Under review as a conference paper at ICLR 2026

DECAEVOLVE: DECOMPOSE, ADAPT, AND EVOLVE,
OR, THREE PILLARS OF EFFECTIVE LLM-BASED SCI-
ENTIFIC EQUATION DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding mathematical relations underlying natural phenomena and scientific sys-
tems has been one of the fundamental tasks in the history of scientific discovery.
Recent advancements in evolutionary search with Large Language Models (LLMs),
with their embedded scientific knowledge, have shown great promise for this task.
However, discovering such mathematical models governing scientific observations
still remains significantly challenging, as it requires navigating vast combinatorial
hypothesis spaces with an explosion of possible relations. Existing LLM-based
approaches overlook the impact of data on the structure of mathematical relations,
and treat LLMs as a static hypothesis generator unaware of the observed scientific
system. This leads to suboptimal and inefficient exploration of the hypothesis
space with over-reliance on LLMs’ internal priors. To bridge this gap, we introduce
Decompose, Adapt, and Evolve (DecAEvolve), a framework that leverages granular
feedback from symbolic term decomposition and LLM refinement through rein-
forcement learning (RL) fine-tuning to enhance both robustness and efficiency of
evolutionary discovery frameworks. DecAEvolve unifies symbolic decomposition
with test-time RL adaptation, enabling adaptive rather than static hypothesis genera-
tion and reducing error by up to an order of magnitude compared to state-of-the-art
baselines. Our experiments across diverse datasets demonstrate that DecAEvolve
significantly improves the accuracy of discovered equations and the efficiency of
the discovery process compared to the state-of-the-art baselinesﬂ

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has fundamentally transformed automated
problem-solving across diverse domains. Beyond their well-established capabilities in natural
language understanding and programming (Achiam et al.,[2023} Touvron et al.,[2023), LLMs have
recently demonstrated remarkable reasoning abilities that enable them to tackle complex optimization
and discovery tasks. Their capacity to leverage embedded domain knowledge, interpolate between
them, generate structured hypotheses and engage in iterative refinement, positions LLMs as
powerful engines for systematic exploration of complex solution spaces towards discovery goals
(Romera-Paredes et al., 2024} [Novikov et al., 2025} |Surina et al., 2025). This potential extends
naturally to scientific discovery tasks, where the combination of domain expertise and systematic
search/exploration in the hypothesis space can unlock new approaches to longstanding challenges
of scientific inquiry (Shojaee et al.l 2025a).

Scientific equation discovery—the process of uncovering compact and interpretable mathematical
models that govern natural phenomena—represents one of the fundamental tasks in automated scien-
tific discovery, with applications across many fields of science such as physics, biology, and material
science (Makke & Chawla, [2024)). Traditional approaches in Symbolic Regression (SR) rely on
genetic programming and evolutionary strategies (Kozal [1994b;|Cava et al., 2021b)); however, these
approaches often struggle with scalability limitations and inefficient exploration of the vast combinato-
rial hypothesis space (Virgolin & Pissis| 2022). More recent advances have introduced neural-guided
approaches, where deep learning architectures are trained to generate or refine symbolic expressions

Code is available at: https://anonymous.4open.science/r/decaevolve-1215

https://anonymous.4open.science/r/decaevolve-1215

Under review as a conference paper at ICLR 2026

. Hypothesis Generation .
——————————————————————————— ~ I.-= Data-driven Evaluation
’ \ -
« Instruction
- Specification
<scientific problem description>
-Er 3
<evaluation function code>
Adapt @

- Experience Demonstration:

\
] Group Relative Policy —~
, Optimization (GRPO)
-

Term-level Contribution
Analysis

Fine-grained

Adapt (GRPO) Feedback

Decompose (Atoms) EVOIVe \

Figure 1: Overview of the DecAEvolve framework. The framework integrates Adaptation (LLM fine-tuning via
reinforcement learning using Group Relative Policy Optimization with data-driven rewards) and Decomposition
(granular-level feedback through symbolic atomic term analysis) within an Evolutionary search process. The
adaptation aligns the LLM to the target scientific system beyond its internal priors, while decomposition provides
fine-grained guidance for hypothesis refinement. Iterating these three key components enables effective and
efficient exploration of the combinatorial hypothesis space in equation discovery.

(Udrescu & Tegmark}, 2020b}; Bruneton|, 20254), and transformer-based methods that are pre-trained
with large-scale synthetic data to directly model symbolic sequences as language generation tasks

(Kamienny et al., 20224} [Shojaee et all,[2023a; [Meidani et al., 2024b)). These developments have

demonstrated promising capabilities in data-driven learning, yet are limited in balancing learning
and search components and in incorporating scientific prior knowledge into the process of discovery.

Several works have recently introduced promising frameworks to integrate LL.Ms for scientific
equation discovery, leveraging their scientific priors and reasoning capabilities to navigate the
complex landscape of mathematical expressions more effectively. Notably, LLM-SR
[20254) combines LLMs’ scientific knowledge with multi-island evolutionary search, generating
equation hypotheses as Python function skeletons guided by data feedback. LaSR
[2024D) introduces a concept learning approach that extracts abstract textual concepts from successful
equation hypotheses, using these concepts to guide both evolutionary search (with PySR
[2023)) and LLM-based hypothesis generation. SGA employs a bilevel optimization
framework that iteratively combines LLMs for discrete hypothesis generation with physical simula-
tions for continuous parameter optimization. These methods demonstrate this potential by combining
LLMs’ domain expertise with systematic search strategies, treating equation discovery as a program

synthesis problem guided by scientific knowledge (Shojaee et al.l [2025b; Reddy & Shojaee), 2025).

Our key insight is that equation discovery benefits from both adaptation (aligning the model with
data distributions) and decomposition (understanding which symbolic components matter), neither of
which prior LLM frameworks integrate. While classical methods such as SINDy (Brunton et al.}[2016))
employ sparse regression techniques that implicitly decompose equations through term selection,
they lack the adaptive learning and scientific reasoning capabilities that LLLMs provide. Current
LLM-based discovery methods also exhibit fundamental limitations that constrain their effectiveness.
First, they treat LLMs as static hypothesis generators, where the model’s parameters remain fixed
regardless of the problem domain, nuances of the specific observed system or, insights gained during
the search process. This prevents LLMs from adapting their generation strategies based on the specific
problem, the data, and the domain-specific requirements. Second, existing approaches mainly provide
coarse-grained feedback about solution quality, typically limited to scalar reward signals (e.g., mean
squared error) from execution of whole hypothesis that indicate which hypotheses perform well
respectively, without revealing why specific mathematical components or patterns drive success. This

Under review as a conference paper at ICLR 2026

limited feedback mechanism prevents LLMs from understanding the underlying symbolic structure
of successful solutions and refining their search strategies accordingly.

To address these limitations, we introduce DecAEvolve (Decompose, Adapt, and Evolve), a novel
framework that enhances the effectiveness and efficiency of LLM-based equation discovery by com-
bining decomposition-based feedback with test-time adaptation within an LLM-guided evolutionary
framework. Our key contributions are as follows:

* We develop a systematic methodology for providing LLMs with interpretable directional feedback
about which components of their generated hypothesis prove effective. Through structured hypoth-
esis decomposition and evaluations, the contributions of individual terms and their interactions are
quantified and provided as feedback. This enables LLMs to understand not just which hypotheses
succeed, but why specific mathematical building blocks are effective, transforming blind generation
into informed iterative refinement.

