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Abstract

We present PhysDiff-VTON, a diffusion-based framework for image-based virtual
try-on that systematically addresses the dual challenges of garment deformation
modeling and high-frequency detail preservation. The core innovation lies in in-
tegrating physics-inspired mechanisms into the diffusion process: a pose-guided
deformable warping module simulates fabric dynamics by predicting spatial offsets
conditioned on human pose semantics, while wavelet-enhanced feature decom-
position explicitly preserves texture fidelity through frequency-aware attention.
Further enhancing generation quality, a novel sampling strategy optimizes the de-
noising trajectory via least action principles, enforcing temporal coherence, spatial
smoothness, and multi-scale structural consistency. Comprehensive evaluations
across multiple datasets demonstrate significant improvements in both geometric
plausibility and perceptual quality compared to existing approaches. The frame-
work establishes a new paradigm for synthesizing photorealistic try-on images
that adhere to physical constraints while maintaining intricate garment details,
advancing the practical applicability of diffusion models in fashion technology.

1 Introduction

Recent advances in diffusion models [12} 31] have revolutionized image-based virtual try-on
(VTON) [[19} 140, 23, |8]] by enabling high-fidelity synthesis of garment-person interactions [|18} 4].
However, existing approaches still struggle to reconcile two critical aspects, that is, preserving
high-frequency texture details while accommodating complex fabric deformations, and enforcing
physical plausibility in garment dynamics under diverse human poses. Current pipelines often rely on
global affine transformations or heuristic warping [44], which inadequately model localized nonlin-
ear deformations caused by pose variations [} 40]. Meanwhile, the stochastic nature of diffusion
sampling introduces unintended artifacts in fine textures, particularly under occlusion or extreme
articulation [34].

Recent arts [[6, 42, 120] have witnessed concerted efforts to address these challenges. IDM-VTON [4]
pioneers dual encoders to decouple garment semantics and structural features, achieving notable
improvements in texture fidelity through cross-attention fusion of high-level semantic embeddings and
low-level UNet [32]] features. However, its linear blending strategy rigidly combines these features
without modeling temporal fabric dynamics, causing discontinuous wrinkle transitions in articulated
poses. GP-VTON [40] introduces geometric parsing to resolve coarse misalignments via localized
part-based warping, yet its component-level deformation neglects microscale texture continuity
across seam boundaries, exacerbating pattern discontinuities in plaid or striped fabrics. Parallel
wavelet-based approaches leverage frequency-domain decomposition to preserve high-frequency
details, but their isolated spectral processing fails to synchronize with pose-dependent deformation
fields, resulting in physically inconsistent texture densities under stretching [38]]. These innovations,
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while advancing specific aspects, collectively expose a systemic limitation, that is, the absence of
unified frameworks that bridge data-driven feature learning with continuum mechanics principles
governing fabric deformation. Consequently, existing methods enforce artificial separations between
geometric warping and texture synthesis, propagating errors that manifest as either over-smoothed
details or biomechanically implausible drapery.

The dual demands of geometrically plausible deformation and texture-accurate synthesis in virtual
try-on necessitate a co-design framework that bridges physics-inspired mechanics with spectral
fidelity preservation [48]]. Traditional warping methods suffer from irreversible high-frequency
distortions when handling complex poses, as their rigid geometric transformations conflict with the
Nyquist-Shannon sampling theorem governing textile patterns [13]. Our pose-guided deformable
warping addresses this by simulating strain-dependent fabric dynamics through pose embeddings.
Here, pose embeddings are employed to predict spatially variant offsets that preserve local curvature
continuity, while cross-attention between pose maps and garment segments injects material adaptabil-
ity, where stiffer fabrics yield smaller offsets for identical movements, emulating real-world drape
physics [22]. Crucially, this physics-aware deformation creates a geometrically stable foundation
for subsequent wavelet-enhanced texture preservation. Conventional UNet architectures inherently
attenuate high-frequency signals through successive downsampling, exacerbating texture erosion
during iterative denoising. To counteract this, we integrate Haar wavelet transforms into skip connec-
tions, explicitly decoupling high-frequency components, such as edge gradients and micro-textures,
from low-frequency shape approximations. A frequency-gated attention mechanism dynamically
recalibrates subband contributions, that is, amplifying directional harmonics along deformation
axes while suppressing orthogonally misaligned noise [38]]. This dual-domain synergy ensures that
geometric transformations adhere to continuum mechanics while spectral constraints enforce texture
Nyquist compliance—a fundamental advance over isolated spatial or frequency-based approaches.

