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Abstract
Interference, a key concept in causal inference,
extends the reward modeling process by account-
ing for the impact of one unit’s actions on the re-
wards of others. In contextual bandit (CB) settings
where multiple units are present in the same round,
interference can significantly affect the estimation
of expected rewards for different arms, thereby in-
fluencing the decision-making process. Although
some prior work has explored multi-agent and
adversarial bandits in interference-aware settings,
how to model interference in CB remains signifi-
cantly underexplored. In this paper, we introduce
a systematic framework to address interference
in Linear CB (LinCB), bridging the gap between
causal inference and online decision-making. We
propose a series of algorithms that explicitly quan-
tify the interference effect in the reward modeling
process and provide comprehensive theoretical
guarantees, including sublinear regret bounds, fi-
nite sample upper bounds, and asymptotic proper-
ties. The effectiveness of our approach is demon-
strated through simulations and synthetic data gen-
erated based on MovieLens data.

1. Introduction
Decision making widely exists in various real-world set-
tings, such as advertising (Zhou et al., 2023), clinical trials
(Tsiatis et al., 2008), and transportation (Wang et al., 2024).
The core of decision-making problems lies in selecting the
optimal action from a set of possible options to maximize
an outcome or reward that is valuable to the decision-maker.

To simplify decision-making involving multiple individuals
(or agents/units), it is often assumed that an individual’s
outcome depends only on the action applied to them and is
unaffected by actions taken on others. This assumption, part
of the Stable unit Treatment Value Assumption (SUTVA),
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is common in causal inference literature. However, in many
real-world situations, this assumption is frequently violated
due to interference, where an individual’s outcome is influ-
enced by the actions of others (Rosenbaum, 2007).

During the COVID-19 pandemic, local governments have
sought optimal personalized quarantine policies over ex-
tended periods. Here, each local government acts as an
agent capable of making decisions over time. The observed
reward, such as the number of infected individuals, reflects
the community’s health status following the application of a
specific policy. Over time, governments adjust their policies
based on the latest health status to mitigate virus spread. In
this case, one community’s health outcomes can be influ-
enced by the quarantine policies of neighboring communi-
ties due to population movement and the nature of virus
spread, illustrating the presence of interference.

Another example is in advertising markets, where adver-
tisers manage multiple ad lines targeting overlapping au-
diences through different channels. The overlap in target
consumers and the similarity between ad lines can cause
the Return on Investment (ROI) of one ad to be influenced
by the impression status of another. For instance, if one
ad targets students interested in Nike shoes and another in
Adidas shoes, the ROI of the Nike ad might be affected by
whether customers have already seen the Adidas ad due to
the shared audience and similar products.

In classical causal inference literature, the issue of inter-
ference has been extensively explored in both experimen-
tal design (Aronow & Samii, 2017; Viviano, 2020; Leung,
2022a;b; Viviano, 2024) and observational studies (Su et al.,
2019; Bargagli-Stoffi et al., 2020; Forastiere et al., 2021; Qu
et al., 2021). However, interference within online sequen-
tial decision-making frameworks, such as bandits, remains
relatively underexplored.

When multiple agents, each capable of sequential decision-
making, are involved, the problem is often known as the
multi-agent multi-armed bandits (MAMAB). However, ex-
isting work in MAMAB faces limitations in incorporating
agent-specific information that can enhance personalized
decision-making. For example, in the COVID-19 spread sce-
nario, communities (treated as agents) are not static; there
may be population flows, new communities joining, and
existing communities dissolving, each with unique charac-

1



Linear Contextual Bandits With Interference (LinCBWI)

teristics. Similarly, in the advertising market, ad lines (also
treated as agents) evolve quickly across campaigns, each
with distinct characteristics such as size, content, and target
audiences. Therefore, it is essential to consider a bandit
framework under interference that accounts for agents or
individuals evolving over time. This problem, often incor-
porating agent-specific information, is typically addressed
within the framework of contextual bandits (CB).

Addressing interference in the CB framework presents two
primary challenges. First, the structure-wise challenge:
since the actions of multiple units influence each other’s
reward modeling, the resulting action space becomes high-
dimensional without a precise understanding of the interfer-
ence structure (Agarwal et al., 2024). Estimating heteroge-
neous treatment effects under interference in single-stage
settings is already a complex task (Viviano, 2020; Leung,
2022b), and extending this to sequential decision-making
scenarios like bandits (where the balance between explo-
ration and exploitation is crucial) further compounds the
challenge. Second, the theory-wise challenge: classical sta-
tistical inference tools, such as the Central Limit Theorem
(CLT), become inapplicable as each action and correspond-
ing reward may depend on all previously collected data.
This presents a dual challenge: dependencies arise both
across rounds due to online updates and within rounds due
to interference between units. These dependencies violate
the standard assumption of sample independence, compli-
cating the application of traditional inference techniques.

While some recent works have addressed the issue of inter-
ference in MAMAB (Verstraeten et al., 2020; Bargiacchi
et al., 2018; Dubey et al., 2020; Agarwal et al., 2024) and
adversarial bandits (Jia et al., 2024), to the best of our knowl-
edge, no existing work addresses interference within the con-
textual bandits framework. To bridge this gap, we introduce
a comprehensive framework for linear contextual bandits in
interference-aware scenarios, providing theoretical guaran-
tees via both statistical inference and regret analysis. Our
contributions are as follows.

First, we are the very first work to address the interference
issue in contextual bandits with multiple units involved in
each round, bridging the gap between SUTVA violations in
causal inference and online decision making.

Second, we propose a systematic framework that extends
the classical LinCB to interference-aware scenarios, offer-
ing comprehensive theoretical guarantees, including finite-
sample upper bounds and sublinear regret. Remarkably, the
regret bound achieves the minimax optimal rate in terms of
the number of observed samples in the classical contextual
bandits literature, even in the presence of interference.

Third, we are also the first work to establish the asymptotic
properties of regression coefficients and the optimal value

function in an online setting with interference. We introduce
a probability of exploration and a small clipping rate to en-
sure both estimation consistency and asymptotic properties.
This clipping rate also balances the trade-off between statis-
tical efficiency and regret minimization. The performance
of our estimator is validated through simulation studies and
synthetic data based on MovieLens.

The structure of this paper is as follows. Section 2 reviews
recent work on interference and its integration into bandit
frameworks. Section 3 introduces our framework for reward
modeling and action selection, covering both offline opti-
mization and online learning. In Section 4, we establish the
theoretical foundations of the proposed estimators and the
optimal value function, along with a regret analysis. Sec-
tions 5 and 6 demonstrate the effectiveness of our proposed
algorithm through a simulation study and a synthetic dataset
based on MovieLens. Finally, we provide a brief summary
and discuss potential extensions in Section 7.

2. Related Work
Interference in Single Stage. In single-stage setting, ex-
isting literature varies significantly in defining interference,
often assuming different structures for simplifying reward
modeling. There are some work focuses on using partial
interference and exposure mapping to quantify interference
(Sobel, 2006; Qu et al., 2021; Hudgens & Halloran, 2008;
Forastiere et al., 2021; Aronow & Samii, 2017; Bargagli-
Stoffi et al., 2020). While this approach typically requires
fewer assumptions during the reward modeling stage, it
often relies on additional requirements, such as knowing
the form of the exposure mapping function (Manski, 2013;
Aronow & Samii, 2017; Bargagli-Stoffi et al., 2020) or as-
suming i.i.d. clusters (Qu et al., 2021). These assumptions
can be overly restrictive in later stages and may not clearly
explain direct and spillover effects.

On the contrary, another body of work, such as Su et al.
(2019), considers the reward as a linear function of neigh-
bors’ covariates and treatments, which makes more inter-
pretable assumptions in interference modeling and allows
for comprehensive study in theory. This formulation is
similar to Cliff & Ord (1981) and Getis (2009), where an
autoregressive model is used to capture spatial interference
with similar parametric modeling assumptions. In our work,
we consider linear CB as the first step to handle interference
while maintaining interpretability, and study both theories
and algorithms under this framework.

Cooperative Multi-Agent Bandits. Multi-agent bandits
typically assume a fixed set of N agents making decisions
over time. Some existing works, such as Martı́nez-Rubio
et al. (2019) and Landgren et al. (2016), focus on informa-
tion sharing between agents in a distributed system. While
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sharing historical data can enhance the reward learning
process among agents, these studies still assume that each
agent’s reward depends solely on its own actions, excluding
the possibility of interference.

Another line of research, including Verstraeten et al. (2020),
Bargiacchi et al. (2018), Dubey et al. (2020), Agarwal et al.
(2024), and Jia et al. (2024), considers more general re-
ward models where the actions of other agents can affect
an individual agent’s reward. Specifically, Bargiacchi et al.
(2018) and Verstraeten et al. (2020) extended the Upper
Confidence Bound (UCB) algorithm and Thompson Sam-
pling (TS) from the classical MAB setting to multi-agent
scenarios. Dubey et al. (2020) introduced a kernelized UCB
algorithm, where interference is mediated through network
contexts. Although Jia et al. (2024) also considered inter-
ference in bandits, their focus was on adversarial bandits
with homogeneous actions, which is not as flexible as our
approach where heterogeneous actions are allowed for units
within the same round.

However, all of the aforementioned literature only considers
an MAB setting with a fixed and finite number of agents,
which is different from our setting where agents or units can
vary over time with evolving contextual information.

3. Problem Formulation
In each round t ∈ {1, . . . , T}, we assume there are Nt

units with contextual information Xti ∈ Rd in a network
making sequential decisions simultaneously. At each time
step t, unit i ∈ {1, . . . , Nt} chooses an action Ati ∈ A and
collects a reward Rti. Define N̄t =

∑t
s=1Nt as the total

number of units up to round t. Due to interference, the poten-
tial outcome of unit i at round t is defined asRti(at), where
at = (at1, . . . , atNt

)T is the action assignment vector for
all units at round t.

To quantify the interference level between any two units
in the same round, we suppose there exists a (normalized)
adjacency matrix W t = {Wt,ij}1≤i,j≤Nt ∈ RNt×Nt at
round t, such that Wt,ij denotes the causal interference
strength from unit i to unit j. Note that in our setup, W t is
not required to be symmetric, i.e., the causal interference
strength from unit i to unit j can differ from that of j to i.
By default, we assume W t,ij ∈ [−1, 1], and W t,ii = 1 for
any t and 1 ≤ i, j ≤ Nt.

Defining an interference matrix W t is both intuitive and
flexible enough to model various real-world scenarios. For
instance, in the special case where W t is symmetric and
takes values from {0, 1}, it can represent a neighborhood
structure or friend network, where W t,ij = 1 indicates that
units i and j are connected, and W t,ij = 0 means they are
not. Since this information is derived from societal inter-
actions (for example, during Covid-19, it was often known

which communities were connected by their geographical
locations), we first consider the case where W t is known1.
We assume the reward of unit i at round t follows

Rti =

Nt∑
j=1

Wt,ij · f(Xtj , Atj) + ηti, (1)

where the rewardRti is a linear combination of some payoff
function f , and ηti ∼ N (0, σ2) is a noise term satisfying
ηti ⊥ (Xt,W t)|At

2. Throughout this paper, we assume
that |E[Rti]| ≤ U , i.e., the expected reward of each unit i at
round t can be uniformly bounded by a large constant U .

Assuming the reward generation process follows Equation
(1) is both intuitive and possesses a very beneficial property.
With some simple algebra, we can show that

Nt∑
i=1

E[Rti] =

Nt∑
i=1

Nt∑
j=1

Wt,ij · f(Xtj , Atj)

=

Nt∑
j=1

Nt∑
i=1

Wt,jif(Xti, Ati) =

Nt∑
i=1

ωtif(Xti, Ati),

(2)

where we define ωti :=
∑Nt

j=1Wt,ji as the interference
weight of unit i at round t. The last term further indicates
that the optimal action depends solely on the covariates
of each individual unit, with interference influencing the
direction of optimality through the sign of the weight ωti.
In the specific case where W t ∈ {0, 1}Nt×Nt , ωti can be
interpreted as the “number of friends” or connections for
unit i at round t. This measure is straightforward to obtain;
for example, in a COVID-19 context, it could represent the
number of geographically adjacent communities. Since the
optimal action that maximizes

∑Nt

i=1 E[Rti] is determined
by Xti and ωti, we do not need to account for the covariate
information and actions of all units to achieve the globally
optimal action. This simplifies the decision-making process
and makes it more practical for real-world applications.

3.1. Offline Optimization

Let’s consider a linear payoff function for f to establish
the entire framework and theory behind. Suppose there
exists a coefficient vector βa ∈ Rd for each action a ∈ A
to quantify the effect of each covariate in Xti. Similar to
classical linear CB, we assume

f(Xtj , atj) =
∑
a∈A

X⊤
tjβa · 1{atj = a}. (3)

By incorporating Equation (2), the optimal action maxi-
mizing cumulative reward for each round-unit pair (t, i)

1Extensions to unknown W t will be discussed in Section 7.
2Here we assume the noise term ηti is conditionally indepen-

dent of the contextual information and the interference matrix
W t, given the action taken at round t. This is a more relaxed
assumption compared to i.i.d. random noise.
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(without considering exploration) is given by

Ati = argmax
a∈A

ωtiX
⊤
tiβa, (4)

where the sign of ωti determines if the interference weight
causes a flip in action that maximizes the cumulative reward.

To simplify notation, we introduce the following vector
representations. Denote β = (β⊤

1 , . . . ,β
⊤
K)⊤ ∈ RdK ,

At = (At1, . . . , AtNt
)⊤ ∈ RNt , Rt = (Rt1, . . . , RtNt

)⊤

as the vector of rewards collected at round t, Xt =
(Xt1, . . . ,XtNt

)⊤ ∈ RNt×d as the covariate infor-
mation matrix for all units at round t, and W ti =
diag({Wt,ij}1≤j≤Nt) as an Nt ×Nt diagonal matrix. Fur-
thermore, define IAt=a := diag(1{At = a}) as anNt×Nt

diagonal matrix where the ith diagonal element is the in-
dicator of 1{Ati = a}. We then define a dK-dimensional
transformed covariate vector for each (t, i) as:

X̃ti = (1⊤
Nt

W tiIAt=1Xt, . . . ,1
⊤
Nt

W tiIAt=KXt)
⊤.

(5)

With some straightforward algebra, the expected reward can

be expressed linearly as E[Rti] = X̃
⊤
tiβ.

Denote X̃t =
(
X̃t1, . . . , X̃tNt

)⊤ ∈ RNt×dK as the trans-
formed covariate information matrix at round t. Further-
more, define X̃1:t =

(
X̃

⊤
1 , . . . , X̃

⊤
t

)⊤ ∈ RN̄t×dK , and
R1:t = (R⊤

1 , . . . ,R
⊤
t )

⊤ ∈ RN̄t . Without exploration, the
offline ordinary least square (OLS) estimator is given by

β̂
∗
t =

(
X̃

⊤
1:tX̃1:t

)−1
X̃

⊤
1:tR1:t ∈ RdK . (6)

In an offline optimization setting, one can replace the true
value of β in Equation (4) with β̂

∗
t to obtain an estimate of

the optimal individualized treatment rule.

3.2. Online Algorithms

In the context of online bandits with interference, we ex-
tend three algorithms from classical contextual bandits to
account for the presence of interference: Linear Epsilon-
Greedy With Interference (LinEGWI), Linear Upper Confi-
dence Bound With Interference (LinUCBWI), and Linear
Thompson Sampling With Interference (LinTSWI). These
algorithms, summarized in Algorithm 1, differ primarily in
Line 13 based on their respective exploration strategies.

LinEGWI: For EG-based exploration, we select action

ati = (1− Zti) · argmax
a

ωtiX
⊤
tiβ̂ti,a + Zti · DU(1,K),

(7)
where Zti ∼ Ber(ϵti), and DU(1,K) denotes the discrete
uniform distribution s.t. P(A = a) = 1

K for any a ∈ [K].

LinUCBWI: Define Σ̃t :=
(
X̃

⊤
1:tX̃1:t

)−1
. The UCB un-

Algorithm 1 Linear Contextual Bandits with Interference
Input: Number of units Nt; Burning period T0; Interfer-
ence structure {W t}1≤t≤T ; Clipping rate pt > O(N̄

−1/2
t ).

