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Abstract
Understanding the various properties of glycans
with machine learning has shown some prelimi-
nary promise. However, previous methods mainly
focused on modeling the backbone structure of
glycans as graphs of monosaccharides (i.e., sugar
units), while they neglected the atomic struc-
tures underlying each monosaccharide, which
are actually important indicators of glycan prop-
erties. We fill this blank by introducing the
GlycanAA model for All-Atom-wise Glycan
modeling. GlycanAA models a glycan as a het-
erogeneous graph with monosaccharide nodes
representing its global backbone structure and
atom nodes representing its local atomic-level
structures. Based on such a graph, GlycanAA
performs hierarchical message passing to cap-
ture from local atomic-level interactions to global
monosaccharide-level interactions. To further en-
hance model capability, we pre-train GlycanAA
on a high-quality unlabeled glycan dataset, de-
riving the PreGlycanAA model. We design a
multi-scale mask prediction algorithm to endow
the model about different levels of dependen-
cies in a glycan. Extensive benchmark results
show the superiority of GlycanAA over exist-
ing glycan encoders and verify the further im-
provements achieved by PreGlycanAA. We main-
tain all resources at https://github.com/
kasawa1234/GlycanAA.

1. Introduction
Glycans, complex macromolecules composed of sugar
molecules, play pivotal roles in life science. They serve as
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essential structural components in cells, forming the back-
bone of extracellular matrices and cell membranes (Yanag-
ishita, 1993). Based on such structures, they modulate inter-
cellular communication (Liu & Wang, 2023) and impact bi-
ological processes such as immune response (Zhang, 2006)
and cell differentiation (Lau et al., 2007). With the accu-
mulation of glycan data in public repositories (Tiemeyer
et al., 2017; Yamada et al., 2020), it is a promising way
to understand various glycan properties and functions with
data-driven methods like machine learning.

In this research direction, most existing works (Burkholz
et al., 2021; Lundstrøm et al., 2022; Carpenter et al., 2022;
Alkuhlani et al., 2023) model a glycan as a graph with
monosaccharides (i.e., sugar units) as its nodes, and use
graph neural networks (GNNs) to predict various glycan
properties, e.g., glycosylation, immunogenicity, binding
affinity with a protein, etc. Though performing well on
some tasks, these methods fail to capture the atomic-level
structures underlying each monosaccharide, which are actu-
ally important determinants of many glycan properties and
functions. For example, atomic-level interactions between a
glycan and a protein determine their binding affinity.

There have been some preliminary attempts at modeling
all-atom-wise glycan structures with state-of-the-art small
molecule encoders (Xu et al., 2024). However, because
of the gap between a small molecule with tens of atoms
and a glycan with hundreds of atoms (i.e., essentially a
macromolecule), these small molecule encoders are shown
to be ineffective, which perform even worse than the models
utilizing only monosaccharide-level information. Therefore,
it is still to be answered how to realize the potential of all-
atom glycan modeling on boosting glycan understanding.

To answer this question, in this work, we propose the
GlycanAA model for All-Atom-wise Glycan modeling.
Note that, a glycan naturally possesses a hierarchical struc-
ture with (1) atoms making up the local structure of each
monosaccharide and (2) different monosaccharides making
up the global backbone structure of the glycan. Inspired
by this fact, we design GlycanAA based on a hierarchical
modeling approach. Specifically, GlycanAA first represents
a glycan as a heterogeneous graph consisting of (1) a set of
atom nodes for its local structures and (2) a set of monosac-
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charide nodes for its global structure. GlycanAA then per-
forms hierarchical message passing to model from local
atomic-level interactions to global monosaccharide-level
interactions. In this way, GlycanAA can completely capture
the covalent bonds forming each monosaccharide and the
glycosidic bonds forming the whole glycan.

To further enhance the representation power of GlycanAA,
we seek to endow it with the knowledge stored in abun-
dant unlabeled glycan data. We resort to self-supervised
pre-training to achieve this goal, where the PreGlycanAA
model is developed as a pre-trained version of GlycanAA.
Specifically, we first curate an unlabeled glycan dataset by
selecting 40,781 high-quality glycan data from the GlyTou-
Can database (Tiemeyer et al., 2017). GlycanAA is then
pre-trained on this dataset with a multi-scale mask prediction
algorithm. In this algorithm, partial atom and monosaccha-
ride nodes are masked at the input, and the model is asked
to recover these masked nodes. Through this approach, the
derived PreGlycanAA model acquires the dependencies be-
tween different atoms and monosaccharides in a glycan,
leading to informative glycan representations.

We evaluate the proposed models on the GlycanML bench-
mark (Xu et al., 2024). Experimental results show that
PreGlycanAA and GlycanAA respectively rank first and
second on the benchmark, and they substantially outperform
SOTA atomic-level small molecule encoders and glycan-
specific monosaccharide-level encoders. We further demon-
strate the effectiveness of the proposed hierarchical message
passing and multi-scale mask prediction methods through
extensive ablation studies.

2. Related Work
Glycan modeling with machine learning. With the grow-
ing size of experimental glycomics datasets, machine learn-
ing techniques are becoming increasingly important in gly-
coinformatics (Bojar & Lisacek, 2022; Li et al., 2022). Tra-
ditional machine learning approaches, such as support vec-
tor machines (SVMs), have been employed to learn patterns
from mass spectrometry data (Kumozaki et al., 2015; Liang
et al., 2014), predict glycosylation sites (Caragea et al.,
2007; Li et al., 2015; Taherzadeh et al., 2019; Pitti et al.,
2019), and classify glycans (Yamanishi et al., 2007). Along-
side the advancements in deep learning, recent models have
showcased the potential of deep learning in addressing gly-
comics challenges. Both sequence-based models (Bojar
et al., 2020b;a; Pakhrin et al., 2021; Dai et al., 2021) and
graph neural networks (GNNs) are utilized to predict vari-
ous glycan properties on the datasets like N-GlyDE (Pitti
et al., 2019) and SugarBase (Bojar et al., 2020b). Among all,
GlycanML (Xu et al., 2024) established a comprehensive
benchmark evaluating sequence-based models and GNNs
on a diverse set of 11 tasks.