Building upon the geometrically consistent deformations and spectrally preserved textures achieved
by our cross-domain framework, the final pillar, potential-regularized path optimization (PRPO),
addresses the temporal and structural coherence challenges inherent in iterative diffusion sampling.
While pose-guided warping ensures fabric dynamics obey Newtonian principles and wavelet de-
composition maintains Nyquist-compliant textures, the stochastic denoising trajectory may still
accumulate errors across timesteps, manifesting as anatomically implausible wrinkles or discon-
tinuous fabric flows during arm articulation. PRPO reinterprets this sampling process through the
lens of continuum mechanics [26], formulating it as a variational problem that minimizes an action
functional encompassing three physics-inspired potentials, that is, temporal incoherence penalty via
inter-timestep smoothness, spatial irregularities constraint via total variation, and structural inconsis-
tencies [45] suppression via multiscale self-similarity. By deriving gradient corrections from these
potentials, PRPO steers the diffusion path toward energetically favorable states. This completes our
physics-integrated control loop, where the first two modules establish geometric-spectral foundations,
while PRPO orchestrates their synergistic evolution across the generative trajectory, achieving texture
fidelity even under extreme articulation.

Our PhysDiff-VITON framework pioneers physics-integrated diffusion for virtual try-on, establishing
new standards in geometric fidelity and spectral authenticity. Our contributions can be summarized
as,

* We develop PhysDiff-VITON, a framework that unifies continuum mechanics principles with
diffusion dynamics through a pose-conditioned deformation module and wavelet-constrained
texture synthesis, enabling simulation of fabric dynamics under complex articulations.

* We propose adaptive deformation preserving curvature continuity, wavelet-constrained syn-
thesis maintaining texture fidelity, and trajectory regularization through energy-minimized
sampling.

» Comprehensive experiments confirm the superiority of our method.

2  Cross-Domain Physics Modeling

In this section, we present the PhysDiff-VTON framework, which systematically integrates physics-
inspired deformation modeling in Sec.[2.2] spectral fidelity preservation in Sec.[2.3] We start with a
preliminary in Sec. that formalizes the diffusion process for virtual try-on.



2.1 Preliminary: Diffusion Models for Virtual Try-On

Diffusion models formulate image synthesis as an iterative denoising process governed by stochastic
differential equations [[12]]. For virtual try-on, given a source person image I,, ¢ RAXWX3 and a
garment image I, € RIXWX3 the goal is to generate I where 1, is realistically worn by the person
in I, while preserving pose and texture details. The forward diffusion process progressively corrupts
the target image x( with Gaussian noise across 7' timesteps,

T
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where 3; controls the noise schedule. The reverse process learns to iteratively denoise x7 ~ A(0, I)
by estimating the score function ey(x¢, ¢, C) conditioned on inputs C = {I,,1,,c¢,}, where ¢,
represents other extra conditions, such as text, mask, and pose keypoints. The conditional generation
objective can be denoted as,

L= Et,xo,e |:||€0(Xt7tv C) - 6”%} (2)

The reverse sampling process is to gradually restore the data distribution through the trained denoising
network eg.

Unlike generic image synthesis, virtual try-on requires solving a compositional inpainting problem,
where replaces the original garment region in I, with I, while maintaining photometric consistency
in non-target regions, biomechanical plausibility in garment deformation, and high-frequency texture
fidelity under perspective distortion. This necessitates specialized conditioning mechanisms. Typical
implementations [18}, 4] encode I, through a UNet-based garment encoder &, to produce multi-scale
features {f; £, which are fused with person features f? via cross-attention layers and self-attention
layers in the diffusion model.

The framework of our virtual try-on model is consistent with IDM-VITON [4]], which is based on
diffusion models, and applies two separate modules to extract semantic information from garment
images and encode it into the base UNet. We utilizes a visual encoder to extract high-level semantic
information from garment images and a parallel UNet, i.e., GarmentNet, to extract low-level features,
thus preserving details. In addition, detailed text prompts are provided for both garment and person
images to enhance the authenticity of the generated images.

2.2 Pose-Guided Deformable Fabric Dynamics Modeling

The geometric discrepancy between canonical garment representations and dynamically posed
human bodies introduces two fundamental challenges in virtual try-on that is, irreversible texture
distortion caused by rigid spatial transformations, and physically implausible deformation due
to neglecting material-dependent strain-stress relationships. Traditional approaches relying on
affine transformations or thin-plate splines (TPS) [10} 40]] impose global smoothness constraints
incompatible with localized fabric dynamics, while convolutional warping lacks explicit mechanisms
to encode human kinematics. Our physics-aware deformation field addresses these limitations through
pose-semantic conditioned offset prediction that emulates strain-dependent displacement.