1: for Time t = 1, · · · , T0 do
2: ati ∼ DU(1,K), 1 ≤ i ≤ Nt;
3: end for
4: A← X̃

⊤
1:T0

X̃1:T0
, b←X⊤

1:T0
R1:T0

;
5: for Time t = T0 + 1, · · · , T do
6: Observe Nt units with features {Xti}1≤i≤Nt

7: Update β̂t−1 ← A−1b
8: for unit i = 1, 2, · · · , Nt do
9: Estimate the optimal arm

π̂ti = argmax
a∈A

ωtiX
⊤
tiβ̂t−1,a;

10: if λmin

{
1

N̄t−1

∑t−1
s=1

∑Nt

i=1 X̃siX̃
⊤
si

}
< pt−1 ·

λmin

{
1

N̄t−1

∑t−1
s=1

∑Nt

i=1 XsiX
⊤
si

}
then

11: Choose Ati ∼ DU(1,K), 1 ≤ i ≤ Nt;
12: else
13: Choose arm ati by Equation (7), (9), or (10);
14: end if
15: Receive reward Rti;
16: end for
17: Update X̃ti by Equation (5), ∀i ∈ {1, . . . , Nt}
18: Update A← A+ X̃

⊤
t X̃t, b← b+ X̃

⊤
t Rt

19: end for

der Ati = a ∈ {1, . . . ,K} can be derived as

UCBti,a ← ωtiX
⊤
tiβ̂t−1,a + α|ωti| ·

√
X⊤

ti(Σ̃t−1)
−1
a Xti,

(8)
where α is a hyperparameter that controls the exploration-
exploitation tradeoff, and (Σ̃t−1)

−1
a denotes the d×d block-

diagonal submatrix of (Σ̃t−1)
−1 corresponding to the vari-

ance of β̂t−1,a. Thus, LinUCBWI selects the arm ati by

ati = argmax
a

UCBti,a. (9)

LinTSWI: Define v as a hyper-parameter denoting the level
of exploration. For unit i at round t, LinTSWI will sample
β̃ti ∼ N (βt,post, v

2Σ−1
t,post) and then choose arm ati s.t.

ati = argmax
a

ωtiX
⊤
tiβ̃ti,a. (10)

For space limit, we save the expression for posteriors, as
well as other derivation details, to Appendix C.

There are two main differences between Algorithm 1 and
classical LinCB algorithms. First, due to the presence of
interference, β is estimated using the transformed covariate
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information X̃ti. This transformation depends on not only
the covariates, but also the interference matrix and actions
involving all units in round t. Second, we incorporate an
additional clipping step in Line 10 to ensure that the proba-
bility of exploration does not decay faster than O(N̄

−1/2
t )

(see Assumption A.2 in Appendix A). This clipping step
is crucial for maintaining sufficient exploration, which is
necessary for estimation consistency and valid inference of
β, as will be detailed in the theory section. Note that when
W t ≡ I for all t, our method downgrades to the classical
linear CB algorithms, aside from adding a step for clipping
to ensure valid statistical inference.

Remark. The computational complexity of LinCBWI is
approximately O(d2K2N̄T ). Specifically, for each unit i in
round t, the primary computational costs arise from matrix
inversion (Line 7 of Algorithm 1) and the smallest eigen-
value computation (Line 10 of Algorithm 1), both requiring
O(d3K3) in standard implementations. Using optimization
techniques such as iterative eigenvalue decomposition and
the Sherman-Morrison update can reduce this to O(d2K2).
Multiplying by the total number of units N̄T gives the over-
all complexity of Algorithm 1. In classical LinCB, the com-
plexity is O(d2KN̄T ). LinCBWI introduces an additional
factor of K due to interference considerations, requiring a
joint update of βa for all a ∈ A. A detailed comparison
of computational time is provided in Section 5.3, where we
show that although LinCBWI incurs slightly higher runtime,
it remains computationally efficient in practice.

4. Theory
In this section, we provide comprehensive theoretical guar-
antees for the Linear CB under interference. Due to space
limit, we move all assumptions to Appendix A.

4.1. Tail bound of the online OLS estimator

Theorem 4.1. (Tail Bound of the Online OLS Estimator)
Suppose Assumptions A.1-A.2 hold. In either LinUCBWI,
LinTSWI or LinEGWI, for any h > 0, we have

P
(
∥β̂t − β∥1 > h

)
≤ dK exp

{
− h2N̄tp

2
tλ

2

2d3K3σ2L2
wL

2
x

}
,

where Lw and Lx are some constants for boundedness (see
Assumption A.1), and pt controls the clipping rate in Algo-
rithm 1.

Remark. Given that d, σ, Lw and Lx are positive constants,
the tail bound for the online OLS estimator simplifies to
P
(
∥β̂t − β∥1 > h

)
≲ exp(−h2N̄tp

2
t−1). As detailed in

Assumption A.2, pt is a non-increasing sequence that con-
trols the level of exploration in Line 10 of Algorithm 1. As
long as N̄tp

2
t → ∞, β̂t will converge in probability to β.

Therefore, in Algorithm 1, we set the clipping rate at round
t to pt > O(N̄

−1/2
t ) to ensure sufficient exploration and

thus the convergence of the online OLS estimator.

4.2. The probability of exploration

Define κti(ωti,Xti) = P(ati ̸= π̂t−1(Xti)), where the
probability operator P is taken with respect to ati and
all historical data collected before round t. The term
κti(ωti,Xti) represents the probability of exploration for
unit i at round t.We define the limit of κti(ωti,Xti) as
κ∞(ω,x) = limN̄t→∞ P(ati ̸= π∗(x)). Since κti is non-
negative by definition, it follows immediately from the Sand-
wich Theorem that κ∞ exists for both UCB and TS. For EG,
κ∞(ω,X) = limN̄t→∞ κti(ω,X) = limN̄t→∞ ϵti/K. In
the following theorem, we establish the exploration upper
bounds for LinUCBWI, LinTSWI, and LinEGWI, which
are crucial for understanding the consistency conditions of
the online OLS estimator and the necessity of clipping.

Theorem 4.2. Suppose Assumptions A.1-A.3 hold. In either
LinUCBWI, LinTSWI or LinEGWI, for any 0 < ξ < |ζti|/2
with ζti = ωtiX

⊤
ti(β1 − β0), we have

(1) In UCB, there exists a constant C > 0, such that

κti(ωti,Xti) ≤ CK2

(
2αLwLx√
N̄t−1pt−1λ

+ ξ

)γ

+ dK3 exp

{
− ξ2N̄t−1p

2
t−1λ

2

8d3K3σ2L4
wL4

x

}
.

(2) In TS, we have

κti(ωti,Xti) ≤ K2 exp

(
− N̄t−1pt−1λ(|ζti| − ξ)2

8v2L2
wL2

x

)
+ 2dK3 exp

{
− ξ2N̄t−1p

2
t−1λ

2

8d3K3σ2L4
wL4

x

}
.

(3) In EG, we have κti(ωti,Xti) = ϵti(K − 1)/K.

Remark. This theorem extends the results from Ye et al.
(2023) to scenarios with interference and K > 2. As
N̄tpt →∞, the exploration probability in both UCB and TS
will converge to 0 when N̄t →∞. Specifically, in UCB, the
exploration upper bound consists of two components: the
first term arises from the margin condition, and the second
term from the tail bound of β̂t. When N̄t is large, the sec-
ond term, which decays at a rate of O(exp{−N̄t−1p

2
t−1}),

will be dominated by the first term, which decays at a rate
of O((N̄t−1pt−1)

−γ/2) if we set ξ = O((N̄t−1p
2
t−1)

−1/2).
In TS, the upper bound is dominated by the second term,
which converges to 0 at a rate of O(exp{−N̄t−1p

2
t−1}).

Lw serves as an upper bound that controls the overall level
of interference in Assumption A.1.c. A larger Lw would in-
crease the upper bound of exploration for both UCB and TS.
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This is reasonable, as a higher level of interference typically
results in a more relaxed upper bound on the probability of
exploration. However, Lw has no effect on EG where the
probability of exploration is often pre-specified.

4.3. Statistical inference on the online OLS estimator β̂t

Accurate estimation and inference of β are crucial for ef-
fective decision-making. A consistent and stable estimate
of βa plays a key role in the algorithm update (Line 13 of
Algorithm 1), and valid inference provides deeper insights
into feature importance/selection. Therefore, this section fo-
cuses on establishing the asymptotic properties of the online
OLS estimator for β.

Theorem 4.3. Suppose Assumptions A.1-A.3 hold, and
N̄tpt →∞ as N̄t →∞. We have√

N̄t(β̂t − β)
D−→ N (0dK , σ

4G−1), (11)

where, for simplicity, the expression of G is specified in
Equation (53) of Appendix H.

Remark. Theorem 4.3 establishes the asymptotic normality
of the online OLS estimator, providing an explicit form
for its asymptotic variance. This result holds for the EG,
UCB, and TS algorithms used for exploration. Despite
the presence of interference, the asymptotic normality of
the estimator only requires the total number of units N̄t to
approach infinity. In other words, bidirectional asymptotic
normality is achieved as long as either t→∞ or the number
of units at some stage Nt →∞.

The asymptotic normality of the online OLS estimator un-
der interference requires careful treatment of dependencies
between units both across time (due to the nature of on-
line decision-making) and within each round (due to the
existence of interference). To address this, we construct a
specialized martingale difference sequence (as shown in the
proof in Appendix H) that effectively accounts for the N̄t

units collected up to time t. This decomposition, together
with the linear structure of interference, allows us to circum-
vent the independence requirement of classical CLT, which
is central to establishing the asymptotic properties discussed
in this and the following subsection.

4.4. Statistical inference on the optimal value V̂
π∗

In real applications, researchers may want to understand
how closely the value function approaches its optimal level
under the optimal policy π∗, at the end of a round t, as
well as the magnitude of the potential impact of the optimal
policy. This further motivate us to conduct estimation and
inference on the optimal value function in online learning.

Suppose that the contextual information Xti ∼ PX and
the interference weight ωti ∼ W . Define the oracle policy

as π∗(Xti) = argmaxa ωtiX
⊤
tiβa, and the optimal value

function as V π∗
, which represents the expected reward un-

der the oracle policy π∗. Specifically,

V π∗
= E

[∑
a∈A

1{π∗(X) = a}ωβ⊤
a X

]
, (12)

where the expectation is taken w.r.t. X and ω.

Define µ̂(t,i)
t−1 (Xt,At) = X̃tiβ̂t−1 as the expected reward

that unit i can obtain given the covariate information and
actions of all units at round t. We propose a doubly robust
(DR) estimator for V π∗

, where

V̂ DR
t =

1

N̄t

t∑
s=1

Ns∑
i=1

[
1{asi = π̂s−1(Xsi)}
1− κ̂s−1(ωti,Xsi)

·
{
rsi

−µ̂(i,s)
s−1 (Xs, π̂s−1(Xs))

}
+ µ̂

(i,s)
s−1 (Xs, π̂s−1(Xs))

]
.

As a combination of inverse probability weighting (IPW)
and the direct method (DM), our proposed doubly robust
(DR) estimator offers double protection for consistency with
V π∗

under model misspecification in κ̂t−1 or µ̂(i,t)
t−1 . For

brevity, some derivation details are moved to Appendix D.

Theorem 4.4. Suppose Assumptions A.1-A.4 hold. We have√
N̄t(V̂

DR
t − V π∗

)
D−→ N (0dK , σ

2
V ), (13)

where σ2
V is given by

σ2
V = E

[
σ2

1− κ∞(ω,x)

]
+ Var

[∑
a∈A

ωx⊤βa · 1{π∗(x) = a}
]
.

(14)

Remark. The asymptotic variance of the optimal value
function comprises two components. The first term arises
from the IPW estimator and accounts for the variance of the
random noise ηti. The second term originates from the DM
estimator and captures the variance due to uncertainty in
the context x and the interference weight ω. Notably, our
theorem extends the results of Ye et al. (2023) by establish-
ing the asymptotic properties of the estimated optimal value
function under interference. In the special case where ω ≡ 1
in Equation (14), our results reduce to theirs.

4.5. Regret Bound

Now we establish the regret bound for Algorithm 1. Define
the regret at the end of round T as

RT =

T∑
t=1

Nt∑
i=1

E
[
ωtiX

⊤
tiβπ∗(Xti) − ωtiX

⊤
tiβati

]
.

Theorem 4.5. For LinEGWI, LinUCBWI and LinTSWI in
Algorithm 1, the general regret bound under interference

6
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Figure 1. The coverage plot of β (a. left) and V π∗
(b. right)

can be derived as

RT =

T∑
t=1

Nt∑
i=1

E[R∗
ti −Rti] = O(N̄

1/2
T log N̄T ),

which is sublinear in N̄T .

Remark. The regret upper bound, even in the presence
of interference, remains proportional to the square root of
the total number of units (up to a logarithmic term). This
aligns with the best achievable regret in literature without
interference. This upper bound can be decomposed into
two components: (1) the regret due to estimation accuracy
(exploitation), denoted by R(1)

T , and (2) the regret due to
exploration, denoted by R(2)

T . For the EG, UCB, and TS
algorithms, the regret from exploitation is proven to be
o(N̄

−1/2
T ) and is thus negligible. However, the regret due

to exploration varies across algorithms. Specifically, in
UCB and TS, R(2)

T also depends on the interference level
Lw, which increases as Lw becomes larger. In contrast,
for EG, the probability of exploration is user-specified and
independent of the interference weight ω. As a result, R(2)

T

is O(N̄
1/2
T log N̄T ) by setting ϵti properly. For detailed

expressions of the upper bounds for each algorithm and the
order for hyper-parameters, please refer to Appendix J.

Before concluding this section, we summarize the main
findings of Sections 4.3-4.5. Sections 4.3-4.4 and 4.5 are
connected through a “clipping rate”, pt. Ideally, setting pt
to 0 minimizes regret, but may undermine the consistency
of β due to insufficient sampling of certain arms. On the
other hand, a larger pt would lead to over-exploration and
increase overall regret. This trade-off between Sections
4.3-4.4 and 4.5 is a novel perspective, motivating us to
examine both aspects to balance statistical efficiency with
regret minimization.

5. Simulation
5.1. Coverage Probability

To demonstrate the asymptotic normality of β and V π∗
in

Theorem 4.3-4.4, we estimate the asymptotic variance and
verify whether the true value of β and V π∗

falls within the
estimated confidence interval with a high probability of cov-
erage under B = 1000 times of replicates. By Equation
(11) and (13), β falls into the confidence region if and only
if N̄t

σ4 (β̂ − β)⊤G(β̂ − β) ≤ χ2
α(dK), where df = dK is

the degree of freedom of the chi-square distribution. Sim-
ilarly, V π∗

falls into the confidence interval if and only if√
N̄t|V̂ DR

t − V π∗ | ≤ zα/2σV . Additional details of the
simulation setup are summarized in Appendix B.1.

Coverage probabilities of the OLS estimator β̂ and opti-
mal value function V π∗

under three exploration algorithms
(LinEGWI, LinUCBWI, and LinTSWI) are shown in Figure
1. As we can see, the coverage consistently hovers around
95%, with the estimated confidence band almost always
covering the red line. This result supports the validity of the
statistical inference presented in Theorems 4.3 and 4.4.

5.2. Comparison with Baseline Approaches

First, we compare our proposed method with the classical
linear CB algorithms to illustrate the importance of taking
interference into consideration. The results are shown in
Figure 2 based on B = 100 times of replication.

As shown, our approaches (LinEGWI, LinUCBWI, and
LinTSWI) achieve significantly lower average regrets at
a faster rate than classical LinCB algorithms, showcasing
the effectiveness of Linear Contextual Bandits With Inter-
ference (LinCBWI) in addressing interference. Without
interference (Figure 6 in Appendix B.4), our algorithm re-
duces to the classical LinCB method and delivers similar

7
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Figure 2. Comparison of average regret in the presence of interfer-
ence with K = 3 arms

results. Further details can be found in Appendix B.2.

