Published in Transactions on Machine Learning Research (01/2026)

Scaling Gaussian Process Regression with Full Derivative
Observations

Daniel Huang dan@base26labs.com
Base26, CA, USA

Reviewed on OpenReview: https: //openreview. net/ forum? id= fbonXp38r9

Abstract

We present a scalable Gaussian Process (GP) method called DSoftKI that can fit and predict
full derivative observations. It extends SoftKI, a method that approximates a kernel via soft-
max interpolation, to the setting with derivatives. DSoftKI enhances SoftKI’s interpolation
scheme by replacing its global temperature vector with local temperature vectors associated
with each interpolation point. This modification allows the model to encode local directional
sensitivity, enabling the construction of a scalable approximate kernel, including its first and
second-order derivatives, through interpolation. Moreover, the interpolation scheme elimi-
nates the need for kernel derivatives, facilitating extensions such as Deep Kernel Learning
(DKL). We evaluate DSoftKI on synthetic benchmarks, a toy n-body physics simulation,
standard regression datasets with synthetic gradients, and high-dimensional molecular force
field prediction (100-1000 dimensions). Our results demonstrate that DSoftKI is accurate
and scales to larger datasets with full derivative observations than previously possible.

1 Introduction

A convenient feature of using a Gaussian Process (GP) to approximate functions is its ability to incorporate
derivative observations since the derivative of a GP is also a GP. This enables more informative modeling
when derivative data is available (e.g., in the physical sciences). However, utilizing a GP with derivative
observations, abbreviated GPwD, for regression faces significant scalability challenges. In particular, vanilla
GPwD inference has time complexity O(n3d®) where n is the number of data points in a dataset and d is
the dimensionality of the data. Thus, GPwDs have scaling challenges in both n and d.

To alleviate these challenges, scalable GP regression methods such as a Stochastic Variational GP
(SVGP) (Hensman et al.l 2013) have been extended to the setting with derivatives (DSVGP) (Padidar
et al.l 2021). Tt uses m < n inducing points (Quinonero-Candela & Rasmussen) 2005; [Snelson & Ghahra-
manil, 2005) and achieves a time complexity of O(m?3d?) for posterior inference. Since the cubic scaling in d
can be prohibitive, a DSVGP with directional derivatives (DDSVGP) (Padidar et al., [2021) introduces p < d
inducing directions, an analogue of inducing points for dimensions, to achieve a time complexity of O(m3p3)
for posterior inferenceE] However, this comes at the cost of directly predicting derivatives and introducing
further approximations.

In this paper, we present a GPwD method called DSoftK]E] that can fit and predict all derivative information
(Section. It is an extension of SoftKI (Camano & Huang) 2025)), a scalable GP method that approximates
a kernel via softmax interpolation from m < n interpolation points whose locations are learned. Thus,
it blends aspects of kernel interpolation (Wilson & Nickischl |2015)) which introduces kernel interpolation
from a structured lattice with variational inducing point methods (Titsias, [2009) where inducing points are
adapted to the dataset. To handle gradient information, DSoftKI modifies SoftKI’s interpolation scheme
by replacing its global temperature vector with local temperature vectors associated with each interpolation

1 This assumes mp? > d which no longer holds around d = 2000 for m = 500 and p = 2. See Appendix [E| for details.
2Code available at https://github.com/base26labs/dsoftki_gp!

https://openreview.net/forum?id=fbonXp38r9
https://github.com/base26labs/dsoftki_gp

Published in Transactions on Machine Learning Research (01/2026)

Branin Vanilla DSVGP DDSVGP

11111
\ \ A

Figure 1: Comparison of GPwD regression with vanilla GPwD, DSVGP, DDSVGP, and DSoftKI on the
Branin surface (2D). We plot the contours of the surface, the gradient with respect to the first argument
(V1), and the gradient with respect to the second argument (V3). Vanilla GPwD is accurate but intractable
for sizable n and/or d. DSVGP forms a nice approximation of the original surface but is intractable for
large d. DDSVGP uses p = 2 directional derivatives to enhance scalability but loses fidelity in modeling the
surface. DSoftKI provides an accurate and scalable approximation of the surface.

DSoftKl (Ours)

Value

\4

vz

point. This allows the model to encode local directional sensitivity (Section , enabling the construction
of a scalable approximate kernel, including its first and second-order derivatives, through interpolation.
Notably, this design eliminates the need for kernel derivatives, facilitating extensions such as Deep Kernel
Learning (DKL) (Wilson et al} [2016) which use learned kernels (see Appendix [D)). This contrasts with
methods such as DSVGP/DDSVP, which introduce separate inducing points for values and gradients as well
as require computing kernel derivatives, leading to scaling challenges in both n and d (see Appendix [E| for
more details). As a result, DSoftKI achieves a time complexity of O(m?nd) for posterior inference. Because
each datapoint consists of d + 1 values to fit, we can view DSoftKI as achieving similar complexity to an

approximate GP (e.g., 2009)) that is fit to n(d + 1) datapoints.

We evaluate DSoftKI on synthetic functions with known derivatives as a baseline to compare against existing
GP regression and GPwD regression methods. Since DSoftKI enables derivative modeling with GPs at larger
n and d than previously possible, we also evaluate its efficacy on a high-dimensional molecular force field
modeling task (d around 100—1000) which requires predicting gradients. To test a broader range of datasets,
we also validate performance on a toy n-body physics simulation and standard UCI regression benchmarks
with synthetic derivatives (Appendix . Our experiments show that DSoftKI is a promising method for
GPwD regression with full derivative prediction, both in terms of accuracy (e.g., see Figure [1]) and scaling
to larger n and d than previously possible (Section .

2 Related Work

One strategy for scaling GPwD regression is to extend an existing scalable GP method to the setting with
derivatives. In this vein, both Stochastic Variational Gaussian Process (SVGP) (Hensman et al., 2013) and
Structured Kernel Interpolation (SKI) (Wilson & Nickisch| [2015) have been extended to the setting with

Published in Transactions on Machine Learning Research (01/2026)

Method Predict V? Kernel V? Posterior Inference
Vanilla yes yes O(n?d?)
DSVGP yes yes O(m3d3)
DDSVGP no yes O(m3p3)
DSoftKI (ours) yes no O(m?nd)

Table 1: A comparison of GPwD methods across several dimensions. As a reminder, n is the number of points,
d is the dimensionality of the data, m is the number of inducing/interpolation points, and p is the number
of inducing directions. The proposed method, DSoftKI, is scalable, predicts full derivative observations, and
does not require computing first or second-order derivatives of the kernel to construct the GPwD kernel.
The kernel approximations made by each method are discussed in more detail in Appendix [A]

derivatives. Since we also follow this strategy, we briefly summarize these methods here and refer the reader
to Appendix [E] for more background on these related works.

DSVGP (Padidar et al., 2021) extends SVGP to the setting with derivatives by modifying the SVGP varia-
tional approximation to the GPwD kernel, resulting in a kernel matrix of size m(d+ 1) x m(d + 1) where m
is the number of inducing points (Snelson & Ghahramani, 2005; |(Quinonero-Candela & Rasmussen, 2005)).
Like SVGP, the inducing points in DSVGP are learned by optimizing an evidence lower bound (ELBO)
that can be computed with stochastic variational inference. The time complexity of computing the ELBO
for each minibatch of optimization has time complexity of O(m3d®) and the time complexity of posterior
inference is O(m3d3). Since this can be prohibitive for large d, DDSVGP (Padidar et all 2021)) utilizes
p < d directional derivatives to further improve the time complexity of computing the ELBO per minibatch
and posterior inference to O(m?p?) since the d-dimensional gradients have been reduced to p-dimensional
directional derivatives.

DSKI (Eriksson et all 2018)) extends SKI (Wilson & Nickischl 2015)) to the setting with derivatives by
approximating the gradients of the SKI interpolation kernel. Like SKI, the resulting DSKI kernel has
structure that enables fast matrix-vector multiplications (MVMs), and consequently, conjugate gradient
(CG) methods to perform GP inference. Unlike SKI which uses a cubic interpolation scheme, DSKI uses
a quintic interpolation scheme to better handle gradient observations, resulting in a time complexity of a
single MVM of O(nd6% +mlogm). Thus, the scaling in the dimension d is even worse than SKI, limiting the
application of DSKI to even smaller dimensions. There are other kernel interpolation methods that improve
the dimensionality scaling (e.g., see|Kapoor et al.| (2021)); |Yadav et al|(2023)) that can be used besides SKI.
However, to the best of our knowledge, these works have not been extended to the setting with derivatives.

Beyond the two works above, there has been relatively little additional work done in GPwD regression
compared to GP regression. |De Roos et al| (2021)) tackles GPwD regression in high dimensions but is
limited to low n settings. GPyTorch (Gardner et al.| [2021]) opens the possibility for scalable GP inference on
GPUs and provides support for many standard kernels by hard-coding their first and second-order derivatives
but does not contain a standard implementation of a scalable GPwD. GP regressions have been scaled with
CG solvers (Wang et al.l 2019) on multi-GPU hardware and stochastic gradient descent (Lin et al., 2023]).
However, to the best of our knowledge, this has not been studied in the setting with derivatives. Our work
makes significant improvements in the size of n and d that can be handled in GPwD regression with full
derivative observations.

3 Background

In this section, we review background on GPs (Section and GPwDs (Section . We also review SoftKI
since our method extends it to the setting with derivatives (Section [3.3)). We begin by introducing notation
that will be used throughout this paper.

Notation. The notation A = [g(7,7)];; defines a matrix whose i-th and j-th entry A;; = ¢(¢,7) for some
function g defined on indices i and j. Given a list of vectors (z; € R%)™_, indexed by i, define the vector

Published in Transactions on Machine Learning Research (01/2026)

x = [z5]a (ie., g(i,1) = z;) to be the flattened length nd column vector. Similarly, x7 = [z;]1; is the
equivalent row vector. The notation f(x) = [f(x;)];1 maps a function f over a flattened vector x. Given lists

of vectors (x; € R)%; and (2 € RY)"™ |, define the matrix Kyy = [k(z;,27)]i; so that it maps a function

k over the pair of x = [z;];1 and x" = [2}];1.