We first construct a pose embedding E,, € RP»xHXW through cascaded residual blocks from the
pose image. We will integrate the pose information into the garment features of different layers. Given
garment features F'; ¢ REXHXW extracted via pre-trained UNet in a certain layer, cross-modal
attention computes pixel-wise affinity between human pose and fabric regions,

o = Softmax oBp” - (WiFy') 3)
vD
where W, W), project features to query-key space. The attention map A & RIXWXEK agoregates

pose-specific deformation cues, guiding the prediction of strain-aware offsets,
Ap=G(F,; & (A0 E)), “
Here ® denotes element-wise multiplication that emphasizes pose-relevant features, and & is a simple

concatenation. The offset predictor G learns material-dependent deformation patterns, where stiffer
fabrics exhibit smaller || Ap|| for equivalent joint movements, as observed in real draping physics.



The warped garment features f‘g are computed via deformable convolution:

K

Fy(z) = Zwk “Fy(z + pr + Apy) 5)
k=1

where pj, enumerates K sampling locations in the regular grid, and wy, denotes adaptive weights.

Pose-conditioned offset prediction fundamentally differs from prior geometric warping [37] in that
it integrates human pose into deformation mechanics. Multi-layer attention enables hierarchical
modeling, where global pose changes (e.g., arm elevation) are captured in low-resolution layers, while
high-resolution branches handle local wrinkles. Compared to occlusion-agnostic warping in [49]], our
approach implicitly handles self-occlusions through strain-dependent displacement, where occluded
regions automatically receive smaller ||Ap]|| due to attenuated attention responses. Compared to
TPS-based methods [[10]], our data-driven approach better handles non-linear wrinkles when trained
on diverse poses. The network automatically learns to amplify offsets near bending joints while
suppressing unrealistic stretching in rigid areas.

2.3 Wavelet-Enhanced Spectral Fidelity Preservation

High-frequency texture erosion poses a fundamental challenge in diffusion-based virtual try-on, as
iterative downsampling operations in UNet architectures progressively attenuate directional gradients
and micro-patterns (e.g., plaid alignments or embroidery stitches) [17,133]. To address this, we
propose a Haar wavelet transform module embedded in skip connections, which explicitly decouples
and reinforces high-frequency components throughout the denoising trajectory. The key insight stems
from the observation that conventional spatial attention mechanisms exhibit limited discriminative ca-
pacity in preserving Nyquist-critical frequencies [[15], those carrying essential perceptual information
about textile microstructures.

Our implementation begins with a fixed Haar wavelet decomposition applied to intermediate feature
maps X € REXCXHXW after each downsampling layer. The transform applies separable 1D
convolution along row and column dimensions using low-pass (W, = [1, 1]) and high-pass (W g =
[1, —1]) filters. This yields four subbands,

{LL,LH, HL, HH} = DWT(X), (6)

where LL captures low-frequency approximations, while { LH, HL, HH} encode horizontal, verti-
cal, and diagonal high-frequency details, respectively. These subbands are concatenated and processed
by a frequency-gated attention mechanism,

A = 0(Conv;(GN(Convy(Concat(LL, LH, HL, HH)))), 7

where o denotes the sigmoid function, GN represents group normalization, and Conv; are convo-
lutional layers. The attention mask A € [0, 1]BX>*HXW dynamically amplifies critical frequency
components based on local texture complexity. The final enhanced features are computed through
residual modulation, _

X=X+A0X, ®)

where ® denotes element-wise multiplication. This formulation ensures gradient stability while
enabling explicit high-frequency preservation. The Haar basis proves particularly effective due to
its compact support and directional sensitivity. These properties align with the anisotropic nature of
garment textures under deformation.

The essence of this approach lies in transforming spatial-domain image information into the frequency
domain through wavelet basis functions such as Haar or Daubechies [46], decomposing garment
images into low-frequency components (representing global contours and color distributions) and
high-frequency components (capturing edge details and micro-textures). For instance, in a plaid
shirt scenario, low-frequency components preserve the general grid arrangement pattern, while
high-frequency components precisely record the sharpness of each grid edge and microscopic
structures at intersections. Introducing wavelet transforms into the model equips the network with
a “computational microscope", compelling continuous attention to these vulnerable details during
generation. By designing frequency-aware attention mechanisms in the wavelet domain, the model
dynamically amplifies influential frequency bands, enhancing weights on high-frequency subbands
when processing glossy silk textures, while suppressing them in smooth regions of plain T-shirts to



prevent noise introduction. This adaptive mechanism ensures optimal detail fidelity across diverse
garment categories.

Synergy between Pose-Guided Deformation and Wavelet-Enhancement

The synergistic interaction between components further amplifies their respective advantages. The
explicit preservation of high-frequency details through wavelet transforms enriches local texture infor-
mation for deformable convolution, maintaining microstructural continuity during deformation—for
example, preventing line fractures in plaid patterns when simulating skirt sway. Conversely, pose-
guided warping guarantees proper spatial distribution of high-frequency textures. When garments
stretch due to pose variations (e.g., T-shirt print widening during arm extension), high-frequency
texture densities adapt accordingly [14]]. This synchronized coordination between detail preservation
and deformation constitutes the cornerstone of photorealistic generation.

