNIST.

Cluster periods (I1, I2) 10, 200 20, 100 50, 50 100, 20 200, 10
Communication Time 1.18 0.68 0.42 0.64 0.93

Master Rounds 46 47 47 44 37

Sampling Number (n1, n2) 1, 19 6, 14 10, 10 14, 6 19, 1
Communication Time 0.46 0.42 0.46 0.56 1.40

Master Rounds 52 47 51 62 157

• HierMo [Yang et al., 2023]: An HFL optimization
algorithm with momentum update to accelerate the
convergence of HFL. We use the provided setting in
the original paper. Due to the extra transmission of
momentum, RTT for HierMo is 1.96±0.3ms.

• MLL-SGD [Castiglia et al., 2020]: A partially decen-
tralized FL algorithm, where it is still a two-level archi-
tecture while clusters are organized as a peer-to-peer
network. We consider both fully-connected topology
and ring topology for the cluster network.

We also adjust cluster learning rate ηc and master learning
rate ηg of our algorithm. The configuration with ηc = 1 and
ηg = 1 can also be considered as a natural generalization of
FedAvg in HFL (referred to as HierFedAvg). We maintain
the same worker learning rate η = 0.01 for all the methods
mentioned above.

Table 4 presents the performance among different methods.

We highlight the best results in bold style, while the second
best with underline.

We can observe the effectiveness of our three-sided learning
rates. When tuning ηc and ηg, there are varying degrees in
acceleration on convergence. The speedup effect of ηc is
particularly pronounced. Simply setting ηc to 3 or 5 reduces
the iterations required to achieve target accuracy from the
original 2.22×104 of HierFedAvg to less than 3000, indicat-
ing a nearly tenfold acceleration. The best hyperparameter
combinations require a more refined tuning and searching
process. However, we can still observe the significant po-
tential of adjusting ηc and ηg to facilitate convergence at no
additional information or communication cost.

HierMo also performs well, achieving target accuracy with
the second fewest iterations. However, this acceleration
comes at the cost of more communication overhead due
to the momentum update. In contrast, Hier-Local-QSGD



can directly mitigate the communication overhead by quan-
tizing and compressing model weights. Nevertheless, the
introduction of quantization leads to information loss, conse-
quently impeding the convergence performance. For MLL-
SGD algorithm, we observe that its fully-connected vari-
ant is essentially equivalent to the HFL architecture. The
only difference is that the aggregation among clusters is
achieved through peer-to-peer communication rather than
through the coordination of a master node. This can be ver-
ified by the very close performance between MLL-SGD
(fully-connected) and HierFedAvg. MLL-SGD (ring) ex-
hibits relatively slower convergence rate. This is because the
model aggregation among clusters cannot always be fully
synchronized.

5.6 HETEROGENEOUS GROUPS

Table 5 shows the impact of cluster period and sampling
ratio on MNIST. Here we use two groups with 30 and 70
workers, respectively. Group 1 is i.i.d. partitioned among
workers (i.e., small ϵ21) while group 2 is non-i.i.d. partitioned
(i.e., large ϵ22). The default setting is G = 200, (I1, I2) =
(50, 50), and (n1, n2) = (6, 14), namely, a homogeneous
clusters setting in Corollary 3. We always keep an invariant
n = n1 + n2 = 20.

Though a small I2 = 10 could save for about 10 master
rounds, this is at cost of incurring more communication
time instead. Note that impact of cluster period is not as
that explicit as sampling ratios. In the extreme case n2 =
1, the number of master rounds increases to about three
times. Hence, choosing proper configurations is important
to achieve a fair convergence. Still, the default homogeneous
setting could sufficiently serve as a decent solution.

6 DISSCUSSION

Flexible Hierarchical Structure: For edge-based FL,
clients within the communication range of the server col-
laborate to train a machine learning model. Generally, the
location and communication range of edge servers (such as
base stations) are fixed. Treating the clients within the com-
munication range of an edge server as one cluster is a natural
choice. Therefore, in this paper, we employ given clusters
(i.e., assuming an arbitrary grouping) which is practical in
real-world scenarios. Regarding sophisticated hierarchical
structure design (such as edge server deployment, grouping
strategies), it is important and worth researching.

On the other hand, our theoretical framework allows certain
flexibility and individualization for HFL. This includes the
master round G for the whole learning system, different
worker number mi, sampling number ni, and cluster pe-
riod Ii for each cluster. Still, different cluster may possess
inherent characteristics, such as data heterogeneity. We dis-

cuss this in subsection 4.3, where each cluster can adjust its
worker sampling ratio and round period accordingly to deal
with its inner data heterogeneity. We also verify this with
experiments in subsection 5.6.

More Levels: The cloud-edge-end architecture is prevalent
in edge computing, constituting a two-level architecture.
Therefore, our work delves into the convergence perfor-
mance of two-level HFL. For HFL with more than 2 levels,
we assume that there are L levels in total. The global server
is at the uppermost level l = 1. Each upper-level server at
level l = 1, . . . ,L − 1 connects to Ml lower-level servers
at level l + 1. At the lowest level l = L, each edge server
serves ML clients. Intuitively, we can straightforwardly ex-
tend our theoretical results. The weakening effects will still
apply to each connected level in multi-level HFL with PWP,
aiding in reducing data divergences. The global divergences
ϵ̃2 are expected to only be intensified by the lowest level
aggregation period IL rather than global period G.

Communication Time: If there is minimal disparity in
worker-master RTT and worker-cluster RTT, the commu-
nication costs of HFL and standard FL [Yang et al., 2021]
will be nearly identical. On the other hand, a critical factor
driving the widespread adoption of HFL is its low latency.
By distributing computational tasks across cloud servers,
edge servers, and clients, data processing can occur closer to
its source, reducing the latency associated with transmitting
data back and forth to distant cloud servers.

7 CONCLUSION

In this work, we study the convergence behavior of HFL.
We newly derive a general convergence bound for HFL that
covers both full and PWP with non-i.i.d. data, non-convex
objective function and SGD. Based on the convergence
analysis, we develop a three-sided learning rates algorithm
to mitigate data divergences issue and realize better con-
vergence performance. Our theoretical results provide key
insights of why PWP of HFL is beneficial in significantly
reducing the data divergences compared to standard FL.
Besides, we provide a degree of individualization for each
cluster in HFL, indicating that adjusting the worker sam-
pling ratio and round period to match inner divergence can
potentially improve the convergence behavior. We conduct
extensive experiments on real world datasets to verify our
theoretical results.
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A NOTATION TABLE

Table 6: Key notations for three-sided learning rates HFL algorithm.

η worker learning rate
ηc cluster learning rate
ηg master learning rate
T number of total master rounds
G master aggregation period
Ii cluster i aggregation period
ωi number of cluster rounds for i in a master round
t the index of master round, 0 ≤ t < T
τ the index of cluster round, 0 ≤ τ < ωi

h the index of worker local iteration, 0 ≤ h < Ii
Vi set of workers in cluster i with size mi

St,τ
i set of workers in cluster i sampled in master round t and cluster round τ with size ni

xt master aggregated parameters before master round t

xt,τ
i aggregated parameters on cluster i before master round t and cluster round τ

xt,τ,h
j local model parameters on worker j at update step (t, τ, h), where the total number of iterations is Gt+ Iiτ + h

B PRELIMINARY OF PROOF

Lemma 1 (Unbiased Sampling). For both sampling strategies 1 and 2, the estimator is unbiased in both cluster and master
round, i.e.,

E[∆t,τ
i ] = ∆̄t,τ

i ,∀i ∈ [M ], and E[∆t] = ∆̄t,

where the expectation is taken over the randomness introduced by sampling workers.