3.1 Gaussian Processes

A Gaussian process (GP) is a random (continuous) function f : R? — R”. It is defined by a mean function
p: R = R and a positive semi-definite function k : R% x R4 — R("™*") called a kernel function. A GP has
Gaussian finite-dimensional distributions so that f(x) ~ N (ux, Kxx) for any x where N (ux, Kxx) indicates
a Gaussian distribution with mean px = p(x) and covariance matrizc Kxx = [k(z;, x;)];;. Without loss of
generality, we will assume px = 0 since we can shift the mean of a Gaussian.

To perform GP regression on the labeled dataset {(x;, ;) : z; € R, y; € R} ,, we use the generative process
f(x) ~ N(0, Kxx) (GP)
y | f(x) ~N(f(x),A) (likelihood)

where f is a GP and y is f(x) perturbed by Gaussian noise with covariance A = 3%I. The noise 32 is an
example of a GP hyperparameter. Others include the kernel lengthscale £ and scale y. The hyperparameters
can be set by maximizing the marginal log likelihood (MLL) of a GP

logp(y |x;60) = N(y 10, Kux (¢,7) + A(B)) (1)

where we have explicitly indicated the dependence of Ky« on ¢ and 7, and A on 82, for hyperparameters
0 = (¢,v,3). The time complexity of computing the MLL is O(n?3).

Once the hyperparameters have been set, we can perform posterior inference. The posterior predictive
distribution has the closed-form solution (Rasmussen & Williams) [2005)

P(f(#) 1%, y) = N(f (%) | K (Kx + A)_1Y> K — Kux (Kxx + A)_IKX*) (2)

where N (-| i, T') is notation for the probability density function (pdf) of a Gaussian distribution with mean
u and covariance I'. The time complexity of posterior inference is O(n3) which is the complexity of solving
the system of linear equations in n variables (Kxx + A)a =y for a, i.c., a = (Kxx + A) 7 y.

3.2 Gaussian Processes with Derivative Information

If f:R? = Ris a GP with kernel k£ : R? x R — R, then Vf : R — R? is also a GP with kernel
K R4 x R — R(@%9) defined as

2 X
Vo) = |] = 0.k Q

Consequently, we can construct a GP with derivative observations (GPwD), a random vector-valued function
f:RY = R defined as
7 f(x))
x) = 4

that simultaneously models a function f and its gradient V f. It has a jointly Gaussian distribution f(x) ~
N (0, Kxx) where Kyx = [k(z;,2;)];; and

o k(r,a') 15y I , i
Mz, o) = | ronwany @k, | = (V >k(fv,:c)T VI) (5)
[oz,]11 [axia(l./)?]z] T

where I is the identity operator so that Ky is a n(d + 1) x n(d 4 1) matrix.

Published in Transactions on Machine Learning Research (01/2026)

To perform GPwD regression on the labeled dataset {(z;,y;,dy;) : ; € R%, y; € R, dy; € Rd}?:l where each
dy; is a gradient label, we use the generative process

f(x) ~ N(0, KXXN) (GPwD)

¥ f(x) ~ N(f(x),A) (likelihood)

where § = [y; dy;']{; is a n(d + 1) x 1 vector of values and gradient labels and

(15 3],

is a n(d + 1) x n(d + 1) diagonal matrix of noises, 57 for the function value and 7 for the gradients. A
GPwD’s hyperparameters can also be set by maximizing the MLL

log p(y | %;6) = N'(y | 0, Ksexe(£,7) + A(Bo, By)) (7)
where 6 = (¢,7, By, B4). The time complexity of computing the MLL is O(n3d?).
The posterior predictive distribution is
p(f(*) |x,¥) = N(JE(*) |K*X(Kxx + A>_15’> K, — I~<>th(I~<xx + A)_lKX*) (8)

which takes on the same form as GP regression where we replace the corresponding variable with its (~)
version. The complexity of posterior inference is O(n3d?) which is the complexity of solving a system of
linear equations in n(d+ 1) variables. Notably, GPwD regression has an asymptotic dependence on the data
dimensionality d since each partial derivative contributes an additional linear equation.

3.3 Soft Kernel Interpolation

Soft kernel interpolation (SoftKI) (Camatnio & Huang, |2025|) is an approximate GP method that uses an
approximate kernel

K:S(ScftKI =3 K230k (9)
where Xy, = [aﬁ(wi)]ij,
_ ew(—lzaT—z|)
Yherexp (= llz @ T — zl)
performs softmax interpolation between m < n interpolation points z whose locations are learned, © is a
Hadamard division (i.e., element-wise division), and T € R? is a learnable temperature vector akin to using
automatic relevance detection (ARD) (MacKay et al. [1994) to set lengthscales for different dimensions.

Thus, it is a method that combines aspects of kernel interpolation from SKI and adaptability of inducing
point locations to data as in variational inducing points method to obtain a scalable GP method.

o5(w)

(10)

Although the interpolation points bear resemblance to inducing points, they are not associated with cor-
responding inducing variables that have normal priors which are introduced for the purposes of variational
optimization. Instead, interpolation points are selected based on distances to data, and so encode the geom-
etry of the underlying data that is most useful for interpolation (Figure . They are learned by optimizing
a combination of the SoftKI MLL, and an approximate MLL when numeric instability arises due to the
current placement of interpolation points. More concretely, the objective is

log ply | x;0) = logp(y | x;0) when numerically stable a1
BT logp(y | x;0) otherwise

where log p(y | x;6) is the SoftKI MLL and logp(y | x;60) is an approximate MLL termed Hutchinson’s
pseudoloss (Maddox et all 2022). It is defined as

o~ =

) 1
logp(y | x;0) = —= [uj Dgug —

!
5 Z u;r(Dgwj) (12)
j=1

Published in Transactions on Machine Learning Research (01/2026)

Branin Inducing Points (SVGP) Interpolation Points (SoftKl)
¥,

Value

Figure 2: Comparison of learned interpolation points locations versus learned inducing point locations (only
those in unit square shown) on the Branin surface. Interpolation point locations encode geometric structure
in the data that is most useful for interpolation whereas inducing point locations reflect the normal priors
placed on their associated inducing variables.

where Dy = KJOKL(0 T, z) + A(B), uy,...,u; are solutions to the equations Dg(upu;...w;) =
(ywi...wy), and w; for 1 < j < [are Gaussian random vectors normalized to have unit length. Ob-
serve that
1 oD 0Dy
Velogp(yIX;9)=—5[ug — 50 up + tr (D ' 50)} (13)
1 TaDg 1 TaDg j|
— . 14
~3 w0 gt S Z:: 14)
= Vo log p(y | x;0) (15)

so that the gradient of the Hutchinson’s pseudoloss is approximately equal to the gradient of the MLL when
approximated with Hutchinson’s stochastic trace estimator (Girard, |1989; Hutchinson, 1989). The time
complexity of computing the Hutchinson’s pseudoloss per minibatch of size b is O(b* + m?).

The posterior predictive distribution is
p(f() |y) = N(KuuCT R Ay, KE - KEIAT — AT R, O Ko A K™Y (16)

where Ky = 5K, and C = K, + Kyx A ' Ky,. It is similar to the posterior predictive of a Sparse
Gaussian Process Regression (SGPR) (Titsias| 2009)), the difference being that we replace kernels in the
SGPR posterior with the interpolated versions. The time complexity of posterior inference is O(m?n).

4 Method

In this section, we extend SoftKI to work with derivatives. First, we introduce the DSoftKI kernel (Sec-
tion[4.1]). Next, we discuss posterior inference (Section[4.2). Finally, we discuss the role of value and gradient
noise hyperparameters in DSoftKI (Section [4.3)).

4.1 Soft Kernel Interpolation with Derivatives
The DSoftKI kernel takes the same form as DSKI, i.e.,

KDSHKL — 33 Ko 3oy ~ Koy (17)

e ()], -],

where

Published in Transactions on Machine Learning Research (01/2026)

Styblinski Tang Shared T Individual T

Value

Figure 3: Reconstructed Styblinski Tang surface using a shared temperature (original SoftKI scheme) versus
individual temperature (proposed scheme) during interpolation for DSoftKI. We also overlay the learned
interpolation points (scaled and translated to fit the unit square) in green to illustrate the differences in
learned interpolation points.

Unpacking the definition, we obtain

> i K0 0i; K2z (00;5)
KDSoftKI _ |:(0450 zz04; ijzz ij >:| 19
xx (&Iij)TKzzoij (80’ij)TKzz(aO'ij) i ()

where we have abbreviated o} (z;) = 0y; and Voj(z;) = doy; to reduce clutter. Notably, the computation
of the DSoftKI kernel does not require computing the first-order or second-order derivatives of the kernel.
Instead, it is approximated via interpolation. Consequently, it is tractable to perform hyperparameter
optimization with first-order gradient methods. Additionally, it can support a wide range of kernels, including
learned kernels as in DKL. This contrasts with methods such as DDSVGP where the kernel and its gradients
are hard-coded in practice to alleviate the computational cost and to enable tractable hyperparameter
optimization with gradient-based methods. We refer the reader to Appendix [D] for a demonstration of DKL
with DSoftKI.

While the DSoftKI kernel affords computational savings, it also increases the burden of kernel interpolation
to approximate a kernel’s first and second-order derivatives. To solve this challenge, we adapt the softmax
interpolation scheme to additionally account for directional orientation of interpolation points relative to the
data. More concretely, we replace the global temperature vector with local temperature vectors associated
with each interpolation point. In this way, interpolation points that are close to each other can nevertheless
model variations in surface curvature as influenced by relevant gradient observations. The original softmax
interpolation scheme would be unable to distinguish these variations since the global temperature vector
enforces a shared orientation for every interpolation point.

To implement the above idea, we associate each interpolation point z; with a corresponding learnable
temperature vector T, € R? for 1 < k < m as in
: exp (= [z @ Tj —)
o)(x) = . 20)
) = ST e (e 0T — =) (
This introduces d x m extra parameters T(4*™) = (T} ... T),) to the DSoftKI model that can be learned via
hyperparameter optimization. The gradient of the softmax interpolation has closed-form solution

s @ Ty — 2

——— 1T 21
T 0 T — 2] © 2% 1)

Veoh(w:) = =Y oh(x:) (0% — of(2:))
k=1
which can be obtained in the standard way via the chain-rule. The j-th component of the term
_ Tij — Tkakj
T7(lzi @ Tie — 2] +€)

|: z; 0T, — 2z
(

0T
|zi @ Ty — 2k +€) k]

J

Published in Transactions on Machine Learning Research (01/2026)

Algorithm 1 DSoftKI regression adapts the SoftKI algorithm to handle the additional computational
challenges of the DSoftKI kernel and learning local temperature vectors T (x4

Require: DSoftKI hyperparameters 6 = (£, ,z("*® T(mxd) 3 Bg)-

Require: Dataset (x,¥).

