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Abstract

We present a scalable Gaussian Process (GP) method that can fit and predict full deriva-
tive observations called DSoftKI. It extends SoftKI, a method that approximates a kernel
via softmax interpolation from learned interpolation point locations, to the setting with
derivatives. DSoftKI enhances SoftKI’s interpolation scheme to incorporate the directional
orientation of interpolation points relative to the data. This enables the construction of a
scalable approximate kernel, including its first and second-order derivatives, through inter-
polation. We evaluate DSoftKI on a synthetic function benchmark and high-dimensional
molecular force field prediction (100-1000 dimensions), demonstrating that DSoftKI is ac-
curate and can scale to larger datasets with full derivative observations than previously
possible.

1 Introduction

A convenient feature of using a Gaussian Process (GP) to approximate functions is its ability to incorporate
derivative observations since the derivative of a GP is also a GP. This enables more informative modeling
when derivative data is available (e.g., in the physical sciences). However, utilizing a GP with derivative
observations, abbreviated GPwD, for regression faces significant scalability challenges. In particular, vanilla
GPwD inference has time complexity O(n3d®) where n is the number of data points in a dataset and d is
the dimensionality of the data. Thus, GPwDs have scaling challenges in both n and d.

To alleviate these challenges, scalable GP regression methods such as a Stochastic Variational GP
(SVGP) (Hensman et all 2013) have been extended to the setting with derivatives (DSVGP) (Padidar
et al., [2021). It uses m < n inducing points (Quinonero-Candela & Rasmussen, [2005; |Snelson & Ghahra-
mani, 2005) and achieves a time complexity of O(m?3d?) for posterior inference. Since the cubic scaling in d
can be prohibitive, a DSVGP with directional derivatives (DDSVGP) (Padidar et al., [2021)) introduces p < d
inducing directions, an analogue of inducing points for dimensions, to achieve a time complexity of O(m?3p3)
for posterior inferenceE] However, this comes at the cost of directly predicting derivatives and introducing
further approximations.

In this paper, we present a GPwD method called DSoftKI that can fit and predict all derivative information
(Section. It is an extension of SoftKI (Camano & Huang, [2025), a scalable GP method that approximates
a kernel via softmax interpolation from m < n interpolation points whose locations are learned. Thus,
it blends aspects of kernel interpolation (Wilson & Nickischl |2015)) which introduces kernel interpolation
from a structured lattice with variational inducing point methods (Titsias, [2009) where inducing points are
adapted to the dataset. To handle gradient information, DSoftKI modifies SoftKI’s interpolation scheme so
that each interpolation point takes into account its directional orientation with respect to the underlying
data. A scalable approximate kernel, including its first and second-order derivatives, can then be constructed
via interpolation. This contrasts with methods such as DSVGP/DDSVP, which introduce separate inducing
points for values and gradients as well as require computing kernel derivatives, leading to scaling challenges in
both n and d. As a result, DSoftKI achieves a time complexity of O(m?nd) for posterior inference. Because

1This assumes mp? > d which no longer holds around d = 2000 for m = 500 and p = 2. See Appendix [C| for details.



Under review as submission to TMLR

Branin Vanilla DSVGP DDSVGP

11111
\ \ A

Figure 1: Comparison of GPwD regression with vanilla GPwD, DSVGP, DDSVGP, and DSoftKI on the
Branin surface (2D). We plot the contours of the surface, the gradient with respect to the first argument
(V1), and the gradient with respect to the second argument (V3). Vanilla GPwD is accurate but intractable
for sizable n and/or d. DSVGP forms a nice approximation of the original surface but is intractable for large
d. DDSVGP with uses p = 2 directional derivatives to enhance scalability but loses fidelity in modeling the
surface. DSoftKI provides an accurate and scalable approximation of the surface.

DSoftKl (Ours)
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Method Predict V?  Kernel V?  Posterior Inference
Vanilla yes yes O(n3d?)
DSVGP yes yes O(m3d3)
DDSVGP no yes O(m3p?)
DSoftKI (ours) yes no O(m?nd)

Table 1: A comparison of GPwD methods across several dimensions. As a reminder, n is the number
of points, d is the dimensionality of the data, m is the number of inducing/interpolation points, and p
is the number of inducing directions. The proposed method, DSoftKI, is scalable, predicts full derivative
observations, and does not require computing first or second-order derivatives of the kernel to construct the
GPwD kernel.

each datapoint consists of d + 1 values to fit, we can view DSoftKI as achieving similar complexity to an
approximate GP (e.g., 2009)) that is fit to n(d + 1) datapoints.

We evaluate DSoftKI on synthetic functions with known derivatives as a baseline to compare against existing
GP regression and GPwD regression methods. Since DSoftKI enables derivative modeling with GPs at larger
n and d than previously possible, we also evaluate its efficacy on a high-dimensional molecular force field
modeling task (d around 100—1000) which requires predicting gradients. Our experiments show that DSoftKI
is a promising method for GPwD regression with full derivative prediction, both in terms of accuracy (e.g.,
see Figure |1)) and scaling to larger n and d than previously possible (Section .
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2 Related Work

One strategy for scaling GPwD regression is to extend an existing scalable GP method to the setting with
derivatives. In this vein, both Stochastic Variational Gaussian Process (SVGP) (Hensman et al., 2013) and
Structured Kernel Interpolation (SKI) (Wilson & Nickisch) [2015) have been extended to the setting with
derivatives. Since we also follow this strategy, we briefly summarize these methods here and refer the reader
to Appendix [C] for more background on these related works.

DSVGP (Padidar et al., 2021) extends SVGP to the setting with derivatives by modifying the SVGP varia-
tional approximation to the GPwD kernel, resulting in a kernel matrix of size m(d+ 1) x m(d + 1) where m
is the number of inducing points (Snelson & Ghahramani, 2005; |(Quinonero-Candela & Rasmussen, 2005)).
Like SVGP, the inducing points in DSVGP are learned by optimizing an evidence lower bound (ELBO)
that can be computed with stochastic variational inference. The time complexity of computing the ELBO
for each minibatch of optimization has time complexity of O(m3d?) and the time complexity of posterior
inference is O(m3d3). Since this can be prohibitive for large d, DDSVGP (Padidar et al. 2021) utilizes
p < d directional derivatives to further improve the time complexity of computing the ELBO per minibatch
and posterior inference to O(m?p?) since the d-dimensional gradients have been reduced to p-dimensional
directional derivatives.