Proof. Let St,τ
i = {li,1, li,2, . . . , li,ni

} with size ni. For both sampling strategies 1 and 2, each sampling distribution is
identical. Therefore, for each cluster i ∈ [M ], we have

E[∆t,τ
i ] =

1

ni
E
[ ∑
li,j∈St,τ

i

∆̃t,τ
li,j

]
= E[∆̃t,τ

li,1
] =

1

mi

∑
j∈Vi

∆̃t,τ
j = ∆̄t,τ

i . (4)

And we have for the master

E[∆t] =

M∑
i=1

mi

m

ωi−1∑
τ=0

ηcE[∆t,τ
i ] =

M∑
i=1

mi

m

ωi−1∑
τ=0

ηc∆̄
t,τ
i = ∆̄t. (5)

This completes the proof.

Note that this unbiased sampling property also inherently applies to the full gradient ∇Fj(xt,τ,hj ). This is guaranteed by
taking additional expectation over the stochastic gradient, which is independent of the worker sampling.

Lemma 2 (Lemma 7 from Reddi et al. [2020]). For independent, mean 0 random variables z1, ..., zr we have

E
[
∥z1 + ...+ zr∥2

]
= E

[
∥z1∥2 + ...+ ∥zr∥2

]
. (6)

C PROOF OF THEOREM 1

Proof. We start with bounding for the full participation case, where ∆t exactly equals to ∆̄t. Taking expectation over the
randomness of the master round t, we have

Et[f(xt+1)] = Etf
(
xt − ηg∆

t
)



(a)

≤ Etf(xt)− Et

〈
∇f(xt), ηg∆

t
〉
+

L

2
Et

∥∥ηg∆t
∥∥2

= f(xt)− ηgEt

〈
∇f(xt),∆t − ηcηG∇f(xt) + ηcηG∇f(xt)

〉
+ η2g

L

2
Et

∥∥∆t
∥∥2

= f(xt)− ηgηcηG
∥∥∇f(xt)

∥∥2 − ηg Et

〈
∇f(xt),∆t − ηcηG∇f(xt)

〉︸ ︷︷ ︸
A1

+η2g
L

2
Et

∥∥∆t
∥∥2︸ ︷︷ ︸

A2

, (7)

where (a) is a proposition of Lipschitz smooth.

The inner product term A1 follows

A1 = Et

〈
∇f(xt),

M∑
i=1

mi

m

ωi−1∑
τ=0

ηc

Ii−1∑
h=0

1

mi

∑
j∈Vi

ηgt,τ,h
j − ηcηG∇f(xt)

〉

= Et

〈
∇f(xt),

M∑
i=1

mi

m

ωi−1∑
τ=0

ηc

Ii−1∑
h=0

1

mi

∑
j∈Vi

η∇Fj(xt,τ,hj )− ηcηG∇f(xt)
〉

= Et

〈√
ηcηG∇f(xt),

√
ηcη√
G

M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

(
∇Fj(xt,τ,h

j )−∇Fj(xt)
)〉

(a)
= −ηcηG

2

∥∥∇f(xt)
∥∥2 − ηcη

2G
Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

(
∇Fj(xt,τ,hj )−∇Fj(xt)

)∥∥∥∥2

+
ηcη

2G
Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

∇Fj(xt,τ,hj )

∥∥∥∥2, (8)

where (a) is due to the fact < x, y >= 1
2 (||x+ y||2 − ||x||2 − ||y||2).

For the second term of Eq. 8, we have

Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

(
∇Fj(xt,τ,h

j )−∇Fj(xt)
)∥∥∥∥2

(a)

≤
M∑
i=1

mi

m
G

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

Et

∥∥∥∥∇Fj(xt,τ,hj )−∇Fj(xt)

∥∥∥∥2

= G
1

m

M∑
i=1

ωi−1∑
τ=0

Ii−1∑
h=0

∑
j∈Vi

Et

∥∥∥∥∇Fj(xt,τ,hj )−∇Fj(xt,τ
i ) +∇Fj(xt,τ

i )−∇Fj(xt)
∥∥∥∥2

(b)

≤ 2L2G
1

m

M∑
i=1

ωi−1∑
τ=0

Ii−1∑
h=0

∑
j∈Vi

Et

∥∥xt,τ,h
j − xt,τ

i

∥∥2 + 2L2G

M∑
i=1

ωi−1∑
τ=0

Ii
mi

m
Et

∥∥xt,τi − xt
∥∥2, (9)

where (a) is a proposition of Jensen’s Inequality. (b) is achieved by first unrolling with an extension of Jensen inequality as
∥
∑k

i xi∥2 ≤ k
∑k

i ∥xi∥2 and then applying Assumption 1.

In Eq. 9, the first term represents the overall worker-cluster parameter MSE while the second one represents the overall
cluster-master parameter MSE in each round.

C.1 BOUNDING CLUSTER-MASTER PARAMETER MSE

We prove a lemma that bounds this cluster-master parameter MSE term.

Lemma 3 (Cluster-master Parameter MSE). For any local learning rate η and cluster learning rate ηc satisfying ηcη ≤ 1
8LG ,

we can bound the overall cluster-master parameter MSE for a cluster i in a certain master round t regarding the worker-



cluster parameter MSE as, with full worker participation,

ωi−1∑
τ=0

Et

∥∥xt,τ
i − xt

∥∥2 ≤ 5Gη2cη
2 ωi

mi
σ2 + 40ωiG

2η2cη
2ϵ2

+ 40ωiG
2η2cη

2
∥∥∇f(xt)

∥∥2 + 24Gη2cη
2L2ωi

ωi−1∑
τ=0

Ωt,τ
i , (10)

where Ωt,τ
i = 1

mi

∑
j∈Vi

∑Ii
h=0 E∥xt,τ,hj − xt,τi ∥2.

With partial worker participation for both sampling strategies, we have

ωi−1∑
τ=0

Et

∥∥xt,τi − xt
∥∥2 ≤ 5Gη2cη

2ωi

ni
σ2 + 40ωiG

2η2cη
2ϵ2

+ 40ωiG
2η2cη

2
∥∥∇f(xt)

∥∥2 + 24Gη2cη
2L2ωi

ωi−1∑
τ=0

Ωt,τ
i + 3η2cη

2ωi

ωi−1∑
τ=0

Ψt,τ
i , (11)

where Ψt,τ
i = E∥ 1

ni

∑
j∈St,τ

i

∑Ii
h=0 ∇Fj(xt,τ,hj )− 1

mi

∑
j∈Vi

∑Ii
h=0 ∇Fj(xt,τ,hj )∥2.

Proof. We elaborate the proof for the partial worker participation, and the result naturally generalize to the full case. For any
round τ of certain cluster i, we have

Et

∥∥xt,τi − xt
∥∥2 = E

∥∥∥∥xt,τ−1
i − xt − ηc

1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

ηgt,τ−1,h
j

∥∥∥∥2

= Et

∥∥∥∥xt,τ−1
i − xt − ηc

1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

η
(

gt,τ−1,h
j −∇Fj(xt,τ−1,h

j ) +∇Fj(xt,τ−1,h
j )

)

+
1

mi

∑
j∈Vi

Ii∑
h=0

η
(
∇Fj(xt,τ−1,h

j )−∇Fj(xt,τ−1,h
j )−∇fi(xt,τ−1

i ) +∇fi(xt,τ−1
i )

−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)
)∥∥∥∥2

(a)
= η2cη

2Et

∥∥∥∥ 1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

η
(

gt,τ−1,h
j −∇Fj(xt,τ−1,h

j )
)∥∥∥∥2

+ η2cη
2Et

∥∥∥∥ 1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

∇Fj(xt,τ−1,h
j )− 1

mi

∑
j∈Vi

Ii∑
h=0

∇Fj(xt,τ−1,h
j )