5.3. Computational Time of LinCBWI

At the end of Section 3.2, we briefly discussed the theoreti-
cal computational complexity of running Algorithm 1. To
empirically validate this analysis, we compare the runtime
of LinCBWI to that of classical LinCB under the same set-
ting as in Section 5.2. The results are presented in Figure 3.
As expected, LinCBWI incurs slightly higher computational
time due to its joint updates, but the overall runtime remains
within a few seconds. Therefore, computational complexity
is unlikely to pose a practical bottleneck.
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Figure 3. Computational Time Comparison between our proposed
algorithm (LinCBWI) and baselines (LinCB)

5.4. Sensitivity Analysis When Wt Misspecified

In this subsection, we conduct a sensitivity analysis to eval-
uate the impact of misspecifying the interference matrix.
The simulation setup follows that of Section 5.2, except
we manually introduce a perturbed matrix for LinCBWI:
W̆ t = W t + Ξt, where Ξt = {ξij}1≤i,j≤Nt

with ξij ∼
Unif(−b, b). Any resulting values outside the range [−1, 1]
are clipped. Intuitively, a larger b indicates a higher degree
of misspecification. We consider b ∈ {0, 0.5, 1, 2} to assess
LinCBWI’s robustness.

Due to space constraints, full results are deferred to Ap-
pendix E; the main paper presents results for b = 1 as a
representative case. Notably, b = 1 corresponds to a substan-
tial level of misspecification, given that W t is normalized
to lie within [−1, 1].
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Figure 4. Average regret comparison when b = 1

Figure 4 shows that LinCBWI remains robust, achieving
near-zero average regret despite the severe perturbation.
This suggests that incorporating interference structures, even
when estimated imprecisely, enhances decision-making per-
formance and provides deeper modeling flexibility. The
robustness of LinCBWI alleviates practical concerns about
unknown or misspecified interference.

6. Synthetic Data based on MovieLens
The MovieLens 1M dataset (Harper & Konstan, 2015) con-
tains over 1 million movie ratings from 6k users, aiding
movie recommendations based on historical ratings. At
each round t, user i with context Xti is recommended a
movie genre (Ati) and provides a rating (Rti). Here, we
define A = 1 for “Comedy” and A = 0 for “Drama”. There
are two types of interference affect reward modeling for Rti,
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Figure 5. Average rating comparison under reward generating model I (RGP1, left) and II (RGP2, right)

which is overlooked in classical bandits:

(1) Users often rate multiple movies within a short time (a
round), indicating that one recommendation made to a user
may influence their ratings for others in the same round.

(2) Contextual connections (e.g., occupation, ZIP code, age)
between users in the same round can cause one recommen-
dation made to a user to affect the ratings of other users.

We consider two different pseudo-true reward generating
processes (RGPs), RGP1 and RGP2, to further evaluate the
performance of our algorithms. Specifically, RGP1 assumes
only the presence of interference, while RGP2 additionally
assumes that the true reward model satisfies linearity. De-
tailed setup descriptions are summarized in Appendix B.3.

The comparison results for both RGPs are shown in Figure
5. In both figures, our algorithms consistently outperform
classical contextual bandit approaches. Notably, in the case
of RGP1, there is a gap of average reward between our
algorithms and the oracle model, which disappears in RGP2.
This gap likely arises because the true reward model may
not be linear. Despite so, the effectiveness of our approach
can be validated through both scenarios as it consistently
outperforms baselines due to its ability to account for the
potential interference structure. All supplementary code is
available at our Github repository.

7. Summary and Future Directions
In this paper, we propose a series of algorithms to address
interference in LinCB, supported by thorough analyses of
regret, upper bounds, and the asymptotic properties of the
online estimators. Before concluding, we outline two practi-
cal extensions of this work:

Our algorithm can naturally extend to cases where the
interference matrix W t is unknown. Inspired by low-

rank factorization (Shi et al., 2019; Agarwal et al., 2020),
we can assume that W t exhibits a learnable low-rank
structure informed by agents’ contextual information, i.e.,
W t = XtΦX

⊤
t , where Φ ∈ Rd×d represents a universal

weighting matrix. This matrix can be learned alongside
the bandit algorithm to generalize the interference structure.
Extending the algorithm in this way requires jointly estimat-
ing Φ and β, which can be formulated as the optimization

problem argminβ,Φ

∑T
t=1

(
1⊤Rt − 1⊤X̃tβ

)2
+λ∥Φ∥1,

where λ controls the sparsity of Φ. While promising, this
approach requires rigorous justification to ensure identi-
fiability, as well as further computational and theoretical
development. Given the scope of this extension, it presents
an intriguing direction for future research.

It is also possible to generalize the reward model in Equa-
tions (2) and (3). One plausible extension involves replacing
the linear assumption with a neural network, as in neural
contextual bandits (Zhou et al., 2020; Zhang et al., 2020).
While this enhances modeling flexibility and practical ap-
plicability, it may introduce extra complexity for statistical
inference in theoretical analysis.

Another promising direction is to investigate the regret lower
bound in the presence of interference. In this paper, we have
shown that, despite interference, extensions of classical algo-
rithms such as EG, UCB, and TS maintain the standard opti-
mal regret rate proportional to the square root of the sample
size. This is the best achievable regret bound within these
exploration algorithms. Parallel research efforts, though at
the cost of reduced generalizability, have explored methods
to decrease exploration probabilities and achieve smaller re-
gret bounds, as discussed in Goldenshluger & Zeevi (2013),
Han et al. (2020), and He et al. (2022). Extending such
approaches to settings with interference remains an open
and exciting direction for future research.
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A. Assumptions
Assumption A.1. (Boundedness)

a. Define Σ := E
[
xx⊤] as the covariance of contextual information. There exists a constant λ > 0, such that

λmin(Σ) > λ.

b. ∀Xti ∈ X , there exists a constant Lx, such that ∥Xti∥2 ≤ Lx for any t ∈ [T ] and i ∈ [Nt].

c. ∀W t ∈ W , there exists a constant Lw, such that
∑

j |Wt,ij | ≤ Lw and
∑

j |Wt,ji| ≤ Lw for any t ∈ [T ] and i ∈ [Nt].

Assumption A.2. (Clipping) For any action a and round t, there exists a positive and non-increasing sequence pt, such that

λmin

{
1

N̄t−1

∑t−1
s=1

∑Ns

i=1 X̃siX̃
⊤
si

}
> pt−1 · λmin(Σ).

Assumption A.3. (Margin Condition) For any ϵ > 0, there exists a positive constant γ > 0, such that for any two different
arms a and a′, we have P(0 < |f(X, a)− f(X, a′)| < ϵ) = O(ϵγ).

Assumption A.1 includes several bounded conditions. Assumption A.1.a ensures that there is no strong collinearity between
different features, which is necessary for a stable OLS estimator. This condition is commonly assumed in bandit-related
inference papers (Zhang et al., 2020; Chen et al., 2021; Ye et al., 2023). Assumptions A.1.b and A.1.c ensure that the
contextual information and the interference level for each individual unit are bounded.

Assumption A.2 is a technical requirement that guarantees the bandit algorithm explores all actions sufficiently at a rate of
pt, enabling consistent estimation of the OLS estimator. This exploration procedure is widely assumed in bandits inference
literature (Deshpande et al., 2018; Hadad et al., 2021; Ye et al., 2023). Notice that Assumption A.2 is actively enforced
in our algorithm. Specifically, Line 10 of Algorithm 1 ensures that if an arm is explored insufficiently (determined based
on and a smallest eigenvalue comparison), the algorithm enforces additional exploration, preventing extreme imbalance
and ensuring statistical consistency. In our simulation studies, we simply set pt ≡ 0.01 and observed that Line 10 is rarely
triggered. Therefore, this assumption is unlikely to pose significant practical concerns.

Assumption A.3, known as the margin condition, is a standard assumption in the contextual bandits literature (Audibert &
Tsybakov, 2007; Luedtke & Van Der Laan, 2016). It ensures that the expected rewards of different arms are sufficiently
separated, thereby making the bandit learning problem well-posed and meaningful.

Assumption A.4. (Rate Double Robustness) Define the L2 norm as ∥zt∥2,NT
=
√

1
N̄T

∑T
t=1

∑Nt

i=1 z
2
t . We assume that

the convergence rate of propensity score model ∥κ̂t−1(ωti,Xti)− κt−1(ωti,Xti)∥2,NT
= Op(N̄

−α1

T ), the convergence of
outcome regression model ∥µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))− µ(t,i)(Xt, π̂t−1(Xt))∥2,NT
= Op(N̄

−α2

T ), with α1 + α2 > 1/2.

Assumption A.4 requires that the convergence rates of the conditional mean function and the estimated probability
of exploration satisfy certain conditions. This is a standard assumption in causal inference literature, as noted in
Luedtke & Van Der Laan (2016); Kennedy (2022). In our setting, this assumption is almost always satisfied, given
that ∥µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))− µ(t,i)(Xt, π̂t−1(Xt))∥2,NT
= Op(N̄

−1/2
T ) follows directly from Theorem 4.3. Therefore,

it suffices to ensure that ∥κ̂t−1(ωti,Xti)− κt−1(ωti,Xti)∥2,NT
= op(1) for Assumption A.3 to hold. This can be easily

achieved by using a sample-based exploration estimand. In practice, as κ̂t−1(ωti,Xti) tends to be small as t increases, we
set κ̂t−1(ωti,Xti) =

∑
s≤t−1,i∈[Ns]

1{Asi ̸= π̂(Xsi)}/N̄t−1, which proves to be sufficient in simulation and real data
analysis.

B. Simulation Setup and a Supplementary Plot Without Interference
B.1. Simulation Setup in Section 5.1

The simulation setup of testing coverage probability is as follows. In the estimation of β, the entire process is replicated for
B = 1000 times to calculate the empirical coverage. For each replication, we assume there are a total of T = 500 rounds,
and we randomly sample the true β from β0 = (2,−3, 1)⊤ and β1 = (1, 1, 3)⊤.

In the estimation of β, we assume Nt ∼ Poisson(5) units are interacting with the environment. Xti = (Xti,1, . . . , Xti,3) ∈
R3 denotes the feature information of unit i at round t, where Xti,1 ≡ 1, Xti,2 ∼ N (4, 1), Xti,3 ∼ Unif(0, 3), and all of
the samples are i.i.d. over (t, i). At each round, we generate the interference matrix W t ∈ RNt×Nt as follows. Suppose the

12
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diagonal elements Wii = 1. For each i > j, we generate Wij ∼ α · Unif(−0.6,−0.3) + (1− α) · Unif(0.1, 0.4), where
α ∼ DU(1,K).

In the estimation of V π∗, for a more balanced variance composition in Equation (14), we set up the data generating process
for W t and Xti as follows. For each i ̸= j, we generate Wt,ij ∼ α · Unif(−0.2,−0.1) + (1− α) · Unif(0.05, 0.2), where
α ∼ DU(1,K). For contextual information, we generate Xti = (Xti,1, . . . , Xti,3) ∈ R3 for unit i at round t, where
Xti,1 ≡ 0.2, Xti,2 ∼ N (0.8, 0.04), Xti,3 ∼ Unif(0, 0.6), and all of the samples are i.i.d. over (t, i).

To establish the asymptotic normality of the optimal value function, we need to posit another mild assumption regarding the
convergence rates of the two estimation models (propensity score and outcome regression models) presented in the main
paper.

B.2. Simulation Setup in Section 5.2

In reward comparison, we set K = 3 arms and a total of T = 500 rounds. For each round t, a total of Nt ∼ Poisson(λ)
units will interact with the environment. We generate the interference matrix W t ∈ RNt×Nt as follows: Suppose the
diagonal elements Wii = 1. For each i > j, we generate Wij ∼ α · Unif(−0.9,−0.6) + (1− α) · Unif(0.1, 0.4), where
α ∼ DU(1,K). The lower triangular elements are set equivalent to the upper triangular.

Define Xti = (Xti,1, . . . , Xti,d) ∈ Rd as the feature information of unit i at round t. Here, we let d = 5, where the first
column is intercept 1, (Xti,2, Xti,3) ∼MVN(µ,Σ), and (Xti,4, Xti,5) follows some uniform distribution.

Following the reward-generating process described in Equation (2) with a linear payoff function (or equivalently, Equation
(15)), we uniformly sample β0 ∼ Unif(−5, 1), β1 ∼ Unif(−1, 5), β2 ∼ Unif(−3, 3), and replicate this process for
S = 100 times to test the robustness of different approaches w.r.t. the change of environment. All experiments were
conducted on a local computer with 16 GB of memory.

B.3. Real Data Setup in Section 6

Based on the timestamps of each rating and the relative user density, we divided the dataset into T = 200 rounds. For
each round-unit pair (t, i), Xti ∈ Rd is a d = 7 dimensional vector that includes an intercept term, age, gender, and 4
dummy variables representing the top 4 most popular occupation types. We construct an interference matrix W t based
on the contextual information of users in the same round using normalized Jaccard similarity. Note that if a user provides
multiple ratings in the same round (which is highly likely according to our observations), we treat them as “different” users
with the same contextual information, thus the corresponding element in W t is set to 1. We proceed with two different
pseudo-true reward generating processes.

I: For each user j, we calculate R̄j(a) as the average rating of user j under movie type A = a. Then the true reward of
user i at round t is given by Rti =

∑Nt

j=1Wt,ijR̄j(a).

II: Following Equation (2) with linear payoff functions, we fit a linear regression model to Rti, with

Rti =
∑
a∈A

Nt∑
j=1

Wt,ijX
⊤
tjβa1{Atj = a}+ ϵti, (15)

to estimate β0, β1, and σ as specified above. We then use these estimated values to regenerate R̃ti, which we assume
represents the true reward of user i at round t.

B.4. Results Comparison Without Interference

Using the same simulation setup as in Section 5.2, but with the interference matrix W t replaced by an identity matrix, we
compare the results of the classical linear CB algorithm with our proposed methods. The results, shown in Figure 6, indicate
that all methods yield comparable performance over time, with average regrets converging to zero at a rapid rate. This
illustrates that our method, LinCBWI, will downgrade to classical LinCB algorithms when interference does not exist.
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Figure 6. Comparison of average regret in the absence of interference

C. The Derivation of Three Exploration Strategies
In this section, we provide a detailed derivation of the exploration strategies for LinEGWI, LinUCBWI, and LinTSWI,
which were briefly introduced in Section 3.2.

C.1. LinEGWI

First, to generalize the classical EG algorithm in the presence of interference, we explore different arms with probability ϵti
and select the estimated optimal arm with probability 1− ϵti. That is,

ati = (1− Zti) · argmax
a

ωtiX
⊤
tiβ̂ti,a + Zti · DU(1,K), (16)

where Zti ∼ Ber(ϵti), and DU(1,K) denotes the discrete uniform distribution s.t. P(A = a) = 1
K for any a ∈ [K].

C.2. LinUCBWI

We next consider the extension of linear UCB to interference-existing scenarios. The key idea behind UCB is to use the
variance of the parameter estimates, specifically the upper confidence bound, to guide exploration. In the presence of
interference, this process is equivalent to comparing the UCBs of ωtiX

⊤
tiβ̂a and selecting the action that maximizes the

value. Define Σ̃t :=
(
X̃

⊤
1:tX̃1:t

)−1
. Since Var(β̂t) = σ2 · Σ̃t, the UCB under Ati = a ∈ {1, . . . ,K} can be derived as

follows:

UCBti,a ← ωtiX
⊤
tiβ̂t−1,a + α|ωti| ·

√
X⊤

ti(Σ̃t−1)
−1
a Xti, (17)

where α is a hyperparameter that controls the exploration-exploitation tradeoff, and (Σ̃t−1)
−1
a denotes the d × d block-

diagonal submatrix of (Σ̃t−1)
−1 corresponding to the variance of β̂t−1,a. Thus, LinUCBWI algorithm selects the arm ati

according to

ati = argmax
a

UCBti,a. (18)

14
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C.3. LinTSWI

In linear Thompson sampling, the prior of β is often pre-specified. At each round, units with transformed covariate matrix
X̃ti is used to update the posterior of β after collecting the reward Rti. Here, we adapt a normal prior for β, which follows

(Prior) β ∼ π(β) := N (µ0,Σ0)

(Update) Rti = X̃
⊤
tiβ + ηti, ∀i ∈ {1, . . . , Nt}

(19)

The posterior distribution of β given {X1:t,A1:t,R1:t} can be derived as

f
(
β|{X1:t,A1:t,R1:t}

)
∝ f(R1:t|β, X̃1:t) · π(β),

After simple calculations, the posterior mean and variance for β can be obtained by

Σ−1
t,post ← Σ−1

0 +
∑
i,t

X̃tiX̃
⊤
ti/σ

2,

βt,post ← Σt,post

{
Σ−1

0 µ0 +
∑
i,t

RtiX̃ti/σ
2
}
.