3 PRPO for Trajectory Optimization

In this section, we elaborate the trajectory optimization into a unified diffusion paradigm in Sec.[3.1]
and potential function design for our newly proposed sampling method in Sec. [3.2]

3.1 Potential-Regularized Path Optimization

The stochastic denoising trajectory of diffusion models, while effective in exploring the data manifold,
may introduce path oscillations that violate physical priors inherent to virtual try-on tasks. For
instance, abrupt changes in latent states across timesteps can lead to discontinuous fabric flows or
implausible wrinkles during arm articulation. Inspired by the principle of least action [36] in physics,
where dynamic systems evolve along paths minimizing an action functional [25}41]. We reinterpret
the diffusion sampling process as a variational optimization problem. This perspective allows for
injecting physics-inspired constraints into the generative trajectory, steering it toward states that
balance data fidelity with physical plausibility.

Action Functional. Define the action functional S[x(t)] over the diffusion path x(¢) from noise x(7")
to clean data x(0):

Sla(t)] = / Isa(@(),t) — Vo log gu(w(e))[Pdt + A / E(a(t)dt +0 / le(n)2de, ©)

Dynamic Matching Potential Regularization Stochastic Control

where sy is the learned score function, F(z) denotes the potential energy encoding physical con-
straints, and £(t) controls stochasticity. The first term enforces consistency with the learned data
manifold, the second imposes task-specific physical priors, and the third regulates exploration-
exploitation trade-offs.

Variational Optimization. Applying variational calculus to minimize S yields the modified reverse-
time SDE:

dx = [f(x,t) — g(t)QSQ(I‘,t)] dt + \g(t)>°V,E(x)dt + og(t)dw , (10)
——
Standard Reverse SDE Potential Gradient Controlled Noise

where f(x,t) and g(¢) are drift and diffusion coefficients from the forward process. The potential
gradient term \g(t)?>V,E(x) explicitly corrects the trajectory toward low-energy states, while
og(t)dw injects annealed noise to avoid local minima.

Discretized Sampling. Integrating (T0) via the Euler-Maruyama scheme gives the PRPO update rule:

1
A \/7047 (xt — \/16:7%69(1',57t)> + A3V, E(x) + J\/EZ , (11)

Deterministic Update

Potential Correction  Annealed Noise
where ay, 8; are DDPM scheduling parameters, and z ~ N(0,I). The noise scale o decays as
0 (t) = omax exp(—k(T — t)) to prioritize exploration early and refinement late.

The potential gradient V E introduces second-order guidance beyond the score function’s first-order
manifold approximation, suppressing non-physical oscillations (e.g., jagged edges in plaid patterns).



Algorithm 1 Potential-Regularized Diffusion Sampling (PRPO)

Require: Pretrained score model eg, potential function F(z), initial noise z7 ~ N (0, I)
1: fort =T to1do .
: Compute oy =[], (1= B5), Be =1 — /sy

Predict noise €; = € (x4, t)

Deterministic update: ju; = \/% (mt - \/f%iatet)
Compute potential gradient: VE = V,E(x;)

Apply correction: pi; — py + AG:VE

Sample noise scale: 0y = opmax exp(—k(T —t))

8:  Injectnoise: z;_1 = ps + 04/ Bz where z ~ N(0,1)
9: end for

10: return Denoised sample zy =0

AN A S ol

The annealing noise schedule preserves diversity while ensuring final sample coherence, which
is crucial for resolving ambiguous cases like occluded garment regions. Alg. [I]details the PRPO
sampling process. Lines 2-4 implement the standard DDPM prediction, while Lines 5-6 compute the
potential gradient correction. The adaptive noise injection in Lines 7-8 ensures progressive transition
from stochastic exploration to deterministic refinement. Notably, PRPO maintains compatibility
with existing diffusion frameworks by simply augmenting the sampling step with physics-aware
corrections.

3.2 Potential Function Design

The efficacy of PRPO critically depends on the design of potential energy functions E(x) that encode
domain-specific physical priors. We derive three complementary potentials addressing temporal
coherence, spatial regularity, and structural consistency based on the fundamental requirements for
photorealistic virtual try-on. Each potential component is derived from first principles of stochastic
dynamics and image statistics, ensuring their complementary roles in virtual try-on generation.