DSKI (Eriksson et all 2018)) extends SKI (Wilson & Nickischl 2015)) to the setting with derivatives by
approximating the gradients of the SKI interpolation kernel. Like SKI, the resulting DSKI kernel has
structure that enables fast matrix-vector multiplications (MVMs), and consequently, conjugate gradient
(CG) methods to perform GP inference. Unlike SKI which uses a cubic interpolation scheme, DSKI uses
a quintic interpolation scheme to better handle gradient observations, resulting in a time complexity of a
single MVM of O(nd6¢ +mlogm). Thus, the scaling in the dimension d is even worse than SKI, limiting the
application of DSKI to even smaller dimensions. There are other kernel interpolation methods that improve
the dimensionality scaling (e.g., see (Kapoor et al. [2021} [Yadav et all [2023)) that can be used besides SKI.
However, to the best of our knowledge, these works have not been extended to the setting with derivatives.

Beyond the two works above, there has been relatively little additional work done in GPwD regression
compared to GP regression. |De Roos et al| (2021)) tackles GPwD regression in high dimensions but is
limited to low n settings. GPyTorch (Gardner et al.;2021) opens the possibility for scalable GP inference on
GPUs and provides support for many standard kernels by hard-coding their first and second-order derivatives
but does not contain a standard implementation of a scalable GPwD. GP regressions have been scaled with
CG solvers (Wang et al.l 2019) on multi-GPU hardware and stochastic gradient descent (Lin et al., 2023]).
However, to the best of our knowledge, this has not been studied in the setting with derivatives. Our work
makes significant improvements in the size of n and d that can be handled in GPwD regression with full
derivative observations.

3 Background

In this section, we review background on GPs (Section and GPwDs (Section B.2). We also review SoftKI
since our method extends it to the setting with derivatives (Section [3.3)). We begin by introducing notation
that will be used throughout this paper.

Notation. The notation A = [g(4,7)];; defines a matrix whose i-th and j-th entry A;; = g(i,j) for some
function g defined on indices i and j. Given a list of vectors (z; € R?)™ ; indexed by i, define the vector
x = [z5]a (ie., g(i,1) = ;) to be the flattened length nd column vector. Similarly, xT = [z;]; is the
equivalent row vector. The notation f(x) = [f(z;)];1 maps a function f over a flattened vector x. Given lists
of vectors (z; € RY)™ | and (z) € Rd);»”:l, define the matrix Kyx = [k(w;, 77)];; so that it maps a function
k over the pair of x = [x;];1 and x' = [4]:1.

3.1 Gaussian Processes

A Gaussian process (GP) is a random (continuous) function f : R? — R". It is defined by a mean function
p: R — R and a positive semi-definite function k : R% x R4 — R("*") called a kernel function. A GP has
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Gaussian finite-dimensional distributions so that f(x) ~ N (ux, Kxx) for any x where N (jix, Kxx) indicates
a Gaussian distribution with mean px = p(x) and covariance matriz Kex = [k(x;, z;)];;. Without loss of
generality, we will assume pyx = 0 since we can shift the mean of a Gaussian.

To perform GP regression on the labeled dataset {(z;,v;) : #; € R%, y; € R}, we use the generative process
f(x) ~ N(O, KXX) (GP)
y|f(x) ~N(f(x),A) (likelihood)

where f is a GP and y is f(x) perturbed by Gaussian noise with covariance A = 32I. The noise 32 is an
example of a GP hyperparameter. Others include the kernel lengthscale £ and scale y. The hyperparameters
can be set by maximizing the marginal log likelihood (MLL) of a GP

logp(y [x;0) = N(y |0, Kux(¢,7) + A(B)) (1)

where we have explicitly indicated the dependence of Kyx on ¢ and v, and A on 82, for hyperparameters
0 = (¢,v, 3). The time complexity of computing the MLL is O(n?).

Once the hyperparameters have been set, we can perform posterior inference. The posterior predictive
distribution has the closed-form solution (Rasmussen & Williams) [2005)

PG [%, ) = N(f () [ Kax (Kx + A) 7y, Koo = K (Kx + A) 7 Kixi) (2)

where N (-| u, T') is notation for the probability density function (pdf) of a Gaussian distribution with mean
w and covariance I'. The time complexity of posterior inference is O(n?) which is the complexity of solving
the system of linear equations in n variables (Kyx + A)a =y for a, ie., a = (Kxx + A) 7y,

3.2 Gaussian Processes with Derivative Information

If f:R? = Risa GP with kernel k£ : R? x R — R, then Vf : R? — R? is also a GP with kernel
k' :R% x RY — R@XD defined as

K(wy) = [aia’“yju, Wi = Vak(z,y)V7 . 3)

Consequently, we can construct a GP with derivative observations (GPwD), a random vector-valued function

f:RY — R defined as
qoy_ (@)
o = (J50)) (@)

that simultaneously models a function f and its gradient Vf. It has a jointly Gaussian distribution f (x) ~
N(O7Kxx) where Ky = [k‘(x“x])]” and

Ok(z,z)

- k(z, ') l5aymslu I
ki(.T, 3'}/) = Ok(z,a")y Bz(k(gc,a)fg) = (v > k‘(.’lﬁ,l'/) (]I vf’) (5)
[ ox; }11 [azia(m')jT]lJ z

where I is the identity operator so that Ky is a n(d + 1) x n(d + 1) matrix.

To perform GPwD regression on the labeled dataset {(z;,v;, dy;) : #; € R%,y; € R, dy; € R} | where each
dy; is a gradient label, we use the generative process
F(x) ~ N(0, Kyx) (GPwD)

V1 (%) ~ N(f(x),A) (likelihood)

where ¥ = [y; dy;]i1 is a n(d + 1) x 1 vector of values and gradient labels and

(15 4],
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Figure 2: Comparison of learned interpolation points locations versus learned inducing point locations (only
those in unit square shown) on the Branin surface. Interpolation point locations encode geometric structure
in the data that is most useful for interpolation whereas inducing point locations reflect the normal priors
placed on their associated inducing variables.

is a n(d + 1) x n(d + 1) diagonal matrix of noises, 32 for the function value and ﬁ; for the gradients. A
GPwD’s hyperparameters can also be set by maximizing the MLL

logp(y | x;0) = N(y |0, Kx(£,7) + A(By, By)) (7)
where 6 = (¢,7, By, By). The time complexity of computing the MLL is O(n3d?).
The posterior predictive distribution is
p(f(*) |x,¥) = N(f(*) | I~<*X<I~<xx + A)_lyv K..— I~<:*X(Kxx + A)_le*) (8)

which takes on the same form as GP regression where we replace the corresponding variable with its (~)
version. The complexity of posterior inference is O(n3d®) which is the complexity of solving a system of
linear equations in n(d+ 1) variables. Notably, GPwD regression has an asymptotic dependence on the data
dimensionality d since each partial derivative contributes an additional linear equation.

