
Advancing Translation Preference Modeling with RLHF: A Step Towards
Cost-Effective Solution

Anonymous ACL submission

Abstract

Faithfulness, expressiveness, and elegance is001
the constant pursuit in machine translation.002
However, traditional metrics like BLEU do003
not strictly align with human preference of004
translation quality. In this paper, we explore005
leveraging reinforcement learning with human006
feedback (RLHF) to improve translation qual-007
ity. It is non-trivial to collect a large high-008
quality dataset of human comparisons between009
translations, especially for low-resource lan-010
guages. To address this issue, we propose011
a cost-effective preference learning strategy,012
optimizing reward models by distinguishing013
between human and machine translations. In014
this manner, the reward model learns the015
deficiencies of machine translation compared016
to human and guides subsequent improvements017
in machine translation. Experimental results018
demonstrate that RLHF can effectively enhance019
translation quality and this improvement ben-020
efits other translation directions not trained021
with RLHF. Further analysis indicates that the022
model’s language capabilities play a crucial023
role in preference learning. A reward model024
with strong language capabilities can more025
sensitively learn the subtle differences in026
translation quality and align better with real027
human translation preferences.028

1 Introduction029

As a crucial technology facilitating communication030

between disparate languages and cultures, machine031

translation has long garnered significant attention032

from both academia and industry (Yang et al.,033

2020). Recently, the emergence of large language034

models (LLMs) has propelled the field to new035

frontiers (Yang et al., 2023; Zhu et al., 2023; Jiao036

et al., 2023b; Hendy et al., 2023). Pre-training037

on massive monolingual datasets has alleviated038

the reliance on extensive parallel corpora while039

enhancing translation quality (Xu et al., 2024).040

To enhance the translation capabilities of models,041

much of the research works have adopted one042

of two optimization objectives: one is through 043

supervised fine-tuning of translation models to 044

maximize the log probability of human translations 045

(Yang et al., 2023; Xu et al., 2024); the other is 046

through the techniques like reinforcement learning, 047

directly optimizing the similarity score (e.g., 048

BLEU score (Papineni et al., 2002)) between 049

model outputs and human translations (Ranzato 050

et al., 2016; Wu et al., 2018; Wieting et al., 051

2019). Although both approaches have generally 052

performed well, the objectives they optimize for 053

are not fully aligned with human’s preferences 054

for translation faithfulness, expressiveness and 055

elegance (Rei et al., 2020; Stiennon et al., 2020). 056

Fortunately, reinforcement learning from human 057

feedback (RLHF) has been shown to be effective 058

in aligning model behavior with human societal 059

values (Ouyang et al., 2022; Bai et al., 2022). This 060

process integrates reward modeling, where human 061

annotators rank different responses from models 062

based on their preferences, and then normalizes 063

model behavior through a reinforcement learning 064

(RL) phase. However, it is non-trivial to collect 065

a large high-quality preference dataset. Firstly, 066

preference data often comes with noise and 067

ambiguity, as there is low consistency among 068

different human annotators (Wang et al., 2024). 069

More importantly, preference data annotation 070

for translation tasks places higher demands on 071

annotators’ linguistic capabilities, a challenge 072

particularly pronounced in low-resource languages. 073

This paper explores improving translation qual- 074

ity through RLHF and proposes a cost-effective 075

preference learning strategy. We avoid the need to 076

construct expensive preference datasets and instead 077

leverage the inductive bias that high-quality human 078

translations are superior to machine-generated 079

translations. The reward model learns human 080

translation preferences by comparing the quality 081

difference between the two, and subsequently 082

guides the improvement of machine translation 083
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quality. To collect such high-quality human084