Inter-Timestep Smoothness Potential Let z; € R? denote the latent state at timestep ¢ in the
diffusion process, with the forward Markov chain defined by:

q(zt|2e-1) = N (265 awze—1, (1 — o)1)
The reverse process approximates the true posterior g(z;—1|z;) through variational inference. To

suppress abrupt transitions between timesteps — which manifest as discontinuous fabric flows — we
impose the smoothness potential:
Enootn (2) = Aellze — Elze124]]13

where E[2;11]2] = /0112 follows the forward process expectation, and \; = Aoe ™7t implements
time-decaying regularization strength. This term minimizes deviations from the theoretical diffusion
trajectory, effectively damping high-frequency oscillations in the denoising path [20]]. For articu-
lated garments, such temporal coherence ensures wrinkle formation adheres to progressive drapery
dynamics rather than erratic noise artifacts.

Total Variation Spatial Potential Natural images exhibit heavy-tailed gradient distributions —
predominantly smooth regions punctuated by sparse edges. To replicate these statistics in generated
garments, we define:

Ery(z) = Z (IVhzeli, gl + [Vozelis j]1)
i,
where V;, and V,, denote horizontal/vertical finite differences. This total variation (TV) term imposes
a piecewise smoothness prior p(z;) o< e~ Fv(2t) steering solutions toward texture-continuous
regions separated by sharp edges [35]. In virtual try-on, Ety proves critical for preserving high-
frequency details like embroidery patterns and fabric seams while suppressing salt-and-pepper noise
in homogeneous areas.

Multiscale Self-Similarity Potential Leveraging the inherent hierarchy in diffusion processes, we
enforce structural consistency across scales:

Ewis(20) = ) | Ds(20) = E[Dy(z0-1) ] |I"
seS



Table 1: Quantitative comparisons on VITON-HD and DressCode test sets. PhysDiff-VTON demon-
strates superior performance in both low-level similarity and high-level semantic similarity (LPIPS,
SSIM, CLIP-I) and image fidelity (FID). Several GAN-based virtual try-on methods and Diffusion-
based virtual try-on methods are introduced to compare with our proposed PhysDiff-VITON. Bold
denotes the best score for each metric.

Dataset VITON-HD DressCode
Method LPIPS | SSIM 1 FID | CLIP-I1 LPIPS | SSIM 1 FID | CLIP-11
GAN-based methods

HR-VITON 0.115 0.883 9.70 0.832 0.112 0910 2142 0.771
GP-VTON 0.105 0.898 6.43 0.874 0.484 0.780 55.21 0.628

Diffusion-based methods

LaDI-VTON  0.156 0.872 8.85 0.834 0.149 0.905 16.54 0.803
DCI-VTON 0.166 0.856 8.73 0.840 0.162 0.893 17.63 0.777
StableVITON  0.133 0.885 6.52 0.871 0.107 0.910 14.37 0.866
IDM-VITON  0.102 0.870 6.29 0.883 0.062 0.920 8.64 0.904
PhysDiff(Ours) 0.093 0.881 6.21 0.894 0.055 0.932 8.27 0.918

Here, D, denotes downsampling by factor s, and E[D(2¢—1)|2¢] = /az_1Ds(2¢) propagates coarse-
scale expectations. This potential ensures localized details (e.g., sleeve pleats) remain geometrically
consistent with global garment structure [27)]. For complex poses, it prevents anatomically implausible
distortions by maintaining cross-scale correspondences in deformation fields.

Unified Variational Perspective The composite potential E(z) = Egnoom + ETv + EMms rectifies
the reverse process distribution:

T

po(zor) o< [ po(zeilze) - [] e 2P0

t=1 t

This Bayesian formulation injects physics-aware priors into the generative trajectory without altering
the base diffusion model. The temporal term FEgnootn governs fabric dynamics continuity, Erv
enforces Nyquist-compliant textures, and Ejy;s maintains anthropometric plausibility across scales,
which collectively addressing the trilemma of garment realism.

3.3 Implementation Details

We employ the Adam optimizer with a fixed learning rate of 1 x 107> for 130 training epochs,
requiring approximately 95 hours on 4xH800 GPUs. Our data augmentation strategy aligns with
Stable-VITON [18], featuring a 0.5 probability of horizontal flipping and 0.5 probability of random
affine transformations. During inference, we utilize the PRPO sampler with 30 denoising steps and
maximum strength (n = 1.0), initiating from random noise while disregarding masked regions in
the input person image. For classifier-free guidance, inspired by IDM-VITON [4]] and SpaText [2],
we jointly condition the model using low-level garment features and high-level semantic features
from IP-Adapter [43]. Distinctively, we implement pose-guided feature warping through a learnable
deformation module D(-) that modulates garment features F';, based on pose map P: F, = D(F,|P).
The guidance scale w is set to 2.0. The garment features are extracted from the first 10 channels of a
pretrained diffusion bottleneck layer of UNet, which are subsequently injected into the target diffusion
model after pose-aware deformation. To enhance detail preservation, we integrate wavelet-transform-
based frequency selection modules after each cross-attention layer in the UNet downsampling blocks,
operating in the Haar wavelet domain to perform frequency-adaptive feature modulation. Following
[4], the SDXL inpainting model [1]] is introduced as our base diffusion model, and the UNet of
SDXL [28]] as the garment net.
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Figure 1: Qualitative comparison. Our method can generate more natural and physically accurate
distortions and wrinkles.