* We employ reinforcement learning with Group-Relative Policy Optimization (GRPO) to implicitly
distill the data distribution into the model’s parameters for better hypothesis generation process.
This test-time adaptation/training approach allows the LLM to learn from successful equation
discoveries without directly observing raw data, progressively aligning its hypothesis generation
with the underlying symbolic relationships through reward-weighted gradient updates.

* We demonstrate that these synergistic contributions dramatically improve search efficiency, requir-
ing significantly fewer iterations to discover accurate symbolic expressions. Our comprehensive
evaluation across multiple benchmarks shows superior performance compared to LLM-SR and
other baselines in both in-domain and out-of-domain settings, validating the effectiveness of our
guided discovery approach.

2 PRELIMINARIES

Problem Formulation. In scientific equation discovery, the goal is to find a compact mathematical
expression (hypothesis) h(x; 7") that approximates an unknown target function f : R? — R within
the context of a specific scientific problem 7 with dataset of input—output pairs D = {(x;, ;) }7;.
The objective is to discover functional relationships such that f(x;) ~ y; for all i, producing
expressions that are both interpretable and capable of generalizing to unseen data. Perfor-
mance is typically evaluated using fitness to data with metrics such as mean squared error:

MSE(h,D) = -+ 5" | (h(xi; T) —).
LLM-SR Framework. A recent advance in this space is LLM-SR (Shojaee et al.,[2025a), which
pioneers reframing of symbolic regression as a program synthesis task. Instead of traditional
expression trees, equations are represented as executable Python functions with placeholder
parameters. The framework leverages large language models (LLMs) to iteratively generate equation
program skeletons, drawing on their embedded scientific priors (i.e., built-in knowledge about a
scientific problem without explicit task-specific feedback or fine-tuning) as well as programming, and
reasoning capabilities. In LLM-SR, each proposed equation skeleton first undergoes data-driven pa-
rameter optimization (via BFGS or Adam), and then, high-scoring hypotheses are stored in a dynamic
multi-island experience buffer to guide the program optimization. Subsequent LLM prompts incorpo-
rate these top hypotheses as in-context examples sampled from buffer, enabling iterative refinement of
the search process. More details on LLM-SR, its evolution, multi-island buffer design, and sampling
strategies are provided in Appendix [A] Our framework DecAEvolve builds on LLM-SR foundations
and integrate its evolutionary search mechanism with decomposition-based feedback and test-time
training. This guides the LLM beyond its default priors toward regions of hypothesis space that better
align with the actual observed scientific system, enabling more effective and efficient discovery.

Group-Relative Policy Optimization (GRPO). GRPO (Shao et al.| [2024) is an effective reinforce-
ment learning technique that has recently gained attention to fine-tune LLMs with verifiable outcome
rewards towards enhancing models’ reasoning capabilities. The key innovation of GRPO is its use of
group-relative advantages computed from multiple completions per prompt to provide stable reward

signals. For each prompt p with completions {k;}$; from old policy 7y, and corresponding rewards
{ri}&,, the method calculates group-relative advantages A; = r; — b(p) where b(p) = & Z?Ll T

serves as the per-prompt baseline. This per-prompt normalization across group samples provides
variance reduction and stable credit assignment across candidates. The GRPO objective optimizes:

Under review as a conference paper at ICLR 2026

LO) =—Ep (n;}~mp

old
[hil

G
1 1 { . [7o (hit|p, hi,<t) . 7o (i t|p, hi,<t)
— — min | ——"——="_A, ;. cli (%,l—e,lﬁ—e)Ai, }
G ; |hl| tz:; TOo1q (hi7t|p7 hiv<i) ' P o1 (hi’t|pa hi,<t) '

+ BE, [KL(mo(-Ip) || ms(-1p)] | (M

where Tr is the frozen reference model, 5 > 0 controls the KL regularization strength, and ¢
controls the clipping ratio to avoid excessive single-step updates to the policy. This approach enables
efficient adaptation to task-specific rewards while maintaining model stability.

3 METHOD

DecAEvolve (Decompose, Adapt, and Evolve) combines adaptation, decomposition, and evolutionary
search. Adaptation employs GRPO to align the LLM with data-driven rewards, while decomposition
delivers term-level feedback that highlights which symbolic components drive accuracy. Coupled
with evolutionary search, these mechanisms form a feedback-driven loop that improves both equa-
tion quality and the model’s generation policy. We illustrate the pseudocode for DecAEvolve in
Algorithm [T] and emphasize its two key contributions: (i) reinforcement-learning-based test-time
adaptation and (ii) fine-grained decomposition feedback.

3.1 TEST-TIME ADAPTATION WITH GRPO

In the adaptation stage of DecAEvolve, the generation policy 7y is updated to improve its ability to
propose valid and accurate symbolic equations which are better aligned with the observed data. After
each iteration of generating hypothesis group samples and computing their corresponding rewards, the
policy is fine-tuned using GRPO (Shao et all 2024) objective function (equation|[I)) on the accumulated
dataset (pn, {h?, 77} ,)}, where each prompt at online iteration n (py,) is paired with multiple
corresponding hypothesis completions {h} and their data-driven rewards {77} as: {r?}% | «
Scorer ({h?}$_,, D). The score function Scores(-) for each equation candidate is the negative mean
squared error (MSE) with respect to the training data, which is also transformed to a bounded reward
between 0 and 1 via exponential transformation: Scores(h, D) = exp(—MSE(h, D)). Failed or
invalid completions receive a floor reward of 0.01. Fine-tuning is performed using LoRA adapters,
enabling efficient parameter updates while maintaining the base model as a reference anchor (7f).
The KL coefficient 3 in equation []ensures the fine-tuned model retains its general capabilities while
effectively adapting to the observed scientific system with the help of data-driven reward through
GRPO. More implementation details and hyperparameters are provided in Section @] and Appendix [C]

Notably, the use of GRPO in DecAEvolve differs fundamentally from its use in prior RL-tuning
for reasoning literature. Here, GRPO is not used for global model fine-tuning, but for per-system,
test-time adaptation that steers the model parameters toward hypotheses better aligned with the
observed data of a scientific system. The equation program synthesis optimization is implicitly
guided with the reward from how well an equation hypothesis candidate explains the observed
data, not from correctness or textual feedback as in typical GRPO setups. Also, the inputs/prompts
used in test-time adaptation GRPO here correspond to a fixed scientific system but also include
dynamic in-context examples (with decomposition signal) that are sampled from the buffer in an
online manner over GRPO iterations. This design helps to align model adaptation naturally with the
decomposition-guided evolutionary search happening later during inference.

3.2 DIRECTIONAL FEEDBACK WITH TERM-LEVEL CONTRIBUTION

At the heart of our framework is an iterative discovery process in which the LLM performs a form of
self-reflection: it not only generates candidate symbolic equations but also receives feedback about
what certain symbolic components succeed or fail. Rather than relying solely on coarse error scores,
we introduce a decomposition-based contribution analysis within the self-reflection procedure that
quantifies the role of each term and its pairwise interactions, producing interpretable signals that guide
subsequent iterations of discovery. A related use of decomposition has also been explored in|Liu et al.
(2025) for experimental-chemistry hypothesis discovery. Check Appendix [D|for detailed discussion.