(20)

Suppose v is a hyper-parameter deciding the level of exploration in TS. For unit i at round t, LinTSWI will sample
β̃ti ∼ N (βt,post, v

2Σ−1
t,post) and then choose arm ati such that

ati = argmax
a

ωtiX
⊤
tiβ̃ti,a. (21)

D. Optimal Value Function Estimators: A Detailed Introduction

In Section 4.4 of the main paper, we present the final doubly robust (DR) estimator V̂ DR
t and establish its asymptotic

normality in Theorem 4.4. Here, we offer a detailed introduction to three commonly used estimators in causal inference and
elaborate on the construction of the DR estimator.

As detailed in the main paper, our goal lies in providing different estimates for V π∗
, where

V π∗
= E

[
π∗(X)ωβ⊤

1 X + (1− π∗(X))ωβ⊤
0 X

]
.

The first estimator we propose to estimate V π∗
is the Inverse Probability Weighting (IPW) estimator, also known as the

Importance Sampling (IS) estimator in reinforcement learning. The core idea is to use the propensity ratio, 1{ati=π∗(Xti)}
P{ati=π∗(Xti)} ,

to adjust for distribution shifts caused by exploration. However, since the true values of π∗ and P{ati = π∗(Xti)} are
unknown, we replace them with their corresponding sample estimates. Therefore,

V̂ IPW
t =

1

N̄t

t∑
s=1

Ns∑
i=1

1{asi = π̂s−1(Xsi)}
1− κ̂s−1(ωsi,Xsi)

· rsi,

where κ̂t−1(ωti,Xti) =
∑

s≤t−1,i∈[Ns]
1{Asi ̸= π̂(Xsi)}/N̄t−1, and π̂s−1(Xsi) is obtained from Line 9 of Algorithm 1.

The second estimator we propose is the Direct Method (DM). The concept is straightforward: we substitute the unknown
true values, such as π∗ and β, with their sample estimates in the optimal value function V π∗

to directly estimate the optimal
reward. Thus,

V̂ DM
t =

1

N̄t

t∑
s=1

Ns∑
i=1

∑
a∈A

1{π̂s−1(Xsi) = a}ωsiX
⊤
siβ̂s−1,a.

Following the same logic used to derive Equation (2), the above estimator can be rewritten as

V̂ DM
t =

1

N̄t

t∑
s=1

Ns∑
i=1

µ̂
(i,s)
s−1 (Xs, π̂s−1(Xs)),

15



Linear Contextual Bandits With Interference (LinCBWI)

where µ̂(t,i)
t−1 (Xt,At) = X̃tiβ̂t−1 denotes the expected reward that unit i can obtain given the covariate information and

actions of all units at round t.

By combining the two estimators mentioned above, we derive the doubly robust (DR) estimator, where

V̂ DR
t =

1

N̄t

t∑
s=1

Ns∑
i=1

[
1{asi = π̂s−1(Xsi)}
1− κ̂s−1(ωti,Xsi)

·
{
rsi − µ̂(i,s)

s−1 (Xs, π̂s−1(Xs))
}
+ µ̂

(i,s)
s−1 (Xs, π̂s−1(Xs))

]
.

In V̂ DR
t , the second term, i.e., µ̂(i,s)

s−1 (Xs, π̂s−1(Xs)), corresponds to the direct estimator. The first term involving the
propensity ratio is an augmentation term derived from the IPW estimator, which provides additional protection against model
misspecifications, thereby ensuring double robustness. Specifically, as long as either the propensity score model κ̂t−1 or the
outcome regression model µ̂(t,i)

t−1 is correctly specified, V̂ DR
t becomes a consistent estimator of the optimal value function

V π∗
. Furthermore, under Assumption A.4 (which is demonstrated to be quite mild in our setting in Appendix A), the DR

estimator achieves asymptotic normality as the total number of units, N̄t, approaches infinity. Details are summarized in
Theorem 4.4.

E. Sensitivity Analysis on Misspecified Interference Matrix
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Figure 7. Average regret comparison when perturbation parameter b = 0 (i.e., no misspecification, left) and b = 0.5 (right)
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Figure 8. Average regret comparison when perturbation parameter b = 1 (left) and b = 2 (right)
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In this section, we provide the full set of sensitivity analysis results omitted from Section 5.4 due to space constraints. As
introduced in the main paper, we evaluate the impact of interference misspecification by introducing a perturbed matrix for
LinCBWI, defined as W̆ t = W t +Ξt. Here, Ξt = {ξij}1≤i,j≤Nt denotes a perturbation matrix with ξij ∼ Unif(−b, b).
A larger value of b indicates a more severe level of misspecification. We consider b ∈ {0, 0.5, 1, 2} to assess LinCBWI’s
robustness to such perturbations.

The results are presented in Figures 7–8. When b = 0, i.e., no misspecification, the result exactly matches Figure 2. As
b increases, we observe a modest degradation in LinCBWI’s performance: the average regret moves further from zero,
as seen in the right panel of Figure 8 for b = 2. Nonetheless, even under this severe level of perturbation, LinCBWI
consistently outperforms classical LinCB. These results suggest that incorporating interference structures, even when
estimated with considerable error, improves decision-making performance and provides valuable modeling flexibility in the
bandit framework.

Lastly, we consider an extreme scenario in which the interference matrix used by LinCBWI is entirely uninformative.
Specifically, we generate W̆ t ∼ Unif(−1, 1), meaning each entry of W̆ t is independently drawn from a uniform distribution
and bears no relation to the true interference matrix W t. In this case, LinCBWI performs comparably to classical LinCB
and even slightly better, as shown in Figure 9. We attribute this marginal improvement to potential overfitting introduced by
the more complex modeling structure of LinCBWI.

Importantly, this finding demonstrates that even when the interference structure is completely misspecified, LinCBWI does
not suffer from performance degradation relative to LinCB. Taken together with the results in Figures 7–8, this highlights the
robustness and stability of our proposed method in the presence of misspecified or uninformative interference information.
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Figure 9. Average regret comparison when the interference matrix used in LinCBWI is completely uninformative, i.e., W̆ t ∼ Unif(−1, 1)

F. Proof of Theorem 4.1: the Upper Bound of the Online OLS Estimator
The proof of this theorem was originally presented in Bastani & Bayati (2020). Here, we provide a slightly modified version

to fit our specific context with interference. Define Σ̃t =
1
N̄t

∑t
s=1

∑Ns

i=1 X̃siX̃
⊤
si. According to the definition of β̂t,

∥β̂t − β∥2 =

∥∥∥∥∥Σ̃−1
t ·

{
1

N̄t

t∑
s=1

Ns∑
i=1

X̃siηsi

}∥∥∥∥∥
2

≤
∥∥∥Σ̃−1

t

∥∥∥
2
·

∥∥∥∥∥
{

1

N̄t

t∑
s=1

Ns∑
i=1

X̃siηsi

}∥∥∥∥∥
2

.

Since Σ̃t is a symmetric positive semi-definite matrix, we have∥∥∥Σ̃−1
t

∥∥∥
2
= λmax

(
Σ̃−1

t

)
=
{
λmin(Σ̃t)

}−1

,

17



Linear Contextual Bandits With Interference (LinCBWI)

where the right hand side of the above equation, by Assumption A.1-A.2, is lower bounded by ptλ. Therefore,

∥β̂t−β∥2 ≤
∥∥∥Σ̃−1

t

∥∥∥
2
·

∥∥∥∥∥ 1

N̄t

t∑
s=1

Ns∑
i=1

X̃siηsi

∥∥∥∥∥
2

=
{
λmin(Σ̃t)

}−1

·

∥∥∥∥∥ 1

N̄t

t∑
s=1

Ns∑
i=1

X̃siηsi

∥∥∥∥∥
2

≤ 1

N̄tptλ

∥∥∥∥∥
t∑

s=1

Ns∑
i=1

X̃siηsi

∥∥∥∥∥
2

.

Define the lth element of X̃ti as X̃ti,l, where l = 1, . . . , dK, with d denoting the dimension of covariates and K denoting
the number of arms. For any h > 0,

P
(
∥β̂t − β∥2 ≤ h

)
≥ P

(∥∥∥∥ t∑
s=1

Ns∑
i=1

X̃siηsi

∥∥∥∥
2

≤ hN̄tptλ

)

≥ P

(∣∣∣∣ t∑
s=1

Ns∑
i=1

X̃si,1ηsi

∣∣∣∣ ≤ hN̄tptλ√
dK

, . . . ,

∣∣∣∣ t∑
s=1

Ns∑
i=1

X̃si,dKηsi

∣∣∣∣ ≤ hN̄tptλ√
dK

)

= 1− P

(
dK⋃
l=1

{∣∣∣∣ t∑
s=1

Ns∑
i=1

X̃si,lηsi

∣∣∣∣ > hN̄tptλ√
dK

})
.

(22)

To proceed with deriving the lower bound of the above equation, we will utilize Lemma 1 from Chen et al. (2021). As this
lemma is directly applicable to our context, we will state it here and refer readers to the original paper for the proof.

Lemma F.1. Suppose {Fq : q = 1, . . . , N̄T } is an increasing filtration of σ−fields. Let {Zq : q = 1, . . . , N̄T } be a
sequence of random variables such that Zq is Fq−1−measurable and |Zq| ≤ L. Let ηq : q = 1, . . . , N̄T be independent
σ−gaussian, and ηq ⊥ Fq−1 for all q. Let S = {s1, . . . , s|S|} ⊆ {1, . . . , N̄T } be an index set where |S| is the number of
elements in S. Then for any h > 0,

P

(∑
s∈S

Zsηs ≥ h

)
≤ exp

{
− h2

2|S|σ2L2

}
. (23)

In our context, we flatten the unit {t, i}1≤t≤T,1≤i≤Nt
to a unit queue Q(t, i) =

∑t−1
s=1Ns + i, such that all of the units are

measured in a chronological order. Notice that the specific order of units within a round does not matter, as estimation and
parameter updates occur only after all units in the round have been observed. As such, we also use X̃q,l to denote the lth
element of X̃ti. To use Lemma F.1, we define a filtration Fq as

Fq = σ(X̃1,lη1, . . . , X̃q,lηq),

which satisfies ηq ⊥ Fq−1 for any q ∈ {1, . . . , N̄T }. Let Zq = X̃q,j . Then by Assumption A.1.b-c,

|X̃q,l|2 ≤ ∥X̃q∥22 ≤ K
∥∥∥ Nt∑

j=1

Wt,ijXtj

∥∥∥2
2
≤ KL2

xd ·
(∑

j

|Wt,ij |
)2
≤ dKL2

wL
2
x.

Define L :=
√
dKLwLx, so that |X̃q,l| ≤ L. According to the conclusion of Lemma F.1, we have

P

(∣∣∣∣ t∑
s=1

Ns∑
i=1

X̃si,lηsi

∣∣∣∣ ≥ hN̄tptλ√
dK

)
≤ exp

{
− h2N̄tp

2
tλ

2

2d2K2σ2L2
wL

2
x

}
. (24)

Combining the result of Equation (22) and (24), we have

P
(
∥β̂t − β∥2 ≤ h

)
≥ 1−

dK∑
l=1

P

(∣∣∣∣ t∑
s=1

Ns∑
i=1

X̃si,lηsi

∣∣∣∣ > hN̄tptλ√
dK

)
≥ 1−

dK∑
l=1

exp

{
− h2N̄tp

2
tλ

2

2d2K2σ2L2
wL

2
x

}
= 1− dK exp

{
− h2N̄tp

2
tλ

2

2d2K2σ2L2
wL

2
x

}
.
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Lastly, since ∥v∥1 ≤
√
dK∥v∥2 for any v ∈ RdK , we have

P
(
∥β̂t − β∥1 ≤ h

)
≥ P

(
∥β̂t − β∥2 ≤

h√
dK

)
≥ 1− dK exp

{
− h2N̄tp

2
tλ

2

2d3K3σ2L2
wL

2
x

}
.

The proof of Theorem 4.1 is thus complete.

G. Proof of Theorem 4.2: the Upper Bound of Exploration
G.1. Probability of exploration for UCB

In this subsection, we aim to prove that the upper bound of κti for UCB algorithm satisfies

κti(ωti,Xti) ≤ CK(K − 1)

(
2αLwLx√
N̄t−1pt−1λ

+ ξ

)γ

+ dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
. (25)

We split the proof into three steps.

Step 1: Rewrite κti(ωti,Xti) =
∑

1≤a,a′≤K,a̸=a′
1
2P
(
|ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′)| < α{σ̂ta′(Xti)− σ̂ta(Xti)}

)
.

For clarity, we first consider the case where K = 2 and then extend the formula to the general case of K. When K = 2,

κti(ωti,Xti) = P(Ati ̸= π̂t−1(Xti))

= P(Ati ̸= π̂t−1(Xti), π̂t−1(Xti) = 1)︸ ︷︷ ︸
δ1

+P(Ati ̸= π̂t−1(Xti), π̂t−1(Xti) = 0)︸ ︷︷ ︸
δ0

.

We first consider δ1. Based on the exploration criteria of UCB algorithm, we have

Ati = 1
{
ωtiX

⊤
tiβ̂t−1,1 + ασ̂t−1,1(Xti) > ωtiX

⊤
tiβ̂t−1,0 + ασ̂t−1,0(Xti)

}
,

where σ̂t−1,a(Xti) = |ωti|
√

X⊤
ti

(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa
Xti, with

(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa
denoting the a-th block-

diagonal matrix of dimension d × d that quantifies the inverse covariance associated with arm a. Thus, given that
π̂t−1(Xti) = 1, i.e., ωtiX

⊤
ti(β̂t−1,1 − β̂t−1,0) > 0, we have

δ1 =P(Ati ̸= π̂t−1(Xti), π̂t−1(Xti) = 1)

=P(ωtiX
⊤
tiβ̂t−1,1 + ασ̂t−1,1(Xti) < ωtiX

⊤
tiβ̂t−1,0 + ασ̂t−1,0(Xti), ωtiX

⊤
tiβ̂t−1,1 > ωtiX

⊤
tiβ̂t−1,0)

=P
(
0 < ωtiX

⊤
ti(β̂t−1,1 − β̂t−1,0) < α{σ̂t−1,0(Xti)− σ̂t−1,1(Xti)}

)
.

(26)

Similarly, we have

δ0 =P(Ati ̸= π̂t−1(Xti), π̂t−1(Xti) = 0)

=P(ωtiX
⊤
tiβ̂t−1,1 + ασ̂t−1,1(Xti) > ωtiX

⊤
tiβ̂t−1,0 + ασ̂t−1,0(Xti), ωtiX

⊤
tiβ̂t−1,1 < ωtiX

⊤
tiβ̂t−1,0)

=P
(
α{σ̂t−1,0(Xti)− σ̂t−1,1(Xti)} < ωtiX

⊤
ti(β̂t−1,1 − β̂t−1,0) < 0

)
.

(27)

Combining the result of Equation (26) and (27), we have that when K = 2,

κti(ωti,Xti) = δ1 + δ0 = P
(
|ωtiX

⊤
ti(β̂t−1,1 − β̂t−1,0)| < α{σ̂t−1,0(Xti)− σ̂t−1,1(Xti)}

)
. (28)

Now let’s consider a general K. Similarly,

κti(ωti,Xti) = P(Ati ̸= π̂t−1(Xti)) =

K∑
a=1

K∑
a′=1

P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′).
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Notice that when a = a′, the probability P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′) equals 0. For any a ̸= a′, we can
treat them as arms 1 and 0 and repeat the proof for K = 2, as shown above. Consequently, for a general K, Equation (28)
can be extended to

κti(ωti,Xti) =
∑

1≤a,a′≤K
a ̸=a′

1

2
P
(
|ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′)| < α{σ̂t−1,a′(Xti)− σ̂t−1,a(Xti)}

)
.