Table 2: Hyper-parameter analysis. We evaluate our method on the VITON-HD dataset under
different numbers of pose-aware deformation features, wavelet transformation injection position,
potential regularization strength A, and maximum noise level o,,,. For simplicity, we only present
LPIPS and FID metrics.

(a) Feature Numbers. (b) Wavelet inject. (c) Reg. Strength. (d) Noise level.
nums LPIPS FID pos LPIPS FID A LPIPS FID Omaz LPIPS  FID
5 0101 6.30 preres 0.103  6.32 5 0.099 6.29 0.8 0.100 6.31
10 0.093 6.21 preqie 0.096  6.24 10  0.093 6.21 1.0 0.096 6.25
15 0.092 6.24 preou: 0.093  6.21 15 0.104 6.32 1.2 0.093 6.21
20 0.092 6.22 20 0.109 6.38 1.4 0.104 6.36

4 Experiments

4.1 Experimental Setup

Datasets We conduct comprehensive evaluations on VITON-HD [3] and DressCode [24]]. We train
our model on the VITON-HD dataset, which contains 11,647 person-garment image pairs.

Metrics Our quantitative analysis employs four complementary measures, i.e., LPIPS [47] for
perceptual similarity, SSIM [39] assessing structural preservation, FID [[11] evaluating distributional
alignment, and CLIP-I quantifying semantic consistency.

Baselines We compare against two architectural paradigms following [4]. HR-VITON [19] and GP-
VTON [40] representing GAN-based approaches. Diffusion-based LaDI-VTON [23], DCI-VTON [8],
Stable VITON [18] and IDM-VITON [4]] utilizing latent garment conditioning. All baselines are
evaluated at native 1024x768 resolution using official implementations.

4.2 Results and Analysis

Qualitative Evaluation Fig. [T)illustrates the qualitative comparison of our method with StableVI-
TON [18] and IDM-VITON [4]. Our physically aware warping technology maintains physically
correct distortion where fabrics are stacked, even when the baseline wrinkles unnaturally. The wavelet
enhancement process successfully preserves details such as textures, patterns, and text that are difficult
to capture with other methods. PRPO trajectory optimization prevents unnatural stretching in silk
materials that diffusion baselines struggle with.

Quantitative Comparison As Tab.|l|shows, PhysDiff-VTON achieves state-of-the-art performance
across all metrics. Particularly noteworthy is the LPIPS improvement over IDM-VITON on VITON-
HD, demonstrating the effectiveness of our frequency-aware architecture for full-body outfits. The
FID reduction on VITON-HD confirms enhanced physical plausibility through continuum mechanics



Table 3: Ablation study. Contribution of each component evaluated by removing it in terms of LPIPS,
SSIM, FID, and CLIP-I.

Dataset VITON-HD DressCode

Method LPIPS | SSIM1 FID | CLIP-I1T LPIPS | SSIM1 FID | CLIP-I1
w/o Deform 0.102 0.873 6.33 0.882 0.069 0.922 8.51 0.898
w/o Wavelet 0.098 0.868 6.24 0.888 0.062 0916 8.40 0.904
w/o PRPO 0.096 0.875 6.25 0.890 0.059 0.925 833 00912

PhysDiff-VITON 0.093 0.881 6.21 0.894 0.055 0.932 8.27 0.918

Table 4: Efficiency of our method. PCMA represents peak CUDA memory allocated, and TOI
represents the time of a batch inference (resolution: 1024 <768, steps=30, batch size=2).
StableVITON IDM-VITON  PhysDiff-VITON
PCMA(G) 13.105 25.183 25.245
TOI(s) 29s 11s 11s

modeling. CLIP-I gains highlight the superior semantic alignment between the generated garments
and the target garments.

4.3 Hyperparameter Analysis

We conduct systematic hyperparameter studies on the VITON-HD validation set to evaluate four
critical design choices. All experiments use the same training protocol with a batch size 32 and 200K
iterations. We evaluate our method on the VITON-HD dataset under different number of pose-aware
deformation features, wavelet transformation injection position, potential regularization strength A,
and maximum noise level o,,,,,,. We empirically select the values of these hyperparameters based on
the experimental results in Tab. 2]