∥∥∥∥2

+ Et

∥∥∥∥xt,τ−1
i − xt − ηc

1

mi

∑
j∈Vi

Ii∑
h=0

η
(
∇Fj(xt,τ−1,h

j )−∇Fj(xt,τ−1
i )

+∇fi(xt,τ−1
i )−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)

)∥∥∥∥2
(b)

≤ Iiη
2
cη

2σ2

ni
+ η2cη

2Et

∥∥∥∥ 1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

∇Fj(xt,τ−1,h
j )− 1

mi

∑
j∈Vi

Ii∑
h=0

∇Fj(xt,τ−1,h
j )

∥∥∥∥2

+ (1 +
1

2ωi − 1
)Et

∥∥xt,τ−1
i − xt

∥∥2 + 8ωiη
2
cη

2

(
Et

∥∥∥ 1

mi

∑
j∈Vi

Ii∑
h=0

(
∇Fj(xt,τ−1,h

j )−∇Fj(xt,τ−1
i )

)∥∥∥2
+ I2i Et

∥∥∥∇fi(xt,τ−1
i )−∇fi(xt)

∥∥∥2 + I2i Et

∥∥∥∇fi(xt)−∇f(xt)
∥∥∥2 + I2i Et

∥∥∇f(xt)
∥∥2)



≤ Iiη
2
cη

2σ2

ni
+ η2cη

2Et

∥∥∥∥ 1

ni

∑
j∈St,τ−1

i

Ii∑
h=0

∇Fj(xt,τ−1,h
j )− 1

mi

∑
j∈Vi

Ii∑
h=0

∇Fj(xt,τ−1,h
j )

∥∥∥∥2

+ 8Gη2cη
2L2 1

mi

∑
j∈Vi

Ii∑
h=0

Et

∥∥xt,τ−1,h
j − xt,τ−1

i

∥∥2 + 8GIiη
2
cη

2ϵ2

+ (1 +
1

2ωi − 1
+ 8GIiη

2
cη

2L2)Et

∥∥xt,τ−1
i − xt

∥∥2 + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2, (12)

where (a) holds due to the zero mean and independence of the first two term, and the definition fi(xt,τ
i ) = 1

mi

∑
j∈Vi

Fj(xt,τi )
is also used for substitution in the last term. The first term of (b) is acquired via Lemma 2 and bounded variance (Assumption
3). The other terms of (b) holds due to the fact that ||x+ y||2 ≤ (1 + 1

k−1 )||x||
2 + k||y||2,∀k > 1 (we set k = 2ωi here).

For better presentation, we denote Ψt,τ
i = E∥ 1

ni

∑
j∈St,τ

i

∑Ii
h=0 ∇Fj(xt,τ,hj )− 1

mi

∑
j∈Vi

∑Ii
h=0 ∇Fj(xt,τ,hj )∥2 and Ωt,τ

i =
1
mi

∑
j∈Vi

∑Ii
h=0 E∥xt,τ,hj − xt,τi ∥2. Note that Ψt,τ

i is essentially a measurement of the additional variance introduced by
worker sampling in cluster round τ of cluster i. Suppose ηcη ≤ 1

8LG , we can have

E
∥∥xt,τi − xt

∥∥2 ≤ (1 +
1

2ωi − 1
+ 8GIiη

2
cη

2L2)E
∥∥xt,τ−1

i − xt
∥∥2 + Iiη

2
cη

2σ2

ni
+ η2cη

2Ψt,τ−1
i

+ 8GIiη
2
cη

2ϵ2 + 8Gη2cη
2L2Ωt,τ−1

i + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2
≤ (1 +

1

ωi − 1
)E

∥∥xt,τ−1
i − xt

∥∥2 + Iiη
2
cη

2σ2

ni
+ 8GIiη

2
cη

2ϵ2 + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2
+ η2cη

2Ψt,τ−1
i + 8Gη2cη

2L2Ωt,τ−1
i . (13)

Unrolling the recursion, we obtain

E
∥∥xt,τ

i − xt
∥∥2

≤
τ−1∑
p=0

(1 +
1

ωi − 1
)p
[
Iiη

2
cη

2σ2

ni
+ 8GIiη

2
cη

2ϵ2 + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2
+ η2cη

2Ψt,τ−1−p
i + 8Gη2cη

2L2Ωt,τ−1−p
i

]
≤ (ωi − 1)

[
(1 +

1

ωi − 1
)ωi − 1

][Iiη2cη2σ2

ni
+ 8GIiη

2
cη

2ϵ2 + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2]
+ (1 +

1

ωi − 1
)ωi−1

[
η2cη

2
τ−1∑
p=0

Ψt,p
i + 8Gη2cη

2L2
τ−1∑
p=0

Ωt,p
i

]
(a)

≤ 5ωi

[
Iiη

2
cη

2σ2

ni
+ 8GIiη

2
cη

2ϵ2 + 8GIiη
2
cη

2
∥∥∇f(xt)

∥∥2]+ 3η2cη
2
τ−1∑
p=0

Ψt,p
i + 24Gη2cη

2L2
τ−1∑
p=0

Ωt,p
i

=
5Gη2cη

2σ2

ni
+ 40G2η2cη

2ϵ2 + 40G2η2cη
2
∥∥∇f(xt)

∥∥2 + 3η2cη
2
τ−1∑
p=0

Ψt,p
i + 24Gη2cη

2L2
τ−1∑
p=0

Ωt,p
i , (14)

where (a) is due to the fact that (1 + 1
ωi−1 )

ωi−1 ≤ 3 and (1 + 1
ωi−1 )

ωi ≤ 5 for ωi > 1.

Summing from τ = 0, . . . , ωi−1, the overall cluster-master parameter MSE of cluster i in a master round t can be expressed
as

ωi−1∑
τ=0

Et

∥∥xt,τi − xt
∥∥2 (a)

≤ 5Gη2cη
2ωi

ni
σ2 + 40ωiG

2η2cη
2ϵ2

+ 40ωiG
2η2cη

2
∥∥∇f(xt)

∥∥2 + 24Gη2cη
2L2ωi

ωi−1∑
τ=0

Ωt,τ
i + 3η2cη

2ωi

ωi−1∑
τ=0

Ψt,τ
i . (15)



where the above simplification follows
∑ωi−1

τ=0

∑τ−1
p=0 Ω

t,p
i ≤

∑ωi−1
τ=0

∑τ
p=0 Ω

t,p
i ≤ ωi

∑ωi−1
τ=0 Ωt,τ

i , and the same holds for
Ψt,τ

i .

Note that when degenerating to full participation case, we could set ni = mi and Ψt,τ
i = 0,∀τ , and thereby recover the

corresponding result in Lemma 3. This concludes the proof.

C.2 BOUNDING WORKER-CLUSTER PARAMETER MSE

Then we bound the worker-cluster parameter MSE. Here we consider the intra-cluster aggregation process as a standard FL
process, and introduce two lemmas here to bound it.