Require: Optimization hyperparameters: batch size b, number of epochs E, and learning rate 7.
Ensure: Learned DSoftKI coefficients «.

1: for i =1 to E do

2: for x;,y, in batch((x,¥),b) do > batch splits the dataset into chunks of size b
3: L,L” < Cholesky(K,,)

4 F « %,,,L > Low rank representation of KQ}?‘)‘(’:.TKI (¢,7,2z,T) = FFT
5: Dy < [FFT + A(B., B,)]- > [-]. delays computation of result until needed
6: 0+ 0+nVy logﬁ(yb | xp;]39) > Stabilized DSoftKI MLL (Equation
7 end for

8: end for R R

9 o+ solve(éa = sz]x—ly) > Solve system of linear equations (Appendix M
10: return «

where we have added a small factor € > 0 to the denominator to avoid division by zero, is proportional
to the direction from the scaled interpolation point T} ® zp to the data point x; along dimension j, with
scaling factor 1 /Tij. As a result, points that are nearby can nevertheless have different influences on the
interpolation strength of the gradients depending on their respective directions. Figure [3| illustrates the
differences in surface reconstruction using a shared versus individual temperature vector across interpolation
points. We refer the reader to Appendix [B.F] for further discussion on the role of temperatures and their
connection with lengthscales.

4.2 Posterior Inference

Algorithm [I] summarizes the adaptation of the SoftKI algorithm to work with the DSoftKI kernel. Since
DSoftKI introduces a different interpolation scheme and more learnable parameters, this introduces different
optimization dynamics and computational concerns.

Hyperparameter optimization. We learn the locations of the interpolation points by using stochastic
gradient descent on the stabilized DSoftKI MLL. The MLL of DSoftKI is

log p(¥|x;0) = N(7]0,Dy) . (23)

where Dy = KRSMKI(¢ v 2. T) + A(B,, By) for 6 = (£,7,2, T, By, By). We refer the reader to Appendix
for details on hyperparameter initialization. For a minibatch of size b, the resulting matrix is of size b(d +
1) x b(d + 1) as opposed to b x b in SoftKI. For sizable b and d, this would be intractable to compute with
since it requires solving a system of linear equations.

As a result, we decompose KPS — FFT where K,, = LL” is a Cholesky decomposition and F = >l
This changes the space requirement from O(b%d?) for a direct representation to O(bmd). In practice, we
expect m < bd, since m and b are around the same order of magnitude. Since the Cholesky decomposition is
necessary to retain a tractable representation of the DSoftKI kernel, we perform it in double-precision when
we encounter numerical instability. In our experience, we rarely encounter numerical instability due to the
current placement of interpolation points in DSoftKI. We believe that this is the case since interpolation
points can additionally take into account directional information in DSoftKI so that points that are close by
distance-wise can nevertheless be oriented to prioritize different directions based on gradient observations.

The factored representation is used to compute the DSoftKI MLL using a lazy representation
DG = [[FFT + A(ﬁva 69)]]z (24)

that directly stores F and A(B,, Bg4), and [-]. delays computation of any intermediate result until needed.
To take advantage of this representation, we use a low-rank multivariate Gaussian distribution which can

Published in Transactions on Machine Learning Research (01/2026)

d SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin 2 0.004 £0.0 0.018 £ 0.004 0.088 £ 0.062 0.176 £ 0.031 0.003 £ 0.001
Six-hump-camel 2 0.026 £0.003 0.05£0.003 0.101 £ 0.031 0.669 £ 0.04 0.015 + 0.006
Styblinski-tang 2 0.025 £ 0.001 0.05 £0.003 0.101 + 0.01 0.125 £ 0.06 0.012 + 0.002
Hartmann 6 0.05+£0.002 0.164 £0.006 0.335 £ 0.009 0.346 £ 0.019 0.011 £+ 0.004
Welch 20 0.01 £ nan 0.065 £ 0.001 - 0.578 £ 0.013 0.003 £ 0.003

Table 2: Test RMSE (best bolded) on selected synthetic datasets. One of the runs for SoftKI encountered
numerical instability (hence +nan). — indicates a timeout for DSVGP.

avoid working with the full b(d 4+ 1) x b(d + 1) matrix Dy via the Woodbury matrix identity and matrix
determinant lemma. This reduces the challenge of computing the MLL to computing the determinant and
inverses of the m x m capacitance matrix I+F7A(3,, 8,)"'F instead which takes time complexity O(m?bd)
to form. When numerical instability is encountered during the computation of DSoftKI's MLL, we compute
Hutchinson’s pseudoloss. The time complexity of a single MVM is O(mbd). The stabilized DSoftKI MLL is
thus

logp(y | x;0) when numerically stable

log p(¥ | x;0) = { (25)

logp(y | x;0) otherwise
Appendix [B22] contains an ablation of DSoftKI using the DSoftKI MLL compared to the Hutchinson’s
pseudoloss.

Posterior inference. Once we have learned the interpolation points, we can construct the posterior pre-

dictive distribution. It is SoftKI’s posterior, with the corresponding variables replaced with the (-) versions

~ I ~ - . ~ 2 2 2 ~ .
p(f(9)]9) = N(KixC KA~y KOPHE - KDFHHAT - A7 Ky C - Ko AR (26)
where sz = Eszzz and C = K., + sz]&_lf(xz. Since each data point in GPWD regression introduces
d + 1 values to fit, we have a system of n(d + 1) equations in m variables. Consequently, solving the
system of linear equations takes O(ndm?) time and space. For large d, this can exceed GPU memory limits.
Consequently, we sometimes solve these equations on a CPU. It would be an interesting direction of future

work to see how this can be improved such as with alternative linear solvers or utilizing multi-GPU hardware.

4.3 The Role of Value and Gradient Noises

Since DSoftKI forms its approximate kernel and its derivatives via interpolation, the choice of value and
gradient noises become intertwined. To examine this further, we can unpack the posterior mean equation
and see that

Ca = Z k(zq, zj)w; (27)
j=1 .
where
n 1 1 .
wj = Z ?Oi]‘yi + @(80”) dy; (28)
i=1 v 9

for 1 < a < m. This indicates that each posterior coefficient «, jointly influences the reconstruction of
function values and their gradients as opposed to introducing separate posterior coefficients for values and
gradients. The influence of fitting values versus gradients on the weights is determined by the ratio 53 /B2.
A ratio of 63 /B2 = d suggests that values and gradients are equally weighted because each gradient has d
components. A ratio larger than d thus prioritizes gradients while a ratio smaller than d prioritizes values.
We investigate the impact of the ratio on the value and gradient test RMSE more in Appendix [B23]

Published in Transactions on Machine Learning Research (01/2026)

SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin -0.725 £ 0.017 0.116 £ 0.0 -1.044 £ 0.885 -0.532 + 0.068 -4.432 £+ 0.162
Six-hump-camel -0.743 + 0.057 0.123 4+ 0.001 -1.539 £ 0.159 -0.64 £ 0.058 -2.175 £ 0.237
Styblinski-tang -0.54 £0.082 0.123 + 0.001 -1.182 £ 0.166 -1.064 + 0.188 -2.296 £ 0.045
Hartmann -0.494 + 0.111 0.221 £ 0.001 -1.362 £ 0.029 -1.324 + 0.027 -3.16 £ 0.325
Welch -0.699 + nan 0.141 £ 0.0 - 0.706 £ 0.055 -1.14 + 4.795

Table 3: Test NLL (best bolded) on selected synthetic datasets. One of the runs for SoftKI encountered

numerical instability (hence +nan). — indicates a timeout for DSVGP.
d SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin 2 0.194 £0.005 0.339 £ 0.149 1.318 + 0.02 1.945 £ 0.022 2.555 £ 0.199
Six-hump-camel 2 0.257 £0.092 0.373 £ 0.104 1.31 + 0.008 1.955 + 0.062 2.434 £ 0.087
Styblinski-tang 2 0.21 £0.006 0.335 +£0.14 1.316 + 0.018 1.91 £ 0.016 2.539 + 0.137
Hartmann 6 0.199 £ 0.003 0.337 £ 0.126 9.305 £+ 0.113 1.934 £+ 0.045 2.544 £+ 0.091
Welch 20 0.213 £0.002 0.418 £0.123 - 1.944 + 0.063 4.452 £ 0.192

Table 4: Wall-clock training time in seconds per epoch (best GPwD bolded) on selected synthetic dataset.
— indicates a timeout for DSVGP.

5 Experiments

In this section, we evaluate DSoftKI on synthetic functions (Section to obtain a baseline of comparison
and high-dimensional molecular force field (Section to test scale. We refer the reader to Appendix for
more experiments with a toy n-body simulation and on the UCI dataset (Dua & Graff, [2017) with synthetic
gradients.

Baseline GP and GPwD methods. We use the default GPyTorch implementations (Gardner et al.
2018) of SVGP, DSVGP, and DDSVGP with 2 inducing directions as baseline variational GPs. We use the
PLL (Jankowiak et al.,[2020) modification to the ELBO for the variational GPs as recommended by (Padidar
et al., 2021)) to allow separate noise parameters for function values (32) and gradients (63). We also use SoftKI
as a baseline GP where we also adopt the DSoftKI interpolation scheme. We do not compare against DSKI
since the dimensionality of the datasets are too high. We use the RBF kernel (with scale) using automatic
relevance determination (ARD) lengthscales with the exception of DDSVGP which does not support it.
Unless otherwise stated, we use m = 512 inducing points for all methods. We optimize all hyperparameters
using the Adam (Kingma & Ba, 2014) optimizer. All GPs and GPwDs use single-precision floating point
numbers, except for DSoftKI which uses double-precision occasionally to enhance the stability of Cholesky
decomposition as described previously.