4.4 Ablation Studies and Efficiency

To validate our core innovations, we systematically disable individual components in Tab. 3] For
VITON-HD, removing pose-guided deformation (w/o Deform) causes severe FID degradation, as
rigid warping fails to simulate fabric dynamics. Disabling wavelet decomposition (w/o Wavelet)
increases SSIM, demonstrating its critical role in preserving high-frequency textures. The absence of
potential-aware sampling (w/o PRPO) increases LPIPS due to temporal inconsistency in denoising
trajectories. Full implementation achieves optimal balance across all metrics. We also investigate the
algorithm efficiency regarding batch inference time and CUDA memory consumption, as shown in
Tab.[dl

5 Conclusion

We introduce PhysDiff-VTON, a physics-integrated diffusion framework that harmonizes fabric
dynamics and spectral fidelity in image-based virtual try-on. The proposed method bridges continuum
mechanics with generative modeling through pose-guided deformable warping, which simulates strain-
dependent garment deformations while preserving local curvature continuity. Complementing this,
wavelet-constrained decomposition explicitly safeguards high-frequency textile patterns via frequency-
adaptive attention, overcoming spectral erosion inherent in iterative denoising. A novel trajectory
optimization strategy further enhances spatiotemporal coherence by reformulating diffusion sampling
as an energy-minimized variational process, ensuring anatomically consistent drapery evolution.
Comprehensive experiments validate the framework’s superiority in synthesizing geometrically
plausible and texture-faithful results under challenging articulations, establishing new theoretical
connections between physical simulation and diffusion-based synthesis. This work advances virtual
try-on toward practical deployment while offering a blueprint for physics-aware generative models in
dynamic image synthesis tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions, see Sec. Introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: We do not discuss limitations in the paper, but more evaluation metrics and
datasets may provide a better assessment.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete (and correct)
proof for each theoretical result.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provide all the information needed to reproduce the main experimental
results of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We provide detailed implement instructions to reproduce our experimental
results. We use open-source datasets and our code will be released soon.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec. Experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report the error bar due to space limit, but all the reported results
are averaged over five independent runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Sec. Implementation Details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. We expect our work to be
used for non-commercial purposes only and respect the privacy of individuals during the
image generation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We expect our work to be used for non-commercial purposes only and respect
the privacy of individuals during the image generation.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Reference.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Rationale for PRPO

The theoretical justification for the Potential-Regularized Path Optimization (PRPO) can be compre-
hensively analyzed through its foundational connections to stochastic optimal control, compatibility
with probabilistic evolution equations, and consistency in discrete implementations. At its core,
PRPO reinterprets the reverse process of the diffusion model through the lens of path integral control
theory, where the action functional

Sle(t)] = E [|lso(x(t),t) — Vi log i (x(t)|* + AE(x) + o |[€()]?]

encodes a trade-off between score-matching fidelity, domain-specific regularization, and controlled
stochastic exploration. Minimizing this action corresponds to selecting the most probable paths
under the Onsager-Machlup formalism [9], where the kinetic matching term ensures adherence to
the data manifold, the potential term E(x) imposes soft constraints like smoothness or physical
consistency, and the noise energy term modulates exploration sensitivity. The derived modified
stochastic differential equation (SDE)

dx = [f —¢%sp + )\gzva] dt + ogdw
maintains theoretical consistency through its Fokker-Planck equation [30]
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where bounded regularization strength A preserves the contraction properties of the primary drift term,

and controlled noise intensity ¢ satisfies Novikov’s condition [[7] to maintain measure equivalence
between forward and reverse processes. Discretization analysis reveals that the PRPO update step

==V ([f—9*so+ A*V.E] p;) +

1
Tpoq = \/—OTt (xt — 1%@;9(@,25)) + AV E(xt) + 04/ Bz

achieves O(3%/2) approximation error through It5-Taylor expansion [16]], matching conventional
diffusion model discretization accuracy while introducing non-invasive regularization. The poten-
tial function F(x) operates under weak interference principles (| A\VE|| < |/s¢||) and manifold
preservation constraints, ensuring adjustments remain proximal to the support of the data distribution.
Dynamic noise annealing via () = opae ** implements simulated annealing-inspired explo-
ration, probabilistically converging to global minima while enabling early-stage diversity exploration.
Crucially, PRPO’s inference-time adaptation paradigm preserves pretrained score networks, unlike
energy-based fine-tuning methods, achieving task-specific regularization through deterministic path
optimization rather than retraining. This synthesis of variational action minimization with con-
trolled stochastic dynamics provides a rigorous mathematical grounding while maintaining practical
flexibility across domains.