While GNNs have demonstrated their strong performance
on specific tasks (Xu et al., 2024), their potential remains
constrained by the underutilization of atomic-level informa-
tion. Moreover, atomic-level encoders originally designed
for small molecules have been shown to be ineffective in
glycan modeling (Xu et al., 2024). In this study, we tackle
these limitations by proposing the GlycanAA model, a hier-
archical encoder for heterogeneous all-atom glycan graphs.

Self-Supervised Pre-training (SSP) in the biological do-
main. SSP has emerged as a powerful approach in deep
learning, greatly improving the ability to learn informative
and transferable representations from large-scale unlabeled
data (Devlin, 2018; He et al., 2020).

In recent years, SSP has also gained remarkable success
in the biological domain, where the availability of large-
scale biological datasets makes pre-training techniques well-
suited. For small molecules, SSP has improved molecu-
lar representations, facilitating tasks like molecular prop-
erty prediction and drug discovery (Hu et al., 2019; Xia
et al., 2022). Protein modeling is similarly benefited,
with methods like protein language modeling (Elnaggar
et al., 2021; Rives et al., 2021; Lin et al., 2022; Hayes
et al., 2024), geometric structure pre-training (Zhang et al.,
2023b; 2024) and multimodal approaches (Xu et al., 2023;
Duy Nguyen & Son Hy, 2024). SSP also benefits DNA
and RNA research with representative pre-trained models
like DNABERT (Ji et al., 2021), DNAGPT (Zhang et al.,
2023a), GenerRNA (Zhao et al., 2024), UNI-RNA (Wang
et al., 2023b) and Evo (Nguyen et al., 2024).

Despite these advances, the potential of SSP in glycan mod-
eling remains largely unexplored, presenting a new area of
opportunity. In this work, we fill this gap by introducing
the PreGlycanAA model which performs multi-scale pre-
training on a high-quality unlabeled glycan dataset, leading
to performance gains on various downstream glycan under-
standing tasks.

3. GlycanAA: All-Atom Glycan Modeling
with Hierarchical Message Passing

We propose the GlycanAA model for all-atom-wise glycan
modeling. In the following parts, we introduce its data rep-
resentation method in Section 3.1 and its encoding approach
in Section 3.2.

3.1. Heterogeneous Graph Representation of All-Atom
Glycan Structure

For a glycan g, we represent its atomic-level structure as a
heterogeneous graph g = (Va,Vm, E) composed of an atom
node set Va, a monosaccharide node set Vm and an edge
set E , as graphically illustrated in Figure 1(a). We state the
details of each graph component as below:
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Figure 1: Illustration of GlycanAA. (a) GlycanAA represents a glycan as an all-atom heterogeneous graph with atom nodes,
monosaccharide nodes and different types of edges between these nodes. (b) Based on such a graph, GlycanAA models
atom-atom, atom-monosaccharide and monosaccharide-monosaccharide interactions through hierarchical message passing.
Abbr., Glc: Glucose, GlcNAc: N-Acetylglucosamine, mono.: monosaccharide.

• Atom node set Va: This node set contains all heavy
atoms (i.e., non-hydrogen atoms) in a glycan, i.e., Va =
{ai}Ni=1 (ai stands for an atom; N denotes the number
of atoms in glycan g).

• Monosaccharide node set Vm: To clearly represent
the backbone structure of a glycan, we further intro-
duce a set of nodes representing all monosaccharides
that make up the glycan, i.e., Vm = {mj}Mj=1 (mj

stands for a monosaccharide; M denotes the number of
monosaccharides in glycan g).

• Edge set E : We consider three kinds of edges to compre-
hensively represent atom-atom, atom-monosaccharide
and monosaccharide-monosaccharide interactions, i.e.,
E = Eaa ∪ Eam ∪ Emm, as detailed below:

– Atom-atom edge set Eaa: This set of edges represent
the atomic-level structure of each monosaccharide.
Specifically, the covalent bonds in each monosac-
charide are collected, and each bond along with
its bond type (single, double, triple or aromatic
bond) makes up an edge, i.e., Eaa = {(a, a′, r)|r ∈
{single,double, triple, aromatic}}, where
(a, a′, r) denotes an edge connecting atom a
to atom a′ with bond type r. We include both
directions of a bond in this edge set.

– Atom-monosaccharide edge set Eam: We connect
each atom with its corresponding monosaccharide,
such that a monosaccharide is aware of its atomic-
level information, and each atom recognizes the gly-

can backbone structure. This edge set is represented
as Eam = {(a,m, ram)} ∪ {(m, a, ram)}, where
each corresponding pair of atom a and monosaccha-
ride m are connected by a bidirectional edge with
the edge type ram indicating atom-monosaccharide
interaction.

– Monosaccharide-monosaccharide edge set Emm:
We collect all glycosidic bonds in a glycan to rep-
resent its backbone structure. In specific, this edge
set can be represented as Emm = {(m,m′, r)|r ∈
Rg}, where (m,m′, r) denotes an edge connect-
ing monosaccharide m to monosaccharide m′ with
bond type r, and Rg denotes all possible types of
glycosidic bonds, e.g., alpha-1,6-glycosidic bond,
beta-1,4-glycosidic bond, etc. We follow Thomès
et al. (2021) to construct Rg and include both di-
rections of a bond in this edge set.

3.2. Hierarchical Message Passing on All-Atom Glycan
Graph

Based on the all-atom glycan graph introduced above,
GlycanAA extracts glycan representations using the
carefully-designed modules below. A graphical illustration
is shown in Figure 1(b).

Node embedding: We employ two codebooks to store the
embeddings of all possible types of atoms and monosaccha-
rides, respectively. For each node, we look up the corre-
sponding codebook to assign it an initial feature embedding.
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Hierarchical message passing: A glycan possesses a hier-
archical structure, where its local structure in each monosac-
charide is formed by atoms and covalent bonds in between,
and different monosaccharides are further connected by gly-
cosidic bonds, deriving its global backbone structure. We
propose to encode such a structure from local to global hier-
archically, which is proven to be effective in modeling other
biomolecules like small molecules (Yu & Gao, 2022; Han
et al., 2023) and proteins (Hermosilla et al., 2020; Wang
et al., 2023a). Specifically, in each message passing block,
we sequentially perform atom-atom, atom-monosaccharide
and monosaccharide-monosaccharide message passing to
capture from local interactions to global interactions.