5.1 Regression with and without Derivative Information

Our first experiment tests DSoftKI on selected synthetic test functions ranging from d = 2 to d = 20 with
known derivatives following (Padidar et al., |2021) so that we can compare against existing GP regression
and GPwD regression. For each function, we generate 20000 datapoints, using 10000 points for training and
reserving 10000 points for testing.

Effective learning rate. Since the training data that each GP observes varies across methods due to
how each method utilizes derivative information, setting up a fair comparison between each method is not
straightforward. For instance, even comparing the variational methods SVGP, DSVGP, and DDSVGP is
nuanced since the amount of training data each method encounters is different at n, n(d + 1), and n(p + 1)
where p is the number of inducing directions respectively. To control for this, we choose to use the notion of
an effective learning rate Acg defined as Acg = DApase where D is a method-specific number of derivative

10

Published in Transactions on Machine Learning Research (01/2026)

DSoftKI* RMSE DSoftKI* NLL. A RMSE A NLL

Branin 0.002 +£ 0.0 -4.266 £+ 0.009 -0.000 0.166
Six-hump-camel 0.163 + 0.02 -0.392 £+ 0.112 0.148 1.783
Styblinski-tang 0.026 £+ 0.002 -1.829 £ 0.171 0.014 0.467
Hartmann 0.336 £+ 0.034 0.336 + 0.092 0.326 3.495
Welch 0.027 + 0.008 -1.311 £+ 0.405 0.024 -0.171

Table 5: DSoftKI* uses the original interpolation scheme proposed in SoftKI. A RMSE and NLL give the
increase in RMSE and NLL respectively compared to the DSoftKI interpolation scheme.

0.0010 ACala3-nhme . o DhaA 0.0758 At-ai 0.0627 StachyoAse
A
A
0.0867 1 0.0761 0.07291 0.0606
0.0823- N 0.0739 - 1 0.0701 " 1 0.0584 4 \
) % N o N o) <
° < < S < < < e & < & & &
w Q. . Q« Q« Q« Q« Q~ Q« . Qg Q. Q.
z
> Buckyball- Double-walled-
0.0535 AACICT o405 CaAtCher 0.0304 nTOtUbe
A
A s softki
A svgp
0.05211 0.0444 1 0.02931
a ddsvgp
dsoftki
0.0507 0.0405 " X 002837 -
o o o >
S & S & S & S & S
o o N o o o Q' o o
RMSE / atom

Figure 4: Test RMSE per atom vs. test gradient RMSE per component obtained by various methods on
MD22 dataset. Bottom left is best.

dimensions and Ap,ge is a base learning rate. The learning rate that we use for hyperparameter optimization
is thus Aeg which we obtain for a constant Ap,se and minibatch size across methods. In this way, we keep
all the training data, epochs, and minibatch size constant across methods while requiring hyperparameter
optimization to take a step in proportion to the amount of data that it encounters. We use D = 1 for GP
regression, D = d for DSVGP, D = d+ 1 for DDSVGP, and D = ﬁg/(dﬂg) +1 for DSoftKI. We set /63 =dp?
so that D = 2 for DSoftKI.

Results. Table [2| gives the test root mean-squared error (RMSE) and Table 3| test negative log-likelihood
(NLL) averaged across three runs. We use Ap,se = 0.01 and a minibatch size of 1024, settings that are
known to work well for SVGP on this benchmark, to set Aqg for all other methods. We were not able to run
DSVGP on the Welch dataset due to time constraints since d = 20 and each minibatch of hyperparameter
optimization has time complexity O(m3d?).

Once we control for the effective learning rate, we see that fitting derivatives helps improve DSoftKI’s
performance relative to SoftKI, its non-derivative base, as measured by test RMSE performance. We believe
that this increase in performance is due to DSoftKI’s modified interpolation scheme which jointly takes into

2dfdf

11

Published in Transactions on Machine Learning Research (01/2026)

n d SoftKI SVGP DDSVGP DSoftKI

Ac-ala3-nhme 76598 126 0.894 £ 0.006 1.051 £ 0.018 7.907 £ 0.004 82.665 + 0.06

Dha 62777 168 0.887 £ 0.021 0.951 4+ 0.027 6.544 + 0.012 89.155 £ 0.223
At-at 18000 180 0.336 £ 0.006 0.427 £ 0.001 2.626 + 0.01 27.236 £ 0.037
Stachyose 24544 261 0.475 £ 0.005 0.555 £ 0.007 3.344 + 0.021 54.181 £ 0.142
At-at-cg-cg 9137 354 0.355 £ 0.008 0.423 £ 0.007 1.988 £ 0.006 27.102 £ 0.036
Buckyball-catcher 5491 444 0.244 £ 0.007 0.295 £ 0.004 1.249 £+ 0.007 20.764 £ 0.111
Double-walled! 4528 1110 0.409 £ 0.007 0.434 £ 0.004 1.906 £+ 0.003 45.379 £ 0.007

Table 6: Wall-clock training time in seconds per epoch (best GPwD bolded) on MD22 dataset. fWe abbre-
viate Double-walled-nanotube (Figure [4)) as Double-walled due to space.

account distances and directional information via learned temperature hyperparameters. In Table [5] we
run DSoftKI with the SoftKI interpolation scheme, and see that it performs worse on several datasets. For
the variational methods, we observe that SVGP performs the best, followed by DDSVGP which fits two
directions, and followed last by DSVGP which fits all derivative information once effective learning rate is
controlled for. As a reminder, we use Aqg to control for the amount of data each method sees during a
step of hyperparameter optimization and not as a recommendation to obtain the best possible results. We
conjecture that the difference in optimization dynamics between DSoftKI and DSVGP/DDSVGP is because
the former jointly models values and gradients with each interpolation point whereas the latter approaches
introduce separate inducing points for values and gradients/directions.

Another trend that we observe once we control for Aeg is that GPwDs tend to have lower NLLs compared
to their non-derivative counterparts. For methods based on SVGP, this is somewhat surprising since the
variants that fit derivatives also have higher test RMSE, indicating that the versions that fit derivatives
result in simpler models. On the other hand, for DSoftKI, we observe that the NLL is positively correlated
with its test RMSE relative to the performance of SoftKI. This suggests that the additional information is
used to increase the complexity of the model when it also improves the fit of the model.

Table | reports the (wall-clock) training time (in seconds) per epoch of training on selected synthetic datasets.
One epoch of training is one iteration through the dataset. We use a single RTX 6000 Blackwell Pro Max-Q
edition GPU. We observe that the non-derivative methods such as SoftKI and SVGP are faster than the
derivative-fitting counterparts. This is expected since we fit d times more data in GPwD regression. For
methods that predict full derivative observations, we see that DSoftKI has higher per-epoch training time
compared to DSVGP, another method that can predict full derivative observations, on datasets with d = 2.
However, as d scales, DSVGP’s cubic scaling in d leads to prohibitive cost and it becomes infeasible to run
DSVGP on the Welch (d = 20) dataset. DSoftKI also has higher per-epoch training time than DDSVGP,
particularly for large d. This is expected given DSoftKI's O(m?nd) complexity versus DDSVGP’s O(m3p3)
with p = 2 so that its per-epoch time does not scale with increasing d. However, DDSVGP only predicts
p = 2 directional derivatives.

5.2 High-Dimensional Molecular Force Fields

In this section, we evaluate the ability of DSoftKI to fit gradient information. Towards this end, we use
the MD22 dataset (Chmiela et al., 2023), a dataset of molecular energy surfaces where inputs are molecular
configurations (d = 168 to 1110), outputs are energies, and gradients of the energy surface correspond to the
physically-meaningful quantity of (negative) forces. Consequently, fitting this information can enable us to
model the physical dynamics.

Obtaining gradient predictions. To obtain the gradient prediction for SVGP, SoftKI, and DDSVGP,
we take the gradient of the posterior predictive mean to obtain the predicted gradient value since none of
these methods predict the gradient directly. For DSoftKI, we use the prediction of the gradients and not the
gradient of the prediction. In an exact GPwD, these predictions would be equivalent. We are not able to
scale DSVGP to this setting.

12

Published in Transactions on Machine Learning Research (01/2026)

Results. Figure [4] reports the test value RMSE (per atom) vs. the gradient RMSE (per component)
averaged across 3 runs for each method on each molecule. We refer the reader to Appendix for more
experimental details. The bottom left corner is the best, since that is where there is minimum error on
both values and gradients. We observe that DSoftKI performs well, particularly when the dimension of the
dataset is large. One surprising observation we make is that lower value error is not correlated with lower
gradient error. Upon examining the test RMSE curves (see Appendix , we see that many GPs that do
not fit full derivative information such as SVGP increase the test RMSE error for derivative prediction as
training progresses. Conversely, DSoftKI improves the test RMSE error on both values and gradients as
training progresses for most datasets. Further investigation of the tradeoffs of fitting gradients is warranted
for GPwD regression, since the additional computational complexity of fitting derivatives should be weighed
against if obtaining accurate gradients predictions is required or not.

Table [6] reports the (wall-clock) training time (in seconds) per epoch of training on the MD22 dataset. We
include SoftKI and SVGP as non-derivative methods for completeness. As a reminder, DVSGP does not
scale to this setting and we use DDSVGP with p = 2 inducing directions. As expected, DSoftKI has higher
per-epoch training time than DDSVGP, particularly for large d. The additional time complexity is justified
in cases such as molecular dynamics where full forces are required since the shape of the surface also needs to
be fit. Notably, DSoftKI’s training time scales roughly linearly with d (e.g., 20.8 seconds at d = 444 versus
45.4 seconds at d = 1110), consistent with its O(m?nd) complexity. In contrast, DDSVGP’s time remains
nearly constant across dimensions since its O(m3p?) complexity is independent of d. However, this assumes
mp? > d, which we observe begins to break when comparing its timing on the Double-walled dataset with
the Buckyball-catcher dataset.

6 Conclusion

In this paper, we introduce a GP that can fit and predict full derivative information called DSoftKI. It
has posterior inference time complexity of O(ndm?) and hyperparameter optimization time complexity of
O(m?+bmd), and thus, scales to larger n and d than supported by previous GPwD methods while retaining
the ability to fit and predict full derivative information. We have evaluated DSoftKI on GPwD regression
tasks and shown that it accurate, both in terms of test RMSE and test NLL, as well as modeling gradients.
While promising, there are certain limitations of our work that should be investigated further.