translations, we align books with multilingual085

versions. Our motivation for choosing books as086

the data source is as follows: 1) the original text087

is authored by writers and the target language088

is translated by professional translators, ensuring089

the quality of both texts; 2) compared to web090

text, book text typically contains more complex091

language structures, which is particularly beneficial092

for learning translation preferences; 3) aligning093

book text does not require as high a level of094

linguistic capabilities from annotators and can095

be assisted with external tools (Wang et al.,096

2023). The experimental results indicate that the097

reward model effectively learns human translation098

preferences, and the translation quality of the099

model is significantly improved.100

The main contributions of this paper are as101

follows: 1) We explore the use of RLHF to improve102

machine translation quality and propose a cost-103

effective preference learning strategy that avoids104

the need for expensive preference data construction;105

2) Our experimental results demonstrate that RLHF106

can improve translation quality, and this improve-107

ment can be transferred to target languages not108

trained with RLHF; 3) Further analysis shows that109

reward models with strong language capabilities110

can more sensitively learn differences in translation111

quality and have stronger resistance to noise in the112

data.113

2 Related works114

2.1 Reinforcement Learning from Human115

Feedback116

In recent years, research applying RLHF tech-117

niques to tasks involving LLMs has significantly118

increased (Ouyang et al., 2022; Touvron et al.,119

2023b), aiming to align the behavior of these120

models more closely with human preferences.121

For instance, Stiennon et al. (2020) employ this122

technique to enhance the quality of summaries,123

while Bai et al. (2022) utilize it to enable the model124

to generate responses that are more harmless and125

useful.126

These technique follows a systematic approach:127

firstly, collect task-specific human preference data.128

Then, use this data to train a reward model,129

which acts as a proxy for human preferences.130

During reinforcement learning, this reward model131

provides signals to guide model training. How-132

ever, collecting human preference data is non-133

trivial, time-consuming, and labor-intensive, often 134

requiring high demands on annotators and plagued 135

by inconsistencies in annotation standards among 136

them. (Bai et al., 2022; Casper et al., 2023; Wang 137

et al., 2024) 138

2.2 Human-like Alignment in Translation 139

Achieving human-level machine translation has 140

long been a research goal, receiving ongoing 141

attention. (Hassan et al., 2018; Wu et al., 2016; 142

Läubli et al., 2018) Recent years, some studies 143

have focused on improving the quality of machine 144

translation through human feedback and alignment 145

techniques. Kreutzer et al. (2018) gather implicit 146

task-based feedback, enhancing individual word 147

translations and automatic evaluation measures. 148

Jiao et al. (2023a) employs contrastive instruction 149

and error-guided instruction to align LLMs with 150

human feedback. He et al. (2024) attempt to 151

leverage the quality estimation model as the reward 152

model to predict human preference feedback. 153

Considering the methods above, the scarcity 154

of human-preference data in translation has long 155

been a bottleneck. Our approach differs, creatively 156

utilizing meticulously translated human data as 157

readily available preference data. 158

3 Improving Translation with RLHF 159

To build a translation model that aligns with 160

human translation preferences, we start with a 161

generic pre-trained language model πpre (such as 162

LLaMA (Touvron et al., 2023a)), and follow the 163

pipeline of the following three steps: 1) Supervised 164

fine-tuning of πpre on parallel corpora yields 165

a model πsft with basic translation capabilities; 166

2) Training a reward model r on preference 167

dataset Drm, which assigns high reward scores 168

to translations that adhere to human preference; 169

3) Utilizing r as a proxy for human preferences, 170

enhancing the translation quality of the model 171

through reinforcement learning. 172

3.1 Supervised Fine-tuning to Acquire Basic 173

Translation Capabilities 174

Given a parallel corpus Dsft = {(x(i), y(i))}i=1,..,n, 175

where xi represents the source-language text and yi 176

represents the corresponding reference translation, 177

we utilize a fixed prompt template I and construct 178

the training data as follows: 179

I =“Translate this from [SRC] to [TGT]:
[SRC]: <x> [TGT]: <y>”
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Figure 1: An Overview of Modeling Translation Preferences using RLHF; To achieve cost-effective preference
learning, we optimize the reward model in the second step by contrasting the deficiencies of SFT model translations
with human expert translations, thus avoiding the expensive labeling of preference data.