Note that, these interactions are essentially multi-relational,
where atoms and monosaccharides interact with different
types of covalent and glycosidic bonds. To fully model
such interactions, we adopt relational graph convolution
(RGConv) (Schlichtkrull et al., 2018) as the basic message
passing module. Given a graph g0 = (V0, E0,R0) with
node set V0, edge set E0 and relation (i.e., edge type) set
R0, RGConv updates node representations Z0 = {zi}|V0|

i=1

by aggregating neighborhood information with per-relation
convolutional operations:

Z′
0 = {z′i}

|V0|
i=1 = RGConv(Z0;V0, E0,R0),

z′i = Wself zi + σ

(
BN

( ∑
r∈R0

∑
vj∈Nr(vi)

1

|Nr(vi)|
Wrzj

))
,

(1)

where Z ′
0 denotes the updated node representations,

Nr(vi) = {vj |(vj , vi, r) ∈ E0} are the neighbors of node vi
with relation r, Wr denotes the convolutional kernel matrix
for relation r, and Wself is the weight matrix for self-update.
Here BN denotes a batch normalization layer, and we use a
ReLU function as the activation σ(·).

Based on RGConv, we perform hierarchical message pass-
ing in three steps as below:

Atom-atom message passing:
Z ′
a = RGConv(Za;Va, Eaa,Raa), (2)

Atom-mono. message passing:
(Z ′′

a , Z
′
m) = RGConv

(
(Z ′

a, Zm);Va ∪ Vm, Eam,Ram

)
, (3)

Mono.-mono. message passing:
Z ′′
m = RGConv(Z ′

m;Vm, Emm,Rmm), (4)

where Raa contains all types of covalent bonds, Ram stores
the relation of atom-monosaccharide interaction, Rmm con-
tains all types of glycosidic bonds, and “mono.” is the
abbreviation of monosaccharide. In this hierarchical pro-
cess, atom representations Za are first updated to Z ′

a by
atom-atom message passing; atom and monosaccharide
representations are then updated to Z ′′

a and Z ′
m via atom-

monosaccharide message passing; finally, monosaccharide

representations are updated to Z ′′
m by monosaccharide-

monosaccharide message passing.

Monosaccharide-wise readout: After L blocks of hier-
archical message passing, we get the final atom represen-
tations ZL

a and monosaccharide representations ZL
m. We

readout all monosaccharide nodes to get a glycan-level rep-
resentation: zg = [mean(ZL

m),max(ZL
m)], where mean(·)

and max(·) denote mean and max pooling, respectively, and
[·, ·] stands for concatenation. We exclude atom nodes in the
readout, considering that (1) many monosaccharides share
similar or even the same atomic structure, leading to dupli-
cating information in representation readout, and (2) useful
atomic information has already been passed to monosaccha-
ride nodes during atom-monosaccharide message passing.
The ablation study in Section 5.3 also supports the superior-
ity of monosaccharide-wise readout over all-node readout.

4. PreGlycanAA: Pre-train All-Atom Glycan
Representations with Multi-Scale Mask
Prediction

To further improve the representation power of GlycanAA,
we endow it with the knowledge stored in abundant unla-
beled glycan data through self-supervised pre-training, de-
riving the PreGlycanAA model. In the following parts, we
introduce the setup of the pre-training dataset in Section 4.1
and the multi-scale pre-training algorithm in Section 4.2.

4.1. Curation of High-quality Unlabeled Glycan Dataset

To ensure the quality of pre-trained model, we aim to collect
as much informative and clean glycan data as possible. We
choose the GlyTouCan database (Tiemeyer et al., 2017) as
the data source for its high recognition in the glycoscience
domain and instant update of the latest glycan structures.
We first collect all the glycans deposited in GlyTouCan,
summing up to 219,857 glycans. Data cleaning is then
performed based on the following criteria:

• Data quality: We discard all the glycans whose struc-
tures are not fully solved. In specific, if there is any
monosaccharide or glycosidic bond with an undeter-
mined type in a glycan, we regard it as a low-quality
sample and remove it from pre-training.

• Data integrity: We preserve the glycan structures with
a single connected component. Those samples with
multiple components are discarded, so as to focus on
learning the interactions within a single glycan struc-
ture.

• Without data leakage: We remove the glycans that
occur in the dataset of any downstream task used in
our experiments, so as to prevent data leakage during
pre-training.
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Figure 2: Illustration of PreGlycanAA. Upon an all-atom glycan graph, multi-scale masking derives a masked glycan graph
with partially masked atoms and monosaccharides; PreGlycanAA learns multi-scale recovery to recover the complete glycan
graph. Abbr., mono.: monosaccharide.

After such a filtering process, we preserve a set of 40,781
high-quality, integral and data-leakage-proof glycan sam-
ples for pre-training.

4.2. Self-Supervised Pre-training via Multi-Scale Mask
Prediction

To acquire the rich information underlying the curated unla-
beled glycan dataset, we propose the PreGlycanAA model
that pre-trains GlycanAA with a multi-scale mask predic-
tion task, as illustrated in Figure 2. This algorithm endows
the model with knowledge about the dependencies between
different atoms and monosaccharides in a glycan, realized
by the following schemes.

Multi-scale masking: During pre-training, it is desired to
simultaneously acquire atom-atom, atom-monosaccharide
and monosaccharide-monosaccharide dependencies. To
achieve this goal, in an all-atom glycan graph (Section 3.1),
we mask partial atom nodes and partial monosaccharide
nodes, and the model is asked to recover these masked nodes
by leveraging their neighboring atoms and monosaccharides.
The two-scale masking is performed as below:

• Atom-scale masking: For all heavy atoms in a glycan,
we randomly select a part of them with the ratio ρa, and
they are represented by a type of Unknown-Atom.