During the decomposition step, each candidate equation program is parsed into an abstract syntax
tree (AST) and decomposed into atomic symbolic terms {u,, (x)}M_, where M is the total number
of terms (see Appendix. for details). To assess the contribution of a given term u,; (or a pair

Under review as a conference paper at ICLR 2026

Algorithm 1. DecAEvolve

Input: LLM my; dataset D; task 7; Number of GRPO steps V; Group size GG; Evolution
iterations 77; in-context size k; samples per prompt b
Output: Best equation 2* with score s*

Stage 1: Test-time adaptation with GRPO and decomposition
Initialize buffer: B + ()
h* < null, s* + —c0
forn =1to N do
Hp < {h;}b_, where hj ~ mg(- | T)
for h € H,, do
s <= Scorer(h, D)
if s > s* then
| h*<« h,s" + s
{um} + Decompose(h)
for each term u,,, do
| ¢m < TermContribution(uy,, h, s, D)

harm <— Annotate(h, {urrL7 C’rn})
B« BU{(ham, s)}

p:, + MakeFewShotPrompt (B, k)
{R7 Yy ~ 7o (- | Pn)
{r? 52y ¢ Scorer({h}'}§,, D)

7p + GRPO_Update(mg, {15)

Stage 2: Evolutionary search with decomposition
Po B
fort =1to T do
pt < MakeFewShotPrompt(P;_1, k)
Hy = {h;}o_, where hj ~ mo(- | pe)
for h € H; do
s < Scorer(h, D)
if s > s* then
| h* <« h,s" + s
{um} + Decompose(h)
for each term u,,, do
| ¢m < TermContribution(uy,, h, s, D)

Dann AnnOtate(ha {u'rru Cm})
L Pt <~ ,Ptfl U {(hunna 5)}

O:Itput: h* and s*

(u,u;)), we construct ablated hypotheses, denoted f\u;(x) or f\, ., (%), by removing the corre-
sponding subtree from the AST and generating a new equation program in which that component
no longer participates in the computation. After this symbolic ablation, we re-optimize all remaining
parameters of the ablated equation on the training dataset D. This comparison, with each structure
re-optimized to its own best-fit parameters, ensures that the performance change is attributable to
the structure differences rather than suboptimal tuning and parameterization. We then quantify
the contribution of a term by A,, = Scorer(f, D) — Scorer(f\,,, D) and similarly for pairs
Ay, u; = Scorer(f, D) — Scorer (f\{u, u,},D)). These computed contribution signals are then
serialized directly into their corresponding programs as inline comments (without affecting executabil-
ity) and stored in the buffer for evolving populations. In the next iteration, the LLM samples from
this population, and the decomposition-annotated programs are reused as in-context examples. This
design ensures that the model is not only guided by global error metrics but also reflects on explicit ev-
idence of which symbolic building blocks mattered, progressively refining its generation strategy. For
more details about the directional feedback mechanism and its implementation, check Appendix.

Under review as a conference paper at ICLR 2026

Algorithm [T] presents the summarized pseudo-code of DecAEvolve. The framework integrates de-
composition throughout the discovery process, beginning with Stage 1 where test-time adaptation
combines GRPO fine-tuning with decomposition feedback: the LLM generates candidate hypotheses,
which are decomposed into symbolic terms, annotated with term-level contributions, and stored
in buffer B to create decomposition-augmented examples for subsequent GRPO updates. The
Decompose(.) and TermContribution(ty,, . . .) functions refer to term decomposition and contri-
bution score estimation defined in Section[3.2} and the Annotate(.) and MakeFewShotPrompt(.)
functions refer to the prompt updates with decomposition annotations (as in Figure[d), and in-context
examples sampled from buffer (as in (Shojaee et al., 2025a))), respectively. Following adaptation,
Stage 2 performs evolutionary search with decomposition by initializing population Py from the
buffer and iteratively: (i) constructs prompts with in-context few-shot examples from P;_1, (ii)
generates b candidate hypotheses from the adapted LLM, and (iii) evaluates, decomposes, annotates
with term-level feedback, and updates the population. This unified approach leverages decomposition
for both adaptation and evolutionary refinement, enabling efficient exploration of the equation space
through the synergy of decomposition-guided adaptation and evolutionary search.

4 EXPERIMENTS

We evaluate DecAEvolve on benchmark datasets for LLM-based scientific equation discovery from
(Shojaee et al., [2025a)), covering domains like physics, biology, and materials science:

Nonlinear Oscillator: Simulates two nonlinear damped oscillators (Oscillatorl, Oscillator2) gov-
erned by second-order differential equations in displacement and velocity. Both systems are designed
with complex but solvable nonlinear structures that differ from standard oscillator models to challenge
LLMs towards discovery through data-driven reasoning.

Bacterial Growth: Models E. coli growth under varying conditions of density, substrate, temperature,
and pH. Novel nonlinear terms designed for temperature and pH introduce complexities that require
exploration and discovery and are hard to recover from LLM recall.

Stress-Strain Behavior: Captures tensile response of aluminum alloy across temperatures. This
dataset uses experimental measurements, providing a more realistic setting with experimental data
that challenge LLM-based models beyond synthetic formulations.

All datasets consist of predefined train, validation, in-domain (ID) test, and out-of-domain (OOD)
test splits. In our experiments, the training split is used for parameter optimization for each equation
skeleton, the validation split is used to compute the feedback score that guides the search in symbolic
space, and the held-out ID and OOD test splits are used solely for evaluation. We compare DecAE-
volve against state-of-the-art non-LLM symbolic regression (SR) baselines, including approaches
such as GPlearrEL PySRE| (Cranmer, 2023)), and SINDy (Brunton et al.,|[2016)), deep learning methods
like DSR (Petersen et al., [2021) and uDSR (Landajuela et al.,|2022), and pre-trained Transformer
SR models NeSymReS (Biggio et al, 2021) and E2E (Kamienny et all, 2022b) (check Appendix [E]
for implementation details). In addition, we evaluate against the leading LL.M-based SR baseline,
LLM-SR (Shojaee et al., 2025a), under same configurations: 3,000 LLM calls per problem with
sampling temperature 7 = 0.8. In both approaches, equation parameters are optimized with the
BFGS solver from SciPy python library and a 30s timeout used for the execution of each hypothesis.
In the GRPO adaptation phase, we use batch size of 16 per device, gradient accumulation 4, learning
rate 10~°, and KL coefficient B = 0.05. For fine-tuning, we use LoRA adapters with r = 16.
Decomposition analysis is also conducted based on the AST extracted from the equation program to
define each term and pairwise term contributions. We conduct experiments on six open-source models
(Qwen2.5-1.5B and Qwen2.5-3B, Qwen2.5-7B, Llama-3.2-1B, Llama-3.1-3B, and Llama-3.1-8B) to
evaluate effectiveness across different model variants as well as the scaling behaviors across different
model capacities within our computational constraints for fine-tuning.

