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Abstract

The computation of loss gradients via backpropagation constitutes a significant portion of
the energy consumption in the training of deep learning (DL) models. This paper introduces
a simple yet effective method to reduce energy usage during training by leveraging the
overparameterization of DL models. Under this assumption, the loss landscape is smooth,
and we hypothesize that gradient elements follow a Generalized Gaussian Distribution (GGD).
Based on this hypothesis, energy savings are achieved by skipping entire training epochs
and estimating gradients by sampling from a GGD. Specifically, parameter updates during
skipped epochs are performed by adding GGD-based samples of gradient components to the
model parameters from the previous epoch. Furthermore, we present a theorem that provides
an upper bound on the expected loss behavior, along with the corresponding convergence rate.
We provide extensive empirical validation of our GGD hypothesis across various tasks—image
classification, object detection, and image segmentation—using widely adopted DL models.
Results show substantial reductions in energy consumption without compromising model
performance. Additionally, we evaluate our method on Domain Adaptation (DA), Domain
Generalization (DG), and Federated Learning (FL) tasks, observing similar energy savings.
To further validate the adaptability of our sampling strategy, we also test it in large language
model (LLM) pre-training, demonstrating its effectiveness across diverse settings.

1 Introduction

Training deep learning (DL) models is infamous for its energy consumption. This aspect has been discussed
and debated due to its impact on global warming and sustainable development. The energy consumption of
training and hyperparameter tuning of large DL models was studied in (Strubell et al., 2020). This work
recommends AI researchers prioritise the development of energy-efficient hardware and algorithms. A more
recent work discusses the energy consumption during inference (Desislavov et al., 2023) and suggests that the
energy consumed for inference is growing slower than model training. However, this work also cautions that
the energy requirements could escalate if the assumptions made become invalidated by increased penetration
of AI-based solutions.

Gradient descent-based iterative methods are employed for training DL models. Central to this training process
is the forward propagation of data points to compute model predictions, followed by the back-propagation
(backprop) (Rumelhart et al., 1986) of the model errors for estimating loss gradients. These gradients are
used to update the model parameters. The backprop of model errors is the most energy-consuming operation
during training.

In this work, we focus on reducing the number of backprop operations and improving the energy efficiency
of DL model training. Also, the problem of improved energy efficiency in the federated learning (FL)
framework (Li et al., 2020a) is studied using the same lens. The contributions of this work include:

• a hypothesis that the parameter update distribution is a Generalized Gaussian Distribution (GGD),
and its empirical evidence,
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• a simple yet effective strategy for saving energy during training based on the above hypothesis, and
an extensive empirical validation of the hypothesis using popular DL models on several computer
vision tasks (like Image Classification, Object Detection, Image Segmentation, Domain Adaptation,
Domain Generalization) and LLM-Pretraining,

• a stochastic version of federated learning algorithms (McMahan et al., 2017; Li et al., 2020b; Sun
et al., 2023) that reduces training rounds, again based on the above hypothesis.

2 Related Work

Given the rise of foundation models Liu et al. (2023) with massive energy requirements for training, the need
for energy efficiency in model training cannot be overemphasized. The design of energy-efficient methods for
training DL models has received significant attention from the hardware perspective. An excellent albeit
slightly dated survey of efficient processing methods for DL models is presented in Sze et al. (2017).

Esser et al. (2015) proposed an approach for deploying the backprop algorithm in neuromorphic computing
design. This is achieved by treating the spikes and discrete synapses as continuous probability distributions
and thereby satisfying the requirement of the backprop algorithm. This approach led to significant energy
savings on the TrueNorth neuromorphic architecture Merolla et al. (2014).

Weight pruning is a popular algorithmic approach to efficient model training without compromising per-
formance. Hoefler et al. (2021) present a comprehensive survey of the various techniques proposed in the
literature for sparsifying DL models and Stochastic Gradient Langevin Dynamics (SGLD) Welling & Teh
(2011) adds Gaussian noise sampled independently at each iteration, with a fixed zero mean and variance
proportional to the step size. This noise is then directly added to the current gradient updates to ensure
stochasticity and enable posterior sampling. Recent works Kuo & Madni (2022); Lin et al. (2022) propose
green learning by avoiding non-linearities and the backprop algorithm altogether. Gaussian noise injection
(GNI) Camuto et al. (2020) act as an explicit regulariser that suppresses high-frequency components in neural
network activations, promoting smoother functions and improved generalization. MeZO Malladi et al. (2023)
proposes the addition of small Gaussian noise to perturb the parameter updates. It requires only two forward
passes through the model to compute the gradient estimate.

Our approach differs from existing methods by retaining backpropagation while adopting a stochastic approach
to estimate gradient values, reducing the number of forward and backpropagation operations for greater
energy efficiency. In contrast to SGLD Welling & Teh (2011), our method dynamically adapts injected noise
based on differences in the model’s parameters over time, ensuring better alignment with the parameter space
and capturing training variability for improved posterior approximations and generalization. Additionally,
unlike MeZO Malladi et al. (2023), our approach is versatile and can be applied to train deep learning models
from scratch.

In the FL framework, a central server coordinates the training of clients by aggregating client model
parameters (Li et al., 2020a). Each client updates its model parameters locally by training on its private
dataset. The clients then share their model parameters with the central server. The server collates the client
parameters and computes a set of global weights. These weights are then sent to the clients for use in the
next training round. The two-way exchange of model parameters happens over several rounds until the
models converge. Let θ(r) denote the collated parameter vector at the server, and θ

(r)
k represent the client

k’s parameter vector after the client update at round r (using θ(r) as the initialization). In the FL algorithm,
the server update is given by:

θ(r+1) = Di

|D|

K∑
k=1

θ
(r)
k (1)
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where K is the number of clients used, |Dk| is the size of data in client k and |D| is the size of overall dataset

(|D| =
K∑

k=1
|Dk|). We demonstrate the utility of our hypothesis in the FL framework by reducing the number

of communication rounds used to train the clients.

3 Proposed Approach

3.1 Classification Setting

We operate in the classification setting with the dataset denoted by D = {(x1, y1), (x2, y2), . . . , (xN , yN )}
composed of N data points xi ∈ X and corresponding labels yi ∈ Y . The data point-label pairs are assumed
to be i.i.d. samples drawn from a fixed but unknown distribution p(x, y). The DL model is denoted by
f(x; θ) : X → Y where x is the input data point and the vector θ represents the model’s parameters. The
loss function is defined as

L(θ) = 1
n

n∑
i=1

d(yi, f(x;θ)), (2)

where d(·, ·) is an appropriately chosen distance function, and n is the number of training samples.

Further, assuming the standard gradient-based iterative model training approach, the parameter update
expression is

θ(k) = θ(k−1) + δ(k), (3)

where δ(k) = G
(
∇L(θ(k−1)), h1, h2, . . . , hp

)
represents the parameter update at iteration k. The function

G(·) denotes an optimization rule—such as SGD, Momentum, Adam, or AdaGrad—applied to the gradient
∇L(θ(k−1)) computed at θ(k−1), with hyperparameters h1, h2, . . . , hp.

3.2 Hypothesis

In this setting, we empirically hypothesize that

p(θ(k)
ℓ |θ

(k−1)
ℓ ) ∼ GGD(µ(k)

ℓ , σ
(k)
ℓ , β

(k)
ℓ ). (4)

In other words from 3 at each layer ℓ,

δ
(k)
ℓ =

(
θ

(k)
ℓ − θ

(k−1)
ℓ

)
∼ GGD(µ(k)

ℓ , σ
(k)
ℓ , β

(k)
ℓ ), (5)

where GGD denotes the Generalized Gaussian Distribution, parameterized by µℓ, σℓ, and βℓ, correspond-
ing to the mean, scale, and shape parameters, respectively, estimated via Maximum Likelihood over(
θ(k)|ℓ − θ(k−1)|ℓ

)
for each layer ℓ. Specifically, the GGD is given by

f(δ(k)
ℓ ; µ(k), σ(k), β(k)) = β(k)

2σ(k)Γ
(

1
β(k)

) exp

−( |δ(k)
ℓ − µ(k)|

σ(k)

)β(k) , (6)

where Γ(·) is the gamma function. We provide two supporting arguments for our hypothesis.