3.3 Soft Kernel Interpolation

Soft kernel interpolation (SoftKI) (Camano & Huang| [2025) is an approximate GP method that uses an
approximate kernel

K:chcftKI = Yz Kz Xax (9)
where ¥, = [U%($i)]ijv

e /T z))
o) = S (/T — =) 10)

performs softmax interpolation between m < n interpolation points z whose locations are learned, and
T € R? is a learnable temperature vector akin to using automatic relevance detection (ARD) (MacKay]
to set lengthscales for different dimensions. Thus, it is a method that combines aspects of kernel
interpolation from SKI and adaptability of inducing point locations to data as in variational inducing points
method to obtain a scalable GP method.

Although the interpolation points bear resemblance to inducing points, they are not associated with cor-
responding inducing variables that have normal priors which are introduced for the purposes of variational
optimization. Instead, interpolation points are selected based on distances to data, and so encode the geom-
etry of the underlying data that is most useful for interpolation (Figure . They are learned by optimizing
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a combination of the SoftKI MLL, and an approximate MLL when numeric instability arises due to the
current placement of interpolation points. More concretely, the objective is

log p(y | x;0) = logp(y | x;0) when numerically stable (11)
EPY %00 = logp(y | x;0) otherwise

where log p(y | x;6) is the SoftKI MLL and logp(y | x;6) is an approximate MLL termed Hutchinson’s
pseudoloss (Maddox et al., [2022). It is defined as

!
_ 1 1

logp(y | x;0) = —3 uy Doug — 7 Z (Dow;) (12)

where Dy = KSfKI(p ~ T, Z) + A(B), uy,...,u; are solutions to the equations Dg(upuy...w;) =

(ywi...wy), and w; for 1 < j < [ are Gaussian random vectors normalized to have unit length Ob-
serve that

N 1 + 0Dy _10Dy
Vologp(y|x;0) = ~3 [ Uy~ Uo +tr (De W)} (13)
!

R —— — i 14

3| v g "IN e Y 1)

= Veglogp(y|x;0) (15)

so that the gradient of the Hutchinson’s pseudoloss is approximately equal to the gradient of the MLL when
approximated with Hutchinson’s stochastic trace estimator (Girard}, [1989; [Hutchinson, [1989). The time
complexity of computing the Hutchinson’s pseudoloss per minibatch of size b is O(b* + m?).

The posterior predictive distribution is
p(f(x)|y) = N(K*zéilexAilbﬁ ngftKI - KES:&KI(A71 - AilezéilﬁzxAil)KiiftKU (16)

where sz = ¥, K,, and ¢ = K,, + KZXA*IA{XZ. It is similar to the posterior predictive of a Sparse
Gaussian Process Regression (SGPR) (Titsiasl [2009), the difference being that we replace kernels in the
SGPR posterior with the interpolated versions. The time complexity of posterior inference is O(m?n).

4 Method

In this section, we extend SoftKI to work with derivatives. First, we introduce the DSoftKI kernel (Sec-
tion4.1]). Next, we discuss posterior inference (Section[4.2). Finally, we discuss the role of value and gradient
noise hyperparameters in DSoftKI (Section [4.3)).

4.1 Soft Kernel Interpolation with Derivatives
The DSoftKI kernel takes the same form as DSKI, i.e.,

KDSHKL — 33 Ko Py ~ Koy (17)

s [(H)], ~[(0 )]

J

where

Unpacking the definition, we obtain

KDSoftKI _ |:( 045022045 ijzz ij ):| 19
o (004) " Kpnoij  (0045)" Kys(9035) ) |, 19)
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Figure 3: Reconstructed Styblinski Tang surface using a shared temperature (original SoftKI scheme) versus
individual temperature (proposed scheme) during interpolation for DSoftKI. We also overlay the learned
interpolation points (scaled and translated to fit the unit square) in green to illustrate the differences in
learned interpolation points.

where we have abbreviated o} (z;) = 0y; and Voj(z;) = doy; to reduce clutter. Notably, the computation
of the DSoftKI kernel does not require computing the first-order or second-order derivatives of the kernel.
Instead, it is approximated via interpolation. Consequently, it is tractable to perform hyperparameter
optimization with first-order gradient methods. Additionally, it can support a wide range of kernels, including
learned kernels (Wilson et all [2016). This contrasts with methods such as DDSVGP where the kernel
and its gradients are hard-coded in practice to alleviate the computational cost and to enable tractable
hyperparameter optimization with gradient-based methods.

While the DSoftKI kernel affords computational savings, it also increases the burden of kernel interpolation
to approximate a kernel’s first and second-order derivatives. To solve this challenge, we adapt the softmax
interpolation scheme to additionally account for directional orientation of interpolation points relative to
the data. In this way, interpolation points that are close to each other can nevertheless model variations in
surface curvature as influenced by relevant gradient observations. The original softmax interpolation scheme
would be unable to distinguish these variations since the shared temperature parameter enforces a shared
orientation for every interpolation point.

To implement the above idea, we associate each interpolation point zj with a corresponding learnable
temperature vector T, € R? as in

ol (z) = exp (= [l=/T) — 2ll) ‘
i Dk oxp (= |z /T — zil])

This introduces d x m extra parameters T = (T} ... Tm>(d><m) to the DSoftKI model that can be learned via
hyperparameter optimization. The gradient of the softmax interpolation has closed-form solution

(20)

; — zi /Ty — 2k
Ve, 00 (x;) = E o) (z;)(6; —af Ti)) 21
i ( ) P ( )( Jk ( ))Tk||x1/Tk - Zk” ( )
which can be obtained in the standard way via the chain-rule. The term

I'Z/Tk — 2k - 1 xi—Tkzk
Ti(l|lwi /T — 2ell +€) T Nl — Tzl + €

(22)

where we have added a small factor € > 0 to the denominator to avoid division by zero, is thus a unit vector
with scale 1 /T,f which gives the directional vector between each data point x; and point Ty z,. As a result,
points that are nearby can nevertheless have different influences on the interpolation strength of the gradients
depending on their respective directions. Figure [3|illustrates the differences in surface reconstruction using
a shared versus individual temperature vector across interpolation points.
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Algorithm 1 DSoftKI Regression. It adapts the SoftKI algorithm to handle the DSoftKI kernel.
Require: DSoftKI hyperparameters 6 = (¢,~,z, T, 5., 84)-
Require: Dataset (x,¥).
Require: Optimization hyperparameters: batch size b, number of epochs E, and learning rate 7.
Ensure: Learned DSoftKI coefficients .