First, while DSoftKI is more scalable than existing GPwD methods that fit derivatives, further work can
be done to improve its computational complexity. In particular, the method is currently bottlenecked by
the computation of the DSoftKI MLL. Improved approximations of the MLL or a different objective could
further scale the efficiency of fitting derivative observations. Second, a deeper investigation of the tradeoffs
between fitting derivative information or not when they are available is warranted. For some applications,
the added difficulty of fitting gradient observations may not warrant improved surface modeling. Third,
while we demonstrate that DSoftKI supports DKL out of the box (Appendix @, achieving computational
speedups by projecting into a lower-dimensional feature space, further exploration of learned kernels for
GPwD regression is a promising direction.

References

Chris L Camartio and Daniel Huang. High-dimensional gaussian process regression with soft kernel interpo-
lation. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.
net/forum?id=U9b2FIjvWU.

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T Unke, Adil Kabylda, Huziel E Sauceda, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Accurate global machine learning force fields for molecules with

hundreds of atoms. Science Advances, 9(2):eadf0873, 2023.

Filip De Roos, Alexandra Gessner, and Philipp Hennig. High-dimensional gaussian process inference with
derivatives. In International Conference on Machine Learning, pp. 2535-2545. PMLR, 2021.

13

https://openreview.net/forum?id=U9b2FIjvWU
https://openreview.net/forum?id=U9b2FIjvWU

Published in Transactions on Machine Learning Research (01/2026)

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
mll

David Eriksson, Kun Dong, Eric Lee, David Bindel, and Andrew G Wilson. Scaling gaussian process
regression with derivatives. Advances in neural information processing systems, 31, 2018.

Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, and Andrew Gordon Wilson. Product
kernel interpolation for scalable gaussian processes, 2018. URL https://arxiv.org/abs/1802.08903.

Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration, 2021.

A. Girard. A fast ‘monte-carlo cross-validation’ procedure for large least squares problems with noisy data.
Numer. Math., 56(1):1-23, January 1989. ISSN 0029-599X. doi: 10.1007/BF01395775.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. arXiv preprint
arXiv:1809.6835, 2013.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smooth-
ing splines. Communication in Statistics- Simulation and Computation, 18:1059-1076, 01 1989. doi:
10.1080/03610919008812866.

Martin Jankowiak, Geoff Pleiss, and Jacob Gardner. Parametric Gaussian process regressors. In Hal Daumé
ITT and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 4702-4712. PMLR, 13-18 Jul 2020. URL https:
//proceedings.mlr.press/v119/jankowiak20a.htmll

Sanyam Kapoor, Marc Finzi, Ke Alexander Wang, and Andrew Gordon Gordon Wilson. Skiing on sim-
plices: Kernel interpolation on the permutohedral lattice for scalable gaussian processes. In International
Conference on Machine Learning, pp. 5279-5289. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jihao Andreas Lin, Shreyas Padhy, Javier Antoran, Austin Tripp, Alexander Terenin, Csaba Szepesvari,
José Miguel Herndndez-Lobato, and David Janz. Stochastic gradient descent for gaussian processes done
right. arXiv preprint arXiw:2310.20581, 2023.

David JC MacKay et al. Bayesian nonlinear modeling for the prediction competition. ASHRAFE transactions,
100(2):1053-1062, 1994.

Wesley J Maddox, Andres Potapcynski, and Andrew Gordon Wilson. Low-precision arithmetic for fast
gaussian processes. In Uncertainty in Artificial Intelligence, pp. 1306-1316. PMLR, 2022.

Misha Padidar, Xinran Zhu, Leo Huang, Jacob Gardner, and David Bindel. Scaling gaussian processes with
derivative information using variational inference. Advances in Neural Information Processing Systems,
34:6442-6453, 2021.

Henry C Plummer. On the problem of distribution in globular star clusters. Monthly Notices of the Royal
Astronomical Society, 71(5):460-470, 1911.

Joaquin Quinonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate gaussian
process regression. The Journal of Machine Learning Research, 6:1939-1959, 2005.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances in neural
information processing systems, 18, 2005.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1802.08903
https://proceedings.mlr.press/v119/jankowiak20a.html
https://proceedings.mlr.press/v119/jankowiak20a.html

Published in Transactions on Machine Learning Research (01/2026)

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial intel-
ligence and statistics, pp. 567-574. PMLR, 2009.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261-272, 2020. doi:
10.1038/s41592-0.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon Wilson.
Exact gaussian processes on a million data points. Advances in neural information processing systems, 32,
2019.

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian processes (kiss-
gp). In International conference on machine learning, pp. 1775-1784. PMLR, 2015.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning. In
Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 370-378,
Cadiz, Spain, 09-11 May 2016. PMLR. URL https://proceedings.mlr.press/v51/wilsonl6.html.

Mohit Yadav, Daniel Sheldon, and Cameron Musco. Kernel interpolation with sparse grids, 2023. URL
https://arxiv.org/abs/2305.14451.

A Method

We describe the DSoft KI method in more detail, including comparing its kernel structure with related GPwD
methods (Section , detailing the solving procedure (Section [A.2)), and its implementation (Section .

A.1 Comparing Gradient Kernels

For a closer comparison of exact GPwDs, DDSVGP, DSVGP, and DSoftKI, we write out the kernel matrix
between a test point * and the training data x or inducing points z in more detail. For an exact GPwD, the
kernel directly uses the training data and the derivatives of the kernel are used exactly as below

K.x = Kvﬂ) k(x,2;) (T v{j)} (29)

(¢,)],

For a DDSVGP (i.e., with directional derivatives), the kernel uses the inducing points and additional vari-
ational parameters to approximate the training data. Additionally, it uses directional derivatives of the
underlying kernel function as below

kP = [(3 Y bz 0 3%,)] @1

(257,)]

15

https://proceedings.mlr.press/v51/wilson16.html
https://arxiv.org/abs/2305.14451

Published in Transactions on Machine Learning Research (01/2026)

For a DSVGP, the kernel uses the inducing points, additional variational parameters, and ordinary derivatives
of the underlying kernel as below

kv [(g Vit 0 v5)] (3)
- Kvﬁf{j@)j) vﬁgj(fjgég)] . 39

For DSoftKI, the kernel uses the inducing points, an interpolation function, and gradients of the interpolation
function as below

Kozt — (g) odto)] Kulolle)™(0 V1), (33)

[A Kaod@)T od) Kaa () TV .
(V202(+)) Koz 02(2)T (V203 (+)) Kgg (03(2)TVT)
A.2 Solving
The procedure
a + solve(Ca = K,xA~1y) (37)
is implemented by solving
,1/2~
Ra = D7 (A 0 y) (38)

for o« where

QR — (Al/Zf(xz> (30)

is the QR decomposition and K,, = LL” is the Cholesky decomposition since C-= (QR)T(QR). This has
time complexity O(nm?) to compute.

A.3 Implementation

We implement DSoftKI in PyTorch (version 2.4.1) and GPyTorch (Gardner et al.l|2018)) (version 1.12) so that
it can leverage GPU acceleration. DSoftKI currently only leverages a single GPU. Arithmetic for DSoftKI is
implemented in single-precision floats. There are a few places where the Cholesky decomposition of K, is
utilized in posterior inference. To stabilize these computations, we add a small jitter to the diagonal, when
needed. In extreme cases when K,, values are extremely small, we may switch to double-precision floats to
perform a Cholesky decomposition, before converting the results back into single precision.

Recall that we use CG to implement the Hutchinson pseudoloss. We use a PyTorch implementation of CG
descent method following (Maddox et al., 2022]). We use a CG tolerance of 1e — 5. We use a rank-10 pivoted
Cholseky decomposition to obtain a preconditioner for CG descent.

B Additional Experimental Results

We detail the hyperparameters used (Section [B.1). We also provide supplemental ablations (Section
and Section [B.3)) and supplemental experimental results for the experiments described in the main text

(Section and Section B.5)).

B.1 Hyperparameters

For the experiments in this paper, we initialize hyperparameters as follows:

16

Published in Transactions on Machine Learning Research (01/2026)

Test RMSE Test NLL
d | Exact MLL Hutchinson Exact MLL Hutchinson
Branin 2 | 0.002 &£ nan 0.029 £ 0.0 -4.527 + nan 0.208 £ 0.003
Six-hump-camel 2 | 0.014 + 0.002 0.198 + 0.018 -2.185 £+ 0.245 0.627 £+ 0.014
Styblinski-tang 2 | 0.013 + 0.004 0.035 + 0.001 -2.283 + 0.065 0.726 £ 0.08
Hartmann 6 | 0.011 £ 0.003 0.408 + 0.016 -3.145 + 0.318 1.159 £ 0.007
Welch 20 | - 0.618 + 0.006 | - 1.373 £+ 0.002

Table 7: Comparison of using Exact MLL vs. Hutchinson’s pseudoloss. The best test RMSE and test NLL
are bolded. The notation +nan indicates that one run was unstable whereas the notation — indicates that
all runs failed.

Derivative Noise vs. Noise

—&— Branin
Six-hump-camel

—8— Styblinski-tang

—e— Hartmann

—8— Welch

=1)
-
=)

RMSE/RMSE(factor:
o
o<}

BZIdB?)

Figure 5: Effect of noise.

* lengthscales ¢; =1,

e output scale vy =1,

 interpolation points z via k-means clustering on training data,

o temperatures Tj; = 1 for all entries,

o value noise 32 = 0.1, and

e gradient noise 63 = 0.1 x d where d is the dimensionality of the dataset.

As discussed in the main text, all hyperparameters
9 = (Ea’YaZ(de)7T(de)aﬂv7ﬁg) (40)

are learned jointly via gradient-based optimization of the stabilized DSoftKI MLL (Equation using
Adam (Kingma & Bay 2014).

B.2 Exact MLL vs. Hutchinson’s Pseudoloss.

Table [7] reproduces the results of Section [5.1] using the Exact MLL compared to Hutchinson’s pseudoloss.
We see that when using DSoftKI’s MLL, there is instability in training on Branin and Welch. However,
using Hutchionson’s pseudoloss exclusively leads to worse results. As a result, we opt for an objective that
uses the DSoftKI MLL, when possible, and Hutchinson’s pseudoloss otherwise as described in Section [4.2

B.3 Effect of Noise Levels

The DSoftKI method balances the fitting of value information with gradient information by controlling the
relative ratio of 82 to b’;. Figure |5 shows the results of varying this ratio on the synthetic benchmark to
gain more insight into how to set this ratio. We see that the relatative ratio of 32 to 63 is dependent on the
dataset. The experiments reported in the paper had a relative factor of 1.