(29)

Step 2: Bound the variance term σ̂t−1,a(Xti).

For any a ∈ [K], notice that

σ̂t−1,a(Xti)
2 = ω2

tiX
⊤
ti

(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa
Xti ≤ ω2

ti∥Xti∥22 · max
∥v∥2=1

vT
(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa
v

≤ ω2
ti∥Xti∥22 · λmax

{(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa

}
≤ L2

wL
2
x · λmax

{(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1
}

=
L2
wL

2
x

λmin

{(
X̃

⊤
1:(t−1)X̃1:(t−1)

)} ,
where the first inequality holds by the definition of eigenvalues, and the last inequality holds by Assumption A.1.b-c.

Furthermore, by Assumption A.1 and A.2,

λmin

{(
X̃

⊤
1:(t−1)X̃1:(t−1)

)}
= N̄t−1 · λmin

{
1

N̄t−1

t−1∑
s=1

Nt∑
i=1

X̃siX̃
⊤
si

}
> N̄t−1 · pt−1 · λmin(Σ) ≥ N̄t−1 · pt−1λ.

Combining the result above to the expression of σ̂t−1,a(Xti), we can further derive

σ̂t−1,a(Xti) ≤
LwLx√

λmin

{(
X̃

⊤
1:(t−1)X̃1:(t−1)

)} ≤ LwLx√
N̄t−1pt−1λ

. (30)

Therefore, for any 1 ≤ a, a′ ≤ K and a ̸= a′,

α
∣∣σ̂t−1,a(Xti)− σ̂t−1,a′(Xti)

∣∣ ≤ α{∣∣σ̂t−1,a(Xti)
∣∣+ ∣∣σ̂t−1,a′(Xti)

∣∣} ≤ 2αLwLx√
N̄t−1pt−1λ

.

Combining the result above and Equation (29), we have

κti(ωti,Xti) ≤
K(K − 1)

2
· P
(
|ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′)| < α

∣∣σ̂t−1,a′(Xti)− σ̂t−1,a(Xti)
∣∣)

≤ K(K − 1)

2
· P

(
|ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′)| <

2αLwLx√
N̄t−1pt−1λ

) (31)

Step 3: Further bound the RHS of Equation (31).

For brevity, we denote ζ̂ti = ωtiX
⊤
ti(β̂t−1,a − β̂t−1,a′) and ζti = ωtiX

⊤
ti(βa − βa′). Note that in ζ̂ti and ζti, we omit the

dependence on the arms (a, a′) when there is no ambiguity, as they simply represent any two different arms in [K].

For any ξ > 0, define a event E :=
{
|ζ̂ti − ζti| ≤ ξ

}
. By Holder’s inequality and ∥v∥∞ ≤ ∥v∥2, we have

|ωtiX
⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa| ≤

∥∥ωtiXti

∥∥
∞

∥∥∥β̂t−1,a − βa

∥∥∥
1
≤ Lw∥Xti∥2

∥∥∥β̂t−1,a − βa

∥∥∥
1
≤ LwLx

∥∥∥β̂t−1,a − βa

∥∥∥
1
.
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According to Theorem 4.1,

P
{
|ωtiX

⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa| > ξ

}
≤ P

{
LwLx

∥∥β̂t−1,a − βa

∥∥
1
> ξ
}
= P

{∥∥β̂t−1,a − βa

∥∥
1
>

ξ

LwLx

}
≤ P

(
∥β̂t−1 − β∥1 >

ξ

LwLx

)
≤ dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

2d3K3σ2L4
wL

4
x

}
.

By the triangle inequality,

|ζ̂ti − ζti| =
∣∣{ωtiX

⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa} − {ωtiX

⊤
tiβ̂t−1,a′ − ωtiX

⊤
tiβa′}

∣∣
≤
∣∣ωtiX

⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa

∣∣+ ∣∣ωtiX
⊤
tiβ̂t−1,a′ − ωtiX

⊤
tiβa′

∣∣.
Thus, for |ζ̂ti − ζti|, we have

P(|ζ̂ti − ζti| > ξ) ≤ P
(∣∣ωtiX

⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa

∣∣+ ∣∣ωtiX
⊤
tiβ̂t−1,a′ − ωtiX

⊤
tiβa′

∣∣ > ξ
)

≤ P
(∣∣ωtiX

⊤
tiβ̂t−1,a − ωtiX

⊤
tiβa

∣∣ > ξ/2
)
+ P

(∣∣ωtiX
⊤
tiβ̂t−1,a′ − ωtiX

⊤
tiβa′

∣∣ > ξ/2
)

≤ dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
+ dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
= 2dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
.

Therefore, event E satisfies

P(E) ≥ 1− 2dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
. (32)

On event E, we have |ζ̂ti| ≥ |ζti| − |ζ̂ti − ζti| ≥ |ζti| − ξ. Then going back to Equation (31), we further have

κti(ωti,Xti) ≤
K(K − 1)

2
P

(
|ζ̂ti| <

2αLwLx√
N̄t−1pt−1λ

)
≤ K(K − 1)

2

[
P

{
|ζ̂ti| <

2αLwLx√
N̄t−1pt−1λ

∣∣ E}+ P(Ec)

]

≤ K(K − 1)

2
P

{
|ζti| − ξ <

2αLwLx√
N̄t−1pt−1λ

}
+ dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}

≤ K(K − 1)

2
P

{
|ζti| <

2αLwLx√
N̄t−1pt−1λ

+ ξ

}
+ dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
.

(33)
By definition, |ζti| = |ωtiX

⊤
ti(βa − βa′)| = |ωti| ·

∣∣f(Xti, a)− f(Xti, a
′)
∣∣. Since Wt,ii = 1, we always have |ωti| ≥ 1

for any round-unit pair (t, i). Therefore, |ζti| ≥
∣∣f(Xti, a)− f(Xti, a

′)
∣∣. According to Assumption A.3, there exists some

constant γ such that P
{
|ζti| < 2αLwLx√

N̄t−1pt−1λ
+ξ
}
≤ P

{∣∣f(Xti, a)−f(Xti, a
′)
∣∣ < 2αLwLx√

N̄t−1pt−1λ
+ξ
}
≤ O

{(
2αLwLx√
N̄t−1pt−1λ

+

ξ
)γ}

.

By taking this result back to Equation (33), we are able to show that there exists a constant C, such that

κti(ωti,Xti) ≤
K(K − 1)

2
P

{
|ζti| <

2αLwLx√
N̄t−1pt−1λ

+ ξ

}
+ dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}

≤ CK(K − 1)

(
2αLwLx√
N̄t−1pt−1λ

+ ξ

)γ

+ dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
,

(34)

where C is a large positive constant. The proof is thus complete.
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G.2. Probability of exploration for TS

In this subsection, we aim to prove that the upper bound of κti for TS algorithm satisfies

κti(ωti,Xti) ≤ K(K − 1) exp

(
− N̄t−1pt−1λ(|ζti| − ξ)2

8v2L2
wL

2
x

)
+ 2dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
. (35)

The proof can be split into three steps.

Step 1: Decompose κti(ωti,Xti) and bound it by P(E).

By definition,

κti(ωti,Xti) = P(Ati ̸= π̂t−1(Xti)) =

K∑
a=1

K∑
a′=1

P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′),

where a should be different from a′, otherwise the corresponding probability equals 0.

Similar to Step 3 of Section G.1, we define a event E :=
{
|ζ̂ti − ζti| ≤ ξ

}
for any ξ ∈ (0, |ζti|/2), where ζ̂ti =

ωtiX
⊤
ti(β̂t−1,a − β̂t−1,a′), and ζti = ωtiX

⊤
ti(βa − βa′). According to the result of Equation (32), we have

P(E) ≥ 1− 2dK exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
.

Taking the result above back to the definition of κti(ωti,Xti), we have

κti(ωti,Xti) = P(Ati ̸= π̂t−1(Xti)) ≤
∑

1≤a,a′≤K
a̸=a′

[
P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′ | E) + P(Ec)

]

≤
∑

1≤a,a′≤K
a ̸=a′

P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′ | E) + 2dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
.

(36)

Next, we focus on bounding the first term P(Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′ | E) for any arm pair (a, a′),
which is equivalent to

E
(
E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
| E
)
.

Step 2: Bound the probability of E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
on event E.

Recall that in TS, we have Ati = argmaxa{ωtiX
⊤
tiβ̃t−1,a}, where β̃t−1 ∼ N (β̂t−1, v

2A−1
t−1) with β̂t =(

X̃
⊤
1:tX̃1:t

)−1

X̃
⊤
1:tR1:t and At = X̃

⊤
1:tX̃1:t. After simple transformations, for any arm pair (a, a′), ωtiX

⊤
tiβ̃t−1,a −

ωtiX
⊤
tiβ̃t−1,a′ also follows a normal distribution with

ωtiX
⊤
tiβ̃t−1,a − ωtiX

⊤
tiβ̃t−1,a′ ∼ N

(
ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′), v2ω2

tiX
⊤
tiDt−1Xti

)
, (37)

where Dt−1 = Var(β̂t−1,a − β̂t−1,a′) =
(
A−1

t−1

)
aa

+
(
A−1

t−1

)
a′a′ − 2

(
A−1

t−1

)
aa′ , with

(
A−1

t−1

)
aa

denoting the d × d

dimensional block-diagonal matrix of A−1
t−1 that corresponds to the variance of βt−1,a, and

(
A−1

t−1

)
aa′ denoting the sub-

matrix inA−1
t−1 representing the covariance between β̂t−1,a and β̂t−1,a′ . SinceDt−1 is symmetric and positive semi-definite,

Dt−1 ⪯ 2
(
A−1

t−1

)
aa

+ 2
(
A−1

t−1

)
a′a′ , with X ⪯ Y denoting that (Y −X) is positive semi-definite. For the simplicity of

implementation, we exclude the interaction term
(
A−1

t

)
aa′ in Algorithm 1, i.e., assuming independence between β̂a,t and

β̂a′,t while making decisions.
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According to the distribution derived in Equation (37), we have

E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
≤ P

{
ωtiX

⊤
ti(β̃t−1,a − β̃t−1,a′) > 0, ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′) < 0 | ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′)

}
= 1− Φ

[
ωtiX

⊤
ti(β̂t−1,a′ − β̂t−1,a)

/√
v2ω2

tiX
⊤
tiDt−1Xti

]
,

where Φ(·) is the cumulative distribution function of N (0, 1).

Denote ẑti = ωtiX
⊤
ti(β̂t−1,a′ − β̂t−1,a)

/√
v2ω2

tiX
⊤
tiDt−1Xti. According to the tail bound established for standard

normal distribution in Section 7.1 of Feller (1991), we have

E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
≤ E

{
exp(−ẑ2ti/2)

}
= E

{
exp

(
−
ω2
ti

{
X⊤

ti(β̂t−1,a′ − β̂t−1,a)
}2

2v2ω2
tiX

⊤
tiDt−1Xti

)} (38)

Define σ̂t−1,a(Xti) = |ωti|
√
X⊤

ti

(
X̃

⊤
1:(t−1)X̃1:(t−1)

)−1

aa
Xti. According to the upper bound derived in Equation (30),

we have

ω2
tiX

⊤
tiDt−1Xti ≤ 2σ̂t−1,a(Xti)

2 + 2σ̂t−1,a′(Xti)
2 ≤ 4L2

wL
2
x

N̄t−1pt−1λ
.

Combining the result above to Equation (38), we can further derive

E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
≤ E

{
exp

(
−
ω2
ti

{
X⊤

ti(β̂t−1,a − β̂t−1,a′)
}2

2v2ω2
tiX

⊤
tiDt−1Xti

)}
≤ E

{
exp

(
−
N̄t−1pt−1λω

2
ti

{
X⊤

ti(β̂t−1,a − β̂t−1,a′)
}2

8v2L2
wL

2
x

)}
.

Note that on event E, for any 0 < ξ < |ζti|/2, ζ̂2ti = ω2
ti

{
X⊤

ti(β̂t−1,a − β̂t−1,a′)
}2 ≥ (|ζti| − ξ)2. Therefore,

E
(
E
[
1
{
Ati ̸= π̂t−1(Xti), Ati = a, π̂t−1(Xti) = a′

}
| ζ̂ti

]
| E
)

≤ E
{
exp

(
− N̄t−1pt−1λ(|ζti| − ξ)2

8v2L2
wL

2
x

)}
≤ exp

(
− N̄t−1pt−1λ(|ζti| − ξ)2

8v2L2
wL

2
x

)
.

(39)

Step 3: Summary.

Combining the results of Equation (36) and (39), we finally have

κti(ωti,Xti) ≤ K(K − 1) exp

(
− N̄t−1pt−1λ(|ζti| − ξ)2

8v2L2
wL

2
x

)
+ 2dK2(K − 1) exp

{
−

ξ2N̄t−1p
2
t−1λ

2

8d3K3σ2L4
wL

4
x

}
.

The proof is thus complete.

H. Proof of Theorem 4.3: the Asymptotic Normality of β̂t

Recall that E[Rti] = X̃
⊤
tiβ, where X̃ti = (1⊤

Nt
W tiIAt=1Xt, . . . ,1

⊤
Nt

W tiIAt=KXt)
⊤ ∈ RdK . Define the number of

samples collected till the end of round t as N̄t =
∑t

s=1Nt and further define N := N̄T . Therefore, we estimate β̂t at round
t by

β̂t =
(
X̃

⊤
1:tX̃1:t

)−1

X̃
⊤
1:tR1:t =

{
1

N̄t

t∑
s=1

Ns∑
i=1

X̃siX̃
⊤
si

}−1{
1

N̄t

t∑
s=1

Ns∑
i=1

X̃siRsi

}
. (40)
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Since Rsi = X̃
⊤
tiβ + ηsi, we can write

√
N̄t(β̂t − β) =

{
1

N̄t

t∑
s=1

Ns∑
i=1

X̃siX̃
⊤
si

}−1

︸ ︷︷ ︸
η2

{
1√
N̄t

t∑
s=1

Ns∑
i=1

X̃siηsi

}
︸ ︷︷ ︸

η1

(41)

Here, with a slight abuse of notation, we denote the two terms in the above equation as η1 and η2, which are to be estimated
separately in later steps. Notice that this differs from the sub-Gaussian error of the reward-generating function in Equation
(1).

Step 1: Show that η1 = 1√
N̄t

∑t
s=1

∑Ns

i=1 X̃siηsi
D−→ N (0dK , G).

According to Cramer-Wold device, it suffices to show that for any v ∈ RdK ,

η1(v) =
1√
N̄t

t∑
s=1

Ns∑
i=1

v⊤X̃siηsi
D−→ N (0dK ,v

⊤Gv). (42)

Before proceeding, let’s flatten the round-unit pairs {(t, i)}1≤t≤T,1≤i≤Nt to an unit queue Q(t, i) =
∑t−1

s=1Ns + i, such
that all of the units are measured in a chronological order. Notice that the order of units in the same round does not
matter, since the action decisions for all units in round t are made at the end of that round. For any “flattened” unit index
q0 = Q(i0, t0) ⊂ {1, . . . , N}, we defineHq0 as the σ-algebra containing the information up to unit q0. That is,

Hq0 = σ(v⊤X̃1η1, . . . ,v
⊤X̃q0ηq0).

For different indices q, there is a jump in information gathering for Hq whenever q = Q(i = 1, t) for some t. Since
X̃q ∈ Hq , all of the action assignment information collected at round t, i.e., At, is contained inHq at the beginning of this
round. With a slight abuse of notation, in the following proof, we will also useHt to denote all historical data collected up
to round t.

The tricky part of establishing asymptotic properties for β̂t lies in the data dependence. Specifically, the transformed
covariate vector X̃si is a function of (W t,As,Xs), thus depending on all of the actions and original covariates information
collected at round t. As such, X̃siηsi ̸⊥ X̃i′s′ηi′s′ for any (s, s′), since (1) if s = s′, units in the same round s are correlated
by W s; (2) if s < s′, unit are dependent since the later decisions made on As′ will depend on (W s,Xs,As).