For the analysis, we use the normalized mean squared error (NMSE) as in (Shojaee et al., 2025b)):

Neest (.0 \2
NMSE = % on both in-domain (ID) and out-of-domain (OOD) test settings, where Nest
i=1 \Ji

https://gplearn.readthedocs.io/en/stable/
*https://github.com/MilesCranmer/PySR

https://gplearn.readthedocs.io/en/stable/
https://github.com/MilesCranmer/PySR

Under review as a conference paper at ICLR 2026

Oscillatorl, Llama-3.2-1B Oscillator2, Llama-3.2-1B BactGrow, Llama-3.2-1B StressStrain, Llama-3.2-1B
1071
LLM-SR
107!
& +GRPO % g ooe B 1on
S 102 —— +Decomp = 2 0015 2
3 DecAEvolve -] -
) 107 N 10 N 0.014 N
K| K| | K|
g g £ 0013 g
8 10 8 g 8
Z Z 107 Z 0012 Z
1072
0 1000 2000 3000 0 1000 2000 3000 o 1000 2000 3000 0 1000 2000 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates
Oscillator1, Llama-3.2-3B Oscillator2, Llama-3.2-3B BactGrow, Llama-3.2-3B StressStrain, Llama-3.2-3B
107!
LLM-SR 10t 0.016
9 10 +GRPO % o 2 \ B 0
= —— +Decomp 21 2 0014 =
g DecAEvolve { S 10 3 ;‘Hl i
N N N 0.012 N
S 107 S 107 s Kl
E g E 0010 E 10m \
S 105 S 107 S S e
Z Z Z Z S S—
- 0.008
106 10
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates
Oscillator1, Llama-3.1-8B Oscillator2, Llama-3.1-8B BactGrow, Llama-3.1-8B StressStrain, Llama-3.1-8B
-1
= 1 LLM-SR ol 1 00150
@A 102 +GRPO D 1o - w10
E ——— +Decomp E 2 0.0125 g
g 10 DecAEvolve g 107 § 00100 E
E, 104 E 10 S 0.0075 10
. 1072 3 0.0050 S
S 105 S S
Z 10 Z 4
10-¢ 0.0025
107 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates
Oscillatorl, Qwen2.5-1.5B Oscillator2, Qwen2.5-1.5B BactGrow, Qwen2.5-1.5B StressStrain, Qwen2.5-1.5B
107 LLM-SR 10-t 0.85
1\ —um | g .l £
510 DecAEvolve ot = o8of § ot
El S 10 G o7s e %
£ 10 | & g ro—— 1 £ Ny,
g g g g
3 S 10 3 S 10t -
z z Z 070 z T
10-4 10-6
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates
Oscillator1l, Qwen2.5-3B Oscillator2, Qwen2.5-3B BactGrow, Qwen2.5-3B StressStrain, Qwen2.5-3B
101
LLM-SR 1071
& 1o +GRPO 5 \ @ooery 2
2 —— +Decomp 2 o Z o5t W = 100
T 10 DecAEvolve | ‘ g L_ 5
N N N o014 N
I T 100 E T oo %
E £ Ll—l_‘_ E 0013 E L\
S S S]
Z 10 Z 0 Z 0012 z —
10!
0 1000 2000 3000 0 1000 2000 3000 o 100 201 3000 100(0 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates
Oscillatorl, Qwen2.5-7B Oscillator2, Qwen2.5-7B orrs BactGrow, Qwen2.5-7B StressStrain, Qwen2.5-7B
107 .
. \ LLM-SR m 1 [0.0150 m
@ 10 +GRPO 2. 7} o 10
b= —— +Decomp S 107 S 00125 s
g 1o DecAEvolve { g 10 g 00100 3 \
N N N N
E o £ 1o £ 0.0050 g h.
Z Z Z. 0.0025 Z —
10°¢ 1o 0.0000
0 1000 2000 3000 0 000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
of Search Candidates # of Search Candidates # of Search Candidates # of Search Candidates

Figure 2: Best-score trajectories of DecAEvolve and its variants against the LLM-SR baseline across benchmark
problems. Adaptation (+GRPO) and decomposition (+Decomp) each enhance discovery effectiveness and
efficiency, yielding more accurate final equations with fewer search candidates. Their integration in DecAEvolve
achieves the best result across all datasets (lower is better). Each curve shows the average across five runs.

is the test size and ¢ the mean target value. NMSE normalizes errors by scale of dataset variance,
enabling comparison across datasets.

4.1 RESULTS

To assess the contribution of our proposed framework DecAEvolve and its key compo-
nents—decomposition and adaptation—on top of the default evolutionary discovery framework, we
compared against the LLM-SR baseline under the same LLLM backbones across multiple benchmark
datasets. Figure [2]reports the discovery trajectories, showing the progression of the best-achieved
normalized MSE (NMSE) across the search process. The results highlight three consistent trends.
First, both ablated variants improve over the baseline: the Adaptation (+GRPO) and Decomposition
(+Decomp) modules both help to accelerate convergence and lower discovery error. Second, these
improvements hold across diverse LLLM backbones (LLlama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B,
Qwen-2.5-1.5B, Qwen-2.5-3B, Qwen-2.5-7B), indicating that the gains are not model-specific but

Under review as a conference paper at ICLR 2026

Model Oscillation 1 Oscillation 2 E. coli growth Stress-Strain
IDJ OOD.J ID| 00DJ ID| 00D/ D) 00D/
GPlearn 0.0155 0.5567 0.7551 3.188 1.081 1.039 0.1063 0.4091
NeSymReS 0.0047 0.5377 0.2488 0.6472 N/A (d > 3) 0.7928 0.6377
E2E 0.0082 0.3722 0.1401 0.1911 0.6321 1.4467 0.2262 0.5867
DSR 0.0087 0.2454 0.0580 0.1945 09451 2.4291 0.3326 1.108
uDSR 0.0003 0.0007 0.0032 0.0015 0.3322 5.4584 0.0502 0.1761
PySR 0.0009 0.3106 0.0002 0.0098 0.0376 1.0141 0.0331 0.1304
SINDy 0.9888 0.7097 4.6e-16 1.45e-8 1.078 1.039 0.0781 3.5e+15
LLM-SR (Mixtral) 7.89¢-8 0.0002 0.0030 0.0291 0.0026 0.0037 0.0162 0.0946
LLM-SR (GPT-3.5-turbo) 4.65e-7 0.0005 2.12e-7 3.8le-5 0.0214 0.0264 0.0210 0.0516
LLM-SR (Llama-3.2-1B) 0.0003 0.1121 0.0105 0.0543 0.0133 0.3544 0.0934 0.3821
LLM-SR (Llama-3.2-3B) 1.41e-5 0.0014 0.0021 0.0053 0.0122 0.0588 0.0629 0.1672
LLM-SR (Llama-3.1-8B) 1.36e-5 0.0009 4.6le-6 0.0001 0.0117 0.0240 0.0376 0.0761
LLM-SR (Qwen2.5-1.5B) 0.0011 0.1233 0.0027 0.0721 0.7237 0.9483 0.1249 0.2435
LLM-SR (Qwen2.5-3B) 0.0003 0.0168 0.0018 0.0432 0.0135 0.8011 0.0905 0.2085
LLM-SR (Qwen2.5-7B) 1.33e-5 0.0017 0.0002 0.0011 0.0109 0.1285 0.0423 0.1851