Lemma 4 (Generalization of Lemma 3 from Reddi et al. [2020]). For any local learning rate η ≤ 1
8IiL

, we have the
following result for cluster i in its cluster round τ

1

mi

∑
j∈Vi

Et

∥∥xt,τ,hj − xt,τ
i

∥∥2 ≤ 5Iiη
2(σ2 + 10Iiϵ

2
i ) + 50I2i η

2ϵ2

+ 50I2i η
2L2Et∥xt,τ

i − xt∥2 + 50I2i η
2∥∇f(xt)∥2. (16)

Proof. Our proof here is a variant of that of Reddi et al. [2020] in the HFL. For any worker j in cluster i, we have for any
local step h,

Et

∥∥xt,τ,hj − xt,τi

∥∥2 = E
∥∥xt,τ,h−1

j − xt,τ
i − ηgt,τ,h−1

j

∥∥2
= Et

∥∥∥∥xt,τ,h−1
j − xt,τ

i − η
(

gt,τ,h−1
j −∇Fj(xt,τ,h−1

j ) +∇Fj(xt,τ,h−1
j )−∇Fi(xt,τi )

+∇Fi(xt,τi )−∇fi(xt,τi ) +∇fi(xt,τi )−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)
)∥∥∥∥2

(a)

≤ (1 +
1

2Ii − 1
)Et

∥∥xt,τ,h−1
j − xt,τi

∥∥2 + η2Et

∥∥∥gt,τ,h−1
j −∇Fj(xt,τ,h−1

j )
∥∥∥2

+ 10Iiη
2Et

∥∥∇Fj(xt,τ,h−1
j )−∇Fj(xt,τi )

∥∥2 + 10Iiη
2Et

∥∥∇Fj(xt,τi )−∇fi(xt,τ
i )

∥∥2
+ 10Iiη

2Et

∥∥∇fi(xt,τi )−∇fi(xt)
∥∥2 + 10Iiη

2Et

∥∥∇fi(xt)−∇f(xt)
∥∥2 + 10Iiη

2Et

∥∥∇f(xt)
∥∥2

≤ (1 +
1

2Ii − 1
+ 10Iiη

2L2)Et

∥∥xt,τ,h−1
j − xt,τi

∥∥2 + η2σ2 + 10Iiη
2ϵ2i

+ 10Iiη
2L2Et

∥∥xt,τ
i − xt

∥∥2 + 10Iiη
2ϵ2 + 10Iiη

2Et

∥∥∇f(xt)
∥∥2

≤ (1 +
1

Ii − 1
)Et

∥∥xt,τ,h−1
j − xt,τi

∥∥2 + η2σ2 + 10Iiη
2ϵ2i + 10Iiη

2ϵ2

+ 10Iiη
2L2Et

∥∥xt,τ
i − xt

∥∥2 + 10Iiη
2Et

∥∥∇f(xt)
∥∥2 (17)

where the expansion of (a) holds similarly as we prove Lemma 3, i.e., ||x+ y||2 ≤ (1 + 1
k−1 )||x||

2 + k||y||2,∀k > 1 with
k = 2Ii.

Unrolling the recursion, we get

1

mi

∑
j∈Vi

Et

∥∥xt,τ,hj − xt,τi

∥∥2
≤ (Ii − 1)

[
(1 +

1

Ii − 1
)Ii − 1

][
η2σ2 + 10Iiη

2ϵ2i + 10Iiη
2ϵ2

+ 10Iiη
2L2Et

∥∥xt,τi − xt
∥∥2 + 10Iiη

2Et

∥∥∇f(xt)
∥∥2]

(a)

≤ 5Iiη
2(σ2 + 10Iiϵ

2
i ) + 50I2i η

2L2Et∥xt,τi − xt∥2 + 50I2i η
2ϵ2 + 50I2i η

2∥∇f(xt)∥2, (18)

where (a) is due to the fact that (1 + 1
Ii−1 )

Ii ≤ 5 for Ii > 1. This completes the proof.



Note that Lemma 3 and Lemma 4 indicate that the cluster-master parameter MSE and worker-cluster parameter MSE can
be bounded via each other. We thus utilize these two lemmas with proper learning rate condition to derive a more general
lemma for worker-cluster parameter MSE, which is not depends on the cluster-master one.

Lemma 5. For any local learning rate η and cluster learning rate ηc satisfying ηcη ≤ 1
10LG and η ≤ 1

10ImaxL
, where

Imax = maxi Ii, we can bound the overall worker-cluster parameter MSE in a master round t with arbitrary positive
coefficient pi > 0,∀i ∈ [M ] as, with full worker participation,

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et∥xt,τ,hj − xt,τi ∥2 ≤ 6Gη2
M∑
i=1

pimiIiσ
2 + 60Gη2

M∑
i=1

pimiI
2
i ϵ

2
i

+ 80Gη2
M∑
i=1

pimiI
2
i ∥∇f(xt)∥2 + 80Gη2

M∑
i=1

pimiI
2
i ϵ

2 + 3G2η2cη
2

M∑
i=1

piσ
2. (19)

With partial worker participation for both sampling strategies, we have

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et∥xt,τ,hj − xt,τi ∥2 ≤ 6Gη2
M∑
i=1

pimiIiσ
2 + 60Gη2

M∑
i=1

pimiI
2
i ϵ

2
i

+ 80Gη2
M∑
i=1

pimiI
2
i ∥∇f(xt)∥2 + 80Gη2

M∑
i=1

pimiI
2
i ϵ

2

+ 3G2η2cη
2

M∑
i=1

pimi

ni
σ2 + 2Gη2cη

2
M∑
i=1

pimi

ωi−1∑
τ=0

Ψt,τ
i . (20)

where Ψt,τ
i = Et∥ 1

ni

∑
j∈St,τ

i

∑Ii
h=0 ∇Fj(xt,τ,hj )− 1

mi

∑
j∈Vi

∑Ii
h=0 ∇Fj(xt,τ,hj )∥2.

Proof. With Lemma 4, we have for arbitrary pi > 0,∀i ∈ [M ],

M∑
i=1

pi

ωi−1∑
τ=0

Ii−1∑
h=0

∑
j∈Vi

Et

∥∥xt,τ,h
j − xt,τ

i

∥∥2
≤ 5Gη2

M∑
i=1

pimiIiσ
2 + 50Gη2

M∑
i=1

pimiI
2
i ϵ

2
i + 50Gη2

M∑
i=1

pimiI
2
i ∥∇f(xt)∥2

+ 50Gη2
M∑
i=1

pimiI
2
i ϵ

2 + 50η2L2
M∑
i=1

pimiI
3
i

ωi−1∑
τ=0

Et∥xt,τ
i − xt∥2, (21)

With Lemma 3, we have for the last term of Eq. 21 as

50η2L2
M∑
i=1

pimiI
3
i

ωi−1∑
τ=0

Et

∥∥xt,τ
i − xt

∥∥2
(a)

≤ 5

2
G2η2cη

2
M∑
i=1

pimi

ni
σ2 + 20Gη2

M∑
i=1

pimiI
2
i ϵ

2 + 20Gη2
M∑
i=1

pimiI
2
i

∥∥∇f(xt)
∥∥2

+
1

8

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et∥xt,τ,hj − xt,τ
i ∥2 + 3

2
Gη2cη

2
M∑
i=1

pimi

ωi−1∑
τ=0

Ψt,τ
i , (22)

where in (a), we slightly tighten the condition as ηcη ≤ 1
10LG for the middle three terms. We use disparate treatment

η ≤ 1
10ImaxL

for the first term since it can be further merged to some term in A2. For the last term, both two conditions
are applicable as we will show in bounding A2, so here we choose a simpler one, i.e., η ≤ 1

10ImaxL
. Note that both these

two conditions for simplification will not incur any fundamental changes in the convergence behavior, since we can further
merge them into some lower-order terms. This could also provide much more readability.



Substituting Eq. 22 back into Eq. 21, merging the left hand term, we have

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et∥xt,τ,hj − xt,τi ∥2

≤ 6Gη2
M∑
i=1

pimiIiσ
2 + 60Gη2

M∑
i=1

pimiI
2
i ϵ

2
i + 80Gη2

M∑
i=1

pimiI
2
i ∥∇f(xt)∥2

+ 80Gη2
M∑
i=1

pimiI
2
i ϵ

2 + 3G2η2cη
2

M∑
i=1

pimi

ni
σ2 + 2Gη2cη

2
M∑
i=1

pimi

ωi−1∑
τ=0

Ψt,τ
i . (23)

Similarly, for full participation case, we set ni = mi,Ψ
t,τ
i = 0,∀i ∈ [M ], τ and thus recover the corresponding result in

Lemma 5.