• Monosaccharide-scale masking: We select partial
monosaccharides in a glycan with the ratio ρm.
On one hand, their corresponding monosaccharide
nodes in the graph are masked with a type of
Unknown-Monosaccharide. On other hand, to
avoid the trivial prediction of a masked monosaccha-
ride based on some of its characteristic atoms, we fur-
ther mask all atom nodes corresponding to the selected
monosaccharides with the Unknown-Atom type.

Multi-scale recovery: The PreGlycanAA model learns
to recover all these masked nodes. Specifically, for a

masked glycan graph g̃, the model first extracts its atom and
monosaccharide representations Z̃a = {z̃a|a ∈ Va} and
Z̃m = {z̃m|m ∈ Vm} through hierarchical message pass-
ing. Based on such representations with rich neighborhood
information, two MLP predictors Fa and Fm are respec-
tively employed to recover masked atoms and monosaccha-
rides, deriving the following pre-training loss:

Lpretrain =
1

|Vmask
a |+ |Vmask

m |

( ∑
a∈Vmask

a

LCE

(
Fa(z̃a), ya

)
+

∑
m∈Vmask

m

LCE

(
Fm(z̃m), ym

))
,

(5)

where Vmask
a and Vmask

m denote the set of masked atom
nodes and masked monosaccharide nodes, ya and ym rep-
resent the ground-truth type of a masked atom node a and
a masked monosaccharide node m, and LCE stands for the
cross-entropy loss. In summary, this pre-training method
encourages the model to capture different levels of depen-
dencies in a glycan by solving a glycan recovery problem.

5. Experiments
5.1. Experimental Setups

Benchmark tasks: We evaluate the effectiveness of the
proposed models on the GlycanML benchmark (Xu et al.,
2024). This benchmark contains a comprehensive set of 11
glycan property and function prediction tasks. Readers are
referred to the original paper for detailed task descriptions
and dataset statistics.

Model setups: For the sake of fair comparison with
other baseline models in the GlycanML benchmark, both
GlycanAA and PreGlycanAA are equipped with 3 hierar-
chical message passing blocks. For pre-training and down-
stream task training, we implement each prediction head as a
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Table 1: Benchmark results on GlycanML. We report mean (std) for each experiment. The best, second-best, and third-
best performances are denoted by bold, underline, and italic, respectively. Abbr., Immuno.: Immunogenicity; Glycos.:
Glycosylation; GlycanAA-SP: GlycanAA with a single message passing in each block; GlycanAA-AN: GlycanAA with
all-node readout.

Model
Taxonomy prediction

Immuno.
(AUPRC)

Glycos.
(Macro-F1)

Interaction
(Spearman’s ρ)

Weighted
Mean
Rank

Domain
(Macro-F1)

Kingdom
(Macro-F1)

Phylum
(Macro-F1)

Class
(Macro-F1)

Order
(Macro-F1)

Family
(Macro-F1)

Genus
(Macro-F1)

Species
(Macro-F1)

Monosaccharide-level Glycan Sequence Encoders
Transformer 0.612(0.009) 0.546(0.079) 0.316(0.014) 0.235(0.022) 0.147(0.007) 0.114(0.039) 0.065(0.001) 0.047(0.008) 0.856(0.012) 0.729(0.069) 0.244(0.009) 16.09
Shallow CNN 0.629(0.005) 0.559(0.024) 0.388(0.024) 0.342(0.020) 0.238(0.016) 0.200(0.014) 0.149(0.009) 0.115(0.008) 0.776(0.027) 0.898(0.009) 0.261(0.008) 12.53
LSTM 0.621(0.012) 0.566(0.076) 0.413(0.036) 0.272(0.029) 0.174(0.023) 0.145(0.012) 0.098(0.016) 0.078(0.008) 0.912(0.068) 0.862(0.016) 0.280(0.001) 11.00
ResNet 0.635(0.009) 0.505(0.025) 0.331(0.061) 0.301(0.010) 0.183(0.082) 0.165(0.019) 0.112(0.018) 0.073(0.007) 0.754(0.124) 0.919(0.004) 0.273(0.004) 12.09

Monosaccharide-level Glycan Graph Encoders
MPNN 0.632(0.007) 0.638(0.050) 0.372(0.019) 0.326(0.015) 0.235(0.046) 0.161(0.004) 0.136(0.008) 0.104(0.009) 0.674(0.119) 0.910(0.006) 0.217(0.002) 18.34
GCN 0.635(0.001) 0.527(0.006) 0.325(0.024) 0.237(0.009) 0.147(0.005) 0.112(0.010) 0.095(0.009) 0.080(0.006) 0.688(0.023) 0.914(0.011) 0.233(0.009) 18.38
GAT 0.636(0.003) 0.523(0.007) 0.301(0.014) 0.265(0.012) 0.190(0.009) 0.130(0.005) 0.125(0.010) 0.103(0.009) 0.685(0.053) 0.934(0.038) 0.229(0.002) 16.94
GIN 0.632(0.004) 0.525(0.007) 0.322(0.046) 0.300(0.027) 0.179(0.002) 0.152(0.005) 0.116(0.022) 0.105(0.011) 0.716(0.051) 0.924(0.013) 0.249(0.004) 15.06
CompGCN 0.629(0.004) 0.568(0.047) 0.410(0.013) 0.381(0.024) 0.226(0.011) 0.193(0.012) 0.166(0.009) 0.138(0.014) 0.692(0.006) 0.945(0.002) 0.257(0.004) 12.19
RGCN 0.633(0.001) 0.647(0.054) 0.462(0.033) 0.373(0.036) 0.251(0.012) 0.203(0.008) 0.164(0.003) 0.146(0.004) 0.780(0.006) 0.948(0.004) 0.262(0.005) 6.78
PreRGCN 0.636(0.005) 0.664(0.032) 0.451(0.023) 0.389(0.016) 0.265(0.015) 0.205(0.006) 0.172(0.010) 0.139(0.008) 0.781(0.019) 0.949(0.015) 0.263(0.018) 5.34
GearNet 0.471(0.005) 0.577(0.036) 0.395(0.025) 0.389(0.010) 0.256(0.007) 0.189(0.004) 0.165(0.003) 0.136(0.003) 0.740(0.015) 0.892(0.027) 0.248(0.004) 15.66
GearNet-Edge 0.628(0.009) 0.573(0.030) 0.396(0.010) 0.384(0.010) 0.262(0.006) 0.200(0.010) 0.177(0.008) 0.140(0.005) 0.768(0.023) 0.909(0.010) 0.250(0.003) 12.25
ProNet 0.627(0.007) 0.590(0.015) 0.438(0.012) 0.380(0.008) 0.242(0.005) 0.192(0.018) 0.146(0.010) 0.128(0.004) 0.778(0.019) 0.930(0.015) 0.252(0.002) 10.31