DecAEvolve (Llama-3.2-1B) 2.09e-5 0.0011 0.0018 0.0136 0.0114 0.0698 0.0704 0.0924
DecAEvolve (Llama-3.2-3B) 1.57e-6 0.0004 0.0003 0.0005 0.0074 0.0102 0.0311 0.0358
DecAEvolve (Llama-3.1-8B) 1.37e-6 0.0002 3.64e-7 2.11e-5 0.0019 0.0045 0.0144 0.0322
DecAEvolve (Qwen2.5-1.5B) 0.0001 0.0784 1.22e-6 0.0012 0.6719 0.9211 0.0916 0.1134
DecAEvolve (Qwen2.5-3B) 3.23e-6 0.0002 4.36e-5 0.0008 0.0115 0.0454 0.0487 0.1612
DecAEvolve (Qwen2.5-7B) 1.25e-6 1.51e-5 8.06e-7 1.64e-5 0.0007 0.0012 0.0198 0.0322

Table 1: Comparison of DecAEvolve with SR baseline models on different scientific benchmark problems,
measured by Normalized Mean Squared Error (lower is better) over five runs. The best performance for each
dataset is in bold, and the second best performance is underlined.

instead stem from the principled design of the framework components that transfer across different
backbones. Finally, the full DecAEvolve framework, which integrates all three components of
evolution, decomposition, and adaptation, consistently delivers the lowest terminal NMSE and the
fastest convergence rate in the discovery process.

Table |1 provides a quantitative comparison of DecAEvolve against both non-LLM baselines and
the LLM-based baseline LLM-SR across in-domain (ID) and out-of-distribution (OOD) evaluations.
We observe that DecAEvolve mostly outperforms state-of-the-art non-LLM methods (e.g., PySR,
uDSR, SINDy) as well as the LLM-SR baseline when evaluated under the same LLM backbones.
These improvements are mostly robust across both ID and OOD test sets, demonstrating not only
higher accuracy but also stronger generalization to unseen data distributions. Performance gains are
particularly pronounced with larger backbones such as Llama-3.1-8B and Qwen-2.5-7B, which is
expected given that the success of DecAEvolve relies on two key components: (1) decomposition,
which requires sufficient reasoning capacity to interpret granular feedback, and (2) adaptation, which
depends on reinforcement learning finetuning to exploit reward signals from observed scientific
data. Larger models are better able to leverage both of these mechanisms, resulting in consistently
stronger performance. Nevertheless, we also find that DecAEvolve with smaller backbones can
achieve results that are competitive with, and in some cases better than, the originally reported
LLM-SR performance using much larger models such as Mixtral and GPT-3.5. This underscores
the critical role of adaptation in scientific discovery: by tailoring even modestly sized open-source
models to the specific scientific system, DecAEvolve can surpass the performance of significantly
larger general-purpose models.

Lastly, Figure 3] shows consistent reward improvement during GRPO adaptation across both model
scales and all datasets, validating our reinforcement learning fine-tuning approach as test-time
adaptation for equation discovery. Notably, we observe some scale-dependent behaviors where
smaller models show more noise in their RL and reward improvement process than their larger model
counterparts. Interestingly, the smaller model usually matches larger model performance eventually
even on complex datasets, suggesting that targeted adaptation through GRPO can help to effectively
bridge the capability gap between model scales for scientific discovery tasks.

5 RELATED WORK

Symbolic regression and Scientific Discovery. Early research in symbolic regression and scientific
discovery established a foundation for automated equation finding, relying on genetic programming
and evolutionary search to explore hypothesis spaces (Koza, |1994a} |Cava et al.l [2021a). While
effective on small problems, these approaches struggled with scalability and tended to rediscover

Under review as a conference paper at ICLR 2026

Oscillatorl Oscillator2 BactGrow StressStrain
0.95
0.90
o s 0.85
£ £ 0.80
& &
0.75
0.70
—— Llama-3.2-1B —— Llama-3.2-1B —— Llama-3.2-1B 065 —— Llama-3.2-1B
o 50 100 150 200 250 300 o 50 100 150 200 250 300 0 50 100 150 200 250 300 o 50 100 150 200 250 300
Steps. Steps Steps Steps
Oscillatorl Oscillator2 BactGrow StressStrain
1.0 1.0
0.9 0.9 08
o8 - 08 -
E 0.6
£ 0.7 £07 g
H g H
& €06 &
06 06 04
0.5
05 0.2
o4 —— Llama-3.2-3B 04 —— Llama-3.2-3B —— Llama-3.2-3B 3 —— Llama-3.2-3B
050 100 150 200 250 300 050 100 150 200 250 300 050 100 150 200 250 300 050 100 150 200 250 300
Steps. Steps Steps. Steps

Oscillatorl Oscillator2 BactGrow StressStrain

Reward

0.80 — Llama-3.1-8B ° — Llama-3.1-8B —— Llama-3.1-8B — Llama-3.1-8B
050 100 150 200 250 300 050 100 150 200 250 300 050 100 150 200 250 300 050 100 150 200 250 300
Steps Steps Steps Steps
Oscillator1 Oscillator2 BactGrow StressStrain
1.0
0.9
0.9
z 08
o8 g
H H
= “ o7
0.7
—— Qwen2.5-1.5B 5 —— Qwen2.5-1.5B 5 —— Qwen2.5-1.5B 06 —— Qwen2.5-1.5B
06 0 50 100 150 200 250 300 o 50 100 150 200 250 300 0 50 100 150 200 250 300 o 50 100 150 200 250 300
S Steps
Oscillator1 Oscillator2 BactGrow StressStrain
1.0 1.0
1.0
—— Qwen2.5-3B
0.9 0.9 09
2 B Eos
Eo8 E
g g 0.8 H
=07 = =07
0.7
0.6 0.6
— Qwen2.5-3B —— Qwen2.5-3B — Qwen2.5-3B
0.6
0 50 100 150 200 250 300 o 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200
Steps
Oscillator1 Oscillator2 BactGrow StressStrain
1.00 0.950
0.99 0.925
0.98 0.900
B B
£ 097 £ 0875
H H
£ &
0.96 0.850
0.825
0.95
— Qwen2.5-7B — Qwen2.5-7B — Qwen2.5-7B 0.800 — Qwen2.5-7B
0.94
50 100 150 200 250 300 0 50 100 150 200 o 50 100 150 200 250 300 0 50 100 150 200
Steps Steps Steps Steps

Figure 3: Reward improvements across different models and datasets, showing the success of adaptation with
GRPO RL fine-tuning.

shallow functional forms. Later neural-guided methods, such as sparse regression approaches like

SINDy (Brunton et al},[2016), AI Feynman (Udrescu & Tegmarkl [2020a)), physics-inspired constraints
(Bruneton, 2025b)), and transformer-based symbolic generation methods (Kamienny & colleagues,

2022} [Shojaee et al.l 2023b; Meidani et al., 2024d) extended these capabilities but often suffered
from poor scalability and limited structural diversity. The rise of large language models shifted
this landscape. Works such as LLM-SR (Shojaee et all, [20254) reframed symbolic regression as
program synthesis, allowing models to generate equation skeletons enriched by internal scientific
priors. Subsequent frameworks expanded this view: LaSR (Grayeli et all, [2024ad) guided search
with abstracted concepts extracted from prior successes, while bilevel optimizers [2024al)
combined symbolic hypothesis generation with simulation-driven parameter tuning. Benchmarks
such as LLM-SRBench (Shojaee et al.} [2025¢) highlighted both the promise of these methods and
their limitations, showing that LLMs, even when coupled with evolutionary refinement, fails to
capture the adaptive strategies that real scientific discovery demands.