1: fori=1to E do

2: for x3, ¥, in batch((x,¥),b) do > batch splits the dataset into chunks of size b
3 L, LT «+ Cholesky(K,y)

4 F «+ 2,{sz > Low rank representation of KE{‘/\;’[TFLKI((, v,z,T) = FFT
5: Dy [FFT + A(ﬂv,ﬁg)]]z > [-]. delays computation of result until needed
6 0 < 0+ nVelog (¥ | xp; Dy) > Stabilized DSoftKI MLL (Equation
7 end for

8: end for . .

9 a4+ Solve(COz = sz[\*ly) > Solve system of linear equations (Appendix ’

10: return o

4.2 Posterior Inference

Algorithm [1] summarizes the adaptation of the SoftKI algorithm to work with the DSoftKI kernel. Since
DSoftKI introduces a different interpolation scheme and more learnable parameters, this introduces different
optimization dynamics and computational concerns.

Hyperparameter optimization. We learn the locations of the interpolation points by using stochastic
gradient descent on the stabilized DSoftKI MLL. The MLL of DSoftKI is

log p(y|x;0) = N(]0,Dy) . (23)

where Dy = KPSfKI(p 7 T)+ A(3,, Bq) for 0 = (£,v,2,T, By, By). For a minibatch of size b, the resulting
matrix is of size b(d+1) x b(d+1) as opposed to bx b in SoftKI. For sizable b and d, this would be intractable
to compute with since it requires solving a system of linear equations.

As a result, we decompose KPS — FFT where K,, = LL” is a Cholesky decomposition and F = >l
This changes the space requirement from O(b%d?) for a direct representation to O(bmd). In practice, we
expect m < bd, since m and b are around the same order of magnitude. Since the Cholesky decomposition is
necessary to retain a tractable representation of the DSoftKI kernel, we perform it in double-precision when
we encounter numerical instability. In our experience, we rarely encounter numerical instability due to the
current placement of interpolation points in DSoftKI. We believe that this is the case since interpolation
points can additionally take into account directional information in DSoftKI so that points that are close by
distance-wise can nevertheless be oriented to prioritize different directions based on gradient observations.

The factored representation is used to compute the DSoftKI MLL using a lazy representation
Dy = [FF" + A(B,, B)]- (24)

that directly stores F and A(f,,3,), and [-]. delays computation of any intermediate result until needed.
To take advantage of this representation, we use a low-rank multivariate Gaussian distribution which can
avoid working with the full b(d 4 1) x b(d + 1) matrix Dy via the Woodbury matrix identity and matrix
determinant lemma. This reduces the challenge of computing the MLL to computing the determinant and
inverses of the m x m capacitance matrix I+ FTA(8,, B,)~'F instead which takes time complexity O(m?bd)
to form. When numerical instability is encountered during the computation of DSoftKI's MLL, we compute
Hutchinson’s pseudoloss. The time complexity of a single MVM is O(mbd). The stabilized DSoftKI MLL is
thus

logp(y | x;0) when numerically stable

log p(¥ | x;0) = { (25)

logp(y | x;0) otherwise

Appendix contains an ablation of DSoftKI using the DSoftKI MLL compared to the Hutchinson’s
pseudoloss.
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d SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin 2 0.004 £0.0 0.018 £ 0.004 0.088 £ 0.062 0.176 £ 0.031 0.003 £ 0.001
Six—hump-camel 2 0.026 £0.003 0.05 £0.003 0.101 +0.031 0.669 £ 0.04 0.015 + 0.006
Styblinski-tang 2 0.025 £ 0.001 0.05 £0.003 0.101 + 0.01  0.125 +£ 0.06  0.012 + 0.002
Hartmann 6 0.05+£0.002 0.164 £0.006 0.335 £ 0.009 0.346 £ 0.019 0.011 £+ 0.004
Welch 20 0.01 £ nan 0.065 £ 0.001 - 0.578 £ 0.013 0.003 £ 0.003

Table 2: Test RMSE (best bolded) on selected synthetic datasets. One of the runs for SoftKI encountered

numerical instability (hence +nan). — indicates a timeout for DSVGP.
SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin -0.725 £ 0.017 0.116 £ 0.0 -1.044 + 0.885 -0.532 £ 0.068 -4.432 + 0.162
Six-hump-camel  -0.743 £+ 0.057 0.123 +£0.001 -1.539 £ 0.159 -0.64 + 0.058  -2.175 + 0.237
Styblinski-tang -0.54 £ 0.082  0.123 +£0.001 -1.182 £ 0.166 -1.064 + 0.188 -2.296 + 0.045
Hartmann -0.494 +£ 0.111  0.221 £ 0.001 -1.362 £+ 0.029 -1.324 £ 0.027 -3.16 £ 0.325
Welch -0.699 £ nan  0.141 £ 0.0 - 0.706 £ 0.055 -1.14 + 4.795

Table 3: Test NLL (best bolded) on selected synthetic datasets. One of the runs for SoftKI encountered
numerical instability (hence +nan). — indicates a timeout for DSVGP.

Posterior inference. Once we have learned the interpolation points, we can construct the posterior pre-
dictive distribution. It is SoftKI’s posterior, with the corresponding variables replaced with the (-) versions

~ I ~ - - . - S a—12 - -
PF()]9) = N(KouG KAty RIS RDSMIA - AR, G Ry A RDM)  (26)
where sz = ENEXZKZZ and C = K., + KZXA’lez. Since each data point in GPWD regression introduces
d + 1 values to fit, we have a system of n(d + 1) equations in m variables. Consequently, solving the
system of linear equations takes O(ndm?) time and space. For large d, this can exceed GPU memory limits.
Consequently, we sometimes solve these equations on a CPU. It would be an interesting direction of future

work to see how this can be improved such as with alternative linear solvers or utilizing multi-GPU hardware.