• From (3), we obtain:
δ(k)|ℓ = θ

(k)
ℓ − θ

(k−1)
ℓ . (7)

For a mini-batch B, this becomes:

δ
(k)
B |ℓ =

(
θ

(k)
ℓ − θ

(k−1)
ℓ

)
B

(8)
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where δ
(k)
B |ℓ denotes the function applied to the gradient computed on mini-batch B, with respect to

the model parameters θ(k−1) at layer ℓ.

Let ξB
ℓ = δ

(k)
B |ℓ − δ(k)|ℓ represents the stochastic noise which is the error between the mini-batch

gradient and the deterministic gradient. The noise ξB
ℓ prevents the gradient updates from becoming

zero, ensuring continued exploration of the loss landscape. As optimization progresses, δ(k)|ℓ → 0
near local minima (due to the L-Lipschitz continuity of L), causing ξB

ℓ to diminish. Consequently,
the updates become smaller and unimodal, centered around zero.

We rewrite δ
(k)
ℓ |B in (8) as:

δ
(k)
ℓ |B = δ(k)|ℓ + ξB

ℓ . (9)

• Empirical studies by (Şimşekli et al., 2019) show that ξB
ℓ often exhibits heavy-tailed behavior.

According to the Generalized Central Limit Theorem (GCLT) (Gnedenko & Kolmogorov, 1954), the
updates θ

(k)
ℓ − θ

(k−1)
ℓ converge to a stable distribution with heavy tail.

The parameters of the GGD can be estimated using the standard maximum likelihood approach using
error vector samples computed over the training epochs. In practice, however, the number of parameters
in DL models is prohibitively large for efficient parameter estimation. We propose a simple workaround
to overcome this practical challenge. The error vector δ(k) at the kth epoch is partitioned into layerwise
i.e. δ(k) =

[
δ

(k)
1 , δ

(k)
2 , · · · , δ

(k)
ℓ , · · · , δ

(k)
L

]
(assuming L layers), and modelled at the layer level. Here, δ

(k)
ℓ

refers to the error sub-vector corresponding the ℓth layer. A further simplification is to treat all the elements
of the ℓth layer error vector δ

(k)
ℓ as i.i.d. random variables whose distribution is given by GGD(µℓ, σℓ, βℓ).

This can be justified by the fact that the inputs and outputs at a given layer have similar dynamic ranges
due to operations such as batch normalization and layer normalization. While this may appear to be an
over-simplification, it works well in practice.

3.3 Energy-Efficient Model Training

We now apply our hypothesis to achieve energy-efficient DL model training. A straightforward way is to
estimate the model parameters of the layer-level GGD based on the parameter update δ

(k)
ℓ after some k

epochs. Given that we ascribe the same GGD to all elements of δ
(k)
ℓ , its parameters are estimated by the

elements of δ
(k)
ℓ .

During the (k + 1)st epoch, the entire forward and backward propagations are skipped. Instead, the model
update happens by sampling the parameter update from the GGD and adding these samples to the parameter
θ(k). This can be expressed as:

θ
(k+1)
ℓ = θ

(k)
ℓ + δ̂

(k)
ℓ , (10)

where δ̂
(k)
ℓ ∼ GGD(δ(k)

ℓ ; µ
(k)
ℓ , σ

(k)
ℓ , β

(k)
ℓ ) samples drawn nℓ (size of δ

(k)
ℓ ) times from the GGD and reshaped

to align with the dimensions of δ
(k)
ℓ , ensuring uniform size and structure. The update in (10) is carried out

for all L layers of the model. The proposed model training approach is summarized in Algorithm 1 we call it
as GradSamp.

A natural question is about the frequency of using (10) for model update. Several strategies could be
employed to answer this question. A simple strategy is to make this update periodic and experiment with
the period. Another approach is to randomly choose an epoch and apply (10). Yet another strategy is to
do sampling based upon half of the delayed epochs and apply (10). All these strategies are explored in
section 4.1. We present a theorem for our sampling approach with an upper bound on the expected loss
behavior ∆k = E[L(θ(k))− L(θ(∗))] along with convergence rate as follows:

Theorem 3.1 (Convergence under GGD noise). Let ρ be the sampling probability, and suppose that the update
error δ̂(k) follows a Generalized Gaussian Distribution (GGD), with E[δ̂(k)] ≈ 0 and E[∥δ̂(k)∥2] ≤ σ(k)2 .
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Assume the loss function L(θ) is µ-strongly convex and L-Lipschitz continuous, with optimal parameter θ(∗).
If the learning rate satisfies η < 1

2µ(1−ρ) , then the expected loss difference ∆k = E[L(θ(k))−L(θ(∗))] satisfies:

∆k+1 ≤ γ∆k + ρLσ(k)2

2 ,

where γ = 1− 2µη(1− ρ). Consequently, the convergence rate is O(γk).

Figure 1: Convergence of ∆K : Theoretical upper bound vs. actual values.

The detailed proof of Theorem 3.1 is provided in Section A. The plot 1 illustrates the convergence of ∆k

under the given recursive bound, where the actual values (blue line) exhibit an initial rapid decay, driven by
the geometric contraction term (1− 2µη(1− ρ))∆k, followed by a plateau due to the additive noise-dependent
term ρLσ(k)2

2 . The theoretical upper bound (red dashed line) consistently stays above the actual values, with
the shaded region representing the gap, indicating that while the bound provides a good approximation of
the convergence trend,

3.4 Comparison with other noise-based strategies

Table 1: Comparison with noise-based methods.
Paper Equation Adaptive Noise Skipping Epoch

SGLD (Welling & Teh, 2011)
θ(k+1) = θ(k) + ϵk

2

(
∇ log p(θ(k)) + N

n

n∑
i=1
∇ log p(xi | θ(k))

)
+ ηk; ηk ∼ N (0, ϵkI)

✗ ✗

GNI (Camuto et al., 2020) h̃k(x) = ĥk(x) + ϵk; ϵk ∼ N (0, σ2
kI) ✗ ✗

MeZO (Malladi et al., 2023) θ(k+1) = θ(k) + L(θ(k)+ϵz;B)−L(θ(k)−ϵz;B)
2ϵ z; z ∼ N (0, I) ✗ ✗

Ours θ
(k+1)
ℓ = θ

(k)
ℓ + δ̂

(k)
ℓ ; δ̂

(k)
ℓ ∼ GGD((θ(k−1)

ℓ − θ
(k)
ℓ ); µ

(k)
ℓ , σ

(k)
ℓ , β

(k)
ℓ ) ✓ ✓

As shown in Table 1, unlike SGLD (Welling & Teh, 2011), our method does not inject fixed Gaussian noise at
each iteration for posterior sampling p(x | θ(k)), nor does it resemble Gaussian noise injection (GNI) (Camuto
et al., 2020), which perturbs the activation space ĥ(x) to regularize the model. Unlike MeZO (Malladi et al.,
2023), which estimates gradients using symmetric perturbations via two forward passes (over batch size
B with some perturbation scale ϵ), our approach adaptively estimates parameter updates using temporal
differences in the parameter trajectory. Furthermore, existing methods primarily focus on improving model
performance without addressing the cost of backpropagation. In contrast, our method explicitly aims to skip
backpropagation steps, achieving energy efficiency without compromising model accuracy.