Now let’s use Martingale CLT to establish the asymptotic properties. We will prove shortly that {v⊤X̃siηsi}, or equivalently
{v⊤X̃qηq} after flattening, is a Martingale difference sequence. That is, we would like to show

E[v⊤X̃qηq|Hq−1] = 0, ∀q ∈ {1, . . . , N}. (43)

Suppose q = Q(t, i) for some (t, i) pair. According to our assumption on the noise term in the main paper, ηti ⊥
(Xt,W t)|At ⇒ ηti ⊥ X̃t|At as X̃t is a function of (W t,Xt,At).

E[v⊤X̃qηq|Hq−1] = E
[
E[v⊤X̃qηq|Hq−1,At]|Hq−1

]
(A1)
= E

[
E[v⊤X̃q|Hq−1,At] · E[ηq|Hq−1,At]︸ ︷︷ ︸

=0

|Hq−1

]
,

Now it suffice to (1) check the Lindeberg condition, and (2) derive the limit of conditional variance.

(1) We first check the Lindeberg condition.
For any δ > 0, we define

ψ =

N̄q∑
q=1

E

[
1

N̄q
(v⊤X̃q)

2η2q · 1
{∣∣∣ 1√

N̄q

v⊤X̃qηq

∣∣∣ > δ

} ∣∣Hq−1

]
(44)
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According to Assumption A.1.b-c,

(v⊤X̃q)
2 ≤ ∥v∥22 · ∥X̃q∥22 ≤ K∥v∥22 ·

∥∥∥ Nt∑
j=1

Wt,ijXtj

∥∥∥2
2
≤ K∥v∥22 · L2

xd ·
(∑

j

|Wt,ij |
)2
≤ dKL2

wL
2
x∥v∥22. (45)

Then

1

{∣∣∣ 1√
N̄q

v⊤X̃qηq

∣∣∣ > δ

}
≤ 1

{
dKL2

wL
2
x∥v∥22η2q > N̄qδ

2

}
= 1

{
η2q >

N̄qδ
2

dKL2
wL

2
x∥v∥22

}
.

Thus,

ψ ≤ dKL2
wL

2
x∥v∥22

N̄q

N̄q∑
q=1

E
[
η2q · 1

{
η2q >

N̄qδ
2

dKL2
wL

2
x∥v∥22

} ∣∣Hq−1

]
. (46)

Define fN̄q
=

dKL2
wL2

x∥v∥
2
2

N̄q

∑N̄q

q=1 η
2
q · 1

{
η2q >

N̄qδ
2

dKL2
wL2

x∥v∥2
2

}
, and gN̄q

=
dKL2

wL2
x∥v∥

2
2

N̄q

∑N̄q

q=1 η
2
q . It is obvious that

|fN̄q
| ≤ gN̄q

a.s. and for all q. Since

E[η2q |Hq−1] = E
[
E[η2q |At,Hq−1]|Hq−1

]
= σ2 <∞,

we have

E[gN̄q
|Hq−1]

dKL2
wL

2
x∥v∥22

N̄q

N̄q∑
q=1

σ2 ≤ dKL2
wL

2
x∥v∥22σ2 <∞,

thus gN̄q
is integrable for all q.

For each realization of random variable sequence {ηq}∞q=1, limN̄q→∞ fN̄q
= 0 as 1

{
η2q >

N̄qδ
2

dKL2
wL2

x∥v∥2
2

}
= 0 when N̄q is

large enough.

Therefore, by Generalized Dominated Convergence Theorem (GDCT), it follows from Equation (46) that ψ ≤
E[fN̄q

|Hq−1]→ 0 as q →∞. The Lindeberg condition is thus verified.

(2) We next derive the limit of conditional variance.

1

N̄q

t∑
s=1

Ns∑
i=1

E
[
(v⊤X̃q)

2η2q |Hq−1

]
=

1

N̄q

t∑
s=1

Ns∑
i=1

E
[
(v⊤X̃q)

2E[η2q |Ai]|Hq−1

]
=

1

N̄q

t∑
s=1

Ns∑
i=1

σ2E
[
(v⊤X̃q)

2|Hq−1

] (47)

where the last equality holds since η2q |Ai i.i.d. follows N (0, σ2).

Recall that for any unit index q = Q(t, i),

X̃q = X̃ti = (1⊤
Nt

W tidiag(1{Ati = 0}1≤i≤Nt
)Xt,1

⊤
Nt

W tidiag(1{Ati = 1}1≤i≤Nt
)Xt)

⊤.

After some manipulations, we have

X̃qX̃
⊤
q = X̃tiX̃

⊤
ti :=


M1,1 M1,2 · · · M1,K

M2,1 M2,2 · · · M2,K

...
...

. . .
...

MK,1 MK,2 · · · MK,K

 ∈ RdK×dK , (48)

where Ma,a′ :=
∑Nt

k=1

∑Nt

l=1Wt,ikWt,ilXtkX
⊤
tl · 1{Atk = a}1{Atl = a′} is a K by K sub-matrix.

Since we assume Xti ∼ X and W t ∼ W are known to us, the main challenge of deriving the conditional variance lies in
estimating the conditional expectation of E[1{Atk = a}1{Atl = a′}|W t,Xt,Hq−1] for any q ∈ {1, . . . , N̄q}.
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Recall thatHq−1 is defined as the σ-algebra containing the information up to unit q − 1. That is,

Hq−1 = σ(v⊤X̃1η1, . . . ,v
⊤X̃q−1ηq−1).

For different indices q, there is a jump in information gathering for Hq whenever q = Q(i = 1, t) for some t. Since
X̃q ∈ Hq , all of the action assignment information collected at round t, i.e., At, is contained inHq at the beginning of this
round. Thanks to the property of ηq that E[ηq|At] = 0, the conditional variance E

[
(v⊤X̃q)

2ϵ2|Hq−1

]
= E

[
(v⊤X̃q)

2ϵ2
]
=

E
[
(v⊤X̃q)

2ϵ2|Ht−1

]
for any q = Q(t, i). Still, we take the d×d sub-matrixMa,a′ as an example to calculate the asymptotic

variance.

E[Ma,a′ ] = E
[ Nt∑
k=1

Nt∑
l=1

Wt,ikWt,ilXtkX
⊤
tl · 1{Atk = a}1{Atl = a′}

]

= E

[
E
[ Nt∑
k=1

Nt∑
l=1

Wt,ikWt,ilXtkX
⊤
tl · 1{Atk = a}1{Atl = a′}

∣∣W t,Xt,Ht−1

]]

= E

[
Nt∑
k=1

Nt∑
l=1

Wt,ikWt,ilXtkX
⊤
tl · E

[
1{Atk = a}1{Atl = a′}

∣∣W t,Xt,Ht−1

]]
.

(49)

Notice that Atk ⊥ Atl|W t,Xt,Ht−1 for any (k, l) ∈ {1, . . . , Nt} and k ̸= l. This independence arises because the actions
assigned to units Q(k, t) and Q(l, t) are determined by two factors: exploitation and exploration.

1. Exploitation: The actionAtk is partially determined by π̂t−1(Xtk), where π̂t−1 is a function ofHt−1 and is obtained by
fitting a model to data from the first t− 1 rounds. Therefore, given (W t,Xt,Ht−1), π̂t−1(Xtk) and π̂t−1(Xtl)|Ht−1

are both constants and thus independent from each other.

2. Exploration: The action Atk is also influenced by a specific exploration method based on the “optimal” action
identified during exploitation. In ϵ-greedy, the level of exploration is determined by ϵti, which is independently
assigned to each unit. For UCB and TS, the exploration level for each unit is a function ofHt−1, making them mutually
independent givenHt−1.

Therefore,

E
[
1{Atk = a}1{Atl = a′}

∣∣W t,Xt,Ht−1

]
= E

[
1{Atk = a}

∣∣W t,Xt,Ht−1

]
· E
[
1{Atl = a′}

∣∣W t,Xt,Ht−1

]
. (50)

For the simplicity of notation, we define νti(ωti,Xti,Ht−1) = P(Ati ̸= π∗(Xti)|W t,Xti,Ht−1) = P(Ati ̸=
π∗(Xti)|ωti,Xti,Ht−1). Since

1{Ati = a} = 1{Ati = π∗(Xti)} · 1{π∗(Xti) = a}+ 1{Ati ̸= π∗(Xti)} · 1{π∗(Xti) ̸= a},

we have

E
[
1{Ati = a}

∣∣W t,Xt,Ht−1

]
= E

[
1{Ati = π∗(Xti)} · 1{π∗(Xti) = a}+ 1{Ati ̸= π∗(Xti)} · 1{π∗(Xti) ̸= a}

∣∣W t,Xt,Ht−1

]
= P(Ati = π∗(Xti)|W t,Xt,Ht−1)1{π∗(Xti) = a}+ P(Ati ̸= π∗(Xti)|W t,Xt,Ht−1)1{π∗(Xti) ̸= a}
= (1− νti(ωti,Xti,Ht−1))1{a = argmax

b
ωtiXtiβb}+ νti(ωti,Xti,Ht−1)1{a ̸= argmax

b
ωtiXtiβb}.

(51)

Plugging in the result of Equation (50), (51) to Equation (49), one can obtain
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E[Ma,a′ ] = EW t,Xt

[
Nt∑
k=1

Nt∑
l=1

Wt,ikWt,ilXtkX
⊤
tl · E

[
1{Atk = a}1{Atl = a′}

∣∣W t,Xt,Ht−1

]]

= EW t,Xt

[
k ̸=l∑

1≤k,l≤Nt

Wt,ikWt,ilXtkX
⊤
tl

·
{
(1− νtk(ωtk,Xtk,Ht−1))1{a = argmax

b
ωtkXtkβb}+ νtk(ωtk,Xtk,Ht−1)1{a ̸= argmax

b
ωtkXtkβb}

}
·
{
(1− νtl(ωtl,Xtl,Ht−1))1{a′ = argmax

b
ωtlXtlβb}+ νtl(ωtl,Xtl,Ht−1)1{a′ ̸= argmax

b
ωtlXtlβb}

}
+ 1{a = a′} ·

k=l∑
1≤k,l≤Nt

W 2
t,ikXtkX

⊤
tk

·
{
(1− νtk(ωtk,Xtk,Ht−1))1{a = argmax

b
ωtkXtkβb}+ νtk(ωtk,Xtk,Ht−1)1{a ̸= argmax

b
ωtkXtkβb}

}]
.

Define κ∞(ω,x) = limq→∞ P(Ati ̸= π∗(x)). Following similar procedure as page 19-20 and Lemma B.1 in Ye et al.
(2023), we can also derive that νtk(ω,x,Ht−1)

p−→ κ∞(ω,x), where the limit is free of historical dataHt−1. Therefore,

1

N̄q

N̄q∑
q=1

σ2E[Ma,a′ ]→ 1

N̄q

N̄q∑
q=1

σ2EW t,Xt

[
k ̸=l∑

1≤k,l≤Nt

Wt,ikWt,ilXtkX
⊤
tlJ∞(ωtk,Xtk,β, a)J∞(ωtl,Xtl,β, a

′)

+ 1{a = a′} ·
k=l∑

1≤k,l≤Nt

W 2
t,ikXtkX

⊤
tkJ∞(ωtk,Xtk,β, a)

]
,

(52)

where J∞(ω,X,β, a) =
{
(1− κ∞(ω,X))1{a = argmaxb ωX

⊤βb}+ κ∞(ω,X)1{a ̸= argmaxb ωX
⊤βb}

}
.

Define v = (v′
1,v

′
2)

′ where v1 and v2 are both d-dimensional vector.

Then η1(v) = 1√
N̄q

∑N̄q

q=1 v
⊤X̃qηq

D−→ N (0dK ,v
⊤Gv) with

G =


1
N̄q

∑N̄q

q=1 σ
2E[M1,1] · · · 1

N̄q

∑N̄q

q=1 σ
2E[M1,K ]

...
. . .

...
1
N̄q

∑N̄q

q=1 σ
2E[MK,1] · · · 1

N̄q

∑N̄q

q=1 σ
2E[MK,K ]

 , (53)

where the detailed expression of each submatrix in G is given in Equation (52).

Step 2: Show that η2 =
{

1
N̄t

∑t
s=1

∑Ns

i=1 X̃siX̃
⊤
si

}−1
p−→ σ2G−1, where σ2 = E[η2ti|At].

Based on Lemma 6 of Chen et al. (2021), it suffice to find the limit of 1
N̄q

∑N̄q

q=1 v
⊤X̃qX̃

⊤
q v. According to Equation (45),

we have

P(|v⊤X̃qX̃
⊤
q v| > h) ≤ P(dKL2

wL
2
x∥v∥22 > h).

Therefore, by Theorem 2.19 in Hall & Heyde (2014), we have

1

N̄q

N̄q∑
q=1

[
v⊤X̃qX̃

⊤
q v − E

{
(v⊤X̃q)

2|Hq−1

}] p−→ 0 as q →∞.
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Based on the results in Step 1, one can easily derive E
{
(v⊤X̃q)

2|Hq−1

}
= v⊤Gv/σ2. Combining the results above and

by Continuous Mapping Theorem, we have

η2 =

{
1

N̄t

t∑
s=1

Ns∑
i=1

X̃siX̃
⊤
si

}−1

p−→ (G/σ2)−1 = σ2G−1, (54)

which finishes the proof of this step.

Step 3: Summary.
According to the results of Step 1-2 and Slutsky’s Theorem, we can conclude that√

N̄t(β̂t − β) = η2η1
D−→ N (0dK , σ

4G−1), (55)

where G is specified in Equation (53).

In the special case when Nt = 1 for all t, i.e., there is no interference, the asymptotic variance would degenerate to

G =
1

N̄q

N̄q∑
q=1

σ2 ·
[
K∞(β) 0

0 K̃∞(β)

]
. (56)

with
K∞(β) =

∫
x

xx⊤ ·
{
(1− κ∞(x))1{x⊤(β0 − β1) ≥ 0}+ κ∞(x)1{x⊤(β0 − β1) < 0}

}
dPx

K̃∞(β) =

∫
x

xx⊤ ·
{
(1− κ∞(x))1{x⊤(β1 − β0) ≥ 0}+ κ∞(x)1{x⊤(β1 − β0) < 0}

}
dPx.

which align perfectly with Ye et al. (2023) in the cases without interference.

The proof of this theorem is complete.

I. Proof of Theorem 4.4: the Asymptotic Normality of V π∗

Recall that the DR optimal value function estimator we derived is given by

V̂ DR
T =

1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π̂t−1(Xti)}

1− κ̂t−1(Xti)
·
(
rsi − µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))
)
+ µ̂

(t,i)
t−1 (Xt, π̂t−1(Xt))

}
. (57)

For the brevity of notation, we will omit the superscript in V̂ DR
t in the following proof.

Now we defined two related value functions ṼT and V̄T as below:

ṼT =
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
·
(
rti − µ(t,i)(Xt, π̂t−1(Xt))

)
+ µ(t,i)(Xt, π̂t−1(Xt))

}
,

V̄T =
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π∗(Xti)}
P(ati = π∗(Xti))

·
(
rti − µ(t,i)(Xt, π

∗(Xt))
)
+ µ(t,i)(Xt, π

∗(Xt))

}
.

The proof of this theorem can be decomposed into three steps. In step 1, we aim to prove V̂T = ṼT + op(N̄
−1/2
T ). In step

2, we show that V̂T = ṼT + op(N̄
−1/2
T ). In step 3, we show

√
N̄T (V̄T − V π∗

)
D−→ N (0, σ2

V ), where the variance term is
given by

σ2
V =

∫
σ2

1− κ∞(x)
dPx +

∑
i,t ω

2
ti

N̄T
· Var

{
π∗(x) · x⊤β1 + {1− π∗(x)} · x⊤β0

}
.

Combining the above three steps, the proof of theorem 4.4 is thus complete.

Now, let’s detail the proof of step 1-3.
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Step 1: Prove that V̂T = ṼT + op(N̄
−1/2
T ).

Notice that the different between V̂T and ṼT lies in the estimation accuracy of (1) the propensity score function κ̂t−1 and (2)
outcome estimation function µ̂(t,i)

t−1 . To simplify this problem, we introduce another intermediate value function V̆T as

V̆T =
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
·
(
rti − µ̂(t,i)

t−1 (Xt, π̂t−1(Xti))
)
+ µ̂

(t,i)
t−1 (Xt, π̂t−1(Xti))

}
.