where, ’SRC’ and ’TGT’ respectively represent180

the names of the source language and the target181

language. The translation model πsft is optimized182

via the negative log-likelihood loss on parallel183

corpus Dsft as follows:184

LNLL = −E(x,y)∼Dsft log πsft(y|x, I), (1)185

The translation model πsft acquired basic transla-186

tion capabilities by maximizing the probability of187

reference translations.188

3.2 Modeling Translation Preferences189

To accurately model human preferences, high-190

quality preference data is crucial. A common191

practice used for modeling human value prefer-192

ences is to prompt the model to generate two193

different outputs (y1, y2) ∼ πsft(·|x) in response194

to a query x and then require annotators to195

choose their preferred one, i.e., yw > yl. yw196

and yl denote the chosen and rejected response,197

respectively. However, constructing a large198

preference dataset for translation tasks requires199

annotators who are experts/native speaker in the200

specific languages, which greatly increases the201

annotation cost. For low-resource languages,202

finding a sufficient number of qualified annotators203

may even be impractical.204

Unlike the aforementioned approach, we instead205

leverage the induction bias of ‘high-quality human206

translation is superior to machine-generated trans- 207

lation’ to collect preference data at a lower cost. 208

These high-quality human translations are sourced 209

from book data. Our motivation for selecting 210

this data source is as follows: 1) Books’ original 211

texts and their translated versions are completed by 212

authors and professional translators, ensuring high 213

text quality; 2) Book corpora contain more complex 214

language structures compared to web text, which 215

is highly beneficial for preference learning; 3) 216

Aligning book data requires less stringent language 217

proficiency from annotators and can be aided by 218

external tools. 219

We optimize our reward model r by contrast- 220

ing the differences between high-quality human 221

translation and machine translation: 222

L(r) = −E(x,yw,yl)∼Drm [logσ(r(x, yw)−r(x, yl))],
(2) 223

where x represents the source language sentence, 224

while yw and yl respectively denote a high- 225

quality human translation and a machine-generated 226

translation, and Drm = {(x(i), y(i)w , y
(i)
l )}i=1,..,N is 227

the preference dataset. 228

3.3 Improving Translation via RL Fine-tuning 229

During the Reinforcement Learning (RL) phase, 230

we employ the acquired reward function to furnish 231

feedback to the language model. Specifically, we 232
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Step	3.	Paragraph-level	alignment	

Step	2.	Chapter-level	alignment	

Step	1.	Book-level	alignment

ZhEn	

第	1	章Ch	1

我们在热爱世
界时便⽣活在
这世界上。

We	live	in	this
world	when	we

love	it.

Figure 2: The process of constructing the English-
Chinese book dataset.