3.5 Stochastic Federated Learning Algorithms

We found the FL framework to be a natural fit to test our hypothesis in a distributed learning setting.
Specifically, we claim that the elements of δ(r) = θ(r) − θ(r−1) follow a unimodal GGD (using the notation
from (1) and r being the round index). In other words,
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Algorithm 1 GradSamp Algorithm
Input: Model parameters θ, training dataset D = {(xi, yi)}n

i=1, number of layers L, parameters per layer
{nℓ}L

ℓ=1, and tolerance ε = 0.001
Output: Trained parameters θ(∗)

Initialize: Epoch counter k ← 0
while stopping condition not met do

if sampling condition met then
Compute parameter update error:
δ(k−1) = θ(k−1) − θ(k−2) ; // From buffer

Partition δ(k−1) by layer:
δ(k−1) =

[
δ

(k−1)
1 , δ

(k−1)
2 , . . . , δ

(k−1)
L

]
for ℓ← 1 to L do

Fit GGD to δ
(k−1)
ℓ :

Obtain µ
(k−1)
ℓ , σ

(k−1)
ℓ , and β

(k−1)
ℓ ; // By fitting GGD to δ(k−1)

Sample δ̂
(k−1)
ℓ ∼ GGD(µ(k−1)

ℓ , σ
(k−1)
ℓ + ε, β

(k−1)
ℓ ):

Generate nℓ samples and reshape to match δ
(k−1)
ℓ

Update parameters for layer ℓ:
θ

(k)
ℓ = θ

(k−1)
ℓ + δ̂

(k−1)
ℓ

end
end
else

Save θ(k−1) in buffer
Update parameters via backpropagation:
θ(k) = θ(k−1) + δ(k)

end
k ← k + 1 ; // Increment epoch counter

end

p(θ(r)
ℓ |θ

(r−1)
ℓ ) ∼ GGD(µ(r)

ℓ , σ
(r)
ℓ , β

(r)
ℓ ) (11)

We modify We modify the FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b) and FedSpeed (Sun
et al., 2023) algorithms to their stochastic variants where the update rule becomes:

θ
(r+1)
ℓ = θ

(r)
ℓ + δ̂

(r)
ℓ (12)

where δ̂
(r)
ℓ ∼ GGD(δ(r)

ℓ ; µ
(r)
ℓ , σ

(r)
ℓ , β

(r)
ℓ ) samples drawn nℓ (size of δ

(r)
ℓ ) times from the GGD and reshaped to

align with the dimensions of δ
(r)
ℓ , ensuring uniform size and structure.

4 Experiments and Results

The proposed hypothesis and energy-based model are empirically validated across a wide range of computer
vision tasks, including image classification, object detection, image segmentation, Domain Adaptation (DA),
Domain Generalization (DG), and Federated Learning (FL) under both IID and Non-IID settings. Additionally,
the method is evaluated on Large Language Model (LLM) training to demonstrate its broader applicability.
More technical and implementation details were found in the sections B and C of the supplementary material.

4.1 Sampling Strategies

We explored four strategies to trigger the energy-saving mechanism. For periodic sampling (Pe), we used
intervals of 5 and 10 epochs. Probabilistic (Pr) sampling drew from a Bernoulli(ρ) distribution with
ρ = 0.2, 0.5, and 0.7, sampling gradients whenever a 1 was drawn. In Delayed Period (DP) sampling, no
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sampling occurred during the first half of the epochs, followed by periodic sampling with intervals of 5 and
10. Similarly, Delayed Random (DR) sampling skipped the first half of the epochs, then applied random
sampling with probabilities ρ = 0.2, 0.5, and 0.7.

4.2 Results

(a) ResNet-50: 1st Conv, 2nd Stage, 2nd

Residual block’s parameter update his-
tograms calculated at at 100,110 and 143
epochs.

(b) Swin-T: QKV weights, 1st layer, 2nd

block’s parameter update histograms
calculated at at at 33, 44 and 55 epochs.

(c) MLP-Mixer: 3rd layer, 2nd stage
1st FC layers’s parameter update his-
tograms calculated at at at 33, 44 and
55 epochs.

Figure 2: Parameter update histogram fitted with GGD for ResNet-50, Swin-T, and MLP-Mixer models on
the Tiny dataset. Each shows heavier tails (β < 2) than Gaussian.

(a) ResNet-50: 2nd Conv, 2nd Stage,
2nd Residual block’s parameter up-
date histogram calculated at epoch
95.

(b) Swin-T: 2nd Conv, 2nd Stage, 2nd

layer’s parameter update histogram cal-
culated at epoch 19.

(c) MLP-Mixer: 1st layer, 2nd stage
3rd FC layer’s layer’s parameter update
histogram calculated at at epoch 69.

Figure 3: The plots show the parameter update histogram for ResNet-50, Swin-T, and MLP-Mixer at various
epochs where the hypothesis failed. The best-fit GGD envelopes are highlighted in red, along with their
corresponding parameters and KS test values. The shape parameter β < 2 indicates the presence of heavier
tails compared to a Gaussian distribution.
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Image Classification: For the image classification task, we experimented with various baseline networks (He
et al., 2016; Liu et al., 2021; Tolstikhin et al., 2021). Qualitative results, shown in the sub-plots 2(a),
2(b), and 2(c), provide empirical support for our hypothesis. The parameter update histogram at different
instances confirm that our hypothesis holds across CNN, Transformer, and Non-CNN/Non-Transformer
networks. The standard Kolmogorov-Smirnov (KS)-test (Massey, 1951) goodness of fit with a probability
value p = 5%. Upon clear examination of these plots, the mean (loc) and standard deviation (scale) values
are approximately zero, and the values of shape parameters are less than 2. This clearly indicates that the
parameter updates are heavy-tailed and fit a nice GGD envelope (in green color). However, even in the failure
cases 3, the parameter update histogram ( 3(a), 3(b) and 3(c)) followed a unimodal behavior centered at zero
with nearly zero standard deviation, and were fitted by a skewed GGD envelope (in red color). Additionally,
it is worth noting that the hypothesis holds better as the number of training epochs increases. Furthermore,
the qualitative results reveal that the GGD hypothesis is valid in the convolution layers of CNNs , QKV
parameters in transformer models and FC layers in mixer models. This observation aligns with the larger
number of parameters present in these layers compared to others.

Table 2: Performance comparison of standard models under diverse sampling strategies, including periodic
(Pe), probabilistic (Pr), delayed periodic (DP), and delayed random (DR) samplings, along with total FLOPS
(in Tera FLOPS (TFLOPS)) over 200 epochs for 3 independent trials. Best values are bolded.

Model Strategy (% savings)
CIFAR-10

Total TFLOPS
CIFAR-100

Total TFLOPS
TINY

Total TFLOPS
Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑)

ResNet-50

Baseline (0) 91.55 ± 0.01 99.76 ± 0.01 246716.268 69.96 ± 0.56 91.64 ± 0.25 246738.386 66.38 ± 0.96 86.22 ± 1.05 493525.924

Pe = 5 (20) 90.87 ± 0.25 99.71 ± 0.06 206008.083 68.02 ± 0.86 90.39 ± 0.20 206026.552 64.90 ± 0.71 85.39 ± 0.30 412094.146

Pe = 10 (10) 91.66 ± 0.18 99.86 ± 0.04 225745.385 69.98 ± 0.33 91.86 ± 0.04 225765.623 66.40 ± 0.85 86.89 ± 0.16 451576.22

Pr = 0.2 (20) 91.93 ± 0.08 99.79 ± 0.06 217110.315 68.42 ± 1.34 91.77 ± 0.42 217129.78 66.89 ± 1.37 86.70 ± 0.76 434302.813

Pr = 0.5 (50) 89.94 ± 0.31 99.69 ± 0.01 166533.481 65.90 ± 1.36 89.71 ± 0.49 166548.41 61.59 ± 1.67 83.82 ± 1.44 333129.999

Pr = 0.7 (70) 89.28 ± 0.06 99.59 ± 0.03 146796.179 64.21 ± 1.07 89.05 ± 0.29 146809.34 60.64 ± 1.06 83.11 ± 1.37 293647.925

DP = 5 (10) 91.32 ± 0.23 99.75 ± 0.05 234380.454 69.53 ± 0.64 90.90 ± 0.21 234401.467 65.20 ± 0.28 86.22 ± 0.06 468849.628

DP = 10 (5) 91.61 ± 0.08 99.78 ± 0.02 240548.361 69.98 ± 0.25 91.70 ± 0.20 240569.926 66.63 ± 0.47 86.27 ± 0.33 481187.776

DR = 0.2 (10) 91.23 ± 0.21 99.8 ± 0.03 234380.454 70.06 ± 0.04 91.73 ± 0.05 234401.467 66.39 ± 0.11 86.39 ± 0.38 468849.628