With Eq. 9, Lemma 3, and Lemma 5 for full participation, and setting pi =
1
m in Lemma 5, we rearrange Eq. 8 to bound for

−A1 as

−A1 ≤ ηcηG

2

∥∥∇f(xt)
∥∥2 − ηcη

2G
Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

∇Fj(xt,τ,h
j )

∥∥∥∥2

+ L2ηcη

(
5G2η2cη

2M

m
σ2 + 40G3η2cη

2ϵ2 + 40G3η2cη
2
∥∥∇f(xt)

∥∥2 + 124

100

(
6Gη2

M∑
i=1

mi

m
Iiσ

2

+ 60Gη2
M∑
i=1

mi

m
I2i ϵ

2
i + 80Gη2

M∑
i=1

mi

m
I2i ∥∇f(xt)∥2 + 80Gη2

M∑
i=1

mi

m
I2i ϵ

2 + 3G2η2cη
2M

m
σ2

))

≤ ηcηG

2

∥∥∇f(xt)
∥∥2 − ηcη

2G
Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

∇Fj(xt,τ,h
j )

∥∥∥∥2

+ 9G2η3cη
3L2M

m
σ2 + 40G3η3cη

3L2ϵ2 + 40G3η3cη
3L2

∥∥∇f(xt)
∥∥2 + 8Gηcη

3L2
M∑
i=1

mi

m
Iiσ

2

+ 75Gηcη
3L2

M∑
i=1

mi

m
I2i ϵ

2
i + 100Gηcη

3L2
M∑
i=1

mi

m
I2i ∥∇f(xt)∥2 + 100Gηcη

3L2
M∑
i=1

mi

m
I2i ϵ

2, (24)

For the term A2, we have

A2 = Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

ηc

Ii−1∑
h=0

1

mi

∑
j∈Vi

ηgt,τ,hj

∥∥∥∥2
(a)
= η2cη

2Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

(
gt,τ,h
j −∇Fj(xt,τ,h

j )
)∥∥∥∥2

+ η2cη
2Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

∇Fj(xt,τ,hj )

∥∥∥∥2

≤ Gη2cη
2

m
σ2 + η2cη

2Et

∥∥∥∥ M∑
i=1

mi

m

ωi−1∑
τ=0

Ii−1∑
h=0

1

mi

∑
j∈Vi

∇Fj(xt,τ,h
j )

∥∥∥∥2, (25)

where (a) follows the fact that E∥x∥2 = E∥x − Ex∥2 + ∥Ex∥2.

Substituting Eq. 24 and Eq. 25 back into Eq. 7 and rearranging the order, we have

ηgηcηG
(1
2
− 40G2η2cη

2L2 − 100η2L2
M∑
i=1

mi

m
I2i

)∥∥∇f(xt)
∥∥2



≤ f(xt)− Et[f(xt+1)] +
(Lη2gη2cη2

2
− ηgηcη

2G

)
Et

∥∥∥∥ 1

m

M∑
i=1

ωi−1∑
τ=0

Ii−1∑
h=0

∑
j∈Vi

∇Fj(xt,τ,hj )

∥∥∥∥2

+
GLη2gη

2
cη

2

2m
σ2 + 9G2ηgη

3
cη

3L2M

m
σ2 + 40G3ηgη

3
cη

3L2ϵ2 + 8Gηgηcη
3L2

M∑
i=1

mi

m
Iiσ

2

+ 75Gηgηcη
3L2

M∑
i=1

mi

m
I2i ϵ

2
i + 100Gηgηcη

3L2
M∑
i=1

mi

m
I2i ϵ

2

(a)

≤ f(xt)− Et[f(xt+1)] +
GLη2gη

2
cη

2

2m
σ2 + 9G2ηgη

3
cη

3L2M

m
σ2 + 8Gηgηcη

3L2
M∑
i=1

mi

m
Iiσ

2

+ 75Gηgηcη
3L2

M∑
i=1

mi

m
I2i ϵ

2
i + 100Gηgηcη

3L2
M∑
i=1

mi

m
I2i ϵ

2 + 40G3ηgη
3
cη

3L2ϵ2, (26)

where (a) follows from
Lη2

gη
2
cη

2

2 − ηgηcη
2G ≤ 0 if ηgηcη ≤ 1

GL .

Suppose 40G2η2cη
2L2 + 100η2L2

∑M
i=1

mi

m I2i < 1
2 , and there exists a constant satisfying ( 12 − 40G2η2cη

2L2 −
100η2L2

∑M
i=1

mi

m I2i ) > c > 0, then we have

∥∥∇f(xt)
∥∥2 ≤ f(xt)− Et[f(xt+1)]

ηgηcηGc
+

1

c

[
Lηgηcη

2m
σ2 + 9Gη2cη

2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2

+ 75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2 + 40G2η2cη
2L2ϵ2

]
, (27)

Taking a double expectation over the data samples among all workers and averaging from t = 0, 1, . . . , T , we have the final
results as

min
t∈[T ]

E
∥∥∇f(xt)

∥∥2 ≤ f0 − f∗
cηgηcηGT

+
1

c
(Φ1 +Φ2), (28)

where

Φ1 = 9Gη2cη
2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2 + 40G2η2cη
2L2ϵ2,

+ 75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2, Φ2 =
Lηgηcη

2m
σ2. (29)

This completes the proof of Theorem 1.

D PROOF OF THEOREM 2

Proof. For the partial participation case, we similarly start with taking expectation over the randomness of the master round
t and expanding with Assumption 1 as

Et[f(xt+1)] ≤ f(xt)− ηgηcηG
∥∥∇f(xt)

∥∥2 − ηg Et

〈
∇f(xt),∆t − ηcηG∇f(xt)

〉︸ ︷︷ ︸
A1

+η2g
L

2
Et

∥∥∆t
∥∥2︸ ︷︷ ︸

A2

. (30)

Due to Lemma 1 for both sampling strategies, A1 equals exactly to the fully participating case, i.e.,

A1 = Et

〈
∇f(xt),∆t − ηcηG∇f(xt)

〉
= Et

〈
∇f(xt), ∆̄t − ηcηG∇f(xt)

〉
. (31)

Hence, we have exactly the same bound with the full participation case for A1 as Eq. 24. Then we focus on bounding A2.



Let θt,τj =
∑Ii−1

h=0 ∇Fj(xt,τ,hj ), j ∈ Vi, for both sampling strategies, we have

A2 = E
∥∥∥∥ M∑

i=1

mi

m

ωi−1∑
τ=0

ηc

Ii−1∑
h=0

1

ni

∑
j∈St,τ

i

ηgt,τ,hj

∥∥∥∥2
(a)
= η2cη

2
M∑
i=1

ωi−1∑
τ=0

Ii−1∑
h=0

∑
j∈St,τ

i

m2
i

m2

1

n2
i

Et

∥∥∥∥gt,τ,h
j −∇Fj(xt,τ,h

j )

∥∥∥∥2 + η2cη
2Et

∥∥∥∥ M∑
i=1

mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2
(b)

≤ Gη2cη
2

M∑
i=1

m2
i

m2ni
σ2 + η2cη

2Et

∥∥∥∥ M∑
i=1

mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2, (32)

where (a) is due to E∥x∥2 = E∥x − Ex∥2 + ∥Ex∥2 and Lemma 2. (b) is due to bounded local variance (Assumption 3).

We then prove a lemma that refines the second term of Eq. 32 for easier analysis.