refine the policy model to optimize the following233

reward objective:234

rtotal = r(x, y)− ηKL(πRL(y|x)||πSFT(y|x)),
(3)235

where η represents a coefficient regulating the236

extent of the KL penalty. The KL divergence237

component serves two main purposes within238

this framework. Firstly, it functions as an239

entropy bonus, maintaining diversity in generation240

and averting the collapse into singular high-241

reward responses (Jaques et al., 2019). Secondly,242

it ensures that the output of the RL policy243

remains within a distribution where the reward244

model accurately reflects the performance, thereby245

preventing significant deviations.246

4 Experimental Setup247

4.1 Training Data Collection248

We collect and utilize translation training data from249

three different sources. The detailed information250

of these datasets can be found in table 1.251

English-Chinese Books. In order to collect rich252

human expression habits in book translation data,253

we manually construct an English-Chinese parallel254

book corpus dataset. The construction process of 255

this dataset, as shown in Figure 2, can be divided 256

into three steps: Firstly, alignment at the book level. 257

We manually collect Chinese and English versions 258

of several books, ensuring high quality for both 259

versions selected, with translations being provided 260

by skilled professional translators. Next, alignment 261

at the chapter level is performed for each book’s 262

Chinese and English versions. We parse the data of 263

the entire book into text format and then compare 264

the number and content of chapters for consistency. 265

Finally, we align Chinese and English paragraphs 266

at the paragraph level for each chapter through 267

manual comparison and adjustment. 268

Yiyan Corpus.1 To enhance the diversity of 269

the data and strengthen the model’s robustness 270

to inputs of different lengths, we incorporate the 271

Yiyan corpus, an English-Chinese Parallel Corpus. 272

Specifically, we utilize the academic and novel 273

sections, consisting of parallel sentences translated 274

by human translators at the sentence level. 275

United Nations Parallel Corpus (UN). (Ziemski 276

et al., 2016) For our multilingual experiments, we 277

use the UN training set, which was also manually 278

translated. This dataset includes parallel data in 279

six languages: English, Chinese, French, Spanish, 280

Russian, and Arabic. We conduct experiments on 281

translation from English to the other five languages. 282

We randomly sample from the extensive dataset, 283

ensuring English sentences contain a minimum of 284

30 words to guarantee richer information. 285

In the experiment for bidirectional English- 286

Chinese translation, we mix English-Chinese books 287

data with Yiyan Corpus data. For the multilingual 288

experiment, we utilize the UN dataset. 289

4.2 Model 290

• Ultra-LLaMA2-7B: Base model of our exper- 291

iments. A variant of LLaMA2-7B further- 292

pretrained on over 200B Chinese tokens. 293

• LLaMA2-7B (Touvron et al., 2023b): A 294

LLM trained primarily in English. In certain 295

experiment, we use this model as the control. 296

4.3 Evaluation 297

4.3.1 Metrics 298

When evaluating the quality of translation results, 299

we employed three evaluation methods: GPT- 300

4 comparative evaluation (OpenAI, 2023) and 301

1https://corpus.bfsu.edu.cn/info/1070/1631.htm
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Name of the dataset Translation direction Granularity Training Samples
English-Chinese Books En ⇔ Zh paragraph-level 60, 000

Yiyan Corpus En ⇔ Zh sentence-level 30, 000
United Nations Parallel Corpus En ⇒ Zh/ Fr/ Es/ Ru/ Ar sentence-level 60, 000

Table 1: Details of translation training data. In English-Chinese Books dataset and Yiyan Corpus dataset, we
simultaneously use both directions of parallel corpora. In United Nations Parallel Corpus, we utilize approximately
60, 000 samples from English to each language.

0% 20% 40% 60% 80% 100%

FLORES-H

WMT23-H

FLORES-G

WMT23-G

60.9% 1.6% 37.5%

60.6% 1.0% 38.4%

56.0% 10.0% 34.0%

60.0% 10.0% 30.0%

Ours Win Tie Ours Lose

Figure 3: Comparison between preference optimized
models and the SFT model on Task En→Zh. G and H
represent GPT-4 and humans as evaluators, respectively.

COMET metrics (Rei et al., 2020) and human302

evaluation.303

GPT-4. Due to its exceptional general-purpose304

capabilities, the GPT-4 model has emerged as305

a pioneering approach for evaluating NLP tasks.306

We present the original text of a given sentence307

alongside translations from both the SFT and308

RLHF models, allowing GPT-4 to compare them309

simultaneously and select the superior translation.310

In the prompt used during the tests, we explicitly311

included multidimensional evaluation criteria, in-312

cluding flexibility, fidelity, and accuracy and so313

on. To mitigate the impact of comparison order,314

we interchanged the positions of both models’315

outputs for each test, conducting two evaluations316

simultaneously. Refer to the Table 5 in appendix317

for the complete prompt.318

COMET. COMET is a neural framework for319

training multilingual machine translation evalu-320

ation models. It has been shown to have high321

correlation with human assessment and has become322

an increasingly widely used metric for machine323

translation evaluation (Kocmi et al., 2021). We324

select the reference-free quality evaluation model325

wmt22-cometkiwi-da Rei et al. (2022). We326

0% 20% 40% 60% 80% 100%

FLORES-H

WMT23-H

FLORES-G

WMT23-G 61.5% 4.7% 33.8%

56.0% 18.0% 26.0%

38.0% 30.0% 32.0%

50.3% 8.0% 41.7%

Ours Win Tie Ours Lose

Figure 4: Comparison between preference optimized
models and the SFT model on Task Zh→En. G and H
represent GPT-4 and humans as evaluators, respectively.

compare the translation abilities of two models 327

(SFT and RLHF models) by evaluating the relative 328

COMET scores of their translation results for the 329

same translated data. 330

Human Evaluation. When evaluating bidi- 331

rectional English-Chinese translation, we also 332

incorporate human evaluation. Proficient bilingual 333

native speakers conduct assessments to compare 334

translation quality. 335

4.3.2 Test Sets 336

We utilize the WMT23 test sets (Kocmi et al., 337

2023) and the Flores-200 devtest sets (Costa-jussà 338

et al., 2022) to assess the model’s performance. 339

Note that WMT23 does not cover all directions 340

for the multilingual experiment, but as we employ 341

comparative reference-free evaluation, we only use 342

English data from the WMT23 test sets as the 343

source. 344

5 Results and Disscussions 345

5.1 Main Results 346

Is it feasible to model translation preferences 347

without explicit preference annotations? 348

This paper explores the feasibility of modeling 349
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Faithfulness

Input The synthesis of the pharmaceutical compound acetylsalicylic acid , commonly known
as aspirin, marked a significant advancement in modern medicine.