Under review as a conference paper at ICLR 2026

Test-time adaptation. Test-time adaptation has recently emerged as a way to adapt models during
inference, guiding models toward novel distributions without additional offline training. In reasoning
benchmarks such as ARC-AGI (Chollet et al., 2024])), gradient-based test-time training (TTT) has
shown great performance in better adapting models to tasks that require more novelty (Akytirek
et al.,2024). The ARC-AGI 2024 report similarly attributes recent state-of-the-art results to pipelines
that incorporate test-time training components into the problem-solving process (Chollet & Team,
2024). Beyond empirical advances, recent theoretical analyses establish conditions under which a
single gradient step at inference provably enhances transformers as in-context learners (Gozeten et al.|
2025). Extending beyond supervised updates, |Zuo et al.| (2025) introduce test-time reinforcement
learning (TTRL), where models adapt using consensus-based rewards rather than labels, yielding
further improvements across reasoning and math tasks. Despite the successes and potential benefits of
test-time training in tasks that require better adapting to novelty, test-time adaptation remains largely
unexplored in scientific discovery frameworks. It is still unclear exactly how inference-time learning
can align the priors of a model by leveraging the dynamics of specific scientific system during the
evolutionary process of search towards discovery.

Evolution and Prompt Optimization. A parallel line of work focuses on evolutionary search and
optimization of prompts rather than model weights, treating instructions and in-context exemplars
as a inference-time search space. |Yang et al.[(2023) propose OPRO, which frames prompt design
as black-box optimization and iteratively improves instructions through feedback with LLMs as
optimizer. |Guo et al.| (2025) extend this perspective with EvoPrompt, combining evolutionary
operators such as mutation and crossover with LLMs to explore diverse prompt populations. More
recently, Opsahl-Ong et al|(2024)) develop MIPRO, a system that jointly optimizes instructions and
demonstrations in multi-stage LM programs, demonstrating robust improvements without weight
updates. |Agrawal et al.|(2025)) introduce GEPA, which leverages reflective prompt evolution and
self-feedback to surpass reinforcement learning baselines like GRPO, achieving higher efficiency
in both code and reasoning tasks. Surveys on evolution and prompt optimization synthesize these
approaches and position prompt evolution as a label- and compute-efficient alternative to general
RL fine-tuning (Ramnath et al.| [2025)). Our framework builds on this motivation of self-evolving
optimization via prompting along with the test-time model adaptation to search deeper and more
efficient in the large combinatorial hypothesis spaces of scientific discovery.

6 CONCLUSION

We introduce DecAEvolve, a framework that enhances LLM-based equation discovery through
granular term-level directional feedbacks, test-time adaptation via GRPO and evolutionary search with
LLMs. Our approach transforms static hypothesis generation into adaptive learning, enabling LLMs
to progressively align with nuances of underlying observed scientific systems through reinforcement
learning model adaptation and interpretable feedback mechanisms. Experimental results across
diverse benchmark datasets demonstrate that DecAEvolve consistently outperforms state-of-the-
art baselines in both discovery accuracy and search efficiency, while maintaining strong out-of-
domain generalization. The success of smaller models through targeted test-time adaptation suggests
promising directions for democratizing scientific discovery tools without requiring large, resource-
intensive models. Future work could extend our simple decomposition mechanisms to more complex
reflection structures and explore better optimization strategies for the evolutionary process. The term-
level feedback approach developed here may also prove valuable for systems with highly correlated
components and the broader program synthesis tasks requiring iterative refinement in the symbolic
space of programs based on component-level understanding.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Shubham Agrawal et al. Gepa: Reflective prompt evolution can outperform reinforcement learning.
arXiv preprint arXiv:2507.19457,2025. URL https://arxiv.org/abs/2507.19457.

Ekin Akyiirek et al. The surprising effectiveness of test-time training for abstract reasoning. In
International Conference on Machine Learning (ICML), 2024. URL https://ekinakyurek,
github.io/papers/ttt.pdf.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936-945. PMLR, 18-24 Jul 2021.

J.-P. Bruneton. Enhancing symbolic regression with quality-diversity and physics-inspired constraints
(qdsr). arXiv preprint, 2025a. URL https://arxiv.org/abs/2503.19043.

Jean-Philippe Bruneton. Enhancing symbolic regression with quality-diversity and physics-inspired
constraints (qdsr). arXiv preprint arXiv:2501.01234, 2025b.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932-3937, 2016.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression meth-
ods and their relative performance. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), 2021a.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franga, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression methods
and their relative performance, 2021b. URL https://arxiv.org/abs/2107.14351,

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024.

Francois Chollet and ARC Prize Team. Arc prize 2024: Technical report. Technical report, ARC
Prize, 2024. URL https://arcprize.orqg/.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Halil Alperen Gozeten, M. Emrullah Ildiz, Xuechen Zhang, Mahdi Soltanolkotabi, Marco Mondelli,
and Samet Oymak. Test-time training provably improves transformers as in-context learners, 2025.
URL https://arxiv.org/abs/2503.11842.

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. In Advances in Neural Information Processing Systems
(NeurlIPS), 2024a.

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. In Advances in Neural Information Processing Systems
(NeurIPS), 2024b. URL https://arxiv.org/abs/2409.09359.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting 1lms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532,

Author Kamienny et al. End-to-end transformer-based equation generation for symbolic regression.
In NeurIPS, 2022a.

11

https://arxiv.org/abs/2507.19457
https://ekinakyurek.github.io/papers/ttt.pdf
https://ekinakyurek.github.io/papers/ttt.pdf
https://arxiv.org/abs/2503.19043
https://arxiv.org/abs/2107.14351
https://arcprize.org/
https://arxiv.org/abs/2503.11842
https://arxiv.org/abs/2409.09359
https://arxiv.org/abs/2309.08532

Under review as a conference paper at ICLR 2026

Pierre Kamienny and colleagues. End-to-end transformer-based equation generation for symbolic
regression. In Advances in Neural Information Processing Systems (NeurlPS), 2022.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-
to-end symbolic regression with transformers. In Advances in Neural Information Processing
Systems, 2022b.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy: A comprehensive python package for
robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/j0ss.03994. URL |https://doi.org/10.21105/joss.03994.

John R. Koza. Genetic Programming as a Means for Programming Computers by Natural Selection,
volume 4. 1994a.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87-112, 1994b. doi: 10.1007/BF00175355. URL https://doil
org/10.1007/BF00175355|

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Aravena,
Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified framework for deep
symbolic regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Wanhao Liu, Zonglin Yang, Jue Wang, Lidong Bing, Di Zhang, Dongzhan Zhou, Yugqiang Li,
Hougiang Li, Erik Cambria, and Wanli Ouyang. Moose-chem3: Toward experiment-guided
hypothesis ranking via simulated experimental feedback. arXiv preprint arXiv:2505.17873, 2025.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B. Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. LIm and simulation as bilevel optimizers: A new paradigm to
advance physical scientific discovery. In International Conference on Machine Learning (ICML),
2024a.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqging Sun, Joshua B. Tenenbaum, Daniela
Rus, Chuang Gan, and Wojciech Matusik. LLM and simulation as bilevel optimizers: A new
paradigm to advance physical scientific discovery. In Forty-first International Conference on
Machine Learning, 2024b. URL https://openreview.net/forum?id=hz8cFsdz 7P,

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. Artificial Intelligence Review, 57(1):2, 2024.