Now the problem becomes proving (1) V̂T = V̆T + op(N̄
−1/2
T ), and (2) V̆T = ṼT + op(N̄

−1/2
T ).

First, let’s prove (1) V̂T = V̆T + op(N̄
−1/2
T ). Notice that

V̂T − V̆T =
1

N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κ̂t−1(Xti)
− 1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
·
{
rti − µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))
}

=
1

N̄T

T∑
t=1

Nt∑
i=1

{
κ̂t−1(Xti)− κt−1(Xti)

}
·

1{ati = π̂t−1(Xti)}
{
rti − µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))
}

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

 .
This can be further decomposed to two parts:

1

N̄T

T∑
t=1

Nt∑
i=1

{
κ̂t−1(Xti)− κt−1(Xti)

}
·

1{ati = π̂t−1(Xti)}
{
rti − µ(t,i)(Xt, π̂t−1(Xt))

}
{1− κ̂t−1(Xti)}{1− κt−1(Xti)}


︸ ︷︷ ︸

∆1

+
1

N̄T

T∑
t=1

Nt∑
i=1

{
κ̂t−1(Xti)− κt−1(Xti)

}
·

1{ati = π̂t−1(Xti)}
{
µ(t,i)(Xt, π̂t−1(Xt))− µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))
}

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}


︸ ︷︷ ︸

∆2

.

We first show that ∆1 is op(T−1/2). Similar to the proof of Theorem 3 in Ye et al. (2023), we define a class of measurable
functions

F(Xt, ati, rti) =

{{
κ̂t−1(Xti)−κt−1(Xti)

}
·
[1{ati = π̂t−1(Xti)}

{
rti − µ(t,i)(Xt, π̂t−1(Xt))

}
{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

]
: κ̂t, κt ∈ Λ, π̂t ∈ Π

}
,

where Λ and Π are two classes of functions mapping context Xti to a probability in [0, 1]. Denote the empirical measure
Gn =

√
nPn(f − Pf). Here, n = Q(t, i) is the sample index, which is determined by reordering the units i ∈ {1, . . . , Nt}

according to time t. Denote ∥z∥F = supf∈F |z(f)|. Therefore,

∥Gn∥F := sup
π∈Π

∣∣∣∣ 1√
N̄T

∑
q∈Q(t,i)

[
F(Xt, ati, rti)− E

{
F(Xt, ati, rti) | Ht−1

}] ∣∣∣∣. (58)

Since µ(t,i) in F is correctly specified, we always have

E
{
F(Xt, ati, rti) | Ht−1

}
= E

[{
κ̂t−1(Xti)− κt−1(Xti)

}
·

{
1{ati = π̂t−1(Xti)}

{
rti − µ(t,i)(Xt, π̂t−1(Xt))

}
{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

} ∣∣∣Ht−1

]

= E

[{
κ̂t−1(Xti)− κt−1(Xti)

}
·

{
1{ati = π̂t−1(Xti)} · eti

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

} ∣∣∣Ht−1

] .
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According to the iteration of expectation, the equality above can be further derived as

E
{
F(Xt, ati, rti) | Ht−1

}
= E

[{
κ̂t−1(Xti)− κt−1(Xti)

}
·

{
E[1{ati = π̂t−1(Xti)}|Xti]

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}
· E[eti|Xti,At]

} ∣∣∣Ht−1

]
= 0,

.

where the last equality holds by E[ηti|Xti,At] = 0 according to the definition of noise ηti.

Therefore, Equation (58) can be simplified as

∥Gn∥F = sup
π∈Π

∣∣∣∣ 1√
N̄T

∑
q∈Q(t,i)

F(Xt, ati, rti)

∣∣∣∣.
Following Section 4.2 of Dedecker & Louhichi (2002), we define

d1(f) :=
∥∥E{|f(X1, a11, r11)|

∣∣H0

}∥∥
∞ , d2(f) :=

∥∥E{(f(X1, a11, r11))
2
∣∣H0

}∥∥1/2
∞ .

First, we show that both d1(f) and d2(f) are finite numbers. For the brevity of content, we will take d2(f) as an example
and d1(f) <∞ can be proved similarly.

In a valid bandits algorithm, the probability of exploration κt(Xti) is bounded away from 1. That is, there exists a constant
C1 < 1, such that κt(Xti) = P(ati ̸= π̂t−1(Xti)) ≤ C1 < 1, and κ̂t(Xti) ≤ C1 < 1. Therefore, for any t ∈ {1, . . . , T},

E
{
(f(Xt, ati, rti))

2
∣∣Ht−1

}
= E

[{{
κ̂t−1(Xti)− κt−1(Xti)

}
·
1{ati = π̂t−1(Xti)}

{
rti − µ(t,i)(Xt, π̂t−1(Xt))

}
{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

}2 ∣∣∣Ht−1

]

= E

[{
κ̂t−1(Xti)− κt−1(Xti)

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

}2

· 1{ati = π̂t−1(Xti)} ·
{
rti − µ(t,i)(Xt, π̂t−1(Xt))

}2 ∣∣∣Ht−1

]

= E

[{
κ̂t−1(Xti)− κt−1(Xti)

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}

}2

· 1{ati = π̂t−1(Xti)} · E[η2ti|Xt,At]
∣∣∣Ht−1

]

≤
(

2

1− C1

)2

· 1 · σ2 <∞.

Therefore, by Rosenthal’s inequality derived for Martingale [see Dedecker & Louhichi (2002) for details], we have

E [∥Gn∥F ] ≤ K

(
d2(f) +

1√
N̄T

∥∥∥∥ max
q∈Q(t,i)

∣∣F(Xt, ati, rti)− E
{
F(Xt, ati, rti) | Ht−1

}∣∣∥∥∥∥
1

)
(59)

Since the right hand side is Op(T
−1/2), we have

∆1 =
1√
N̄T

∑
q

F(Xt, ati, rti) ≤
1√
N̄T

E [∥Gn∥F ] = Op(T
−1) = op(T

−1/2). (60)
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Now let’s derive the order for ∆2.

∆2 =
1

N̄T

T∑
t=1

Nt∑
i=1

{
κ̂t−1(Xti)− κt−1(Xti)

}
·

1{ati = π̂t−1(Xti)}
{
µ(t,i)(Xt, π̂t−1(Xt))− µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))
}

{1− κ̂t−1(Xti)}{1− κt−1(Xti)}


≤ 1

N̄T

T∑
t=1

Nt∑
i=1

C2

∣∣κ̂t−1(Xti)− κt−1(Xti)
∣∣ · ∣∣µ̂(t,i)

t−1 (Xt, π̂t−1(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
∣∣

≤ C2

√√√√ 1

N̄T

T∑
t=1

Nt∑
i=1

∣∣κ̂t−1(Xti)− κt−1(Xti)
∣∣2 · 1

N̄T

T∑
t=1

Nt∑
i=1

∣∣µ̂(t,i)
t−1 (Xt, π̂t−1(Xt))− µ(t,i)(Xt, π̂t−1(Xt))

∣∣2
= op(N̄

−1/2
T ),

(61)
where the last line holds by Cauchy-Schwartz inequality, and the last line holds by Assumption A.4.

Combining the results of Equation (60) and (61), we have

V̂T − V̆T = ∆1 +∆2 = op(N̄
−1/2
T ) + op(N̄

−1/2
T ) = op(N̄

−1/2
T ). (62)

Now the question becomes proving (2) V̆T = ṼT + op(N̄
−1/2
T ).

V̆T − ṼT =
1

N̄T

T∑
t=1

Nt∑
i=1

[
1− 1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
·
{
µ̂
(t,i)
t−1 (Xt, π̂t−1(Xt))− µ(t,i)(Xt, π̂t−1(Xt))

}
.

Following similar structure as we prove ∆1 = op(N̄
−1/2
T ), one can define a new class of functions

F ′(Xt, ati, rti) =

{[
1− 1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
·
{
µ̂
(t,i)
t−1 (Xt, π̂t−1(Xt))−µ(t,i)(Xt, π̂t−1(Xt))

}
: µ̂

(t,i)
t−1 , µ ∈ Λ, π̂t ∈ Π

}
,

and using Rosenthal’s inequality for Martingale to prove that V̆T − ṼT = op(N̄
−1/2
T ).

Step 2: Prove that ṼT = V̄T + op(N̄
−1/2
T ).

By definition of ṼT and V̄T , we have

√
N̄T (ṼT − V̄T ) =

1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1

]
·
{
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
}

︸ ︷︷ ︸
∆3

+
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
·
{
rti − µ(t,i)(Xt, π

∗(Xt))
}

︸ ︷︷ ︸
∆4

.

(63)

Step 2.1: We start from proving ∆3 = op(1). Since κt(Xti) ≤ C1 < 1,
∣∣∣1{ati=π̂t−1(Xti)}

1−κt−1(Xti)
− 1
∣∣∣ is upper bounded by a

constant. Therefore, to prove ∆3 = op(1), it suffice to show that

1√
N̄T

T∑
t=1

Nt∑
i=1

[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]
= op(1). (64)
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Before proceeding, let’s break down this term to do some transformation. Notice that

Nt∑
i=1

µ(t,i)(Xt, π̂t−1(Xt)) =

Nt∑
i=1

Nt∑
j=1

∑
a∈A

Wt,ijX
⊤
tjβa · 1{π̂t−1(Xtj) = a}

=

Nt∑
j=1

Nt∑
i=1

∑
a∈A

Wt,jiX
⊤
tiβa · 1{π̂t−1(Xti) = a}

=

Nt∑
i=1

∑
a∈A

{ Nt∑
j=1

Wt,ji

}
·X⊤

tiβa · 1{π̂t−1(Xti) = a}

=

Nt∑
i=1

∑
a∈A

ωtiX
⊤
tiβa · 1{π̂t−1(Xti) = a}

(65)

where the second equality holds by switching the index of (i, j) to (j, i), and the third equality holds by Fubini’s theorem.

Going back to the previous equation, we have

1√
N̄T

T∑
t=1

Nt∑
i=1

[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]

=
1√
N̄T

T∑
t=1

Nt∑
i=1

∑
a∈A

[
ωtiX

⊤
tiβa · 1{π∗(Xti) = a} − ωtiX

⊤
tiβa · 1{π̂t−1(Xti) = a}

]

=
1√
N̄T

T∑
t=1

Nt∑
i=1

∑
1≤a,a′≤K

ωtiX
⊤
ti(βa − βa′) · 1{π∗(Xti) = a, π̂t−1(Xti) = a′, a ̸= a′}

≤ 1√
N̄T

T∑
t=1

Nt∑
i=1

∑
1≤a,a′≤K

a ̸=a′

∣∣∣∣ωtiX
⊤
ti(βa − βa′) · 1

{
ωtiX

⊤
ti(β̂t−1,a − β̂t−1,a′) ≤ 0

}∣∣∣∣

Again, for the brevity of notation, we denote ζ̂ti = ωtiX
⊤
ti(β̂t−1,a − β̂t−1,a′), and ζti = ωtiX

⊤
ti(βa − βa′).

Let’s first consider the case where ζti > 0. The opposite scenario can be derived in a similar manner. When ζti > 0, the
RHS of the above equation is thus equivalent to

1√
N̄T

T∑
t=1

Nt∑
i=1

∑
1≤a,a′≤K

a̸=a′

∣∣∣1{ζ̂ti ≤ 0
}
· ζti
∣∣∣ = 1√

N̄T

T∑
t=1

Nt∑
i=1

∑
1≤a,a′≤K

a̸=a′

1
{
ζ̂ti ≤ 0

}
· ζti.

Since 1
{
ζ̂ti ≤ 0

}
· ζ̂ti ≤ 0, we have

∣∣µ(t,i)(Xt, π
∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))

∣∣ ≤ 1
{
ζ̂ti ≤ 0

}
· ζti ≤ 1

{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
.

To show that N̄−1/2
T

∑T
t=1

∑Nt

i=1

∣∣µ(t,i)(Xt, π
∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))

∣∣ = op(1), it suffice to prove

ζ := N̄
−1/2
T

T∑
t=1

Nt∑
i=1

1
{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
= op(1).
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For any α ∈ (0, 1/2), we can further decompose

ζ = P(0 < ζti < N̄−α
T ) · 1√

N̄T

T∑
t=1

Nt∑
i=1

1
{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
· 1{0 < ζti < N̄−α

T }︸ ︷︷ ︸
ζ1

+ P(ζti ≥ N̄−α
T ) · 1√

N̄T

T∑
t=1

Nt∑
i=1

1
{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
· 1{ζti ≥ N̄−α

T }︸ ︷︷ ︸
ζ2

.

First, we show ζ1 = op(1). According to Theorem 4.3, ζ̂ti − ζti = Op(N̄
−1/2
t ) = op(N̄

−(1/2−αγ)
t ) for any αγ > 0.

Therefore,
1√
N̄T

T∑
t=1

Nt∑
i=1

∣∣∣1{ζ̂ti ≤ 0
}
·
(
ζti − ζ̂ti

)
· 1{0 < ζti < N̄−α

T }
∣∣∣ ≤ 1√

N̄T

T∑
t=1

Nt∑
i=1

∣∣∣ζti − ζ̂ti∣∣∣
≤
√
N̄T ·

1

N̄T

T∑
t=1

Nt∑
i=1

∣∣∣ζti − ζ̂ti∣∣∣ =√N̄T · op(N̄−(1/2−αγ)
T ) = op(N̄

αγ
T ),

where the second last equality holds by Lemma 6 in Luedtke & Van Der Laan (2016).

Since |ω| ≥ 1, by setting ϵ = N̄−α
T in Assumption A.3, we have P

(
0 < |ωf(X, a)− ωf(X, a′)| < N̄−α

T

)
≤

P
(
0 < |f(X, a)− f(X, a′)| < N̄−α

T

)
= O(N̄−αγ

T ). Therefore,

ζ1 = P(0 < ζti < N̄−α
T ) · 1√

N̄T

T∑
t=1

Nt∑
i=1

1
{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
· 1{0 < ζti < N̄−α

T }

≤
∣∣P(0 < ζti < N̄−α

T )
∣∣ · 1√

N̄T

T∑
t=1

Nt∑
i=1

∣∣∣1{ζ̂ti ≤ 0
}
·
(
ζti − ζ̂ti

)
· 1{0 < ζti < N̄−α

T }
∣∣∣

≤ O(N̄−αγ
T ) · op(N̄αγ

T ) = op(1).

(66)

Next, we show ζ2 = op(1).

Since 1{ζ̂ti ≤ 0} = 1{ζ̂ti − ζti ≤ −ζti} = 1{|ζ̂ti − ζti| > ζti}, we have∣∣∣1{ζ̂ti ≤ 0}(ζ̂ti − ζti)
∣∣∣ = 1

{
|ζ̂ti − ζti| > ζti

}
·
∣∣ζ̂ti − ζti| ≤ |ζ̂ti − ζti|

ζti
·
∣∣ζ̂ti − ζti∣∣ = |ζ̂ti − ζti|2

ζti
. (67)

Since we assumed that ζti > 0, based on the result of Equation (67), we further have

1{ζ̂ti ≤ 0}(ζti − ζ̂ti) ≤
|ζ̂ti − ζti|2

ζti

as ζti − ζ̂ti ≥ 0 always holds. Additionally, notice that 1{ζti ≥ N̄−α
T } ≤ ζtiN̄α

T . Therefore,

ζ2 = P(ζti ≥ N̄−α
T ) · 1√

N̄T

T∑
t=1

Nt∑
i=1

1
{
ζ̂ti ≤ 0

}
·
(
ζti − ζ̂ti

)
· 1{ζti ≥ N̄−α

T }

≤ 1√
N̄T

T∑
t=1

Nt∑
i=1

|ζ̂ti − ζti|2

ζti
· ζtiN̄α

T = N̄
1/2+α
T · 1

N̄T

T∑
t=1

Nt∑
i=1

|ζ̂ti − ζti|2.