4.3 The Role of Value and Gradient Noises

Since DSoftKI forms its approximate kernel and its derivatives via interpolation, the choice of value and
gradient noises become intertwined. To examine this further, we can unpack the posterior mean equation
and see that

Ca = Zk(za, 25 )wj (27)
i=1 .
where
/1 1 -
wj = Z 20Ul + @(30713‘) dy; (28)
i=1 \Fv 9

for 1 < a < m. This indicates that each posterior coefficient «, jointly influences the reconstruction of
function values and their gradients as opposed to introducing separate posterior coefficients for values and
gradients. The influence of fitting values versus gradients on the weights is determined by the ratio ﬁg /B2.
A ratio of 63 /B2 = d suggests that values and gradients are equally weighted because each gradient has d
components. A ratio larger than d thus prioritizes gradients while a ratio smaller than d prioritizes values.
We investigate the impact of the ratio on the value and gradient test RMSE more in Appendix



Under review as submission to TMLR

DSoftKI* RMSE DSoftKI* NLL. A RMSE A NLL

Branin 0.002 +£ 0.0 -4.266 £+ 0.009 -0.000 0.166
Six-hump-camel  0.163 + 0.02 -0.392 £+ 0.112 0.148 1.783
Styblinski-tang 0.026 £+ 0.002 -1.829 £ 0.171 0.014 0.467
Hartmann 0.336 £+ 0.034 0.336 + 0.092 0.326 3.495
Welch 0.027 £+ 0.008 -1.311 £+ 0.405 0.024 -0.171

Table 4: DSoftKI* uses the original interpolation scheme proposed in SoftKI. A RMSE and NLL give the
increase in RMSE and NLL respectively compared to the DSoftKI interpolation scheme.

5 Experiments

In this section, we evaluate DSoftKI on synthetic functions (Section [5.1]) to obtain a baseline of comparison
and high-dimensional molecular force field (Section [5.2)) to test scale.

Baseline GP and GPwD methods. We use the default GPyTorch implementations (Gardner et al.,
2018) of SVGP, DSVGP, and DDSVGP with 2 inducing directions as baseline variational GPs. We use the
PLL (Jankowiak et al. 2020) modification to the ELBO for the variational GPs as recommended by (Padidar
et al., 2021) to obtain heteroskedastic noise modeling. We also use SoftKI as a baseline GP where we also
adopt the DSoftKI interpolation scheme. We do not compare against DSKI since the dimensionality of the
datasets are too high. We use the RBF kernel (with scale) using automatic relevance determination (ARD)
lengthscales with the exception of DDSVGP which does not support it. Unless otherwise stated, we use
m = 512 inducing points for all methods. We optimize all hyperparameters using the Adam (Kingma &
Bay, 2014) optimizer. All GPs and GPwDs use single-precision floating point numbers, except for DSoftKI
which uses double-precision occasionally to enhance the stability of Cholesky decomposition as described
previously.

5.1 Regression with and without Derivative Information

Our first experiment tests DSoftKI on selected synthetic test functions ranging from d = 2 to d = 20 with
known derivatives following (Padidar et al., |2021) so that we can compare against existing GP regression
and GPwD regression. For each function, we generate 20000 datapoints, using 10000 points for training and
reserving 10000 points for testing.

Effective learning rate. Since the training data that each GP observes varies across methods due to
how each method utilizes derivative information, setting up a fair comparison between each method is not
straightforward. For instance, even comparing the variational methods SVGP, DSVGP, and DDSVGP is
nuanced since the amount of training data each method encounters is different at n, n(d + 1), and n(p + 1)
where p is the number of inducing directions respectively. To control for this, we choose to use the notion of
an effective learning rate Aeg defined as Aeg = DApase where D is a method-specific number of derivative
dimensions and Ap,ge is a base learning rate. The learning rate that we use for hyperparameter optimization
is thus Aeg which we obtain for a constant Ay,se and minibatch size across methods. In this way, we keep
all the training data, epochs, and minibatch size constant across methods while requiring hyperparameter
optimization to take a step in proportion to the amount of data that it encounters. We use D = 1 for GP
regression, D = d for DSVGP, D = d+1 for DDSVGP, and D = 32/(df32) +1 for DSoftKI. We set 82 = d3}
so that D = 2 for DSoftKI.

Results. Table [2| gives the test root mean-squared error (RMSE) and Table [3] test negative log-likelihood
(NLL) averaged across three runs. We use Ap,se = 0.01 and a minibatch size of 1024, settings that are
known to work well for SVGP on this benchmark, to set Aqg for all other methods. We were not able to run
DSVGP on the Welch dataset due to time constraints since d = 20 and each minibatch of hyperparameter
optimization has time complexity O(m3d?).

Once we control for the effective learning rate, we see that fitting derivatives helps improve DSoftKI’s
performance relative to SoftKI, its non-derivative base, as measured by test RMSE performance. We believe
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Figure 4: Test RMSE per atom vs. test gradient RMSE per component obtained by various methods on
MD22 dataset. Bottom left is best.

that this increase in performance is due to DSoftKI’s modified interpolation scheme which jointly takes into
account distances and directional information via learned temperature hyperparameters. In Table [ we
run DSoftKI with the SoftKI interpolation scheme, and see that it performs worse on several datasets. For
the variational methods, we observe that SVGP performs the best, followed by DDSVGP which fits two
directions, and followed last by DSVGP which fits all derivative information once effective learning rate is
controlled for. As a reminder, we use Aqg to control for the amount of data each method sees during a
step of hyperparameter optimization and not as a recommendation to obtain the best possible results. We
conjecture that the difference in optimization dynamics between DSoftKI and DSVGP/DDSVGP is because
the former jointly models values and gradients with each interpolation point whereas the latter approaches
introduces separate inducing points for values and gradients/directions.

Another trend that we observe once we control for Aeg is that GPwDs tend to have lower NLLs compared
to their non-derivative counterparts. For methods based on SVGP, this is somewhat surprising since the
variants that fit derivatives also have higher test RMSE, indicating that the the versions that fit derivatives
result in simpler models. On the other hand, for DSoftKI, we observe that the NLL is positively correlated
with its test RMSE relative to the performance of SoftKI. This suggests that the additional information is
used to increase the complexity of the model when it also improves the fit of the model.

5.2 High-Dimensional Molecular Force Fields

In this section, we evaluate the ability of DSoftKI to fit gradient information. Towards this end, we use
the MD22 dataset (Chmiela et al., 2023), a dataset of molecular energy surfaces where inputs are molecular
configurations (d = 168 to 1110), outputs are energies, and gradients of the energy surface correspond to the
the physically-meaningful quantity of (negative) forces. Consequently, fitting this information can enable us
to model the physical dynamics.

Obtaining gradient predictions. To obtain the gradient prediction for SVGP, SoftKI, and DDSVGP,
we take the gradient of the posterior predictive mean to obtain the predicted gradient value since none of
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these methods predict the gradient directly. For DSoftKI, we use the prediction of the gradients and not the
gradient of the prediction. In an exact GPwD, these predictions would be equivalent. We are not able to
scale DSVGP to this setting.