All-Atom Glycan Encoders
All-Atom RGCN 0.637(0.001) 0.624(0.007) 0.293(0.014) 0.156(0.028) 0.112(0.023) 0.096(0.006) 0.063(0.007) 0.035(0.005) 0.520(0.017) 0.928(0.017) 0.215(0.003) 19.88
Graphormer 0.640(0.006) 0.468(0.054) 0.249(0.041) 0.201(0.013) 0.142(0.019) 0.112(0.009) 0.077(0.006) 0.054(0.044) 0.637(0.062) 0.856(0.009) 0.211(0.027) 22.91
GraphGPS 0.477(0.002) 0.511(0.040) 0.314(0.022) 0.261(0.051) 0.153(0.018) 0.134(0.008) 0.105(0.006) 0.065(0.017) 0.637(0.075) 0.883(0.032) 0.247(0.016) 20.38
Uni-Mol+ 0.639(0.004) 0.446(0.034) 0.227(0.023) 0.174(0.019) 0.128(0.020) 0.109(0.017) 0.077(0.012) 0.056(0.003) 0.789(0.099) 0.885(0.045) 0.241(0.007) 16.56

GlycanAA-SP 0.589(0.073) 0.635(0.078) 0.444(0.019) 0.395(0.009) 0.270(0.006) 0.205(0.005) 0.176(0.015) 0.154(0.009) 0.755(0.010) 0.946(0.017) 0.241(0.003) 11.22
GlycanAA-AN 0.609(0.028) 0.685(0.001) 0.453(0.037) 0.427(0.027) 0.270(0.009) 0.199(0.012) 0.179(0.007) 0.155(0.003) 0.765(0.024) 0.947(0.025) 0.241(0.004) 10.44
GlycanAA 0.642(0.002) 0.683(0.002) 0.484(0.009) 0.429(0.022) 0.291(0.003) 0.221(0.002) 0.198(0.011) 0.157(0.011) 0.792(0.021) 0.950(0.020) 0.288(0.003) 2.56

Pre-trained All-Atom Glycan Encoders
VabsNet 0.607(0.004) 0.622(0.022) 0.363(0.006) 0.261(0.023) 0.175(0.015) 0.125(0.003) 0.104(0.005) 0.068(0.006) 0.742(0.040) 0.903(0.015) 0.160(0.008) 19.03
GlycanAA-Attribute 0.628(0.007) 0.687(0.001) 0.457(0.028) 0.392(0.033) 0.263(0.011) 0.208(0.004) 0.188(0.001) 0.143(0.003) 0.722(0.009) 0.925(0.011) 0.263(0.009) 10.47
GlycanAA-Context 0.637(0.002) 0.643(0.048) 0.453(0.026) 0.386(0.038) 0.259(0.033) 0.205(0.005) 0.177(0.004) 0.144(0.007) 0.768(0.013) 0.946(0.018) 0.270(0.010) 7.06
PreGlycanAA 0.661(0.025) 0.688(0.001) 0.502(0.018) 0.447(0.014) 0.297(0.005) 0.233(0.010) 0.203(0.003) 0.174(0.004) 0.850(0.044) 0.961(0.011) 0.297(0.002) 1.5

2-layer MLP with GELU activation. In protein-glycan inter-
action prediction, the ESM-1b pre-trained protein language
model (Rives et al., 2021) with fixed model parameters is
used to extract protein representations. All implementa-
tions are based on the PyTorch (Paszke et al., 2019) and
TorchDrug (Zhu et al., 2022) libraries.

Pre-training setups: The PreGlycanAA model is pre-
trained with an Adam optimizer (learning rate: 5 × 10−4,
weight decay: 1× 10−3, batch size: 256) for 50 epochs on
the curated pre-training dataset (Section 4.1). We set the
atom mask ratio ρa and the monosaccharide mask ratio ρm
as 0.45 and 0.15, and the sensitivities of these two parame-
ters are analyzed in Section 5.3. We provide the accuracy
and perplexity curves of pre-training in Appendix A.1. The
pre-training is conducted on a local server with 200 CPU
cores and 10 NVIDIA GeForce RTX 4090 GPUs (24GB).

Downstream training setups: Following the standard of
GlycanML benchmark, we conduct all experiments on seeds
0, 1 and 2 and report the mean and standard deviation of
results. For GlycanAA, we train it with an Adam optimizer
(learning rate: 5 × 10−4, weight decay: 1 × 10−3) for 50
epochs with batch size 256 on taxonomy, immunogenicity

and glycosylation type prediction and for 10 epochs with
batch size 32 on interaction prediction. For fine-tuning
PreGlycanAA on downstream tasks, we keep other settings
the same as GlycanAA except that the learning rate of the
encoder part is set as one tenth of that of the following task-
specific MLP predictor (i.e., encoder learning rate: 5×10−5,
predictor learning rate: 5 × 10−4). For model selection,
we perform validation after each training epoch, and the
checkpoint with the best validation performance is chosen
for test. All downstream experiments are conducted on a
local server with 100 CPU cores and 4 NVIDIA GeForce
RTX 4090 GPUs (24GB).