17

Published in Transactions on Machine Learning Research (01/2026)

Surface

Surface

Surface

Interpolation Points

Variational Inducing Points

LJ

f: : softki 4 svgp
\' : - dsoftki dsvgp
- ddsvgp
_2 4
T T T _3 1 T T T
0 2 4 0 2 4

(a) Branin.

Variational Inducing Points

Interpolation Points
Aol softki
dsoftki

svgp
dsvgp
ddsvgp

(b) Six-hump-camel.

Interpolation Points

Variational Inducing Points

&L softki
dsoftki

svgp
dsvgp
ddsvgp

(c) Styblinski-tang.

Figure 6: Learned interpolation and inducing points across various GP and GPwD regression methods.

B.4 More Synthetic Benchmark Results

Data normalization. We scale data {(z;, v, dy:)}Y, as {(hypercube(x;), (y; — f1)/&,dy;/5)}, where
hypercube : R? — [0, 1]¢ maps into the unit hypercube, /i is the empirical mean of the values, and & is the
empirical standard deviation of the values and the derivatives. This ensures that the values and derivatives
are measured in the same units, and follows standard practice.

Gradient fitting results. Table [8| reports the gradient fitting errors for the experiment described in
Section on synthetic functions using scaled effective learning rate. We observe that DSoftKI has the

18

Published in Transactions on Machine Learning Research (01/2026)

d SoftKI SVGP DSVGP DDSVGP DSoftKI
Branin 2 017 £0.024 0.237 £0.029 0.357 &+ 0.207 1.526 £ 0.058 0.07 £+ 0.01
Six-hump-camel 2 1.069 £ 0.156 1.206 £ 0.057 1.545 £ 0.071 7.032 £ 0.187 0.345 £+ 0.084
Styblinski-tang 2 1.008 £0.11 0.998 + 0.02 0.86 £ 0.133 0.895 + 0.165 0.319 + 0.057
Hartmann 6 0429 £0.232 0.377 £0.007 0.506 £ 0.01 0.527 £0.01 0.028 £+ 0.008
Welch 20 0.011 £ nan 0.052 £ 0.0 - 0.269 £ 0.002 0.001 £ 0.001

Table 8: Gradient fitting errors on synthetic functions using scaled effective learning rate. One of the runs

for SoftKI encountered numerical instability (hence +nan). — indicates a timeout for DSVGP.
DSVGP DSoftKI DSoftKT (82 /(df2) = 10d)
Branin 0.323 £+ 0.821 281.505 &+ 72.881 0.397 £ 0.061
Six-hump-camel 0.33 £ 0.248 53.827 £ 49.856 8.921 £ 7.412
Styblinski-tang 0.665 + 0.121 41.907 £ 14.305 4.929 £+ 2.126
Hartmann 0.047 + 0.014 10.755 £ 0.916 0.591 £ 0.265
Welch - -1.329 + 1.906 0.138 + 0.161

Table 9: Uncertainty quantification over gradient predictions.

lowest gradient errors of the methods. The relative size of 32 and 53 controls the degree to which value
fitting is prioritized compared to gradient fitting.

We also compare the gradient test RMSE of the base GP and its extension with derivatives. For a gradient
test RMSE, we sum up the errors across the dimensions. Thus, we should normalize by the number of
dimensions to compare across datasets. We observe that it is dataset dependent whether or not DSVGP
outperforms SVGP. As a reminder, DDSVGP does not fit all the derivative information, and thus, we
derive its gradient prediction from its value prediction. We observe that derivative information is helpful for
DSoftKI, the extension of SoftKI to the setting with derivatives.

Uncertainty quantification of derivatives. We only report test NLLs for DSVGP and DSoftKI since
these are the only methods that provide uncertainty estimates for full derivative information. In general,
we find that DSoftKI has larger test NLLs compared to DSVGP. This is consistent with our earlier findings
that DSVGP gives lower test NLL compared to SVGP, even though its test RMSE is worse.

Visualization. Figure @ visualizes the learned interpolation/inducing points for each method. We make a
couple of observations on the learned points. First, we see that there are differences between the structure
of the interpolation points learned by SoftKI and DSoftKI compared to the inducing points learned by the
variational approaches. In particular, the variational approaches have additional learned parameters that can
help represent the structure in the dataset. In contrast, SoftKI and DSoftKI have to rely solely on the inter-
polation points to represent the structure in the dataset. Second, we observe that the interpolation/inducing
points learned those GPs that fit derivatives and those that do not are different. In particular, DSoftKI and
SoftKI capture different geometric structure in the underlying data. The inducing points learned by DSVGP
are more spread out compared to those learned by DDSVGP and SVGP.

B.5 More Force Field Results

Dataset details. More concretely, we have a labeled data set {(z;, y;, dy;) }; where x; encodes the Cartesian
coordinates of the atomic nuclei in the molecule in Angstrém’s, y; encodes the energy of the molecule in
kcal/mol, and dy; encodes the negative force exerted on each atom in the molecule. The dimensionality of
x; is d = 3A where A is the number of atoms in the molecule since each atom takes 3 coordinates to describe
in 3D-space. For example, a 42 atom system will have d = 126. We consider all available molecules.

19

Published in Transactions on Machine Learning Research (01/2026)

Test RMSE on Ac-Ala3-NHMe Test RMSE on DHA 038 Test RMSE on AT-AT Test RMSE on stachyose
— svap 0.50 — svop
020 o3\ L otk | o\ softki
034 ddsvgp ddsvgp
028 os2] -~ dsoftki 0.45 --- dsoftki
u Ml — 8
= 20301 e =
€027 \ 3 o ey Zo40{ N\ e
e 0321 _ sygp 028 - \
0261 vosofti e softki 0261\ AN
ddsvgp g 031 ddsvgp AN 035 N PN
--- dsoftki T A fn Ay --- dsoftki 024 o SUBPAY S el RPN o i
T e A T e e e e T
0 10 0 30 40 50 [o 20 30 40 50 0 10 20 30 40 50 [10 20 30 40 50
Epoch Epoch Epoch Epoch
(a) Ac-ala3-nhme. (b) Dha. (c) At-at. (d) Stachyose.
Test RMSE on AT-AT-CG-CG Test RMSE on buckyball-catcher Test RMSE on double-walled-nanotube
35
0.60 — svap s
------ softki . 3.0
055 g \
-—- dsoftki o5 25 _ svap
] \ Wy - softki
z \ S ddsvgp
04] 154 =
... — svop
-+ softki 10
=N 03 ddsvgp \
P e T sy ——= dsoftki Loil sl o= 05 e
[0 20 30 40 50 0 10 20 30 40 50 [10 20 30 40 50
Epoch Epoch Epoch
(e) At-at-cg-cg. (f) Buckyball-catcher. (g) Double-walled-nanotube.
Figure 7: Test RMSE curves.
Test V RMSE on Ac-Ala3-NHMe Test V RMSE on DHA Test V RMSE on AT-AT Test V RMSE on stachyose
mway e - 131 13.6
e T sy 102]
1.2 T 3.0 134 N T,
N 12.9 N 16.0 e
w11.0 R w w132 N w S
2 D128 8 “ [P o
o N, o o S, 3 S
10.8 N 12.7 13.0 N NG
— svop N, — svgp — svop S 15.6] — svop .
e softkd N 12.6] oo softki e softki ~. | 77 softki .
10.6 ddsvgp S ddsvgp 12.8 ddsvgp TS 154 ddsvgp Nl
104l TT7 @ORK Seeag 1251 - dsoftki --- dsoftki Sl] --- dsoftki R
0 10 20 30 40 50 0 o 20 30 40 50 0 10 20 30 40 50 0 o 20 30 40 50
Epoch Epoch Epoch Epoch
(a) Ac-ala3-nhme. (b) Dha. (c) At-at. (d) stachyose.
Test V RMSE on AT-AT-CG-CG Test V RMSE on buckyball-catcher Test V RMSE on double-walled-nanotube
188 EE 21.0
G 205 .
18.6 N N
w Ny 1, 20.0 “
& < @ N
Z 184 Ry Z195 N
— svgp NS — svgp . — svgp ..
18.2] e softki . 1901 ... softki o 32,0 e softki N
ddsvgp \ 18.5 ddsvgp S ddsvgp e
18,0 ~= dsoftki N L S J ——— .
[o 20 30 40 50) 10 20 30 40 50 [0 2 30 40 50
Epoch Epoch Epoch
(e) At-at-cg-cg. (f) Buckyball-catcher. (g) Double-walled-nanotube.

Figure 8: Test gradient RMSE curves.

Data normalization. We use the same data normalization scheme for energies and forces as we did in the

synthetic experiments. Instead of using hypercube, we scale the Cartesian coordinates as x;/3 which has
the effect of changing units.

Training curves. Figure [7] and Figure [§] give the test RMSE, test gradient RMSE, and their standard
deviations at each epoch of training on the MD22 dataset. As a reminder, we did not tune the learning
rates or batch sizes to obtain the best possible performance. Rather, we control the effective learning rate
so that we can compare GP and GPwD regression. SVGP is in blue, SoftKI is in green, DDSVGP is in
orange, and DSoftKI is in Red. On Ac-Ala3-NHMe, we observe that methods that fit derivative information
overfit both values and gradients. On several datasets such as AT-AT and Stachyose, we observe that
DSoftKI overfits on test RMSE but does not on test gradient RMSE. On other dataset such as AT-AT-CG-CG,
Buckyball-catcher, and Double-walled-nanotube, we observe that DSoftKI is able to fit both the values
and gradients. In contrast, DDSVGP tends to overfit as measured by test gradient RMSE. This is somewhat

20

Published in Transactions on Machine Learning Research (01/2026)

50000

12500 dsoftki 25000 dsoftki 30000 dsoftki dsoftki
10000 softki 20000 softki softki 40000 softki
£ 7500 £ 15000 & 20000 2 30000
3 3 3 3
o o o o
“ 5000 “ 10000 o © 20000
10000
2500 5000 10000
0 0 0 0
0 5 10 0 5 10 0 1 2 3 0 2
T T T T
(a) Ac-ala3-nhme. (b) Dha. (c) At-at. (d) stachyose.
dsoftki dsoftki
60000 50000 i
softki softki 125000 :;’tfilk'
40000 100000
£ 40000 e .
£ S 30000 S 75000
o o 3
c “ 20000 S
20000 50000
10000 25000
0 0 0
1 2 05 10 15 05 10 15
T T T
(e) At-at-cg-cg. (f) Buckyball-catcher. (g) Double-walled-nanotube.