DR = 0.5 (25) 90.86 ± 0.33 99.69 ± 0.03 215876.734 68.18 ± 0.00 90.81 ± 0.01 215896.088 64.82 ± 0.40 85.52 ± 0.48 431835.183

DR = 0.7 (35) 91.06 ± 0.06 99.70 ± 0.02 203540.921 68.27 ± 0.14 90.73 ± 0.04 203559.168 64.14 ± 0.25 85.77 ± 0.18 407158.887

Swin-T

Baseline (0) 86.27 ± 1.05 99.33 ± 0.18 261786.175 64.53 ± 1.54 88.58 ± 1.92 261790.322 62.74 ± 1.18 84.69 ± 1.14 523589.861

Pe = 5 (20) 84.39 ± 1.11 99.22 ± 0.11 218591.456 61.95 ± 1.83 87.05 ± 1.44 218594.919 60.80 ± 1.98 83.28 ± 1.48 437197.534

Pe = 10 (10) 86.36 ± 1.41 99.36 ± 0.12 239534.35 64.86 ± 1.54 88.66 ± 1.05 239538.145 62.75 ± 1.16 84.99 ± 1.15 479084.723

Pr = 0.2 (20) 86.81 ± 1.67 99.35 ± 0.15 230371.834 64.58 ± 1.01 88.59 ± 1.62 230375.484 62.83 ± 1.22 84.99 ± 1.48 460759.078

Pr = 0.5 (50) 82.17 ± 1.18 98.97 ± 0.24 176705.668 57.99 ± 1.76 84.96 ± 1.64 176708.468 58.53 ± 1.59 81.63 ± 1.71 353423.156

Pr = 0.7 (70) 80.45 ± 1.73 98.95 ± 0.06 155762.774 55.41 ± 1.03 83.25 ± 4.05 155765.242 57.58 ± 1.63 80.94 ± 1.81 311535.967

DP = 5 (10) 84.61 ± 0.50 99.20 ± 0.09 248696.866 61.13 ± 0.37 86.72 ± 0.23 248700.806 61.62 ± 0.31 83.82 ± 0.17 497410.368

DP = 10 (5) 86.92 ± 0.27 99.37 ± 0.12 255241.521 64.57 ± 0.19 88.96 ± 0.16 255245.564 62.75 ± 0.06 85 ± 0.07 510500.114

DR = 0.2 (10) 86.56 ± 0.57 99.38 ± 0.02 248696.866 64.99 ± 0.06 88.78 ± 0.36 248700.806 62.77 ± 0.49 84.99 ± 0.44 497410.368

DR = 0.5 (25) 83.96 ± 0.03 99.12 ± 0.08 229062.903 60.39 ± 0.22 85.95 ± 0.28 229066.532 61.19 ± 0.27 83.79 ± 0.04 458141.128

DR = 0.7 (35) 83.63 ± 0.29 99.13 ± 0.06 215973.595 59.60 ± 0.04 85.82 ± 0.25 215977.016 60.59 ± 0.16 83.37 ± 0.38 431961.635

MLP-Mixer

Baseline (0) 81.99 ± 1.32 98.95 ± 0.23 155631.206 58.04 ± 1.43 83.71 ± 1.44 155633.971 54.02 ± 1.59 77.88 ± 1.35 311274.086

Pe = 5 (20) 80.61 ± 1.21 98.93 ± 0.11 129952.057 55.23 ± 0.92 82.11 ± 0.91 129954.366 51.71 ± 1.31 76.22 ± 1.43 259913.862

Pe = 10 (10) 82.20 ± 0.83 98.96 ± 0.15 142402.554 58.31 ± 1.36 83.80 ± 1.05 142405.084 54.85 ± 1.50 77.85 ± 1.39 284815.789

Pr = 0.2 (20) 82 ± 1.44 98.99 ± 0.13 136955.462 58.20 ± 1.04 83.73 ± 1.20 136957.895 54.65 ± 1.43 77.86 ± 1.49 273921.196

Pr = 0.5 (50) 78.96 ± 1.29 98.66 ± 0.25 105051.064 52.71 ± 1.92 80.73 ± 1.39 105052.931 48.97 ± 1.43 73.96 ± 1.22 210110.008

Pr = 0.7 (70) 77.31 ± 1.36 98.55 ± 0.21 92600.568 50.76 ± 1.17 79.54 ± 0.76 92602.213 46.52 ± 1.48 72.66 ± 1.33 185208.081

DP = 5 (10) 80.49 ± 1.21 98.82 ± 0.03 147849.646 56.09 ± 0.42 82.68 ± 0.04 147852.273 51.99 ± 1.50 76.36 ± 1.44 295710.382

DP = 10 (5) 82.05 ± 0.93 98.97 ± 0.04 151740.426 58.36 ± 0.57 83.73 ± 0.17 151743.122 54.96 ± 1.50 77.86 ± 1.28 303492.234

DR = 0.2 (10) 81.22 ± 0.85 98.96 ± 0.07 147849.646 58.14 ± 0.57 83.75 ± 0.04 147852.273 54.87 ± 1.43 77.89 ± 1.26 295710.382

DR = 0.5 (25) 80.27 ± 1.13 98.78 ± 0.06 136177.306 55.24 ± 0.28 82.34 ± 0.00 147852.273 51.00 ± 1.37 75.94 ± 1.22 272364.826

DR = 0.7 (35) 80.00 ± 1.18 98.79 ± 0.03 128395.745 55.08 ± 0.76 82.10 ± 0.12 128398.026 50.78 ± 1.49 75.68 ± 1.35 256801.121

By examining Table 2, we can estimate energy savings based on the skipped backpropagation operations, as
backpropagation accounts for a significant portion of training energy consumption. The proposed approaches
are compared against the baseline performance, which is presented in the first row for each model. A key
observation is that simple periodic sampling with periods of 5 and 10 epochs leads to energy savings without
a significant performance drop across all models, including standard deep learning models, transformer-based
architectures, and mixer models. Similarly, the random sampling strategy, where backpropagation is replaced
with Generalized Gaussian Distribution (GGD) samples 20% of the time, shows no notable performance
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Table 3: Performance comparison of standard models upon ImageNet dataset under diverse sampling strategies,
including periodic (Pe), probabilistic (Pr) samplings over 100 epochs for 3 independent trials. Best values are
bolded.

Strategy (% savings) ResNet-50 Swin-T MLP-Mixer
Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑)

Baseline (0) 57.75±1.23 77.25±0.89 55.45±1.05 75.15±0.98 47.32±1.40 65.45±0.95
Pe = 5 (20) 56.85±0.94 77.15±1.67 55.25±0.79 74.95±1.53 45.75±0.85 64.25±1.42
Pe = 10 (10) 57.82±1.45 78.65±0.76 55.47±1.31 76.75±1.08 48.07±1.67 65.75±0.83
Pr = 0.2 (20) 58.05±0.92 78.20±1.31 56.07±1.45 76.20±0.72 48.01±1.15 65.65±1.31
Pr = 0.5 (50) 55.08±1.56 76.65±0.84 54.38±0.91 74.65±1.60 45.25±0.78 63.25±1.49
Pr = 0.7 (70) 56.00±0.74 76.85±1.42 53.07±1.22 73.85±1.35 46.09±1.53 63.75±0.92

degradation. In other words, the proposed method achieves nearly identical model performance while reducing
energy consumption by up to 20% compared to the baseline. Given the large scale at which deep learning
models are trained, this represents a substantial energy-saving opportunity and highlights the effectiveness of
a simple periodic sampling approach. However, a noticeable performance drop is observed when sampling
frequencies increase. Importantly, this degradation remains consistent as energy savings increase from 20%
to 70%. A similar trend is observed in delayed sampling approaches such as DP and DR, which result in
approximately 5% and 20% energy savings, respectively.