Results. Figure [ reports the test value RMSE (per atom) vs. the gradient RMSE (per component)
averaged across 3 runs for each method on each molecule. We refer the reader to Appendix [B-4] for more
experimental details. The bottom left corner is the best, since that is where there is minimum error on
both values and gradients. We observe that DSoftKI performs well, particularly when the dimension of the
dataset is large. One surprising observation we make is that lower value error is not correlated with lower
gradient error. Upon examining the test RMSE curves (see Appendix , we see that many GPs that do
not fit full derivative information such as SVGP increase the test RMSE error for derivative prediction as
training progresses. Conversely, DSoftKI improves the test RMSE error on both values and gradients as
training progresses for most datasets. Further investigation of the tradeoffs of fitting gradients is warranted
for GPwD regression, since the additional computational complexity of fitting derivatives should be weighed
against if obtaining accurate gradients predictions is required or not.

6 Conclusion

In this paper, we introduce a GP that can fit and predict full derivative information called DSoftKI. It
has posterior inference time complexity of O(ndm?) and hyperparameter optimization time complexity of
O(m?+bmd), and thus, scales to larger n and d than supported by previous GPwD methods while retaining
the ability to fit and predict full derivative information. We have evaluated DSoftKI on GPwD regression
tasks and shown that it accurate, both in terms of test RMSE and test NLL, as well as modeling gradients.
While promising, there are certain limitations of our work that should be investigated further.

First, while DSoftKI is more scalable than existing GPwD methods that fit derivatives, further work can
be done to improve its computational complexity. In particular, the method is currently bottlenecked by
the computation of the DSoftKI MLL. Improved approximations of the MLL or a different objective could
further scale the efficiency of fitting derivative observations. Second, a deeper investigation of the tradeoffs
between fitting derivative information or not when they are available is warranted. For some applications,
the added difficulty of fitting gradient observations may not warrant improved surface modeling. Third, it
would be an interesting direction fo future work to explore the use of more expressive kernels in DSoftKI such
as those based deep kernel learning with DSoftKI. Notably, the construction of the DSoftKI kernel does not
require taking its first or second order derivatives, lending itself to tractable hyperparameter optimization
with more expressive kernels.
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A Method

A.1 Comparing Gradient Kernels

For a closer comparison of exact GPwDs, DDSVGP, DSVGP, and DSoftKI, we write out the kernel matrix
between a test point * and the training data x or inducing points z in more detail. For an exact GPwD, the
kernel directly uses the training data and the derivatives of the kernel are used exactly as below

Ko — [(VH> k(x,2;) (I vg”j)} (29)

o[ vl vkgamx)Y;T)] g .

For a DDSVGP (i.e., with directional derivatives), the kernel uses the inducing points and additional vari-
ational parameters to approximate the training data. Additionally, it uses directional derivatives of the
underlying kernel function as below

KDDSVGP _ KVH*) k(*,z;) (I B\T,_j)} . (31)
-k, vkga)a)g%ﬂ . (32

For a DSVGP, the kernel uses the inducing points, additional variational parameters, and ordinary derivatives
of the underlying kernel as below

KDSVGP _ [@) k(. 25) (I VZT].)L (33)
- (#5362 wheer)] . (34

For DSoftKI, the kernel uses the inducing points, an interpolation function, and gradients of the interpolation
function as below

Koot = [(vﬂ) ai(@} Ko [od ()" (T VE)], (35)
*J
Ug(*) K,z J%(x;)T Oz (*) 2z (0 (fé)TvT ) 36
(Vood(9) Kaw 03(a)T (Vod(4)) Ko (03)TVE) )| %)
A.2 Solving
The procedure
a + solve(Ca = K, A7 1y) (37)
is implemented by solving
—1/24
Ra = D7 (A 0 y) (38)

for o where

_ [(A2Ky,
QR—< I ) (39)

is the QR decomposition and K,, = LL7 is the Cholesky decomposition since C= (QR)T(QR). This has
time complexity O(nm?) to compute.
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Test RMSE Test NLL
d | Exact MLL Hutchinson Exact MLL Hutchinson
Branin 2 | 0.002 &£ nan 0.029 £ 0.0 -4.527 4+ nan 0.208 £ 0.003
Six-hump-camel 2 | 0.014 + 0.002 0.198 + 0.018 -2.185 £+ 0.245 0.627 £ 0.014
Styblinski-tang 2 | 0.013 + 0.004 0.035 + 0.001 -2.283 £+ 0.065 0.726 £ 0.08
Hartmann 6 | 0.011 £ 0.003 0.408 + 0.016 -3.145 + 0.318 1.159 £ 0.007
Welch 20 | - 0.618 + 0.006 | - 1.373 £+ 0.002

Table 5: Comparison of using Exact MLL vs. Hutchinson’s pseudoloss. The best test RMSE and test NLL
are bolded. The notation +nan indicates that one run was unstable whereas the notation — indicates that
all runs failed.

Derivative Noise vs. Noise
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Figure 5: Effect of noise.

A.3 Implementation

We implement DSoftKI in PyTorch (version 2.4.1) and GPyTorch (Gardner et al.l|2018)) (version 1.12) so that
it can leverage GPU acceleration. DSoftKI currently only leverages a single GPU. Arithmetic for DSoftKI is
implemented in single-precision floats. There are a few places where the Cholesky decomposition of K, is
utilized in posterior inference. To stabilize these computations, we add a small jitter to the diagonal, when
needed. In extreme cases when K,, values are extremely small, we may switch to double-precision floats to
perform a Cholesky decomposition, before converting the results back into single precision.

Recall that we use CG to implement the Hutchinson pseudoloss. We use a PyTorch implementation of CG
descent method following (Maddox et al., 2022]). We use a CG tolerance of 1e — 5. We use a rank-10 pivoted
Cholseky decomposition to obtain a preconditioner for CG descent.

B Additional Experimental Results

B.1 Exact MLL vs. Hutchinson’s Pseudoloss.

Table [f] reproduces the results of Section [5.1] using the Exact MLL compared to Hutchinson’s pseudoloss.
We see that when using DSoftKI’s MLL, there is instability in training on Branin and Welch. However,
using Hutchionson’s pseudoloss exclusively leads to worse results. As a result, we opt for an objective that
uses the DSoftKI MLL, when possible, and Hutchinson’s pseudoloss otherwise as described in Section

B.2 Effect of Noise Levels

The DSoftKI method balances the fitting of value information with gradient information by controlling the
relative ratio of 82 to ﬁg. Figure [5| shows the results of varying this ratio on the synthetic benchmark to
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gain more insight into how to set this ratio. We see that the relatative ratio of 32 to 63 is dependent on the
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dataset. The experiments reported in the paper had a relative factor of 1.