Kazem Meidani, Parshin Shojaee, Chandan K. Reddy, and Amir Barati Farimani. Snip: Bridging
mathematical symbolic and numeric realms with unified pre-training. In International Conference
on Learning Representations (ICLR), 2024a.

Kazem Meidani, Parshin Shojaee, Chandan K. Reddy, and Amir Barati Farimani. SNIP: Bridging
mathematical symbolic and numeric realms with unified pre-training. In The Twelfth International
Conference on Learning Representations, 2024b. URL https://openreview.net/forum?
1d=KZSEgJGPxu.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
2025.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,

and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs, 2024. URL https://arxiv.org/abs/2406.11695,

12

https://doi.org/10.21105/joss.03994
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://openreview.net/forum?id=hz8cFsdz7P
https://openreview.net/forum?id=KZSEgJGPxu
https://openreview.net/forum?id=KZSEgJGPxu
https://arxiv.org/abs/2406.11695

Under review as a conference paper at ICLR 2026

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2021.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai
Wang, Sangmin Woo, Sullam Jeoung, Yawei Wang, Haozhu Wang, Han Ding, Yuzhe Lu, Zhichao
Xu, Yun Zhou, Balasubramaniam Srinivasan, Qiaojing Yan, Yueyan Chen, Haibo Ding, Panpan
Xu, and Lin Lee Cheong. A systematic survey of automatic prompt optimization techniques, 2025.
URLhttps://arxiv.org/abs/2502.16923.

Chandan K Reddy and Parshin Shojaee. Towards scientific discovery with generative ai: Progress,
opportunities, and challenges. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 28601-28609, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming
Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from
program search with large language models. Nat., 625(7995):468—475, January 2024. URL
https://doi.org/10.1038/s41586-023-06924-6.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Parshin Shojaece, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-
based planning for symbolic regression. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 45907-45919. Curran Associates, Inc.,
2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/8ffb4e3118280a66b192b6f06e0e2596-Paper—-Conference.pdf.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-based
planning for symbolic regression, 2023b. URL https://arxiv.org/abs/2303.06833l

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models, 2025a. URL
https://arxiv.org/abs/2404.18400.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K. Reddy. LLM-SRBench: A new benchmark for scientific equation discovery with large
language models. In Forty-second International Conference on Machine Learning, 2025b. URL
https://openreview.net/forum?id=SyQP1ZJVWY.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. Llm-srbench: A new benchmark for scientific equation discovery with large
language models, 2025¢c. URL https://arxiv.org/abs/2504.10415|

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with 1lms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16), 2020a.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic
regression, 2020b. URL https://arxiv.org/abs/1905.11481.

13

https://arxiv.org/abs/2502.16923
https://doi.org/10.1038/s41586-023-06924-6
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ffb4e3118280a66b192b6f06e0e2596-Paper-Conference.pdf
https://arxiv.org/abs/2303.06833
https://arxiv.org/abs/2404.18400
https://openreview.net/forum?id=SyQPiZJVWY
https://arxiv.org/abs/2504.10415
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1905.11481

Under review as a conference paper at ICLR 2026

Marco Virgolin and Solon P. Pissis. Symbolic regression is np-hard, 2022. URL https://arxiv,
org/abs/2207.01018.

Greg Yang et al. Large language models as optimizers. In NeurIPS, 2023. URL https://arxiv,
org/abs/2309.03400.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang,
Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding, and
Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL|https://arxiv.org/abs/
2504.16084l

APPENDIX

A LLM-SR MULTI-ISLAND EVOLUTIONARY BUFFER & SAMPLING

LLM-SR (Shojaee et al}[20254) maintains a multi-island evolutionary experience buffer designed
to preserve structural diversity and prevent premature convergence during the process of symbolic

equation discovery. The buffer is organized as P; = |, Pt(i), where each Pt(i) is an independently
evolving island/population containing pairs of symbolic programs and their corresponding scalar
fitness scores. Each island begins with the initial prompt equation vy with score sg supplied to

the framework at the beginning: 7?5") = {(vo, S0)}. Although all islands start identically, they
diverge over the search process and evolution. At iteration ¢, the LLM generates a batch of
programs F; = {f; }?:17 each associated with a source island, which is the island from which
its in-context examples were sampled. Each equation program candidates contains a placeholder
vector of parameters which are then optimized with respect to the observed data with the help of
BFGS optimizer in python. After parameter optimization, each program receives a fitness score
Scorer(f, D) which is computed as negative mean squared error (MSE) with respect to data:
1 n
Scorer(f,D) = n Z;(f(xq) - y¢)2
1=
, where D = {(x;,:)} € R? x R refers to observed datapoints. Notably, a program is inserted only
into its source island if its fitness exceeds that island’s current best:
PO P U{(f,5)}if s > s,
This ensures that each island progressively specializes in a distinct region of the hypothesis space
to avoid local minima and encourage diversity in the search process towards discovery. In LLM-SR,
programs are also grouped into clusters within each island using a simple signature corresponding
to score s where all programs with identical fitness scores fall into the same cluster. This prevents
over-representation of structurally similar programs and maintains a lower-level diversity within
each island. After every Tieset = 4hr, the algorithm identifies the worst-performing half of the
islands as WW = argmin; s&)st. For each 7 €)V, the entire island is replaced by a copy of the
best-performing equation from a randomly selected surviving island. This mechanism is designed
to remove stagnating islands and increases global exploration during the discovery .

Each iteration begins by sampling &k equations from the multi-island buffer to construct the few-shot
prompt. Sampling follows a hierarchical procedure. First, an island index is sampled uniformly

i ~ Uniform{1,..., I'}. This is mainly to prevent dominant islands from monopolizing the prompt,

encouraging cross-island exploration. Within the selected island Pt(i)

steps: Cluster Selection and Program Selection.

, sampling proceeds in two

For each cluster ¢, we have the mean fitness s, = mean{ s : (f,s) € ¢} and clusters are sampled
according to Boltzmann weights as:

_exp(8e/Te)
PO = 5 exp(so/m)

. In this sampling, the temperature 7. anneals with island size u as

u mod N
TCZTO (I—N)

14

https://arxiv.org/abs/2207.01018
https://arxiv.org/abs/2207.01018
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084

Under review as a conference paper at ICLR 2026

where Ty = 0.1 and N = 10,000. Within a cluster, programs are sampled with preference for better
scores and shorter length. The sampling distribution for each program follows

p(f;) o< exp(—; /)
where sampling temperature 7, = 1. Here, f; refers to the program, ¢; refers to the corresponding
length, and ¢; is defined as
g. _ Ej — minj gj
7 max; ¢; + 106

After sampling in-context examples with above procedure, the k£ sampled programs are serialized into
a structured few-shot prompt supplied to the LLM. This prompt acts as the guiding context for the
next generation of hypotheses F;. 1, completing the LLM-SR evolutionary search and self-reflection
mechanism.