Impact on ImageNet (Deng et al., 2009): The results in Table 3 demonstrate that incorporating our
sampling strategies can significantly reduce computational cost on the ImageNet dataset without compromising
model performance. In particular, probabilistic sampling with a probability of 0.2 consistently outperforms the
baseline in top-5 and top-10 accuracy across all architectures—ResNet-50, Swin-T, and MLP-Mixer—while
achieving up to 20% computational savings. Similarly, periodic sampling with an interval of 10 yields
competitive results with minimal accuracy drop and only 10% resource usage reduction. This highlights the
effectiveness of using parameter update histogram-guided sampling over GGD-based energy distributions to
selectively trigger updates, allowing for better energy-efficiency and scalability in large-scale vision tasks like
ImageNet classification.

Object Detection: In the object detection setting, we evaluated our sampling strategies using real-time
object detectors such as YOLOv7 (Wang et al., 2023) and RT-DETRv2 (Lv et al., 2024), as shown in table 4.

Table 4: Performance comparison of various sampling strategies on detection models, YOLOv7 and RT-
DETRv2, evaluated on the PascalVOC-2012 dataset over 3 independent trials. Best results are highlighted
in bold.

Strategy (% savings) YOLOv7 RT-DETRv2
mAP @.5 (↑) mAP @.5 : .95 (↑) mAP @.5 (↑) mAP @.5 : .95 (↑)

Baseline (0) 77.1 ± 0.73 59.6 ± 1.22 81.6 ± 1.35 66.7 ± 0.88
Pe = 5 (20) 76.0 ± 1.03 58.5 ± 0.84 81.9 ± 1.15 67.1 ± 0.72
Pe = 10 (10) 77.4 ± 0.95 59.7 ± 1.04 82.0 ± 1.19 67.4 ± 0.81
Pr = 0.2 (20) 77.2 ± 0.82 59.9 ± 0.93 81.6 ± 1.21 66.9 ± 0.94
Pr = 0.5 (50) 75.9 ± 1.04 58.2 ± 0.52 82.0 ± 0.84 67.1 ± 0.92
Pr = 0.7 (70) 74.8 ± 0.75 57.1 ± 1.02 82.2 ± 1.07 67.1 ± 0.64

By examining the results from the table, RT-DETRv2 (Lv et al., 2024) consistently outperforms the Baseline
in both mAP @.5 and mAP @.5 : .95 for all sampling strategies, except at Pr = 0.2 for mAP @.5, where it
matches the Baseline. For YOLOv7 (Wang et al., 2023), sampling strategies Pe = 10 and Pr = 0.2 demonstrate
better performance than the Baseline while achieving energy reductions of 10% and 20%, respectively. These
reductions result from skipping epochs, thereby lowering the total effective TFLOPS.

Image Segmentation: For the image segmentation task, we evaluated the performance of the widely
used U-Net (Ronneberger et al., 2015) and the transformer-based Segmenter (Strudel et al., 2021) models,
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Table 5: Performance comparison of different sampling strategies on segmentation models, U-Net and
Segmenter, evaluated on the ADE20K dataset over 3 independent trials. Best results are highlighted in
bold.

Strategy (% savings) U-Net Segmenter
SS-IoU (↑) MS-IoU (↑) SS-IoU (↑) MS-IoU (↑)

Baseline (0) 27.50 ± 1.34 28.42 ± 1.15 38.02 ± 1.52 38.78 ± 1.23
Pe = 5 (20) 26.53 ± 1.73 27.31 ± 1.65 37.94 ± 1.14 38.84 ± 0.98
Pe = 10 (10) 27.53 ± 1.91 28.52 ± 1.04 38.15 ± 1.46 38.91 ± 1.32
Pr = 0.2 (20) 27.75 ± 1.54 28.50 ± 1.27 38.16 ± 0.83 38.79 ± 1.64
Pr = 0.5 (50) 25.13 ± 0.91 25.73 ± 1.42 36.26 ± 0.78 38.24 ± 1.12
Pr = 0.7 (70) 23.91 ± 0.67 24.49 ± 0.84 36.16 ± 1.05 37.37 ± 1.82

as presented in Table 5. The results demonstrate that sampling strategies such as Pe = 10 and Pr = 0.2
consistently outperform the baseline in terms of both SS-IoU and MS-IoU. These strategies enable significant
energy savings of 10% and 20%, respectively. The observed reduction in energy consumption is primarily
attributed to the skipped epochs during training, which directly decrease the effective TFLOPS required.
This finding highlights the potential of incorporating such sampling strategies to balance model performance
with computational efficiency, making them particularly beneficial in resource-constrained scenarios.

Table 6: Performance comparision of different sampling strategies on DA methods, MDD and MCC,
evaluated upon Office-31 dataset over 3 independent trials. Best results are highlighted in bold.
Method Strategy (% savings) A-W D-W W-D A-D D-A W-A

MDD

Baseline (0) 92.15 ± 0.89 98.53 ± 0.07 99.93 ± 0.12 91.96 ± 0.88 74.81 ± 0.87 72.25 ± 1.15

Pe = 5 (20) 92.91 ± 0.14 98.57 ± 0.19 100.00 ± 0.00 92.03 ± 1.21 74.94 ± 0.84 71.95 ± 0.87

Pe = 10 (10) 92.74 ± 0.88 98.49 ± 0.13 99.93 ± 0.12 93.37 ± 0.60 74.84 ± 0.95 72.44 ± 0.87

Pr = 0.2 (20) 91.65 ± 0.85 98.53 ± 0.19 99.93 ± 0.12 92.63 ± 1.31 74.90 ± 0.88 72.39 ± 0.35

Pr = 0.5 (50) 91.99 ± 1.58 98.78 ± 0.19 100.00 ± 0.00 92.83 ± 1.82 73.68 ± 0.84 71.47 ± 0.06

Pr = 0.7 (70) 91.15 ± 0.19 98.90 ± 0.19 100.00 ± 0.00 91.83 ± 0.65 73.42 ± 1.15 71.00 ± 1.67

MCC

Baseline (0) 93.29 ± 0.19 98.27 ± 0.08 99.72 ± 0.12 93.64 ± 0.46 75.24 ± 0.86 74.54 ± 0.94

Pe = 5 (20) 93.38 ± 0.28 98.15 ± 0.14 99.72 ± 0.12 93.84 ± 0.64 75.49 ± 0.73 74.52 ± 0.82

Pe = 10 (10) 93.24 ± 0.36 98.36 ± 0.08 99.66 ± 0.12 93.67 ± 1.06 75.37 ± 0.37 74.57 ± 0.62

Pr = 0.2 (20) 93.50 ± 0.14 98.53 ± 0.13 99.72 ± 0.12 94.17 ± 0.40 75.52 ± 0.62 74.6 ± 0.85

Pr = 0.5 (50) 93.24 ± 0.08 98.31 ± 0.07 99.72 ± 0.12 93.57 ± 0.53 75.26 ± 0.56 74.37 ± 0.80

Pr = 0.7 (70) 93.55 ± 0.33 98.27 ± 0.08 99.72 ± 0.12 93.73 ± 1.29 75.27 ± 0.38 74.58 ± 0.48

Domain Adaptation (DA) and Domain Generalization (DG): Domain Adaptation (DA) focuses on
transferring knowledge from a labeled source domain to an unlabeled target domain, addressing distribution
shifts. Domain Generalization (DG), on the other hand, aims to learn models that perform well on unseen
target domains without accessing their data during training. We experimented with some of DA strategies like
Marginal Disparity Descrepency (MDD) and Minimum Class Confusion (MCC) upon Office-31 (Saenko et al.,
2010) dataset. While for DG we experimentedd with VREx (Krueger et al., 2021) and GroupDRO (Sagawa
et al., 2020) upon PACS (Li et al., 2017) as shown in the tables 6 and 7

From the results in tables 6 and 7, it is evident that most of the sampling strategies for MDD (Zhang
et al., 2019), MCC (Jin et al., 2020), Vrex (Krueger et al., 2021), and GroupDRO (Sagawa et al.,
2020) outperform the Baseline models. In particular, the strategies with Pe = 10 and Pr = 0.2 stand out,
yielding substantial improvements that result in energy savings of up to 10% and 20%. This underscores the
effectiveness of our sampling strategy in promoting energy efficiency, even in the context of domain shifts,
where models must adapt to an unknown target domain.
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Table 7: Performance comparision of different sampling strategies on DG methods, Vrex and GroupDRO,
evaluated upon PACS dataset over 3 independent trials. Best results are highlighted in bold.