5.2. Benchmark Results on GlycanML

Evaluation metrics: As in the original benchmark, we
use Macro-F1 score as the metric for taxonomy and gly-
cosylation type prediction, AUPRC as the metric for im-
munogenicity prediction, Spearman’s ρ as the metric for
interaction prediction, and weighted mean rank as the met-
ric for a model’s comprehensive performance. Weighted
mean rank computes the weighted average of a model’s
ranks over all tasks, where each taxonomy prediction task

6



Modeling All-Atom Glycan Structures via Hierarchical Message Passing and Multi-Scale Pre-training

weighs 1/8 and each of the other three tasks weighs 1, so as
to balance between different types of tasks.

Baselines: We compare our models with the baselines stud-
ied in the GlycanML benchmark (Xu et al., 2024), includ-
ing four monosaccharide-level glycan sequence encoders
(i.e., LSTM (Hochreiter & Schmidhuber, 1997), ResNet (He
et al., 2016), Transformer (Vaswani et al., 2017) and Shallow
CNN (Shanehsazzadeh et al., 2020)), nine monosaccharide-
level glycan graph encoders (GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2017), MPNN (Gilmer et al.,
2017), CompGCN (Vashishth et al., 2019), GIN (Xu et al.,
2018), RGCN (Schlichtkrull et al., 2018), GearNet (Zhang
et al., 2023b), GearNet-Edge (Zhang et al., 2023b) and
ProNet (Wang et al., 2023a)), four state-of-the-art all-atom
molecular encoders (i.e., Graphormer (Ying et al., 2021),
GraphGPS (Rampášek et al., 2022), Uni-Mol+ (Lu et al.,
2024) and VabsNet (Zhuang et al., 2024)). Given the strong
performance of RGCN on modeling monosaccharide-level
glycan graphs as shown in Xu et al. (2024), we additionally
evaluate it on modeling the all-atom molecular graphs of gly-
cans, namely All-Atom RGCN, and also pre-train it with a
similar mask prediction algorithm as PreGlycanAA, namely
PreRGCN. The pre-training effectiveness of PreGlycanAA
and PreRGCN are compared in Appendix A.2. To study pre-
training more in depth, we employ the pre-training methods,
attribute masking and context prediction, proposed in Hu
et al. (2019) to pre-train GlycanAA, deriving the GlycanAA-
Attribute and GlycanAA-Context models to compare with
PreGlycanAA.

Results: In Table 1, we report the performance of the pro-
posed models and various baselines. Based on these results,
we highlight the findings below:

• The superiority of GlycanAA over existing glycan
encoders illustrates the benefits of all-atom glycan
modeling. GlycanAA outperforms the best baseline re-
sult on 10 out of 11 tasks and also surpasses all baselines
in terms of weighted mean rank. It is worth noticing
that, in terms of weighted mean rank, GlycanAA also
outperforms the PreRGCN model pre-trained with a
similar approach as PreGlycanAA. Therefore, it is ben-
eficial to utilize atomic-level information in addition to
monosaccharide-level information, and the advantage
of GlycanAA derives from well leveraging both kinds
of information. Also, the superiority of GlycanAA
over PreRGCN illustrates the importance of hierarchical
structures to our pre-training method.

• The performance gains of PreGlycanAA over
GlycanAA demonstrate the effectiveness of the pro-
posed pre-training method. PreGlycanAA outper-
forms GlycanAA on all 11 tasks and ranks first among
all models in terms of weighted mean rank. Given
the same model architecture between PreGlycanAA

and GlycanAA, we confirm that the proposed multi-
scale pre-training method can enhance the model ca-
pability. The obvious advantage of PreGlycanAA over
GlycanAA-Attribute and GlycanAA-Context demon-
strates that the proposed multi-scale mask prediction
method is well-suited to self-supervised glycan repre-
sentation learning.

• Directly applying performant small molecule en-
coders or monosaccharide-level glycan encoders
to all-atom glycan modeling is unpromising.
Graphormer, GraphGPS and Uni-Mol+ have been
shown to be effective in modeling small molecules with
tens of atoms (Shi et al., 2022). However, benchmark
results show that they do not perform well when model-
ing all-atom molecular graphs of glycans with hundreds
of atoms. Similarly, compared to the well-performing
monosaccharide-level RGCN, the performance of All-
Atom RGCN is unsatisfactory. Thus, dedicated designs
for all-atom glycan modeling are highly demanded.

5.3. Ablation Studies

Effect of hierarchical message passing: To study the ne-
cessity of hierarchical message passing, we substitute it with
a single message passing in each message passing block of
GlycanAA, where the single message passing is also imple-
mented as relational graph convolution (Equation (1)). We
name this model variant as GlycanAA-SP. By comparing
GlycanAA and GlycanAA-SP in Table 1, we can observe
the obvious advantages of GlycanAA, where it achieves
a better result on all 11 tasks and also on weighted mean
rank. These results show the benefit of passing messages
hierarchically on the proposed all-atom glycan graph.

Effect of monosaccharide-wise readout: In GlycanAA,
we by default use monosaccharide-wise readout. Here, we
compare this scheme with all-node readout, where mean
and max pooling are performed over all atom and monosac-
charide nodes. The model variant with all-node readout is
named as GlycanAA-AN. According to Table 1, GlycanAA
outperforms GlycanAA-AN on 10 out of 11 tasks and also
on weighted mean rank. Therefore, monosaccharide-wise
readout is a better readout scheme, in which only useful
atomic information is retained, leading to more discrimina-
tive glycan representations and thus better performance.

Sensitivity of PreGlycanAA to mask ratio: In this ex-
periment, we analyze how different atom and monosaccha-
ride mask ratios affect the performance of PreGlycanAA
on downstream tasks. Specifically, we uniformly se-
lect atom and monosaccharide mask ratios between 0
and 1 with the interval of 0.15 and combine them into
36 pairs: (ρa, ρm) ∈ {0.15, 0.3, 0.45, 0.6, 0.75, 0.9} ×
{0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. We pre-train a model un-
der each mask ratio pair and evaluate its performance on
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(a) Immuno. with Randomly-Initialized 
GlycanAA 

(b) Immuno. with Pre-trained 
PreGlycanAA

(c) Glycos. with Randomly-Initialized 
GlycanAA

(d) Glycos. with Pre-trained 
PreGlycanAA

: N-glycosylation : Free: O-glycosylation: Non-immunogenic : Immunogenic

Figure 3: Visualization of glycan representations extracted by GlycanAA and PreGlycanAA on downstream task datasets.
Abbr., Immuno.: Immunogenicity; Glycos.: Glycosylation.
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Figure 4: Average Macro-F1 score of PreGlycanAA on
eight taxonomy prediction tasks under different atom and
monosaccharide mask ratios.

eight glycan taxonomy prediction tasks. In Figure 4, we
visualize the average Macro-F1 score on eight tasks for
all models. The pre-trained model achieves prominent per-
formance when ρa is around 0.45 and ρm is around 0.15.
Under such settings, a suitable balance is achieved between
masked and observed information in a glycan, and thus the
model can be effectively pre-trained.