Lemma 6. For both sampling strategies, the norm of the averaged accumulated gradients of all participated workers in
master round t follows

Et

∥∥∥∥ M∑
i=1

mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2

= Et

[
M∑
i=1

m2
i

m2n2
i

ωi−1∑
τ=0

∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥2 − 1

m2

M∑
i=1

ωi−1∑
τ=0

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 + ∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2]. (33)

Proof. We have

Et

∥∥∥∥ M∑
i=1

mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2

= Et

 M∑
i=1

∥∥∥∥ mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2 + ∑
i̸=h;i,h∈[M ]

〈
mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj ,
mh

mnh

ωh−1∑
τ=0

∑
k∈St,τ

h

θt,τk

〉 , (34)

which is an inter-cluster decomposition among different groups. For the second term of Eq. 34, we have

Et

 ∑
i ̸=h;i,h∈[M ]

〈
mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj ,
mh

mnh

ωh−1∑
τ=0

∑
k∈St,τ

h

θt,τk

〉
= Et

 ∑
i̸=h;i,h∈[M ]

mimh

m2

〈
1

ni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj ,
1

nh

ωh−1∑
τ=0

∑
k∈St,τ

h

θt,τk

〉
(a)
=

1

m2
Et

 ∑
i ̸=h;i,h∈[M ]

〈∑
j∈Vi

ωi−1∑
τ=0

θt,τj ,
∑
k∈Vh

ωh−1∑
τ=0

θt,τk

〉 , (35)

where (a) is due to Lemma 1 and the independence among the sampling sets of different groups.

We note that it is a fact that

Et

∥∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥∥2

=
1

m2
Et

 M∑
i=1

∥∥ ∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥2 + ∑
i̸=h, i,h∈[M ]

〈∑
j∈Vi

ωi−1∑
τ=0

θt,τj ,
∑
k∈Vh

ωh−1∑
τ=0

θt,τk

〉 . (36)



Then, review the first term of Eq. 34, we have

Et

∥∥∥∥ ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2 = Et

ωi−1∑
τ=0

∥∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥∥2 + ∑
τ ̸=ν;τ,ν∈[ωi−1]

〈 ∑
j∈St,τ

i

θt,τj ,
∑

k∈St,ν
i

θt,νk

〉 , (37)

which is an intra-cluster decomposition among different cluster rounds. Note that for the second term of Eq. 37, we have

Et

 ∑
τ ̸=ν;τ,ν∈[ωi−1]

〈 ∑
j∈St,τ

i

θt,τj ,
∑

k∈St,ν
i

θt,νk

〉
= Et

 ∑
τ ̸=ν;τ,ν∈[ωi−1]

n2
i

〈
1

ni

∑
j∈St,τ

i

θt,τj ,
1

ni

∑
k∈St,ν

i

θt,νk

〉
(a)
=

n2
i

m2
i

Et

 ∑
τ ̸=ν;τ,ν∈[ωi−1]

〈∑
j∈Vi

θt,τj ,
∑
k∈Vi

θt,νk

〉 , (38)

where (a) is due to Lemma 1 and the independence among the sampling sets of different cluster rounds.

We similarly note that it is fact for the first term of Eq. 36 that

Et

∥∥ ∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥2 = Et

ωi−1∑
τ=0

∥∥ ∑
j∈Vi

θt,τj

∥∥2 + ∑
τ ̸=ν;τ,ν∈[ωi−1]

〈∑
j∈Vi

θt,τj ,
∑
k∈Vi

θt,νk

〉 . (39)

Hence, substituting all Eq. 35, 36, 37, 38, and 39 back into Eq. 34, we have

Et

∥∥∥∥ M∑
i=1

mi

mni

ωi−1∑
τ=0

∑
j∈St,τ

i

θt,τj

∥∥∥∥2

= Et

[
M∑
i=1

m2
i

m2n2
i

ωi−1∑
τ=0

∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥2 + 1

m2

M∑
i=1

(∥∥∥ ∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2 − ωi−1∑
τ=0

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2)

+
∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2 − 1

m2

M∑
i=1

∥∥∥ ∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2]

= Et

[
M∑
i=1

m2
i

m2n2
i

ωi−1∑
τ=0

∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥2 − 1

m2

M∑
i=1

ωi−1∑
τ=0

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 + ∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2]. (40)

This completes the proof of Lemma 6.

Note that Lemma 6 essentially redirect the uncertainty of partial participation from overall master round level to each cluster
round level (the first term of Eq. 40). It is this redirection that restricts partial participation to only directly interact with Ii
rather than G, thereby guaranteeing the weakening effect.

With Lemma 6, we have A2 for both sampling strategies

A2 ≤ Gη2cη
2

M∑
i=1

m2
i

m2ni
σ2 + η2cη

2
M∑
i=1

m2
i

m2n2
i

ωi−1∑
τ=0

Et

∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥2 (41)

− η2cη
2 1

m2

M∑
i=1

ωi−1∑
τ=0

Et

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 + η2cη
2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2.
Note that only the second term of Eq. 41 remains relevant to specific sampling strategies. We will next bound for it.



D.1 BOUNDING STRATEGY 1

With sampling strategy 1, suppose St,τ
i = {lt,τi,1 , l

t,τ
i,2 , . . . , l

t,τ
i,ni

}, we have for the second term of Eq. 41

Et

∥∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥∥2 = Et

∥∥∥∥ ni∑
z=1

θt,τ
lt,τi,z

∥∥∥∥2

= Et

 ni∑
z=1

∥∥θt,τ
lt,τi,z

∥∥2 + ∑
j ̸=k;j,k∈[ni]

〈
θt,τ
lt,τi,j

, θt,τ
lt,τi,k

〉
= Et

[
ni

∥∥θt,τ
lt,τi,1

∥∥2 + ni(ni − 1)

〈
θt,τ
lt,τi,1

, θt,τ
lt,τi,2

〉]

= Et

∑
j∈Vi

ni

mi

∥∥θt,τj

∥∥2 + ∑
j,k∈Vi

ni(ni − 1)

m2
i

〈
θt,τj , θt,τk

〉
=

∑
j∈Vi

ni

mi
Et

∥∥θt,τj

∥∥2 + ni(ni − 1)

m2
i

Et

∥∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥∥2. (42)

Substituting Eq. 42 back into Eq. 41, we have

A2 ≤ Gη2cη
2

M∑
i=1

m2
i

m2ni
σ2 + η2cη

2
M∑
i=1

ωi−1∑
τ=0

∑
j∈Vi

mi

m2ni
Et

∥∥θt,τj

∥∥2
− η2cη

2 1

m2

M∑
i=1

1

ni

ωi−1∑
τ=0

Et

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 + η2cη
2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2
≤ Gη2cη

2
M∑
i=1

m2
i

m2ni
σ2 + η2cη

2
M∑
i=1

ωi−1∑
τ=0

∑
j∈Vi

mi

m2ni
Et

∥∥θt,τj

∥∥2 + η2cη
2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2 (43)

For the second term of Eq. 43, we can have the following important inequality. Here we similarly consider arbitrary positive
coefficients pi > 0,∀i ∈ [M ] for compatibility with our subsequent proof for strategy 2,

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥ Ii−1∑
h=0

∇Fj(xt,τ,hj )
∥∥2 =

M∑
i=1

pi

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥∥∥ Ii−1∑
h=0

(
∇Fj(xt,τ,h

j )−∇Fj(xt,τi )

+∇Fj(xt,τ
i )−∇fi(xt,τi ) +∇fi(xt,τi )−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)

)∥∥∥∥2
≤ 5L2

M∑
i=1

piIi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et

∥∥xt,τ,hj − xt,τi

∥∥2 + 5L2
M∑
i=1

pimiI
2
i

ωi−1∑
τ=0

Et

∥∥xt,τi − xt
∥∥2

+ 5G

M∑
i=1

pimiIiϵ
2
i + 5G

M∑
i=1

pimiIiϵ
2 + 5G

M∑
i=1

pimiIi∥∇f(xt)∥2

(a)