Method Strategy (% savings) P A C S

Vrex

Baseline (0) 97.66 ± 0.18 87.84 ± 0.69 79.45 ± 1.08 80.72 ± 2.05

Pe = 5 (20) 97.44 ± 0.38 88.36 ± 1.93 79.19 ± 0.28 80.39 ± 0.62

Pe = 10 (10) 97.76 ± 0.09 88.34 ± 0.59 80.90 ± 1.71 81.65 ± 1.11

Pr = 0.2 (20) 97.76 ± 0.28 87.71 ± 1.88 80.23 ± 1.52 81.89 ± 0.38

Pr = 0.5 (50) 97.52 ± 0.28 87.98 ± 0.32 80.69 ± 0.39 81.38 ± 2.51

Pr = 0.7 (70) 97.05 ± 0.27 88.34 ± 1.25 80.02 ± 2.15 81.82 ± 2.12

GroupDRO

Baseline (0) 97.92 ± 0.15 88.60 ± 0.23 80.46 ± 1.90 79.32 ± 2.32

Pe = 5 (20) 97.70 ± 0.03 88.96 ± 1.01 81.05 ± 0.39 79.74 ± 2.59

Pe = 10 (10) 97.98 ± 0.33 88.98 ± 0.16 80.96 ± 1.86 79.36 ± 1.58

Pr = 0.2 (20) 97.99 ± 0.27 88.99 ± 0.93 80.90 ± 1.33 79.90 ± 0.28

Pr = 0.5 (50) 97.66 ± 0.16 88.42 ± 1.14 80.09 ± 1.59 78.95 ± 0.96

Pr = 0.7 (70) 97.50 ± 0.33 88.99 ± 1.74 79.96 ± 1.75 78.90 ± 1.77

Federated Learning (FL): We evaluated the FL agorithms (McMahan et al., 2017; Li et al., 2020b; Sun
et al., 2023) upon different sampling strategies and summarized in table 8 for both IID and Non-IID cases.
For the Non-IID split, we use the Dirichlet distribution (Hsu et al., 2019) with a parameter of 0.6. Upon

Table 8: Performance comparision of differrent sampling strategies upon FL methods like FedAvg, FedProx
and FedSpeed, evaluated upon CIFAR-10 dataset over 3 independent trails. Best results are highlighted in
bold.

Strategy (% savings) FedAvg FedProx FedSpeed

IID Non-IID (Dir 0.6) IID Non-IID (Dir 0.6) IID Non-IID (Dir 0.6)
Baseline (0) 82.62 ± 1.05 80.80 ± 0.97 79.40 ± 1.34 77.51 ± 1.42 87.47 ± 0.82 86.52 ± 0.94
Pe = 5 (20) 82.35 ± 1.13 80.82 ± 1.02 79.54 ± 0.89 78.18 ± 1.01 87.43 ± 1.10 86.01 ± 0.78
Pe = 10 (10) 82.71 ± 0.91 81.01 ± 1.34 79.55 ± 1.26 77.85 ± 1.10 87.53 ± 0.88 86.58 ± 1.33
Pr = 0.2 (20) 82.72 ± 0.88 80.91 ± 1.26 79.51 ± 1.03 77.44 ± 0.98 87.49 ± 1.29 86.56 ± 1.16
Pr = 0.5 (50) 81.81 ± 1.14 79.67 ± 0.93 79.20 ± 0.94 77.79 ± 1.16 85.79 ± 0.77 85.79 ± 1.48
Pr = 0.7 (70) 81.75 ± 0.76 80.08 ± 1.27 79.34 ± 1.05 77.97 ± 1.37 85.04 ± 1.12 85.04 ± 0.96

inspecting Table 8, most federated learning (FL) algorithms outperform the baseline, with Pe = 10 and Pr =
0.2 achieving 10% and 20% energy savings, respectively. These gains are particularly valuable in FL, where
multiple local epochs reduce energy consumption and FLOPs, enhancing computational efficiency.

Thus, strategies like Pe = 10 and Pr = 0.2 strike a balance between performance, energy savings, and
efficiency, improving scalability and practicality for resource-constrained, real-world FL applications.

LLM Pre-training: We evaluated our sampling strategies on GPT-2 (Radford et al., 2019) fine-tuned over
the IMDB dataset (Maas et al., 2011) for 20 epochs using the Adam optimizer (learning rate = 0.02). The
results 4.2 demonstrate consistent improvements across multiple metrics. Importantly, these improvements
are achieved alongside substantial energy savings—up to 70% in some cases—demonstrating the practicality
of our sampling strategy for efficient training of large language models, where computational cost is a critical
concern.

Optimizers: We tested our sampling approaches on various optimizers, including AdaGrad (Duchi et al.,
2011) and AdaDelta (Zeiler, 2012), to assess their impact on energy savings. A careful analysis of the results
in Table 10 demonstrates that our sampling methods can be successfully applied to different optimizers
without sacrificing performance. Notably, in the cases of Pe = 10 and Pr = 0.2, the energy savings achieved
were 10% and 20%, respectively.
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Table 9: Performance comparison of different sampling strategies applied to GPT-2 (Radford et al., 2019)
fine-tuned on the IMDB (Maas et al., 2011) dataset, evaluated over 3 independent trials. Best results are
highlighted in bold.

Strategy (% savings) Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Avg
Baseline (0) 55.74 92.96 12.65 22.27 45.91
Pe=5 (20) 55.68 87.56 13.49 23.37 45.53
Pe=10 (10) 55.88 93.12 13.05 22.95 46.25
Pr=0.2 (20) 56.02 92.75 13.20 23.10 46.27
Pr=0.5 (50) 56.14 89.22 14.21 24.51 46.02
Pr=0.7 (70) 55.86 89.03 13.61 23.61 45.53

Table 10: Impact of Different Optimizers (Ada-Grad vs. Ada-Delta) on Accuracy (%). Mean ± Std are
reported for each strategy.

Strategy (% savings) Ada-Grad Ada-Delta
Acc@1 (%) Acc@5 (%) Acc@1 (%) Acc@5 (%)

Baseline (0) 79.90 ± 1.25 94.69 ± 1.84 88.90 ± 1.14 99.66 ± 2.13
Pe = 5 (20) 79.50 ± 1.15 93.50 ± 2.64 88.96 ± 1.15 99.66 ± 2.27
Pe = 10 (10) 79.95 ± 1.30 94.75 ± 2.12 89.92 ± 1.20 99.68 ± 2.03
Pr = 0.2 (20) 79.97 ± 1.10 94.79 ± 1.95 88.90 ± 1.05 99.68 ± 2.50
Pr = 0.5 (50) 77.73 ± 1.20 93.64 ± 2.70 87.52 ± 1.30 99.46 ± 2.18
Pr = 0.7 (70) 75.45 ± 1.35 93.68 ± 1.67 87.04 ± 1.40 99.51 ± 2.38

Comparison with Related Works: We experimented with the recent MeZO Malladi et al. (2023) method
on the SST-2 Socher et al. (2013) and RTE Dagan et al. (2005) datasets using 10k optimization steps. The
results, along with the performance of our proposed strategies, are reported in Table 11.

Table 11: Performance comparison of different strategies on SST-2 and RTE datasets.

MeZO

Strategy (% savings) SST-2 RTE
Baseline (0) 91.28 67.57
Pe=5 (20) 90.67 65.78
Pe=10 (10) 91.67 67.85
Pr=0.2 (20) 92.07 67.75
Pr=0.5 (50) 91.36 67.55
Pr=0.7 (70) 90.97 67.02

As shown in Table 11, our proposed strategies consistently outperform the baseline MeZO method in terms
of accuracy on both SST-2 and RTE datasets.Notably, the sampling conditions with Pe=10 and Pr=0.2 yield
improved performance compared to the baseline approach. This demonstrates the scalability and effectiveness
of our method across diverse settings without compromising the performance.