B From Action Functional to Reverse-time SDE

The derivation of the modified reverse-time dynamics equation from the action functional can be
systematically explained through variational optimization within the stochastic calculus framework.
Starting with the action functional

Sla(t)] = / ls6(2,1) — V. log gs ()]t + A / E(x)dt + o / €)1,

we parameterize the reverse process dynamics by a stochastic differential equation (SDE) dx =
a(z, t)dt+b(x, t)dw, where the drift term a(z, ) and diffusion term b(z, t) are optimized to minimize
S[z(t)]. The first term in S, enforcing score matching, directly recovers the conventional reverse drift
a(z,t) = f(x,t) — g(t)?sg(x,t) through the equivalence between score matching loss minimization
and drift correction.
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Variational analysis of the potential regularization term X [ E(x)d¢ introduces an additional gradient
correction: perturbing the path x(t) — x(t) 4+ dx(t) yields a variation

5 <)\/E(x)dt> = )\/VmE(x) bwdt,

which corresponds to augmenting the drift with A\g(t)?V, E(z), scaled by the noise coefficient
g(t)? from the original diffusion process. Simultaneously, the stochastic control term o [ ||£(¢)||2dt
regulates noise energy via optimal control theory, leading to a diffusion term adjustment b(x,t) =
og(t) that preserves the Wiener process structure while modulating exploration intensity.

Combining these contributions, the optimized SDE becomes,

dz = [f(z,t) — g(t)*se(z,t) + Ag(t)* V. E(2)] dt + og(t)dw.

The compatibility of this modified dynamics with the target distribution go(x) is verified through its
Fokker-Planck equation [30]],
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% — V.- ([f — 6®s0 + A\G*VLE] p1) + %vipt,

where the original reverse process is recovered when A = 0 and ¢ = 1. Theoretical consistency
requires bounded regularization strength )\ to avoid destabilizing the primary drift term and adherence
to Girsanov’s theorem [[7] for noise intensity og(¢). This derivation rigorously unifies score matching,
potential-guided regularization, and controlled stochasticity within a single variational framework,
establishing the mathematical foundation for the path optimization mechanism of PRPO.

C From Reverse-time SDE to PRPO Sampling

In a variance-preserving forward diffusion governed by the SDE

de = —1B(t)xdt + /B(t) dw,
we discretize with At = 1 according to the DDPM [12] parametrization 8; = 3(t), oz = 1 — ¢, and
Q= Hi:l a,. The corresponding reverse-time SDE takes the form

de = [—1B(t)x — B(t)se(x,t)] dt + /B(t) dw,

where sg(x,t) = —eg(x,t)/+/1 — &y. Introducing an energy-gradient correction and a controllable
noise term yields the modified dynamics

dx = [-3B(t)x — B(t)se(x,t)] dt + AB(t) Vo E(z)dt + o /B(t)dw.

standard reverse drift energy correction controllable noise

Applying the Euler-Maruyama scheme [21]] with At = 1 to each term gives for the stept — ¢t — 1
the updates
1
Bt
o (l‘t - N—a, 69(.’L‘t, t))a

—3Bims — Brsg(me, t) = —%xt + \/f_t—dt@(l‘t,t) =

ABe Vo E(xy),
and
o\ Bz, z~N(0,I).

Thus, one arrives at the PRPO sampling rule

T \/107,5<xt — %69(@,2&)) +AB: Vi E(x:) + 0/ P 2.

Matching coefficients confirms that the discrete energy-gradient term A3,V E and noise coefficient

o+/ Bt exactly reflect their continuous-time origins, while the discretization error remains O( Bf’ / 2),
ensuring numerical stability provided Aj3;||V E|| remains small relative to the deterministic update
and o+/3; decays appropriately.
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D Numerical Stability

In order to ensure numerical stability in the PRPO discrete update
1
Tp_q = \/704775(% - V%ee(xt,t)) + ALV E(xy) + o(t)/Br 2,

we require two conditions. First, the energy-correction term must remain bounded, which entails

AB: IV By < H xt,t)H.

B
—
Oét(l — O(t)
Dividing both sides by ; (with 3, > 0) gives
eo(ws, O
\/ at(l — 6(15)
Under the common score-matching assumption ||eg(z, t)|| o< v/1 — @&, this further simplifies to
1
AMVzE —_—,
IVaBa@l < =

so that when oy — 0 one must choose A sufficiently small or design E(x) so that ||V, E(x)|| decays
naturally.

MV E(z)| <

Second, the noise amplitude must be controllable by designing o (¢) to decay over ¢. If we set

o(t) = Omaxe "L,

then the variance of the noise term o' (¢)/5; = is
Var(o(t)\/Bt 2) = opaxe 2 B 1,
2

and requiring lim;_,o 02, e~ 2** 3, = 0 guarantees that as t — 0 (late in generation) the stochastic
perturbation vanishes. For example, if 5; = (Bmax/T) t (a linear schedule), then one enforces

672kt Bmax t <

T_E

by tuning k and o ax.

Together, these two requirements,
1
ANV E <« —— and t) = Omax i
[ () N o(t) = Omaxe

, ensure that the PRPO algorithm remains numerically stable by balancing the deterministic score-
matching update against energy-based correction and diminishing noise.
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