≤ 31

5
L2

M∑
i=1

piIi

ωi−1∑
τ=0

∑
j∈Vi

Ii−1∑
h=0

Et

∥∥xt,τ,hj − xt,τi

∥∥2 + 5G

M∑
i=1

pimiIiϵ
2
i + 7G

M∑
i=1

pimiIiϵ
2

+ 7G

M∑
i=1

pimiIi∥∇f(xt)∥2 + 1

4

M∑
i=1

pimi

ni
Iiσ

2 + 15Gη2cη
2L2

M∑
i=1

pimiIi

ωi−1∑
τ=0

Ψt,τ
i

(b)

≤ 2

5
G

M∑
i=1

pimiσ
2 +

1

2

M∑
i=1

pimi

ni
Iiσ

2 + 9G

M∑
i=1

pimiIiϵ
2
i + 12G

M∑
i=1

pimiIiϵ
2

+ 12G

M∑
i=1

pimiIi∥∇f(xt)∥2 + 28Gη2cη
2L2

M∑
i=1

pimiIi

ωi−1∑
τ=0

Ψt,τ
i , (44)



where (a) is due to Lemma 3 for partial participation and simplified with ηcη ≤ 1
10LG . (b) is due to Lemma 5 for partial

participation case and simplified via the condition η ≤ 1
10ImaxL

.

We can bound Ψt,τ
i as

Ψt,τ
i = Et

∥∥∥∥ 1

ni

∑
j∈St,τ

i

Ii∑
h=0

∇Fj(xt,τ,hj )− 1

mi

∑
j∈Vi

Ii∑
h=0

∇Fj(xt,τ,hj )

∥∥∥∥2
(a)
= Et

∥∥∥∥ 1

ni

∑
j∈St,τ

i

Ii∑
h=0

∇Fj(xt,τ,h
j )

∥∥∥∥2 − Et

∥∥∥∥ 1

mi

∑
j∈Vi

Ii∑
h=0

∇Fj(xt,τ,h
j )

∥∥∥∥2

=
1

n2
i

Et

∥∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥∥2 − 1

m2
i

Et

∥∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥∥2, (45)

where (a) is due to the fact that E∥x∥2 = E∥x − Ex∥2 + ∥Ex∥2, holding for both sampling strategies.

For sampling strategy 1, substituting Eq. 42 into Eq. 45, we have

Ψt,τ
i =

1

nimi

∑
j∈Vi

Et

∥∥θt,τj

∥∥2 − 1

nim2
i

Et

∥∥ ∑
j∈Vi

θt,τj

∥∥2, (46)

Substituting Eq. 46 back into Eq. 44 with pi =
mi

m2ni
,∀i ∈ [M ], we have

M∑
i=1

mi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2
≤ 2

5
G

M∑
i=1

m2
i

m2ni
σ2 +

1

2

M∑
i=1

m2
i

m2n2
i

Iiσ
2 + 9G

M∑
i=1

m2
i

m2ni
Iiϵ

2
i

+ 12G

M∑
i=1

m2
i

m2ni
Iiϵ

2 + 12G

M∑
i=1

m2
i

m2ni
Ii∥∇f(xt)∥2

+ 28Gη2cη
2L2

M∑
i=1

mi

m2n2
i

Ii

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2 − 28Gη2cη
2L2

M∑
i=1

1

m2n2
i

Ii

ωi−1∑
τ=0

Et

∥∥ ∑
j∈Vi

θt,τj

∥∥2
(a)

≤ 9

10
G

M∑
i=1

m2
i

m2ni
σ2 + 9G

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 12G

M∑
i=1

m2
i

m2ni
Iiϵ

2

+ 12G

M∑
i=1

m2
i

m2ni
Ii∥∇f(xt)∥2 + 2

5

M∑
i=1

mi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2, (47)

where (a) is due to the fact that Ii
ni

< G,∀i ∈ [M ] and the condition ηcη ≤ 1
10LG .

Rearranging the order for the left hand term, we have

M∑
i=1

mi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2
≤ 3

2
G

M∑
i=1

m2
i

m2ni
σ2 + 15G

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 20G

M∑
i=1

m2
i

m2ni
Iiϵ

2 + 20G

M∑
i=1

m2
i

m2ni
Ii∥∇f(xt)∥2. (48)

We substitute Eq. 48 back to Eq. 43, and bound A2 for strategy 1 as

A2 ≤ 5

2
Gη2cη

2
M∑
i=1

m2
i

m2ni
σ2 + η2cη

2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

Ii−1∑
h=0

∇Fj(xt,τ,hj )
∥∥∥2



+ 15Gη2cη
2

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 20Gη2cη

2
M∑
i=1

m2
i

m2ni
Iiϵ

2 + 20Gη2cη
2

M∑
i=1

m2
i

m2ni
Ii∥∇f(xt)∥2. (49)

Substituting Eq. 24 and Eq. 49 back into Eq. 30 and rearranging the order, we have

ηgηcηG
(1
2
− 40G2η2cη

2L2 − 100η2L2
M∑
i=1

mi

m
I2i − 10ηgηcηL

M∑
i=1

m2
i

m2ni
Ii

)∥∥∇f(xt)
∥∥2

≤ f(xt)− Et[f(xt+1)] + 9G2ηgη
3
cη

3L2M

m
σ2 + 8Gηgηcη

3L2
M∑
i=1

mi

m
Iiσ

2

+ 75Gηgηcη
3L2

M∑
i=1

mi

m
I2i ϵ

2
i + 100Gηgηcη

3L2
M∑
i=1

mi

m
I2i ϵ

2 + 40G3ηgη
3
cη

3L2ϵ2

+
5

4
Gη2gη

2
cη

2L

M∑
i=1

m2
i

m2ni
σ2 +

15

2
Gη2gη

2
cη

2L

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 10Gη2gη

2
cη

2L

M∑
i=1

m2
i

m2ni
Iiϵ

2. (50)

Here, like we do in the full case, we drop the term Et∥ 1
m

∑M
i=1

∑ωi−1
τ=0

∑Ii−1
h=0

∑
j∈Vi

∇Fj(xt,τ,hj )∥2 with condition

ηgηcη ≤ 1
GL ensuring its coefficient

Lη2
gη

2
cη

2

2 − ηgηcη
2G ≤ 0.

Suppose 40G2η2cη
2L2 +100η2L2

∑M
i=1

mi

m I2i +10ηgηcηL
∑M

i=1
m2

i

m2ni
Ii <

1
2 , and there exists a constant c > 0 satisfying

( 12 − 40G2η2cη
2L2 − 100η2L2

∑M
i=1

mi

m I2i − 10ηgηcηL
∑M

i=1
m2

i

m2ni
Ii) > c > 0, then we have

∥∥∇f(xt)
∥∥2 ≤ f(xt)− Et[f(xt+1)]

ηgηcηGc
+

1

c

[
9Gη2cη

2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2

+ 75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2 + 40G2η2cη
2L2ϵ2

+
5

4
ηgηcηL

M∑
i=1

m2
i

m2ni
σ2 +

15

2
ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 10ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2

]
, (51)

Taking a double expectation over the data samples among all workers and averaging from t = 0, 1, . . . , T , we have the final
results as

min
t∈[T ]

E
∥∥∇f(xt)