5 Conclusion

We introduced a gradient sampling technique to reduce energy consumption in deep learning models,
particularly for computer vision tasks such as image classification, object detection, and image segmentation.
Our approach also demonstrated effectiveness in out-of-distribution scenarios, including Domain Adaptation
(DA), Domain Generalization (DG), and Federated Learning (FL). We further validated its applicability in
large language model (LLM) pretraining, where it achieved similar energy savings without degrading model
quality. Tested across various optimizers, it proved to be robust and practical, showing that periodic and
probabilistic sampling can significantly reduce energy usage without compromising performance.
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A Theorem 3.1 Proof:

Suppose δ̂(k) ∼ GGD((θ(k) − θ(k−1)); µ(k), σ(k), β(k)), where GGD denotes the Generalized Gaussian Distri-
bution. Then, the parameter update at the (k+1)-th iteration, when sampling via SGD, is given by:

θ(k+1) =
{

θ(k) + δ̂(k) with probability ρ

θ(k) − η∇L(θ(k)) with probability (1− ρ)

The expected value of the loss at the next iteration, E[L(θ(k+1))], can be written as:

E[L(θ(k+1))] = ρ

E[L(θ(k+1))|GGD]︸ ︷︷ ︸
Lemma A.1

+ (1− ρ)

E[L(θ(k+1))|SGD]︸ ︷︷ ︸
Lemma A.2

 (13)

Lemma A.1. Assume that the function L(θ(k)) is L-Lipschitz continuous, with E[δ̂(k)] = µ(k) ≈ 0 and
E[||δ̂(k)||2] ≤ σ(k)2 (bounded). Then,

E[L(θ(k+1))] ≤ E[L(θ(k))] + Lσ(k)2

2 .

Proof. Since L(.) is L-Lipschitz continuous, with E[δ̂(k)] = µ(k) ≈ 0, E[||δ̂(k)||2] ≤ σ(k)2 , we have:

L(θ(k+1)) ≤ L(θ(k)) +∇L(θ(k))⊤δ̂(k) + L

2 ||δ̂
(k)||2

E[L(θ(k+1))] ≤ E[L(θ(k))] + Lσ(k)2

2 . (14)

Lemma A.2. Assume that the function L(θ(k)) is both L-Lipschitz continuous and µ-strongly convex. Then
θ(k+1) follows the SGD update rule:

E[L(θ(k+1))] ≤ E[L(θ(∗))] + (1− 2µη)∆k,

where ∆k = E[L(θ(k))− L(θ(∗))] and θ(∗) is the optimal parameter.

Proof. Since L(.) is L-Lipschitz continuous, we have:

L(θ(k+1)) ≤ L(θ(k)) +∇L(θ(k))⊤(−η∇L(θ(k))) + L

2 || − η∇L(θ(k))||2

≤ L(θ(k))−
(

η − L

2 η2
)
||∇L(θ(k))||2 (15)

Since L(.) is µ-strongly convex, we have the inequality:

||∇L(θ(k))||2 ≥ 2µ(L(θ(k))− L(θ(∗))) (16)

Substituting into equations equation 15 and equation 16, we get:

L(θ(k+1)) ≤ L(θ(k))− 2µ

(
η − L

2 η2
)

(L(θ(k))− L(θ(∗)))

L(θ(k+1)) ≤ L(θ(∗)) + (1− 2µη + Lµη2)(L(θ(k))− L(θ(∗)))
Since η <<< 0; η2 ≈ 0

E[L(θ(k+1))] ≤ E[L(θ(∗))] + (1− 2µη)∆k

(
0 < 1− 2µη < 1 =⇒ 0 < η <

1
2µ

)
E[L(θ(k+1))] ≤ E[L(θ(∗))] + (1− 2µη)∆k (17)

16
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Combining equation 14 and equation 17, we can rewrite equation equation 13 as:

E[L(θ(k+1))] ≤ ρ

[
E[L(θ(k))] + Lσ(k)2

2

]
+ (1− ρ)

[
E[L(θ(∗))] + (1− 2µη)∆k

]
.

Rearranging this, we obtain the following recurrence relation for the loss difference:

E[L(θ(k+1))] ≤ ρ

E[L(θ(k))− L(θ(∗))]︸ ︷︷ ︸
∆k

+ ρLσ(k)2

2 + E[L(θ(∗))] + (1− ρ)(1− 2µη)∆k

∆k+1 ≤ ρ∆k + (1− ρ)(1− 2µη)∆k + ρLσ(k)2

2

∆k+1 ≤

(1− 2µη(1− ρ))︸ ︷︷ ︸
γ

∆k + ρLσ(k)2

2 (18)

Now, we analyze the recurrence relation for the loss difference:

∆k = L(θ(k))− L(θ(∗)).

At steady state (k →∞), we assume that ∆k+1 = ∆k = ∆∗. Substituting this into the recurrence relation,
we get:

∆∗ = γ∆∗ + ρLσ(k)2

2 .

Rearranging the terms:

∆∗(1− γ) = ρLσ(k)2

2 ,

which simplifies to:

∆∗ = ρLσ(k)2

2(1− γ) .

Substituting γ = 1− 2µη(1− ρ), we get:

∆∗ = ρLσ(k)2

4µη(1− ρ) .

Next, we consider the transient behavior. The recurrence relation for the loss difference is:

∆k+1 = γ∆k + ρLσ(k)2

2 .

The general solution to this recurrence is:

∆k = (∆0 −∆∗)γk + ∆∗,

17
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where ∆0 = L(θ(0))−L(θ(∗)) is the initial loss difference. The convergence rate of the recurrence is determined
by the term (∆0 −∆∗)γk, which decays exponentially as k increases. Since 0 < γ < 1, the rate of decay is
controlled by γ = 1− 2µη(1− ρ). For convergence to occur, we require 2µη(1− ρ) > 0, ensuring 0 < γ < 1.

The steady-state value ∆∗ is proportional to:

∆∗ ∝
ρLσ(k)2

µη(1− ρ) .

This implies that increasing µ (the strong convexity constant) or η (the learning rate) reduces the steady-state
error ∆∗. The steady-state error also depends on the probability ρ, which governs the sampling process.
As ρ increases, the term γ = 1 − 2µη(1 − ρ) approaches 1, slowing down convergence and increasing the
steady-state error. Specifically, when ρ = 0, the convergence occurs at the fastest rate, with γ = 1− 2µη,
and the convergence speed primarily depends on η and µ. In this case, the steady-state error is smaller, and
convergence is faster.

However, as ρ approaches 1, the convergence slows due to the diminished effect of the decay factor γ. The
optimal value of ρ balances the trade-off between convergence speed and steady-state error: smaller values of
ρ lead to faster convergence and smaller steady-state error, while larger values lead to slower convergence and
higher steady-state error. Furthermore, the steady-state error ∆∗ is influenced by the Lipschitz constant L
of the loss function. A larger L increases the steady-state error, indicating that the loss function is more
sensitive to changes in parameters. To reduce steady-state error, it is desirable to have a smaller L.

To ensure stability, the learning rate η must satisfy:

η <
1

2µ(1− ρ) ,

which guarantees that γ < 1 and ensures geometric convergence. If η exceeds this threshold, updates may
overshoot, leading to instability and preventing convergence.

In conclusion, the recurrence relation is:

∆k+1 = γ∆k + ρLσ(k)2

2 ,

with the steady-state value:

∆∗ = ρLσ(k)2

4µη(1− ρ) ,

and the general solution:

∆k = (∆0 −∆∗)γk + ∆∗.

The convergence rate is geometric with rate:

γ = 1− 2µη(1− ρ).