5.4. Computational Efficiency Study

To evaluate the additional computational cost brought by
all-atom glycan modeling compared to monosaccharide-
level modeling, we study the computational efficiency of
GlycanAA against a well-performing monosaccharide-level
glycan encoder, RGCN. Specifically, we evaluate their train-
ing and inference speed in terms of throughput (i.e., the
number of samples processed in one second) and their train-
ing and inference memory cost in terms of Mebibyte (MiB).
Evaluation details are stated in Appendix A.4.

In Table 2, we present the efficiency comparisons be-
tween RGCN and GlycanAA. For training/inference speed,
GlycanAA is about 22% slower than RGCN, and, for train-
ing/inference memory cost, GlycanAA consumes about
19% more memory than RGCN. Such a moderate extra

Table 2: Efficiency comparison between RGCN and
GlycanAA on the taxonomy prediction dataset.

Model
Training speed
(#samples / s)

Inference speed
(#samples / s)

Training memory
cost (MiB)

Inference memory
cost (MiB)

RGCN 885.7 1486.9 6911.6 3563.5
GlycanAA 679.8 1158.6 8213.9 4251.2

cost brings the superior performance of GlycanAA over
RGCN on all 11 benchmark tasks and also on the weighted
mean rank (shown in Table 1), illustrating the “worth” of
modeling glycans on the all-atom level.

5.5. Visualization

To intuitively study the effect of pre-training, we visual-
ize the glycan representations extracted by the GlycanAA
with random weights and the PreGlycanAA with pre-trained
weights, respectively. We use t-SNE (Van der Maaten &
Hinton, 2008) for visualization. The results on the datasets
of immunogenicity and glycosylation type prediction are
shown in Figure 3, and more results are in Appendix A.3.

In Figure 3, after pre-training, the model can more effec-
tively separate the samples of different classes and gather
the samples of the same class together, leading to smoother
decision boundaries. This effect leads to better general-
ization performance of PreGlycanAA over GlycanAA on
immunogenicity and glycosylation type prediction. These
visualization results provide a way to interpret how pre-
training benefits downstream glycan understanding tasks.

6. Conclusions and Future Work
We propose the GlycanAA model to encode heterogeneous
all-atom glycan graphs with hierarchical message pass-
ing. GlycanAA is further pre-trained on a set of high-
quality unlabeled glycans through multi-scale mask predic-
tion, deriving the PreGlycanAA model. On the GlycanML
benchmark, we illustrate the superiority of GlycanAA and
PreGlycanAA over existing glycan encoders.
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In the future, we will focus on boosting real-world glycan-
related applications with the proposed models. For example,
we will study how vaccine design and cancer research can
be promoted by all-atom glycan machine learning models.

Impact Statement
This work aims to build all-atom glycan machine learning
models and use the models to well tackle various glycan
understanding tasks, including glycan taxonomy prediction,
glycan immunogenicity prediction, glycosylation type pre-
diction and protein-glycan interaction prediction. The pro-
posed models can potentially promote real-world glycan-
related applications such as vaccine design (Kaplonek et al.,
2018) and cancer research (Taniguchi & Kizuka, 2015).

However, we should not ignore the potential risks brought
by glycan machine learning models, e.g., designing vaccines
with severe adverse reactions. To mitigate such risks, our
future work will encourage the responsible usage of the
proposed models for real-world problems.

Acknowledgments
This work is supported by the National Key R&D Program
of China (2024YFA1014003), National Natural Science
Foundation of China (92470121, 62402016), CAAI-Ant
Group Research Fund, and High-performance Computing
Platform of Peking University.

References
Alkuhlani, A., Gad, W., Roushdy, M., and Salem, A.-B. M.

Gnngly: Graph neural networks for glycan classification.
IEEE Access, 2023.

Bojar, D. and Lisacek, F. Glycoinformatics in the artifi-
cial intelligence era. Chemical Reviews, 122(20):15971–
15988, 2022.

Bojar, D., Camacho, D. M., and Collins, J. J. Using natural
language processing to learn the grammar of glycans.
bioRxiv, pp. 2020–01, 2020a.

Bojar, D., Powers, R. K., Camacho, D. M., and Collins, J. J.
Sweetorigins: Extracting evolutionary information from
glycans. bioRxiv, pp. 2020–04, 2020b.

Burkholz, R., Quackenbush, J., and Bojar, D. Using graph
convolutional neural networks to learn a representation
for glycans. Cell Reports, 35(11), 2021.

Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D., and
Honavar, V. Glycosylation site prediction using ensem-
bles of support vector machine classifiers. BMC bioinfor-
matics, 8:1–13, 2007.

Carpenter, E. J., Seth, S., Yue, N., Greiner, R., and Derda,
R. Glynet: a multi-task neural network for predicting
protein–glycan interactions. Chemical Science, 13(22):
6669–6686, 2022.

Dai, B., Mattox, D. E., and Bailey-Kellogg, C. Atten-
tion please: modeling global and local context in glycan
structure-function relationships. bioRxiv, pp. 2021–10,
2021.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Duy Nguyen, V. T. and Son Hy, T. Multimodal pretraining
for unsupervised protein representation learning. Biology
Methods and Protocols, pp. bpae043, 2024.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G.,
Wang, Y., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., et al. Prottrans: Toward understanding the
language of life through self-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
44(10):7112–7127, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Han, S., Fu, H., Wu, Y., Zhao, G., Song, Z., Huang, F.,
Zhang, Z., Liu, S., and Zhang, W. Himgnn: a novel hier-
archical molecular graph representation learning frame-
work for property prediction. Briefings in Bioinformatics,
24(5):bbad305, 2023.