Figure 9: Histogram of learned temperatures for DSoftKI and SoftKI on the MD22 dataset. The learned
temperatures have similar distributions.

surprising, since it does fit directional derivative information. We also observe that SoftKI and SVGP cannot
fit gradients even though they do fit the values. This suggests that GPs that do not fit derivatives do not
capture the shape of the surface well.

Temperatures and lengthscales. Figure[Jland Figure[I0] give the histograms of temperatures and length-
scales that are learned by DSoftKI and SoftKI. As a reminder, we modified SoftKI to also have different
temperatures per interpolation point as we did for DSoftKI to have a more fair comparison.

The temperature Tj, € R? for interpolation point z; controls how strongly that point responds to variations
along each input dimension during interpolation. A smaller temperature component 7}; makes the interpo-
lation weight o (x) more sensitive to changes in dimension j, effectively sharpening the directional influence.
Conversely, larger temperatures smooth out the response along that dimension.

Figure[9]shows that the learned temperature distributions are similar between DSoftKI and SoftKI, indicating
that the interpolation scheme (which is what is affected by the temperature) is primarily adapted to the
data geometry. Moreover, we observe that DSoftKI learns larger kernel lengthscales compared to SoftKI
(Figure. This suggests that when gradient information is available, the model can rely on the temperature
vectors to capture local directional variation, allowing the kernel lengthscales to increase and model smoother
global structure. In other words, the temperatures and lengthscales play complementary roles: temperatures
handle local directional sensitivity while lengthscales control global smoothness.

C Additional Datasets

We describe experiments on additional datasets including a toy n-body simulation (Section |C.1)) and the
UCI dataset with synthetic gradients (Section [C.2)) to test DSoftKI on a broader range of datasets.

C.1 Toy N-Body Dataset
Computational physics and chemistry provide settings where high-dimensional gradient observations arise

naturally. Consider an n-body system with n particles (e.g., atoms or point masses). Let q = (g1,...,¢n)
denote the positions of each particle where each ¢; € R3, and let p = (py, ..., p,) denote the momenta where

21

Published in Transactions on Machine Learning Research (01/2026)

125 dsoftki

dsoftki ! 201 dsoftki 25 dsoftki
softki 80 softki softki softki
100 15 20
60 " ™
£ 7 5 5 515
3 S a0 § 10 S
“ 50 10
25 20 > 5
0 0 i T] T T 0 T T
0 2 4 6 2 4 2 4 0 2 4

Lengthscale Lengthscale Lengthscale Lengthscale

(a) Ac-ala3-nhme. (b) Dha. (c) At-at. (d) stachyose.
i i 200
504 dsoft_kl w0 dsoft_kl dsoftki
softki softki softki
40 150
30
€ € o
3301 3 3100
v} O 20 IS}
20
50
10 10
0 0 0 7 v T T
2 4 2 4 1 2 3 4

Lengthscale Lengthscale Lengthscale

(e) At-at-cg-cg. (f) Buckyball-catcher. (g) Double-walled-nanotube.

Figure 10: Histogram of lengthscales on MD22 dataset for DSoftKI and SoftKI. The lengthscales learned by
the DSoftKI tend to be larger than the lengthscales learned by SoftKI.

d DDSVGP DSoftKI V-DDSVGP V-DSoftKI
nbody-4 24 0.058 + 0.005 0.059 +£ 0.002 1.453 £ 0.083 0.708 £+ 0.034
nbody-6 36 0.027 £ 0.001 0.035 £ 0.002 1.5 £ 0.059 1.032 + 0.045
nbody-8 48 0.03 £ 0.0 0.028 + 0.002 1.368 £ 0.117 1.016 + 0.092
nbody-10 60 0.026 & 0.003 0.024 £ 0.0 1.343 £ 0.037 1.104 £ 0.04

Table 10: Test RMSE (best bolded) on n-body datasets. V-DDSVGP and V-DSoftKI denote gradient
RMSE (best bolded).

each p; € R3. The dynamics are governed by Hamilton’s equations

dq _OH

o dp _ on
dt Op’

it = oq 4D

where H(q, p) is the Hamiltonian. Thus, given observations of the Hamiltonian H and its gradients VH, we
can learn the system’s dynamics, i.e., 44 and ‘;—It’. More concretely, it is a GPwD regression problem where

) dt
x=(q,p), y = H(x), and
OH OH
= — — . 42
Vy (aq,ap) (42)

The input dimensionality is d = 6n since each particle contributes 3 position and 3 momentum coordinates. A
learned surrogate for the Hamiltonian enables efficient prediction of the system’s dynamics without expensive
numerical integration, which can be intractable for large n.

We construct an n-body gravitational dataset nbody-n as followsE] The Hamiltonian is

_ - llpil? _
Hlap) = 0=
i=1

v i<j

Gmym;
llgi — q;||I* + €

(43)

3This is a classical system, in contrast to the MD22 dataset (Section i which is a quantum system.

22

Published in Transactions on Machine Learning Research (01/2026)

d DDSVGP DSoftKI
nbody-4 24 0.98 £ 0.016 1.68 £ 0.019
nbody-6 36 0.995 + 0.029 2.802 £ 0.048
nbody-8 48 0.97 £ 0.006 3.646 £ 0.059
nbody-10 60 0.976 + 0.001 4.591 + 0.162

Table 11: Training time per epoch (in seconds, best bolded) on n-body Hamiltonian datasets.

n d DDSVGP DSoftKI V-DDSVGP V-DSoftKI
Kin40k 18000 8 0.867 £ 0.002 0.864 + 0.006 0.399 + 0.001 0.393 £+ 0.001
Protein 20578 9 0.81+0.006 0.787 &£ 0.003 2.778 £ 0.087 2.655 + 0.283
Bike 7820 17 0.629 £ 0.026 0.421 £+ 0.006 0.763 = 0.004 0.624 + 0.012
Elevators 7470 18 0.821 £0.013 0.797 £ 0.009 0.449 £+ 0.002 0.448 + 0.001
Pol 6750 26 0.898 £ 0.007 0.702 + 0.01 0.383 £ 0.013 0.324 £ 0.012
Slice 19260 385 0.357 £ 0.005 0.03 + 0.008 0.165 £ 0.007 0.094 + 0.004

Table 12: Test RMSE (best bolded) on selected UCI datasets. V-DDSVGP and V-DSoftKI denote gradient
RMSE (best bolded).

where m; is the mass of particle i, G is the gravitational constant, and € is a softening parameter that
prevents singularities when particles approach each other. The first term is the kinetic energy and the
second is the gravitational potential energy with Plummer softening (Plummer| [1911)). In this toy example,
the Hamiltonian has analytic gradients which may not exist for more complex systems.

We generate datasets for n € {4, 6, 8,10} particles, corresponding to input dimensions d € {24, 36, 48,60}. To
generate physically realistic configurations, we simulate 100 trajectories by integrating Hamilton’s equations
using a high-order Runge-Kutta method (DOP853) as implemented in SciPy (Virtanen et al., [2020)). Initial
positions are sampled from AN(0,22), initial momenta from N(0,0.52) scaled by particle mass, and masses
uniformly from [0.5,2.0]. We apply center-of-mass corrections for numerical stability. From each trajectory,
we sample configurations to obtain 10000 total samples per setting, computing the Hamiltonian and its
gradients analytically. We filter out the 5% of samples with the largest gradient norms for numerical stability,
leaving 9500 samples. For this toy dataset, we use G =1 and € = 0.1.

Table [10| reports the results of using a 90/10 training-testing split on each dataset. DSoftKI and DDSVGP
achieve similar value RMSE, but DSoftKI substantially outperforms DDSVGP on gradient prediction (e.g.,
0.708 RMSE versus 1.453 V-RMSE for n = 4). This demonstrates DSoftKI’s advantage in applications
requiring accurate full gradient predictions, such as learning physical dynamics from energy observations,
and justifies the higher computational cost (Table .

C.2 UCI Dataset

To evaluate scaling on diverse input distributions beyond physics datasets, we construct GPwD regression
benchmarks from standard UCI regression datasets (Dua & Graff, [2017) by generating synthetic gradients.
We select six UCT datasets spanning a range of dimensions: Kin40k (d = 8), Protein (d = 9), Bike (d = 17),
Elevators (d = 18), Pol (d = 26), and Slice (d = 385). For each dataset, we estimate gradients using a
k-nearest neighbor finite difference approximation: for each point x; with label y;, we compute directional
derivatives along the directions to its k = 3 nearest neighbors and average the resulting gradient estimates,

i.e.,
1 T
Vy; = 7 Z ”371(% — ;)

44
2 = wlP (44)
JEN(1)

where Ny (i) denotes the k nearest neighbors of point 7. This introduces noise into the gradient observations,
providing a test of robustness to gradient estimation error.

23

Published in Transactions on Machine Learning Research (01/2026)

n d DDSVGP DSoftKI
Kin40k 18000 8 2.257 £ 0.022 1.715 £ 0.1
Protein 20578 9 2,593 £ 0.05 2.054 £ 0.067
Bike 7820 17 0.977 £ 0.003 1.317 £+ 0.067
Elevators 7470 18 0.994 £+ 0.024 1.297 £+ 0.017
Pol 6750 26 0.876 + 0.014 1.663 £ 0.077
Slice 19260 385 2.378 + 0.047 71.279 £ 0.076

Table 13: Wall-clock training time (in seconds) per epoch (best bolded) on selected UCI datasets.