The algorithm converges with complexity:

O
(
(1− 2µη(1− ρ))k

)
.
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B Technical details:

Table 12: Technical specifications across various tasks.
Task Models Datasets Metrics Backbone / Component

Image Classification
ResNet-50 (He et al., 2016)

Swin-T (Liu et al., 2021)

MLP-Mixer (Tolstikhin et al., 2021)

CIFAR-10 (Krizhevsky & Hinton, 2009)

CIFAR-100 (Krizhevsky & Hinton, 2009)

Tiny ImageNet (Le & Yang, 2015)

ImageNet (Deng et al., 2009)

Acc @1

Acc @5
—

Object Detection
YOLOv7 (Wang et al., 2023)

RT-DETRv2 (Lv et al., 2024)
Pascal VOC 2012 (Everingham et al., 2010)

mAP @0.5

mAP @0.5:0.95
—

Image Segmentation
U-Net (Ronneberger et al., 2015)

Segmenter-Tiny (Strudel et al., 2021)
ADE20K (Zhou et al., 2017)

SS-IoU

MS-IoU

U-Net: ResNet-34 (He et al., 2016)

Segmenter: ViT (Dosovitskiy et al., 2021) encoder + MaskFormer (Cheng et al., 2022) decoder

Domain Adaptation (DA)
MDD (Zhang et al., 2019)

MCC (Jin et al., 2020)
Office-31 (Saenko et al., 2010) Acc @1 ResNet-50 (He et al., 2016)

Domain Generalization (DG)
VREx (Krueger et al., 2021)

GroupDRO (Sagawa et al., 2020)
PACS (Li et al., 2017) Acc @1 ResNet-50 (He et al., 2016)

Federated Learning (FL)
FedAvg (McMahan et al., 2017)

FedProx (Li et al., 2020b)

FedSpeed (Sun et al., 2023)

CIFAR-10 (Krizhevsky & Hinton, 2009) Acc @1 ResNet-50 (He et al., 2016)

LLM Pre-training GPT-2 (Radford et al., 2019) IMDB (Maas et al., 2011)

Accuracy

Precision

Recall

F1-Score

—

C Implementation Details:

Image Classification:

Image Classification Task
Repository: https://github.com/microsoft/Swin-Transformer
Implementations: Integrated with various models and datasets
Total Epochs: 200 (Default: 300)
Warmup Epochs: 1 (Default: 20)
Trials: 3

AdaDelta Optimizer
Learning Rate (η): 0.1
Warmup Epochs: 20

AdaGrad Optimizer
Learning Rate (η): Default Value
Warmup Epochs: 20

Table 13: Hyperparameters for the Image Classification Task

Object Detection:
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Object Detection Task
Repositories: YOLOv7: https://github.com/WongKinYiu/yolov7

RT-DETRv2: https://github.com/lyuwenyu/RT-DETR
Epochs: YOLOv7: 100, RT-DETRv2: 72 (Default)

Table 14: Hyperparameters for the Object Detection Task

Image Segmentation:

Image Segmentation Task
Repository: https://github.com/rstrudel/segmenter
Models: Segmenter (Strudel et al., 2021), U-Net (Ronneberger et al., 2015)
Training Epochs: 20 (Default)

Table 15: Hyperparameters for the Image Segmentation Task

Domain Adaptation (DA) and Domain Generalization (DG):

Domain Adaptation (DA) and Domain Generalization (DG)
Repository: https://github.com/thuml/Transfer-Learning-Library
Methods: MDD (Zhang et al., 2019), MCC (Jin et al., 2020), Vrex (Krueger et al., 2021), GroupDRO (Sagawa et al., 2020)
Training Schedule: 200 iterations per epoch, 20 epochs

Table 16: Hyperparameters for Domain Adaptation and Domain Generalization Experiments

Federated Learning:

Federated Learning (FL)
Repository: https://github.com/woodenchild95/FL-Simulator
Methods: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), FedSpeed (Sun et al., 2023)

Table 17: Hyperparameters for Federated Learning (FL) Experiments

For all our experiments, we kept other parameters unchanged.

D Actual vs Effective BackPropagations:

Table 18 compares the number of backpropagation operations under different sampling strategies,
highlighting the efficiency gains achieved through sampling. For example, with Pe = 5 over 200 epochs,
the training involves 167 backpropagations and 33 sampled iterations, whereas the baseline without
sampling performs 167 backpropagations and 0 sampled steps. Performance is reported across
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets as (with sampling, without sampling).
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Table 18: Comparison of backpropagation operations with and without sampling strategies, demon-
strating efficiency gains across CIFAR-10, CIFAR-100, and Tiny ImageNet over 200 epochs. Reported
metrics follow the format (with sampling, without sampling), and the higher value in each tuple is
bolded.

Model # Backprops
CIFAR-10 CIFAR-100 TINY

Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑) Acc @1(↑) Acc @5(↑)

ResNet-50

Pe=5 (90.69,88.53) (99.67,97.21) (68.62,66.54) (90.53,88.83) (65.40,63.24) (85.60,83.73)

Pe=10 (91.29,89.02) (99.78,97.82) (68.90,66.93) (90.98,89.31) (66.00,63.85) (86.00,84.23)

Pr=0.2 (90.87,88.82) (99.66,97.53) (69.36,67.25) (90.87,89.05) (65.86,63.92) (86.24,84.56)

Pr=0.5 (90.16,88.27) (99.68,97.65) (66.86,64.58) (90.06,88.45) (63.48,61.23) (84.84,83.07)

Pr=0.7 (89.32,87.04) (99.57,97.02) (64.97,63.26) (89.25,87.53) (62.10,60.08) (84.08,82.34)

Swin-T

Pe=5 (85.17,83.52) (99.30,96.54) (64.66,62.73) (88.77,86.81) (63.08,61.04) (84.96,83.14)

Pe=10 (86.36,84.85) (99.41,96.91) (65.36,63.65) (89.11,87.34) (64.52,62.57) (85.22,83.54)

Pr=0.2 (85.99,84.53) (99.35,96.83) (65.72,63.82) (88.97,87.02) (63.60,61.85) (85.04,83.35)

Pr=0.5 (83.71,82.04) (99.14,96.23) (62.06,60.25) (87.53,85.54) (61.50,59.58) (83.60,81.83)

Pr=0.7 (81.67,80.07) (98.99,96.04) (59.67,57.84) (86.11,84.02) (59.44,57.23) (82.22,80.15)

MLP-Mixer

Pe=5 (81.47,79.53) (99.00,95.82) (55.88,54.03) (82.75,81.04) (53.60,52.04) (77.48,76.07)

Pe=10 (81.79,79.83) (99.02,95.91) (57.27,55.57) (83.84,81.85) (55.00,53.35) (78.76,77.13)

Pr=0.2 (81.18,79.34) (98.98,95.75) (57.24,55.38) (83.58,81.64) (54.02,52.53) (78.30,76.52)

Pr=0.5 (80.27,78.58) (98.83,95.54) (54.06,52.27) (81.71,80.02) (51.70,50.04) (76.38,75.03)

Pr=0.7 (78.67,77.04) (98.70,95.24) (51.59,50.03) (80.08,78.34) (49.24,47.83) (75.06,73.54)

Table 19: Acc@1 and Acc@5 (%) with different sampling strategies across activation functions (ReLU, Sigmoid,
Tanh). Values are bolded if they exceed the corresponding baseline values.

Strategy
Acc@1 (%) Acc@5 (%)

ReLU Sigmoid Tanh ReLU Sigmoid Tanh
Baseline 98.06 95.68 97.90 99.95 99.82 99.96
Pe = 5 98.03 95.17 97.97 99.96 99.88 99.97
Pe = 10 98.07 95.91 97.96 99.96 99.89 99.98
Pr = 0.2 98.15 95.92 97.98 99.96 99.87 99.98
Pr = 0.5 97.89 94.87 97.62 99.96 99.85 99.98
Pr = 0.7 97.86 94.37 97.48 99.95 99.74 99.90

E Experiments with different Activation functions:

As shown in Table 19, our proposed sampling strategy demonstrates consistent effectiveness across various
activation functions. Despite reducing the number of training epochs, the strategy maintains competitive
accuracy levels, indicating its robustness and generalizability in different architectural settings.

21


	Introduction
	Related Work
	Proposed Approach
	Classification Setting
	Hypothesis
	Energy-Efficient Model Training
	Comparison with other noise-based strategies
	Stochastic Federated Learning Algorithms

	Experiments and Results
	Sampling Strategies
	Results

	Conclusion
	Theorem 3.1 Proof:
	Technical details:
	Implementation Details:
	Actual vs Effective BackPropagations:
	Experiments with different Activation functions: 