By Theorem 4.3, |ζ̂ti − ζti| = Op(N̄
−1/2
t ), which implies |ζ̂ti − ζti|2 = Op(N̄

−1
t ). According to Lemma 6 of Luedtke &

Van Der Laan (2016), N̄−1
T

∑T
t=1

∑Nt

i=1 |ζ̂ti − ζti|2 = Op(N̄
−1
T ). Therefore,

ζ2 ≤ N̄
1/2+α
T · 1

N̄T

T∑
t=1

Nt∑
i=1

|ζ̂ti − ζti|2 ≤ N̄1/2+α
T ·Op(N̄

−1
T ) = op(1) (68)
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for any α < 1/2.

Combining the result of Equation (66) and Equation (68), we have

ζ = ζ1 + ζ2 = op(1) + op(1) = op(1). (69)

Therefore, N̄−1/2
T

∑T
t=1

∑Nt

i=1

∣∣µ(t,i)(Xt, π
∗(Xt)) − µ(t,i)(Xt, π̂t−1(Xt))

∣∣ = op(1), and thus ∆3 = op(1). The proof
of first part is done.

Step 2.2: Next, we show that ∆4 = op(1) as well.

Recall that

∆4 =
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
·
{
rti − µ(t,i)(Xt, π

∗(Xt))
}

=
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
·
{
rti − µ(t,i)(Xt, π

∗(Xt))
}
1{ati = π∗(Xti)}

+
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
·
{
rti − µ(t,i)(Xt, π

∗(Xt))
}
· 1{ati ̸= π∗(Xti)}

=
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
· ηti · 1{ati = π∗(Xti)}︸ ︷︷ ︸

ζ3

+
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
·
{
µ(t,i)(Xt, π̂t−1(Xt))− µ(t,i)(Xt, π

∗(Xt))
}
· 1{ati ̸= π∗(Xti)}︸ ︷︷ ︸

ζ4

+
1√
N̄T

T∑
t=1

Nt∑
i=1

[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)

]
· ηti · 1{ati ̸= π∗(Xti)}︸ ︷︷ ︸

ζ5

.

(70)
We only need to show ζ3, ζ4 and ζ5 are all op(1). The proof for ζ5 is similar to that for ζ3 using Rosenthal’s inequality for
Martingales. Therefore, we will focus on proving ζ3 and ζ4, and omit the details for ζ5 for brevity.

To prove ζ3 = op(1), we define a function class

F(Xt, ati, ηti) =

{[
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
· ηti · 1{ati = π∗(Xti)} : κt ∈ Λ, π̂t ∈ Π

}
,

where Λ and Π are two classes of functions mapping context Xti to a probability in [0, 1]. Define the supremum of the
empirical process indexed by F as

∥Gn∥F := sup
π∈Π

∣∣∣∣ 1√
N̄T

∑
q∈Q(t,i)

[
F(Xt, ati, ηti)− E

{
F(Xt, ati, ηti) | Ht−1

}] ∣∣∣∣. (71)

Since E[ηti|Xti,At] = 0, according to the iteration of expectation, the second term in the above equation can be derived as

E
{
F(Xt, ati, ηti) | Ht−1

}
= E

[ [
1{ati = π̂t−1(Xti)}

1− κt−1(Xti)
− 1{ati = π∗(Xti)}

P(ati = π∗(Xti))

]
· 1{ati = π∗(Xti)} · E[ηti|Xti,At]

∣∣∣Ht−1

]
= 0,

.
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Therefore, Equation (71) can be simplified as

∥Gn∥F = sup
π∈Π

∣∣∣∣ 1√
N̄T

∑
q∈Q(t,i)

F(Xt, ati, ηti)

∣∣∣∣.
Following a similar derivation structure as that used between Equation (58) and Equation (59) in Step 1, we have

ζ3 ≤ E [∥Gn∥F ] ≤ K

(
d2(f) +

1√
N̄T

∥∥∥∥ max
q∈Q(t,i)

∣∣F(Xt, ati, ηti)− E
{
F(Xt, ati, ηti) | Ht−1

}∣∣∥∥∥∥
1

)
= op(1). (72)

Next, let’s prove ζ4 = op(1). Since both 1{ati=π̂t−1(Xti)}
1−κt−1(Xti)

and 1{ati ̸= π∗(Xti)} can be upper bounded, it suffice to prove
that

1√
N̄T

T∑
t=1

Nt∑
i=1

{
µ(t,i)(Xt, π̂t−1(Xt))− µ(t,i)(Xt, π

∗(Xt))
}
= op(1), (73)

which has already been established in Equation (64) in Step 2.1. Therefore, ζ4 = op(1).

Combining the results above, we have
∆4 = ζ3 + ζ4 + ζ5 = op(1). (74)

The proof of Step 2 is thus complete.

Step 3: Prove that
√
N̄T (V̄T − V π∗

)
D−→ N (0, σ2

V ) and derive the asymptotic variance σ2
V .

Recall that

V̄T =
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π∗(Xti)}
P(ati = π∗(Xti))

·
(
rti − µ(t,i)(Xt, π

∗(Xt))
)
+ µ(t,i)(Xt, π

∗(Xt))

}

=
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π∗(Xti)}
P(ati = π∗(Xti))

· ηti + µ(t,i)(Xt, π
∗(Xt))

}
.

Given the derivation of Equation (65), we have

Nt∑
i=1

µ(t,i)(Xt, π
∗(Xt)) =

Nt∑
i=1

∑
a∈A

ωtiX
⊤
tiβa · 1{π∗(Xti) = a}. (75)

Combining the above term with the expression of V̄T , we have

V̄T =
1

N̄T

T∑
t=1

Nt∑
i=1

{
1{ati = π∗(Xti)}
P(ati = π∗(Xti))

· ηti +
∑
a∈A

ωtiX
⊤
tiβa · 1{π∗(Xti) = a}

}
.

To decompose, we define

ξq :=
1{aq = π∗(Xq)}
P(aq = π∗(Xq))

· ηq︸ ︷︷ ︸
ξ1q

+
[∑
a∈A

ωtiX
⊤
tiβa · 1{π∗(Xti) = a} − V π∗

]
︸ ︷︷ ︸

ξ2q

,
(76)

where q denotes an unit in a flattened unit queue Q(t, i) =
∑t−1

s=1Ns + i. Similar to the the proof of Theorem 4.3, we define
Hq as the σ−algebra containing the information up to unit q whereHq0 = σ(v⊤X̃1η1, . . . ,v

⊤X̃q0ηq0).

Since
E[ξ2q] = E

[∑
a∈A

ωtiX
⊤
tiβa · 1{π∗(Xti) = a}

]
− V π∗

= 0,
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it holds that E[ξ2q|Hq−1] = 0. Additionally, notice that

E[ξ1q|Hq−1] = E
[
1{aq = π∗(Xq)}
P(aq = π∗(Xq))

· ηq
∣∣Hq−1

]
= E

[
1{aq = π∗(Xq)}
P(aq = π∗(Xq))

· E[ηq|Hq−1,At]
∣∣Hq−1

]
= 0.

Thus, E[ξq|Hq−1] = 0, and {ξq}1≤q≤N̄T
is a Martingale difference sequence. To show that

√
N̄T (V̄T −V π∗

)
D−→ N (0, σ2

V )
and derive the asymptotic variance σ2

V , it suffice to check the Lindeberg condition and use Martingale CLT to establish
asymptotic normality.

(1) First, let’s check the Lindeberg condition.
N̄T∑
q=1

E
[

1

N̄T
ξ2q · 1

{∣∣ 1√
N̄T

ξq
∣∣ ≥ δ}∣∣∣Hq−1

]
=

1

N̄T

N̄T∑
q=1

E
[
ξ2q1
{
ξ2q ≥ N̄T δ

2
}∣∣Hq−1

]
.

Notice that ξ2q1
{
ξ2q ≥ N̄T δ

2
}

converges to 0 as N̄T goes to infinity and is bounded by ξ2q givenHq−1. Therefore, we only
need to check the integrability of ξ2q givenHq−1, then by Dominated Convergence Theorem (DCT), the Lindeberg condition
is checked.

Since the derivation of E[ξ2q |Hq−1] is exactly the asymptotic variance σ2
V , we will leave the details to part (2).

(2) Next, we derive the limit of conditional variance σ2
V = 1

N̄T

∑N̄T

q=1 E[ξ2q |Hq−1].

E[ξ21q|Hq−1] = E
[

1{aq = π∗(Xq)}
[P{aq = π∗(Xq)}]2

· η2q
∣∣Hq−1

]
= E

[
1{aq = π∗(Xq)}

[P{aq = π∗(Xq)}]2
· E[η2q |Hq−1,At]

∣∣Hq−1

]
= E

[
1{aq = π∗(Xq)}

[P{aq = π∗(Xq)}]2
· σ2
∣∣Hq−1

]
.

Therefore,

1

N̄T

N̄T∑
q=1

E[ξ21q|Hq−1] = σ2 · E

 1

N̄T

N̄T∑
q=1

1− νq(Xq,Ht−1)

[P{aq = π∗(Xq)}]2

 ,
where νq(Xq,Ht−1) = νti(Xti,Ht−1) = P(Ati ̸= π∗(Xti)|Xti,Ht−1).

Following similar proof structure of Ye et al. (2023) in Appendix page 34-35, we are able to establish that

1

N̄T

N̄T∑
q=1

E[ξ21q|Hq−1] = σ2 · E

 1

N̄T

N̄T∑
q=1

1− νq(Xq,Ht−1)

[P{aq = π∗(Xq)}]2

→ ∫
σ2

1− κ∞(x)
dPx,

where κ∞(x) = limq→∞ P(Ati ̸= π∗(x)).

Since E[ξ2q] = 0 and the randomness in ξ2q only comes from (X, ω), we have

E[ξ22q|Hq−1] = Var(ξ2q) = Var
[∑
a∈A

ωtiX
⊤
tiβa · 1{π∗(Xti) = a}

]
.

Furthermore,

E[ξ1qξ2q|Hq−1] = E
[
ξ2q ·

1{aq = π∗(Xq)}
P(aq = π∗(Xq))

· ηq
∣∣Hq−1

]
= E

[
ξ2q ·

1{aq = π∗(Xq)}
P(aq = π∗(Xq))

· E[ηq|Hq−1,At]
∣∣Hq−1

]
= 0.

Thus,
1

N̄T

N̄T∑
q=1

E[ξ2q |Hq−1] =
1

N̄T

N̄T∑
q=1

E[(ξ1q + ξ2q)
2|Hq−1]

=
1

N̄T

N̄T∑
q=1

E[ξ21q|Hq−1] +
1

N̄T

N̄T∑
q=1

E[ξ22q|Hq−1] +
2

N̄T

N̄T∑
q=1

E[ξ1qξ2q|Hq−1]

→
∫

σ2

1− κ∞(x)
dPx + Var

[∑
a∈A

ωtix
⊤βa · 1{π∗(x) = a}

]
.

(77)
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Therefore,

σ2
V =

∫
σ2

1− κ∞(x)
dPx + Var

[∑
a∈A

ωx⊤βa · 1{π∗(x) = a}
]
. (78)

Finally, by combining the results of Step 1-3, we are able to show that
√
N̄T (V̂

DR
T − V π∗

)
D−→ N (0, σ2

V ), which concludes
the proof of this theorem.

J. Proof of Regret Bound

Step 1: Decompose RT = R
(1)
T +R

(2)
T , which accounts for the regret of exploitation and exploration.

Recall that the regret RT is defined as

RT =

T∑
t=1

Nt∑
i=1

E
[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt,At)
]

=

T∑
t=1

Nt∑
i=1

E
[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]
+

T∑
t=1

Nt∑
i=1

E
[
µ(t,i)(Xt, π̂t−1(Xt))− µ(t,i)(Xt,At)

]
,

which can be decomposed into

RT =

T∑
t=1

Nt∑
i=1

E
[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]

︸ ︷︷ ︸
R

(1)
T

+

T∑
t=1

Nt∑
i=1

E
[{
µ(t,i)(Xt, π̂t−1(Xt))− µ(t,i)(Xt,At)

}
· 1{Ati ̸= π̂t−1(Xti)}

]
︸ ︷︷ ︸

R
(2)
T

.

By definition, R(1)
T is nonzero only when π∗(Xti) ̸= π̂t−1(Xti), which accounts for the regret caused by estimation

accuracy, i.e., exploitation. R(2)
T is nonzero only Ati ̸= π̂t−1(Xti), which accounts for the regret caused by exploration. In

Step 2-3, we will derive the regret bound of R(1)
T and R(2)

T separately to prove the sublinearity of RT .

Step 2: Prove that R(1)
T = o(N̄

1/2
T ).

Notice that in the proof of Theorem 4.4, step 2.1, we’ve proved in Equation (64) that

1√
N̄T

T∑
t=1

Nt∑
i=1

[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]
= op(1).

Therefore,

R
(1)
T =

T∑
t=1

Nt∑
i=1

E
[
µ(t,i)(Xt, π

∗(Xt))− µ(t,i)(Xt, π̂t−1(Xt))
]
= o(N̄

1/2
T ).

Step 3: Prove that R(2)
T = O(N̄

1/2
T log N̄T ).

According to the upper bound derived in Theorem 4.2,

R
(2)
T ≤

T∑
t=1

Nt∑
i=1

E
[∣∣µ(t,i)(Xt, π̂t−1(Xt))− µ(t,i)(Xt,At)

∣∣ · 1{Ati ̸= π̂t−1(Xti)}
]

≤ 2U ·
T∑

t=1

Nt∑
i=1

E
[
1{Ati ̸= π̂t−1(Xti)}

]
= 2U ·

T∑
t=1

Nt∑
i=1

κti(ωti,Xti).
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Now let’s decompose according to different exploration algorithms. For simplicity of notations, we continue with the
flattened unit queue q = Q(t, i)

∑t−1
s=1Ns + t as shown in the proof of Theorem 4.1. As such, we can extend the definition

of pt to pq by simply setting pq = pt for any unit q in round t. As such, pq is still a non-increasing sequence w.r.t. q. By
Theorem 4.2, we have

1. In UCB, κti(ωti,Xti) is upper bounded by O(K2Lγ
w · (N̄q−1pq−1)

−γ/2). Let pq = N̄
u/γ−1
q with u > 0. For γ > u,

pq is decreasing. Then

R
(2)
T ≲

T∑
t=1

Nt∑
i=1

κti(ωti,Xti) ≲ Lγ
wK

2 ·
N̄T∑
q=1

q−u/2 = O(Lγ
wK

2 · N̄1−u/2
T ).

Taking u = 1 gives us R(2)
T = O(Lγ

wK
2 · N̄1/2

T = O(N̄
1/2
T ). note that when the interference constraint Lw or the

number of arms K is large, the regret bound R(2)
T tends to be larger.

2. In TS, κti(ωti,Xti) is upper bounded by O(dK3 exp{−N̄q−1p
2
q−1/L

4
w}). Let pq =

√
α log q/N̄q. Then

κti(ωti,Xti) ≤ O(dK3 exp{−α log(q − 1)/L4
w}) = O(dK3q−L−4

w α). Thus,

R
(2)
T ≲

T∑
t=1

Nt∑
i=1

κti(ωti,Xti) ≲ dK3
N̄T∑
q=1

q−L−4
w α = O(dK3N̄

1−L−4
w α

T ).

When the interference constraint Lw is large, the regret bound R(2)
T tends to be larger. By taking α = L4

w/2, we have
R

(2)
T = O(dK3N̄

1/2
T ) = O(N̄

1/2
T ).

3. In EG, κti(ωti,Xti) = ϵq/2. If we set ϵq = O(q−m) with any m < 1/2, then

R
(2)
T ≲

T∑
t=1

Nt∑
i=1

κti(ωti,Xti) ≲
N̄T∑
q=1

q−m = O(N̄1−m
T ).

By setting ϵq = O(log q/
√
q), we have R(2)

T = O(N̄
1/2
T log N̄T ).

Thus, in UCB, TS, and EG, the regret caused by exploration can be controlled by R(2)
T = O(N̄

1/2
T log N̄T ).

Therefore, by combining the results of Step 1-3, we are able to show that

RT =
T∑

t=1

Nt∑
i=1

E[R∗
ti −Rti] = O(N̄

1/2
T log N̄T ),

which is sublinear in N̄T .
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