SFT 阿司匹林的合成标志着现代医学的一个重要进步。

RLHF 乙酰水杨酸 （阿司匹林） 这种药物 的合成，标志着现代医学的一个重要进

步。
Commentary In the translation by RLHF, the term ‘乙酰水杨酸这种药物’ corresponds to ‘the

pharmaceutical compound acetylsalicylic acid’ in the input text, while in the translation
by SFT, this expression is missing, reflecting an improvement in translation faithfulness.

Expressiveness

Input After years of practice, running a marathon was a piece of cake for her.

SFT 经过多年的练习，对她来说，跑马拉松就 像吃蛋糕一样简单 。

RLHF 经过多年的锻炼，跑马拉松对她来说已是 小菜一碟 了。

Commentary In the SFT translation, ‘像吃蛋糕一样简单’ is a literal translation of "a piece of cake"
in the input text. In contrast, the translation in RLHF, ‘小菜一碟’, is a more authentic
Chinese expression, vivid and expressive. This case reflecting an enhancement in the
expressive power of the translation.

Elegance

Input As the crimson hues of dusk melded with the cerulean tapestry of the night sky, the poet
pondered over verses that could encapsulate the ephemeral beauty of the twilight.

SFT 夜幕降临，天空中的蓝色帷幕与黄昏的红色调和在一起，诗人开始思考如何用诗

句来捕捉这 短暂 的美好。

RLHF 暮色渐浓，绯红的余晖与夜空的青蓝交织，诗人思忖着如何用诗句来捕捉

这 转瞬即逝 的美景。

Commentary Both ‘转瞬即逝’ and ‘短暂’ can be used to convey the meaning of ‘ephemeral’ in the
input text, but the former implies a sense of regret and sorrow for the fleeting nature of
beautiful things, while the latter is a neutral term, simply describing temporal brevity.
This example demonstrates an improvement in the elegance of the translation.

Table 2: An case study on modeling human translation preference through RLHF. The yellow background text
reflects the improved translation quality of RLHF compared to SFT.

human translation preferences in the absence350

of explicit preference annotations. By com-351

paring the deficiencies of machine translation352

with human translation, the reward model learns353

human translation preferences, thus circumventing354

the need for costly preference data annotation.355

In this subsection, we empirically validate the356

effectiveness of this approach. Specifically, we357

use high-quality English-Chinese parallel corpora358

(refer to Section 4.1) as preferred data, while data359

generated by the SFT model (also fine-tuned using360

pre-heldout book data) serves as dispreferred data.361

From Figure 3 and 4, we observe that on the362

WMT23 and FLORES datasets, our preference-363

optimized model exhibits significantly improved364

win rates compared to the SFT model, regardless365

of whether the evaluator is GPT-4 or human.366

This indicates that with access to high-quality367

parallel corpora, even in the absence of explicit368

preference annotations, we can learn human369

translation preferences and improve the translation370

quality of the model. In Table 2, we demonstrate371

the quality improvement of translations after372

preference optimization through three cases.373

The language capability of reward model is374

0% 20% 40% 60% 80% 100%

FLORES-H

WMT23-H

FLORES-G

WMT23-G

49.2% 1.4% 49.4%

52.8% 2.6% 44.6%

34.0% 16.0% 50.0%

34.0% 14.0% 52.0%

Ours Win Tie Ours Lose

Figure 5: After replacing the base model in Figure 3
with LLaMA, compare the preference optimized model
and the SFT model in the En→Zh translation direction.

crucial for preference learning. 375

In the previous part of the experiment, we utilize 376

Ultra-LLaMA as the base model, which is a variant 377

of LLaMA further-pretrained on over 200B Chi- 378

nese tokens. To investigate the impact of language 379

capability differences on preference learning, we 380

replace the base model with original LLaMA, 381

which has a relatively weaker processing capability 382
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Dataset Evaluator Results Translation Direction
En→Fr En→Es En→Ru En→Zh En→Ar