DSoftKI DSoftKI-DKL
Ac-ala3-nhme 5.98e-03 + 2.90e-05 6.93e-03 + 9.40e-05
Dha 5.85e-03 + 8.80e-05 6.19e-03 + 7.40e-05
At-at 4.01e-03 + 1.04e-04 5.63e-03 £+ 5.40e-05
Stachyose 3.99e-03 £ 2.90e-05 5.29e-03 £+ 1.30e-05
At-at-cg-cg 2.58e-03 £ 5.60e-05 3.98¢-03 + 2.14e-04
Buckyball-catcher 1.81e-03 £+ 5.40e-05 4.09e-03 £ 1.17e-04

Double-walled-nanotube 9.33e-04 + 2.70e-05 2.90e-03 *+ 4.59e-04

Table 14: Normalized test RMSE per atom (best bolded) on MD22 dataset.

Table [12] reports the results. DSoftKI outperforms DDSVGP on both value and gradient prediction across
all datasets. The Slice dataset (d = 385) is particularly notable: DSoftKI achieves 0.030 RMSE versus
DDSVGP’s 0.357, demonstrating strong performance on high-dimensional structured data. The higher train-
ing time for DSoftKI on Slice (Table reflects its O(m?nd) complexity, but is justified by substantially
better accuracy.

D Deep Kernel Learning

One advantage of DSoftKI over DSVGP and DDSVGP is that it does not require computing first or second-
order derivatives of the kernel (Section . This enables the use of learned kernels, such as Deep Kernel
Learning (Wilson et al.l |2016) (DKL), without hard-coding kernel derivatives so that standard automatic
differentiation techniques can be applied.

To demonstrate this capability, we evaluate DSoftKI with a deep kernel learning (DSoftKI-DKL) setup on
the MD22 molecular datasets. We use a 2-layer MLP feature extractor with hidden dimension 64, output
dimension 24, and tanh activations. The RBF kernel is applied in the learned feature space. We train all
hyperparameters jointly using Adam, with a learning rate of 0.002 for the GP hyperparameters and 0.0005
for the neural network weights.

Table Table and Table [T6] report the results. DSoftKI-DKL performs comparably to DSoftKI, with
slightly higher RMSE on both values and gradients. We emphasize that this experiment is intended as a
demonstration that deep kernel learning works out of the box with DSoftKI, rather than a claim that it im-
proves performance on these particular datasets. Notably, DSoft KI-DKL offers computational speedups over
DSoftKI since the interpolation points are projected into a lower-dimensional feature space. Furthermore,
the neural network gradients can be computed efficiently via Jacobian-vector products, whereas DSVGP and
DDSVGP would require hard-coding the feature extractor Jacobians or face intractable computation.

E Additional Background on DDSVGP and DSKI

In this section, we describe in more detail how variational inducing point methods and SKI have been
extended to the setting with derivatives.

24

Published in Transactions on Machine Learning Research (01/2026)

DSoftKI DSoftKI-DKL
Ac-ala3-nhme 8.27e-02 + 1.73e-04 8.62e-02 £ 1.00e-05
Dha 7.41e-02 + 2.59e-04 7.62e-02 £+ 2.27e-04
At-at 7.03e-02 + 8.50e-05 7.49e-02 + 1.25e-04
Stachyose 5.86e-02 £ 6.00e-05 6.19e-02 £ 1.04e-04
At-at-cg-cg 5.08e-02 £ 2.02e-04 5.32e-02 £ 1.10e-04
Buckyball-catcher 4.09e-02 £ 1.78e-04 4.75e-02 + 1.66e-04

Double-walled-nanotube 2.84e-02 + 5.10e-05 3.28e¢-02 + 1.04e-03

Table 15: Normalized gradient test RMSE per dimension d (best bolded) on MD22 dataset.

n d DSoftKI DSoftKI-DKL
Ac-ala3-nhme 76598 126 82.665 £ 0.06 58.98 £ 0.516
Dha 62777 168 89.155 £ 0.223 48.736 £ 0.56
At-at 18000 180 27.236 £ 0.037 13.958 + 0.025
Stachyose 24544 261 54.181 £ 0.142 19.324 £ 0.369
At-at-cg-cg 9137 354 27.102 £ 0.036 12.574 + 0.339
Buckyball-catcher 5491 444 20.764 £+ 0.111 7.655 £ 0.146

Double-walled-nanotube 4528 1110 45.379 £ 0.007 7.143 + 0.088

Table 16: Comparing (wall-clock) training time (in seconds) per epoch (best bolded) on MD22 dataset for
DSoftKI versus DSoftKI-DKL.

Variational inducing points. An inducing point method (Snelson & Ghahramani, 2005; |(Quinonero-
Candela & Rasmussen, [2005)) introduces a set of m < n inducing points z = (z; € RY)™, and associated
inducing variables f(z) = u = (u; € R)™; as a proxy for the given inputs x and outputs y respectively.
In an inducing point method such as Sparse Variational Gaussian Processes (SGPR) (Titsias, 2009) and

Stochastic Variational Gaussian Process (SVGPs) (Hensman et al., |2013)), the inducing points and variables

are related to the dataset as
KZZ KZX . .
(f&)) ~N (07 (sz Kxx)) (inducing)
yf(x) ~N(f(x),A). (likelihood)

Note that the marginalization of the inducing variables u reduces the model to the standard GP model. To
make posterior inference tractable, a SVGP makes a variational approximation ¢(f(x),u) = p(f(x) | u)g(u)
where ¢(u) = N(u|m,S), treating m™*1) and S(™*™) as additional learnable variational parameters.
More concretely, 8 = (¢,~, 5,2z, m,S). They can be learned by maximizing a lower bound on the MLL called
the evidence lower bound (ELBO), defined as

ELBO(q(f(x),u)) = Z Eq(t@npWi| f(z:)) = KL(g(u) || p(u|2)) (45)

which equivalently minimizes the KL-divergence K L(g(u) || p(u|z)). The ELBO can be optimized in mini-
batches, resulting in a time complexity of O(m?). Given learned hyperparameters, the optimal posterior
distribution is

q(f(x)) = N(f(*) |K*ZK;z1ma K. — K*ZK;ZI(S - KZZ)K;leZ* +A). (46)

The complexity of inference is O(m?).

A SVGP can be extended to the setting with derivatives, i.e., a DSVGP (Padidar et al., |2021)). More
concretely, define an inducing variable @; = (u; VuZT)T that models the value and its gradient at an

25

Published in Transactions on Machine Learning Research (01/2026)

inducing point z;. A DSVGP introduces learnable parameters m (> - gm(dmx1) - gmxm) = gg(ixm) - apnq
d?8(@mxdm) 4 define a variational posterior ¢(ii) = N (i |, S) where

~ m; S Sij dSU
== o), s {GRy #)), <47>

The parameters can be learned by maximizing the DSVGP ELBO which is obtained by replacing the SVGP
ELBO with the respective (-) versions.

Again, it is a lower-bound on the MLL. The time complexity of computing the ELBO on a minibatch is
Q(m3d3). The posterior distribution is that of SVGP with all of the matrices replaced with their respective
(+) versions. The time complexity of posterior inference is O(m?d®) since K,, is a (m(d+ 1)) x (m(d + 1))
matrix.

DDSVGP (Padidar et al., [2021) utilizes directional derivatives dy f = VTV f(x) where V projects onto a p
dimensional subspace. This results in the modified matrices

K,y = K%) k(za, 2) (L a\T,b)Lb (48)

K., = KVH) k(%, 2) (I a@b)} (49)

1b
which has additional learnable variational parameters {_f,(dep)}2121 for projecting. The m(p+1) x m(p+1)
matrix K,, = [l;(za, 2)]ap can be formulated efficiently with Hessian-vector products in time complexity
O(m?2dp). The modified posterior distribution and ELBO are obtained by changing the respective (-) vari-
ables to the (-) versions. Posterior inference can be computed in time O(m?®p?), assuming mp? > d to
account for the cost of forming K,,, since the d-dimensional gradients have been reduced to p-dimensional
directional derivatives.

Structured kernel interpolation. One problem with inducing point methods is the requirement that
m < n. SKI (Wilson & Nickischl |2015|) overcomes this limitation by using the approximate kernel

K3 = Wi, Koy W ~ Ko (50)
where z are cleverly chosen interpolation points on a pre-defined lattice, Wy, = [w%(ml)]lj is a matrix of
interpolation weights with interpolation function wy(x;), and Wy, = WL _. The SKI posterior is

PUF() [3,y) = N(f () | K (KT + A) 7y Koo = K (K + A) 7 K (51)

which is the GP posterior with Ky replaced with K,S(EI

The posterior is tractable to compute since the lattice structure given by the interpolation points enables
fast matrix-vector multiplies (MVMs) so that conjugate gradient (CG) methods can be used to solve large
systems of linear equations. The complexity of a single MVM is O(n4? +mlogm) with a cubic interpolation
function (Wilson & Nickischl, |2015]) where m is the number of interpolation points. However, the asymptotic
dependence on d limits the application of SKI to low dimensions.

DSKI (Eriksson et all |2018) extends the SKI (Wilson & Nickischl 2015) method to create a scalable GP
regression method that handles derivative information. To accomplish this, DSKI uses the following approx-
imate kernel

KR = Wiy Ko W ~ Ko (52)

=[] []

That is, DSKI approximates the kernel by differentiating the interpolation matrix. The posterior distribution
is the SKI posterior with the SKI kernel replaced with the DSKI kernel. Like SKI, DSKI leverages fast MVMs
enabled by the lattice structure and CG methods to perform GP inference. The complexity of a single MVM
is O(nd6? + mlogm). The scaling in the dimension d is even worse than SKI, limiting the application of
DSKI to even smaller dimensions.

where

26

	Introduction
	Related Work
	Background
	Gaussian Processes
	Gaussian Processes with Derivative Information
	Soft Kernel Interpolation

	Method
	Soft Kernel Interpolation with Derivatives
	Posterior Inference
	The Role of Value and Gradient Noises

	Experiments
	Regression with and without Derivative Information
	High-Dimensional Molecular Force Fields

	Conclusion
	Method
	Comparing Gradient Kernels
	Solving
	Implementation

	Additional Experimental Results
	Hyperparameters
	Exact MLL vs. Hutchinson's Pseudoloss.
	Effect of Noise Levels
	More Synthetic Benchmark Results
	More Force Field Results

	Additional Datasets
	Toy N-Body Dataset
	UCI Dataset

	Deep Kernel Learning
	Additional Background on DDSVGP and DSKI