Hayes, T., Rao, R., Akin, H., Sofroniew, N. J., Oktay, D.,
Lin, Z., Verkuil, R., Tran, V. Q., Deaton, J., Wiggert, M.,
et al. Simulating 500 million years of evolution with a
language model. bioRxiv, pp. 2024–07, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.
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A. Appendix
A.1. Accuracy and Perplexity Curves during

Pre-training
: Monosaccharide : Atom

(a) Accuracy over Epochs during Pre-training (b) Perplexity over Epochs during Pre-training

Figure 5: The accuracy and perplexity curves during the
pre-training phase of PreGlycanAA.

In this appendix, we present the accuracy and perplexity
curves that are obtained during the pre-training phase of
PreGlycanAA. These curves provide valuable insights into
the learning dynamics and the effectiveness of the proposed
pre-training method.

Accuracy curve: The accuracy curves in Figure 5(a) il-
lustrate the model’s ability to recover masked atoms and
monosaccharides correctly along the pre-training process.
The initial steep incline suggests rapid learning in the early
stage, followed by a gradual approach towards an asymptote,
signifying the model’s convergence. We can observe the
slower convergence of the monosaccharide recovery accu-
racy compared to the atom recovery accuracy, indicating
that the masked monosaccharide prediction task is harder to
learn.

Perplexity curve: Perplexity is a measurement of how well
a probability distribution predicts a sample, often used in the
context of language modeling (Devlin, 2018). A lower per-
plexity indicates that the model is more confident at recov-
ering masked elements to their true values. The perplexity
curves in Figure 5(b) reflect the reduction of model’s uncer-
tainty as pre-training proceeds. Similar to accuracy curves,
the convergence of the monosaccharide recovery perplexity
is slower than that of the atom recovery perplexity, again in-
dicating the higher difficulty of the masked monosaccharide
prediction task.

A.2. Effect of Model Architecture on Pre-training

In this study, we investigate the effect of model capacity
on solving the pre-training task. We select two typical
models: (1) the GlycanAA model that models glycans on
both monosaccharide and atom levels, and (2) the RGCN
model that only performs monosaccharide-level modeling.
In Figure 6, we present the accuracy and cross entropy loss
curves of pre-training for these two models. According to
the results, compared to RGCN, GlycanAA performs clearly
better in pre-training with higher accuracy and lower cross
entropy loss, thanks to its higher model capacity.

: GlycanAA : RGCN

(a) Accuracy over Epochs during Pre-training (b) Cross Entropy Loss over Epochs during Pre-training

Figure 6: The accuracy and cross entropy loss curves
of masked monosaccharide prediction during pre-training
GlycanAA and RGCN.

By checking the benchmark results in Table 1, we can ob-
serve that the pre-trained GlycanAA (i.e., PreGlycanAA)
achieves clearly more performance gains on downstream
tasks after pre-training, compared to the pre-trained RGCN
(i.e., PreRGCN). This correlation between higher model
capacity, higher pre-training performance and more perfor-
mance gains on downstream tasks is also reported in other
domains (Devlin, 2018; He et al., 2020; Hu et al., 2019).

A.3. Additional Visualization of Glycan Representations

In Figure 7, we present the glycan representations extracted
by GlycanAA and PreGlycanAA on the datasets of eight
glycan taxonomy prediction tasks, where GlycanAA is ran-
domly initialized and PreGlycanAA is pre-trained. We em-
ploy the t-SNE algorithm (Van der Maaten & Hinton, 2008)
for dimensionality reduction.

According to these results, we can observe the better clus-
tering behavior of PreGlycanAA, where it more effectively
separates the samples of different classes and gathers the
samples of the same class together. This phenomenon is
more visually significant on the tasks with fewer classes,
e.g., domain and kingdom prediction tasks. The better clus-
tering behavior of PreGlycanAA leads to its superior perfor-
mance over GlycanAA on all 8 taxonomy prediction tasks,
as shown in Table 1.

A.4. Evaluation Details of Computational Efficiency
Study

We evaluate the training and inference speed of GlycanAA
and RGCN in terms of throughput (i.e., the number of
samples processed in one second) and their training and
inference memory cost in terms of Mebibyte (MiB). The
evaluation is performed on the dataset of glycan taxonomy
prediction for its good coverage of different kinds of gly-
cans (#training/validation/test samples: 11,010/1,280/919,
average #monosaccharides per glycan: 6.39, minimum
#monosaccharides per glycan: 2, maximum #monosaccha-
rides per glycan: 43). All experiments are conducted on a
machine with 32 CPU cores and 1 NVIDIA GeForce RTX
4090 GPU (24GB), and the batch size is set as 256.
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(a) Domain with Randomly-Initialized 

GlycanAA 

(b) Domain with Pre-trained 

PreGlycanAA

(c) Kingdom with Randomly-Initialized 

GlycanAA

(d) Kingdom with Pre-trained 

PreGlycanAA

(e) Phylum with Randomly-Initialized 

GlycanAA 

(f) Phylum with Pre-trained 

PreGlycanAA

(g) Class with Randomly-Initialized 

GlycanAA

(h) Class with Pre-trained 

PreGlycanAA

(i) Order with Randomly-Initialized 

GlycanAA 

(j) Order with Pre-trained 

PreGlycanAA

(k) Family with Randomly-Initialized 

GlycanAA

(l) Family with Pre-trained 

PreGlycanAA

(m) Genus with Randomly-Initialized 

GlycanAA 

(n) Genus with Pre-trained 

PreGlycanAA

(o) Species with Randomly-Initialized 

GlycanAA

(p) Species with Pre-trained 

PreGlycanAA

Figure 7: Visualization of glycan representations extracted by GlycanAA and PreGlycanAA on taxonomy prediction tasks.
We use different colors to indicate the glycans of different classes, and the color-class correspondence is omitted for
concision (many tasks own hundreds of classes).
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