WMT23

GPT-4
SFT Win 0.510 0.432 0.462 0.395 0.447

RLHF Win 0.430 0.439 0.490 0.552 0.534
Tie 0.060 0.129 0.048 0.053 0.019

COMET
SFT Win 0.416 0.386 0.450 0.326 0.450

RLHF Win 0.544 0.506 0.516 0.634 0.550
Tie 0.040 0.108 0.034 0.040 0.000

FLORES

GPT-4
SFT Win 0.495 0.378 0.455 0.347 0.416

RLHF Win 0.417 0.396 0.477 0.587 0.552
Tie 0.088 0.226 0.068 0.066 0.032

COMET
SFT Win 0.398 0.344 0.424 0.328 0.448

RLHF Win 0.536 0.472 0.526 0.624 0.552
Tie 0.066 0.184 0.050 0.048 0.000

Table 3: Results of preference modeling in five translation directions on the UN dataset.

for Chinese. We construct the SFT model using383

the same experimental data and training scheme384

as in the previous section and further optimize it385

for human preferences. As observed from Figure 5,386

the win rate of the preference-optimized model387

significantly decreased in comparison with the388

SFT model, and it even lost to the SFT model in389

human evaluations. It is worth noting that the SFT390

model trained on original LLaMA inherently lacks391

translation capabilities compared to the SFT model392

based on Ultra-LLaMA, thus highlighting more393

pronounced differences in the quality of generated394

translations compared to human translations. Intu-395

itively, this should decrease the learning difficulty396

of the reward model. However, the reward model397

constructed based on original LLaMA failed to398

effectively model human translation preferences.399

Therefore, we believe that the language capability400

of reward models plays an important role in401

preference learning.402

5.2 The Impact of the Inherent Nature of403

Human Translation404

The book dataset used in the previous section405

has high textual quality, containing complex406

linguistic structures and grammar phenomena, and407

is diverse in its domain sources. In contrast, the408

UN originates from specific domains and lacks409

complex linguistic structures and rhetorical devices410

commonly found in governmental documents. In411

this section, we conduct multilingual experiments412

using the UN dataset to explore the influence413

of intrinsic properties of the data on preference414

Chinese

French

Spanish

Russian

Arabic

0.60

0.50
0.54

0.76

0.90

0.60 Chinese

French

Spanish

Russian

Arabic

0.67

0.54
0.59

0.88

0.97

0.67

Figure 6: Quality Analysis of UN Datasets.

learning. 415

For simple domain-specific parallel corpora, the 416

quality of machine translations is comparable 417

to human translations. 418

As shown in Figure 6 (left), using COMET as the 419

evaluation metric, we find that the difference in 420

quality between translations from the SFT model 421

and human translations is minimal. Especially for 422

French and Spanish, only 50% and 54% of human 423

translations respectively outperform translations 424

from the SFT model. This indicates that when 425

parallel corpora do not contain complex linguistic 426

sources or sentence structures, the SFT model 427

can already achieve results comparable to human 428

translations. Clearly, the induction bias of "human 429

translations are superior to translations from the 430

SFT model" is no longer valid for such datasets. 431

Similar translation quality increases the diffi- 432

culty of preference learning. 433

To explore preference learning on the United 434

Nations dataset, we first remove 50% of the 435

data with small differences in COMET scores, 436
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Translation Direction
Optimized by RLHF Evaluator Results Transferred Translation Direction

En→Fr En→Es En→Ru En→Zh En→Ar

En→Zh

GPT-4
SFT Win 0.443 0.448 0.418 − 0.355

RLHF Win 0.540 0.493 0.563 − 0.563
Tie 0.018 0.030 0.020 − 0.083

COMET
SFT Win 0.390 0.410 0.475 − 0.420

RLHF Win 0.610 0.590 0.525 − 0.580
Tie 0.000 0.000 0.000 − 0.000

En→Ar

GPT-4
SFT Win 0.458 0.465 0.455 0.485 −

RLHF Win 0.510 0.458 0.533 0.485 −
Tie 0.033 0.078 0.013 0.030 −

COMET
SFT Win 0.410 0.505 0.435 0.580 −

RLHF Win 0.590 0.495 0.565 0.420 −
Tie 0.000 0.000 0.000 0.000 −

Table 4: Cross-lingual Transfer Results of Translation Preferences.