B.3 More Synthetic Benchmark Results

Data normalization. We scale data {(z;,y;,dy;)}Y, as {(hypercube(z;), (y; — f)/6,dy;/5)} Y, where
hypercube : RY — [0,1]? maps into the unit hypercube, /i is the empirical mean of the values, and & is the
empirical standard deviation of the values and the derivatives. This ensures that the values and derivatives

are measured in the same units, and follows standard practice.

16




Under review as submission to TMLR

d SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin 2 017 £0.024  0.237 £0.029 0.357 &+ 0.207 1.526 £ 0.058 0.07 £+ 0.01
Six-hump-camel 2 1.069 £ 0.156 1.206 £ 0.057 1.545 £ 0.071 7.032 £ 0.187 0.345 £+ 0.084
Styblinski-tang 2 1.008 £0.11  0.998 + 0.02  0.86 £ 0.133  0.895 + 0.165 0.319 + 0.057
Hartmann 6 0429 £0.232 0.377 £0.007 0.506 £ 0.01  0.527 £0.01  0.028 £+ 0.008
Welch 20 0.011 £ nan 0.052 £ 0.0 - 0.269 £ 0.002 0.001 £ 0.001

Table 6: Gradient fitting errors on synthetic functions using scaled effective learning rate. One of the runs

for SoftKI encountered numerical instability (hence +nan). — indicates a timeout for DSVGP.
DSVGP DSoftKI DSoftKI (52 /(df?) = 10d)
Branin 0.323 + 0.821 281.505 £ 72.881 0.397 £ 0.061

Six-hump-camel 0.33 + 0.248 53.827 £ 49.856  8.921 £ 7.412
Styblinski-tang 0.665 + 0.121 41.907 £ 14.305  4.929 £ 2.126
Hartmann 0.047 £ 0.014 10.755 + 0.916 0.591 £ 0.265
Welch - -1.329 £ 1.906 0.138 + 0.161

Table 7: Uncertainty quantification over gradient predictions.

Gradient fitting results. Table [6] reports the gradient fitting errors for the experiment described in
Section [5.1] on synthetic functions using scaled effective learning rate. We observe that DSoftKI has the
lowest gradient errors of the methods. The relative size of 32 and 53 controls the degree to which value
fitting is prioritized compared to gradient fitting.

We also compare the gradient test RMSE of the base GP and its extension with derivatives. For a gradient
test RMSE, we sum up the errors across the dimensions. Thus, we should normalize by the numbers to
compare across datasets. We observe that it is dataset dependent whether or not DSVGP outperforms
SVGP. As a reminder, DDSVGP does not fit all the derivative information, and thus, we derive its gradient
prediction from its value prediction. We observe that derivative information is helpful for DSoftKI, the
extension of SoftKI to the setting with derivatives.

Uncertainty quantification of derivatives. We only report test NLLs for DSVGP and DSoftKI since
these are the only methods that provide uncertainty estimates for full derivative information. In general,
we find that DSoftKI has larger test NLLs compared to DSVGP. This is consistent with our earlier findings
that DSVGP gives lower test NLL compared to SVGP, even though its test RMSE is worse.

Visualization. Figure |§| visualizes the learned interpolation/inducing points for each method. We make a
couple of observations on the learned points. First, we see that there are differences between the structure
of the interpolation points learned by SoftKI and DSoftKI compared to the inducing points learned by the
variational approaches. In particular, the variational approaches have additional learned parameters that can
help represent the structure in the dataset. In contrast, SoftKI and DSoftKI have to rely solely on the inter-
polation points to represent the structure in the dataset. Second, we observe that the interpolation/inducing
points learned those GPs that fit derivatives and those that do not are different. In particular, DSoftKI and
SoftKI capture different geometric structure in the underlying data. The inducing points learned by DSVGP
are more spread out compared to those learned by DDSVGP and SVGP.

B.4 More Force Field Results

Dataset details. More concretely, we have a labeled data set {(z;, y;, dy;) }; where x; encodes the Cartesian
coordinates of the atomic nuclei in the molecule in Angstrém’s, y; encodes the energy of the molecule in
kcal/mol, and dy; encodes the negative force exerted on each atom in the molecule. The dimensionality of
x; is d = 3A where A is the number of atoms in the molecule since each atom takes 3 coordinates to describe
in 3D-space. For example, a 42 atom system will have d = 126. We consider all available molecules.
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Figure 8: Test gradient RMSE curves.

Data normalization. We use the same data normalization scheme for energies and forces as we did in the
synthetic experiments. Instead of using hypercube, we scale the Cartesian coordinates as x;/3 which has

the effect of changing units.

Training curves. Figure [7] and Figure [§] give the test RMSE, test gradient RMSE, and their standard
deviations at each epoch of training on the MD22 dataset. As a reminder, we did not tune the learning rates
or batch sizes to obtain the best possible performance. Rather, we control the effective learning rate so that
we can compare GP and GPwD regression. SVGP is in blue, SoftKI is in green, DDSVGP is in orange,
and DSoftKI is in Red. On Ac-Ala3-NHMe, we observe that methods that fit derivative information overfit
both values and gradients. On several datasets such as AT-AT and Stachyose, we observe that DSoftKI
overfits on test RMSE but does not on test gradient RMSE. On other dataset such as AT-AT-CG-CG,
Buckyball-catcher, and Double-walled nanotube, we observe that DSoftKI is able to fit both the values and
gradients. In contrast, DDSVGP tends to overfit as measured by test gradient RMSE. This is somewhat
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surprising, since it does fit directional derivative information. We also observe that SoftKI and SVGP cannot
fit gradients even though they do fit the values. This suggests that GPs that do not fit derivatives do not
capture the shape of the surface well.

Lengthscales and temperatures. Figure [ and Figure [10] give the histograms of lengthscales and tem-
peratures that are learned by DSoftKI and SoftKI. We see that the lengthscales that are learned by DSoftKI
and SoftKI are different. In particular, the lengthscales learned by the DSoftKI tend to be larger than the
lengthscales learned by SoftKI. The learned temperatures, however are similar. As a reminder, we modified
SoftKI to also have different temperatures per interpolation point as we did for DSoftKI.
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Figure 9: Histogram of lengthscales on MD22 dataset for DSoftKI and SoftKI. The lengthscales learned by
the DSoftKI tend to be larger than the lengthscales learned by SoftKI.