∥∥2 ≤ f0 − f∗
cηgηcηGT

+
1

c
(Φ1 +Φ2 +Φ3), (52)

where,

Φ1 = 9Gη2cη
2L2M

m
σ2 + 8η2L2

M∑
i=1

mi

m
Iiσ

2 + 40G2η2cη
2L2ϵ2

++75η2L2
M∑
i=1

mi

m
I2i ϵ

2
i + 100η2L2

M∑
i=1

mi

m
I2i ϵ

2, Φ2 =
1

2
ηgηcηL

M∑
i=1

m2
i

m2ni
σ2,

Φ3 =
3

4
ηgηcηL

M∑
i=1

m2
i

m2ni
σ2 +

15

2
ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2
i + 10ηgηcηL

M∑
i=1

m2
i

m2ni
Iiϵ

2. (53)

D.2 BOUNDING STRATEGY 2

With sampling strategy 2, we have for the second term of Eq. 41

Et

∥∥∥ ∑
j∈St,τ

i

θt,τj

∥∥∥2 = Et

∥∥∥∥ ∑
j∈Vi

P{j ∈ St,τ
i }θt,τj

∥∥∥∥2



= Et

∑
j∈Vi

P{j ∈ St,τ
i }

∥∥θt,τj

∥∥2 + ∑
j ̸=k;j,k∈Vi

P{j, k ∈ St,τ
i }

〈
θt,τj , θt,τk

〉
= Et

 ni

mi

∑
j∈Vi

∥∥θt,τj

∥∥2 + ni(ni − 1)

mi(mi − 1)

∑
j ̸=k;j,k∈Vi

〈
θt,τj , θt,τk

〉
= Et

 ni

mi

∑
j∈Vi

∥∥θt,τj

∥∥2 + ni(ni − 1)

mi(mi − 1)

(∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 − ∑
j∈Vi

∥∥θt,τj

∥∥2)
=

∑
j∈Vi

ni(mi − ni)

mi(mi − 1)
Et

∥∥θt,τj

∥∥2 + ni(ni − 1)

mi(mi − 1)
Et

∥∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥∥2. (54)

Substituting Eq. 54 back into Eq. 41, we have

A2 ≤ Gη2cη
2

M∑
i=1

m2
i

m2ni
σ2 + η2cη

2
M∑
i=1

ωi−1∑
τ=0

∑
j∈Vi

mi(mi − ni)

m2ni(mi − 1)
Et

∥∥θt,τj

∥∥2
− η2cη

2 1

m2

M∑
i=1

mi − ni

ni(mi − 1)

ωi−1∑
τ=0

Et

∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥2 + η2cη
2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2
≤ Gη2cη

2
M∑
i=1

m2
i

m2ni
σ2 + η2cη

2
M∑
i=1

ωi−1∑
τ=0

∑
j∈Vi

mi(mi − ni)

m2ni(mi − 1)
Et

∥∥θt,τj

∥∥2 + η2cη
2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

θt,τj

∥∥∥2 (55)

Let αi =
mi−ni

mi−1 . Like we do in strategy 1, we can also bound Ψt,τ
i for strategy 2 by substituting Eq. 54 into the first term of

Eq. 45

Ψt,τ
i =

∑
j∈Vi

αi

mini
Et

∥∥θt,τj

∥∥2 − αi

m2
ini

Et

∥∥∥∥ ∑
j∈Vi

θt,τj

∥∥∥∥2 (56)

Similarly, substituting Eq. 56 back into Eq. 44 with pi =
miαi

m2ni
,∀i ∈ [M ], we have

M∑
i=1

miαi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥ Ii−1∑
h=0

∇Fj(xt,τ,h
j )

∥∥2
≤ 9

10
G

M∑
i=1

m2
iαi

m2ni
σ2 + 9G

M∑
i=1

m2
iαi

m2ni
Iiϵ

2
i + 12G

M∑
i=1

m2
iαi

m2ni
Iiϵ

2 + 12G

M∑
i=1

m2
iαi

m2ni
Ii∥∇f(xt)∥2

+
2

5

M∑
i=1

miαi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2, (57)

where (a) is due to the fact that Ii
ni

< G and αi ≤ 1,∀i ∈ [M ] and the condition ηcη ≤ 1
10LG .

Rearranging the order for the left hand term, we have

M∑
i=1

miαi

m2ni

ωi−1∑
τ=0

∑
j∈Vi

Et

∥∥θt,τj

∥∥2
≤ 3

2
G

M∑
i=1

m2
iαi

m2ni
σ2 + 15G

M∑
i=1

m2
iαi

m2ni
Iiϵ

2
i + 20G

M∑
i=1

m2
iαi

m2ni
Iiϵ

2 + 20G

M∑
i=1

m2
iαi

m2ni
Ii∥∇f(xt)∥2. (58)

We substitute Eq. 58 back to Eq. 55, and bound A2 for strategy 2 as

A2 ≤ Gη2cη
2

M∑
i=1

m2
i

m2ni
σ2 + η2cη

2Et

∥∥∥ 1

m

M∑
i=1

∑
j∈Vi

ωi−1∑
τ=0

Ii−1∑
h=0

∇Fj(xt,τ,hj )
∥∥∥2 + 3

2
Gη2cη

2
M∑
i=1

m2
iαi

m2ni
σ2



+ 15Gη2cη
2

M∑
i=1

m2
iαi

m2ni
Iiϵ

2
i + 20Gη2cη

2
M∑
i=1

m2
iαi

m2ni
Iiϵ

2 + 20Gη2cη
2

M∑
i=1

m2
iαi

m2ni
Ii∥∇f(xt)∥2. (59)

Substituting Eq. 24 and Eq. 59 back into Eq. 30 and rearranging the order, we have

ηgηcηG
(1
2
− 40G2η2cη

2L2 − 100η2L2
M∑
i=1

mi

m
I2i − 10ηgηcηL

M∑
i=1

m2
iαi

m2ni
Ii

)∥∥∇f(xt)
∥∥2

(a)

≤ f(xt)− Et[f(xt+1)] + 9G2ηgη
3
cη

3L2M

m
σ2 + 8Gηgηcη

3L2
M∑
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Likewise, we drop the term Et∥ 1
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Taking a double expectation over the data samples among all workers and averaging from t = 0, 1, . . . , T , we have the final
results as
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where,
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This completes the proof of Theorem 2.

E ADDITIONAL RESULTS

E.1 WEAKENING EFFECT ON CIFAR-10

We conduct similar experiments on CIFAR-10 to show the weakening effect of partial participation for HFL. Here we only
test the partial worker case with 20% participating.
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Figure 2: Test Accuracy w.r.t. iterations on CIFAR-10. (a) Group i.i.d. with partial participation; (b) Group non-i.i.d. with
partial participation.

Similarly, we observe that the curve patterns in Fig. 2(b) resembles those in Fig. 2(a), namely there is no noticeable
performance gap (e.g., G = 50, I = 10 and G = 250, I = 10 versus P = 10). Note that HFL with G = 250, I = 50 even
performs slightly better than standard FL with P = 50.

E.2 SAMPLING STRATEGY

We explore the performance of different sampling strategies on MNIST. Here we use two uniform groups both with 50
workers. The round periods are set to G = 100, I = 50.

Table 7: Master rounds needed for sampling strategies to achieve target test accuracy on MNIST.

Sampling Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Strategy 1 643 491 492 469 444 444 431 438 409 441
Strategy 2 564 485 477 414 414 411 411 399 379 377

Table 7 presents the results for different sampling strategies. We observe that strategy 2 always outperform strategy 1 with
the same sampling ratio. This matches our Theorem 2 as convergence bound for strategy 2 is tighter due to the additional
coefficient αi ≤ 1,∀i ∈ [M ]. Basically, the results indicates a trend that the higher the sampling ratio, the better the
convergence. Still, note that strategy 1 with 100% shows a little performance degradation. This may be a high sampling ratio
with replacement may include multiple stochastic gradient updates from a single worker, which instead potentially leads to
higher variance.
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