retaining data pairs with relatively clear preference437

tendencies. However, as shown in Figure 6 (right),438

in the directions of French and Spanish, nearly439

50% of SFT translations still outperform human440

translations. Therefore, we reannotate based on441

COMET scores to construct a preference dataset.442

As shown in Table 3, translation models optimized443

for preferences significantly outperform the SFT444

model in all five translation directions in terms of445

COMET scores. This is easily understood since446

our preference labels are derived from COMET447

scores. However, learned preferences may not448

necessarily be generalizable and aligned with449

human preferences. The evaluation results of GPT-450

4 in Table 3 indicate that in the English to Spanish451

and Russian directions, the preference-optimized452

model only has a slight advantage, and in the453

case of French, it even loses to the SFT model.454

This is mainly because the difference between455

SFT and human translations is minimal in French.456

In contrast, in the English to Arabic direction,457

the preference-optimized model consistently and458

significantly improves, mainly due to the distinct459

differences in preference data itself, making it460

easier for the reward model to learn generalizable461

translation preferences.462

5.3 Transferability Analysis463

With the powerful Chinese capabilities of the464

reward model and the notable quality disparities465

in Arabic preference data, translation models have466

achieved effective alignment with human prefer-467

ences in both English-to-Chinese and English-to-468

Arabic directions. In this section, we explore469

through experiments whether learned translation 470

preferences can be transferred across languages. As 471

observed from Table 4, RLHF training solely on 472

tasks in English-to-Chinese translation, the learned 473

human preferences can effectively transfer to other 474

languages and consistently improve performance. 475

Similarly, when English-to-Arabic translation is 476

used as the source task, improvements are also 477

evident in tasks such as English-to-French and 478

English-to-Russian translation. This indicates 479

that aligning with and transferring from human 480

preferences in other translation directions can be 481

a viable strategy when the current translation 482

direction lacks reward models with strong language 483

capabilities or high-quality preference data. 484

6 Conclusions 485

This paper explores modeling translation prefer- 486

ences with RLHF to improve the quality of machine 487

translation. We propose a cost-effective preference 488

learning strategy, optimizing reward models by 489

contrasting deficiencies in machine translation 490

compared to human translation. Learning human 491

preferences while avoiding expensive preference 492

data annotation. Further analysis suggests that the 493

language capability of the reward model and the 494

nature of the data itself affect the effectiveness of 495

preference learning. Additionally, learned pref- 496

erences exhibit cross-lingual transfer phenomena. 497

This may be beneficial for preference modeling in 498

low-resource languages. 499
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Limitations500

Due to cost limitations, we only collected English-501

Chinese aligned book data as a substitute for502

preference data, without covering more translation503

directions. Additionally, our human evaluations504

were limited to English-Chinese translation, with505

GPT-4 used as a proxy for manual evaluations506

in other translation directions. In the future,507

we will attempt to align with human translation508

preferences in more languages, especially low-509

resource languages, and conduct comprehensive510

manual evaluations in more translation directions.511
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A Implementation Details759

SFT stage. In the English-Chinese model, we use760

1/3 of the dataset, with a learning rate of 5e − 6,761

training for 2 epochs; In the multilingual model,762

approximately 3/4 of the training data is used for 1763

epoch, with a learning rate of 5e− 6.764

RM training stage. The reward model is765

initialized with the previous stage’s SFT model. In766

the English-Chinese model, the remaining 2/3 of767

the training data are used to form chosen-rejected768

pairs with the data generated by the SFT model;769

In the multilingual model, the remaining 1/4 of770

the training data is utilized, and only the top 50%771

of high-confidence data selected by the COMET772

model, is used to train the RM. Training continues773

with dynamic batch processing until early stopping774

criteria are met.775

RL stage. For English-Chinese model, we reuse776

the inputs from the RM stage’s training data777

as queries, and for multilingual model, we use778

English monolingual book data obtained from web779

crawling as queries. We set the KL divergence780

penalty coefficient to 0.02, and trained until early 781

stopping criteria were met.

You are a translation expert, and I need your help in
impartially judging the quality of two translations.
The judging criteria are as follows:
Flexibility of Translation: A good translation is
not confined to the original form, and it should be
smooth and clear. Poor-quality translations appear
rigid and awkward, merely translating word-for-
word according to the original form.
Fidelity of Translation: A good translation should
faithfully reflect the content of the original text. It
should not introduce content that does not exist in
the original, nor should it omit content present in
the original.
Accuracy and Elegance of Phrasing: In a good
translation, phrases and wording should adhere to
the conventions of the target language, and they
should be as accurate and elegant as possible.
Next, I will provide you with the original text and
two translations. Please let me know which one
is better according to these criteria. Please give
your judgment directly and do not output additional
explanations.

Table 5: Prompt template for GPT4 evaluaiton.
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