C Additional Background on DDSVGP and DSKI

In this section, we describe in more detail how variational inducing point methods and SKI have been
extended to the setting with derivatives.

Variational inducing points. An inducing point method (Snelson & Ghahramani, 2005; (Quinonero-
Candela & Rasmussen, 2005) introduces a set of m < n inducing points z = (z; € R?)™, and associated
inducing variables f(z) = u = (u; € R)7*, as a proxy for the given inputs x and outputs y respectively.
In an inducing point method such as Sparse Variational Gaussian Processes (SGPR) (Titsias, 2009) and
Stochastic Variational Gaussian Process (SVGPs) (Hensman et al. [2013)), the inducing points and variables

are related to the dataset as
u K., K, . .
(f(X)> ~N (07 (sz Kxx)) (inducing)

y I f(x) ~N(f(x),A). (likelihood)

Note that the marginalization of the inducing variables u reduces the model to the standard GP model. To
make posterior inference tractable, a SVGP makes a variational approximation ¢(f(x),u) = p(f(x) | u)g(u)
where g(u) = N(u|m,S), treating m(™*1) and S("*™) as additional learnable variational parameters.
More concretely, § = (¢,7, 5,2z, m,S). They can be learned by maximizing a lower bound on the MLL called

19



Under review as submission to TMLR

50000
12500 dsoftki 25000 dsoftki 30000 dsoftki dsoftki
10000 softki 20000 softki softki 40000 softki
£ 7500 £ 15000 & 20000 2 30000
3 3 3 3
o o o o
“ 5000 © 10000 © © 20000
10000
2500 5000 10000
0 0 0 0
0 5 10 0 5 10 0 2 3 0 2
T T T T
(a) Ac-Ala3-NHMe. (b) DHA. (c) AT-AT. (d) Stachyose.
dsoftki dsoftki ~
60000 o 50000 po 125000 dsoftki
softki
40000 100000
= 40000 = »
5 5 30000 £ 75000
o © 8
20000 20000 50000
10000 25000
0 0 0
1 2 05 10 15 05 1.0 15
T T T

(e) AT-AT-CG-CG. (f) Buckyball-Catcher. (g) Double-Walled Nanotube.

Figure 10: Histogram of learned temperatures for DSoftKI and SoftKI on the MD22 dataset. The learned
temperatures have similar distributions.

the evidence lower bound (ELBO), defined as

ELBO(q(f(x),u)) = > Eq(@@.)pui | f(2:)) — KL(q(u) || p(u|z))
i=1

(40)

which equivalently minimizes the KL-divergence K'L(g(u) || p(u|z)). The ELBO can be optimized in mini-
batches, resulting in a time complexity of O(m?). Given learned hyperparameters, the optimal posterior
distribution is

q(f(*)) = N(f(%) |K*sz_z1m, K. — K*sz_zl(S - KZZ)Kz_leZ* +A). (41)

The complexity of inference is O(m3).

A SVGP can be extended to the setting with derivatives, i.e., a DSVGP (Padidar et al., 2021). More

concretely, define an inducing variable @; = (uZ Vuf)T that models the value and its gradient at an
inducing point z;. A DSVGP introduces learnable parameters m (XD - gm(dmx1) - g(mxm) = qgixm) —and
d?8(@mxdm) 4 define a variational posterior ¢(ii) = N (i |, S) where

~ m; S Sij dSU
"o Kdmiﬂ ” nd S = deij dQSz’j)] n
i 13

The parameters can be learned by maximizing the DSVGP ELBO which is obtained by replacing the SVGP
ELBO with the respective (-) versions.

(42)

Again, it is a lower-bound on the MLL. The time complexity of computing the ELBO on a minibatch is
Q(m3d3 ). The posterior distribution is that of SVGP with all of the matrices replaced with their respective
(+) versions. The time complexity of posterior inference is O(m?d®) since K,, is a (m(d + 1)) x (m(d + 1))
matrix.
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DDSVGP (Padidar et al., 2021) utilizes directional derivatives dy f = VIV f(x) where V projects onto a p
dimensional subspace. This results in the modified matrices

Koy — {(55) k(za, 2) (I a\T,b)} (43)

K., = Ké) k(%, 2) (I a{,b)} Mab (44)

which has additional learnable variational parameters {ngXp )}ZL:l for projecting. The m(p+1) x m(p+1)
matrix Kz, = [k(2a, 25)]ap can be formulated efficiently with Hessian-vector products in time complexity
O(m?dp). The modified posterior distribution and ELBO are obtained by changing the respective (-) vari-
ables to the (-) versions. Posterior inference can be computed in time O(m3p?), assuming mp? > d to
account for the cost of forming K, since the d-dimensional gradients have been reduced to p-dimensional

directional derivatives.

Structured kernel interpolation. One problem with inducing point methods is the requirement that
m < n. SKI (Wilson & Nickischl [2015) overcomes this limitation by using the approximate kernel

K3 = Wiy Ky W & Ko (45)

where z are cleverly chosen interpolation points on a pre-defined lattice, Wy, = [w;(xz)]lj is a matrix of
interpolation weights with interpolation function wy(x;), and Wy, = WZ . The SKI posterior is

p(f(+) [ x,y) = N(f(*) |K*X(K:S<I>§I + A>_1Y> K. — K*X(Ki}il + A)_lKX*) (46)

which is the GP posterior with K replaced with K3KI.

The posterior is tractable to compute since the lattice structure given by the interpolation points enables
fast matrix-vector multiplies (MVMs) so that conjugate gradient (CG) methods can be used to solve large
systems of linear equations. The complexity of a single MVM is O(n4? 4 mlogm) with a cubic interpolation
function (Wilson & Nickisch) 2015) where m is the number of interpolation points. However, the asymptotic
dependence on d limits the application of SKI to low dimensions.

DSKI (Eriksson et all [2018]) extends the SKI (Wilson & Nickischl [2015) method to create a scalable GP
regression method that handles derivative information. To accomplish this, DSKI uses the following approx-
imate kernel

KE}EKI = WXZKZZWZX ~ Kxx (47)

where

()], ()],

That is, DSKI approximates the kernel by differentiating the interpolation matrix. The posterior distribution
is the SKI posterior with the SKI kernel replaced with the DSKI kernel. Like SKI, DSKI leverages fast MVMs
enabled by the lattice structure and CG methods to perform GP inference. The complexity of a single MVM
is O(nd6? + mlogm). The scaling in the dimension d is even worse than SKI, limiting the application of
DSKI to even smaller dimensions.
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