B DETAILED TERM DECOMPOSITION AND CONTRIBUTION ATTRIBUTION

We give a complete account of how generated programs are decomposed into symbolic terms and
how single and pairwise contributions are computed in our implementation. This procedure follows
the implementation of evaluator in [Shojaee et al.| (2025a)) with the additional steps: the function
body is parsed into an abstract syntax tree (AST), simple assignment chains are inlined, the returned
expression is decomposed at additive nodes, and ablation is carried out by rewriting only the final
assignment return and re-executing in a sandbox. All annotations are serialized as inline comments
in the program without changing executable semantics. Unless otherwise specified, all ablations
include re-optimizing of the remaining parameters on the dataset to ensure that contributions reflect
structural differences on instead of suboptimal tuning or parameterization

Operationally, the evaluator isolates the evolved function body, executes it in a sandbox to obtain a
scalar score, and then reconstructs the returned expression by expanding intermediate assignments
via an assignment map and dependency graph before parsing with Python’s ast module. From the
resulting atoms {7 }, we perform ablation-based attribution: for each term ¢, we remove 7, rebuild
a syntactically valid RHS with correct parentheses, re-execute the modified program, and compute
a marginal contribution A; = Scorer(f, D) — Scorer(f\;, D), where S is the evaluator score
(negative MSE). We analogously compute pairwise signals A; ,, by removing (74, 7,). The evaluator
writes these results back as inline comments within the function body, so subsequent iterations can
consume structured, term-level feedback rather than a single scalar reward. This AST-centric pipeline
is lightweight, robust to multi-line programs, and provides the granular guidance that underpins our
evolutionary refinement.

Decomposition to atomic terms Let § denote the expression returned by the function (or a final
assigned variable). We parse the equation program skeleton (body of the function) into an AST, build
a line-level assignment map, inline g if it is an intermediate variable, and traverse the AST with
the following rules: (i) addition/subtraction split terms, (ii) multiplication/division/power subtrees
are preserved as atomic units, and (iii) unary operators and function calls (e.g., sin, exp, np . abs)
are atomic operators. The resulting model has the form § = f(x;params) with

Single-term ablation and contribution. After identifying terms from previous step, For each
term u.,,, we form the ablated version of the original equation program as f\um. After ablation,
the remaining equation parameters from placeholder parameter vector params (params, ,,) are re-

optimized on dataset D (using the same BFGS parameter optimization procedure as in (Shojaee et al.
2025al) with Scipy library in Python). The term contribution is defined as influence function with:

A, = Scorer (f, D) — Scoref (f\um,D).)

If removal yields invalid outputs, we treat term u,,, as essential and assign maximal contribution
under the current score scale.

Pairwise interaction. Similarl to the single-term contribution score estimation, for a pair (w,,)
we define ablated function as f\ (4, «,} and the corresponding contribution score for this pair-wise

15

Under review as a conference paper at ICLR 2026

def equation(x, v,)8
" Mathematical function for acceleration in damped nonlinear oscillator """

return [0] * x + [1] * v + [2]

Figure 4: A simple example of program-level annotations. Candidate equation for a damped nonlinear
oscillator (simple linear here) is annotated in-line with single-term and pairwise ablation contributions (as
comments) immediately above the return statement. The evaluator computes these contribution scores after
re-optimizing remaining parameters via BFGS, decomposing the return expressions, and re-evaluating ablations
in a sandbox.

interaction subtree as:

Ay, un £ Scorer(f, D) — Scores (f\{um’un},D). 3)

As with the single-term case, the remaining parameters after parwise term ablation are re-optimized
after removal to isolate the structural interaction effect without suboptimal parameterization. These
values reveal redundancy versus synergy by comparing A, ., against the sing-term counterparts
Ay, and A, .

Annotation and persistence. After computing {A,, } and {A,, ., }, we serialize them as human-
readable inline comments directly in the equation skeleton programming function body (above the
return statement), and store the annotated program in the experience buffer. This preserves
executable semantics while exposing interpretable, decomposition-based directional feedback that
guides subsequent process of discovery towards better sub-terms in the hypothesis space.

B.1 AST-BASED DECOMPOSITION

An Abstract Syntax Tree (AST) is a language-agnostic representation of a program that makes explicit
the hierarchical composition of an expression. Internal nodes correspond to operators or function
applications (e.g., +, *, **, np.sin), and leaves correspond to parameters or input variables. In our
setting, we parse each LLM-generated equation skeleton Python program into an AST and split at
additive nodes, while preserving multiplicative, divisional, power, and functional subtrees as atomic
terms. This yields a linear combination f(x) = E%Zl U () of symbolic atoms wu,,. For example,
Figure [5]illustrates this mapping from the generated hypothesis function (left) to its AST (right): a
return expression such as y = t1 + t5 + t3 — t4 becomes a top-level sum where each ¢; is an intact
subtree, enabling principled symbolic decomposition without altering operator precedence.

C DETAILED TEST-TIME ADAPTATION WITH REINFORCEMENT LEARNING

We formulate our test-time training/adaptation procedure as reinforcement learning over a determinis-
tic Markov Decision Process (MDP) M = (S, A, R, T)).

16

Under review as a conference paper at ICLR 2026

1 +t2+13

def equation(xl, x2):
[e]
[1

= [2]

return

param[2] Cos(x2)

param[@] Sin(x1) param[1] Pow(x1,2)

|
|
|
|
|
|
|
param[3] |
|
|
|
|
|
|
|
I

Figure 5: Parsing an equation program into an AST.

States. Similar to the reinforcement learning LLM fine-tuning, the state space S in this setting
consists of partial sequences (p, h;.;) where p is the prompt and hq.; is a prefix of the generated
output until token ¢.

Actions. At each step of this reinforcement learning test-time adaptation, the action space A
corresponds to the next token from vocabulary h,y; € V.

Rewards. In our setting, rewards are assigned based on the execution of the equation program
on the observed data and only obtained at terminal states. For a completed program h, we execute
the synthesized program on the validation set and compute the reward as noted in Section [3.1] with
r(p,h) = Scorer(h,D) = exp(—MSE(h, D)) with invalid completions included in training and
assigned a fixed floor reward of r = 0.01.

Implementation details After generating a new batch of candidate equation hypotheses and
evaluating their performance, the model updates its policy through GRPO (Shao et al., 2024). At
iteration n, we treat the prompt py, together with its group of completions h}',” ; and their associated
rewards {r] z‘G:1 as a single training step. These prompt—completion groups accumulate over
iterations and serve as the training data for GRPO updates. We fine-tune using Adam with learning
rate 107% and a warmup-stable—decay schedule (200 warmup steps). Training uses an effective
batch size of 64 (16 per device with gradient accumulation 4). Each prompt is sampled with G = 64
completions at temperature 0.8 and top-p = 0.9. Only LoRA adapter parameters are updated (r = 16,
a = 16, dropout 0.05), while the base model remains frozen as 7.

D How 1S DECOMPOSITION DIFFERENT THAN MOOSE-CHEM3?

One of the relevant works from literature with the same high-level motivation of incorporating decom-
position in the scientific discovery is MOOSE-Chem3 2025). MOOSE-Chem3 targets the
discovery and ranking of experimental chemistry hypotheses. Each hypothesis is a natural-language
description of a reaction mechanism or material design strategy. Their decomposition procedure
is mechanistic: the framework identifies functional chemical components (e.g., polymer matrices,
redox pairs, electrode structures, etc.) to build a qualitative similarity measure for experiment-guided
hypothesis ranking. This process is domain-specific, mechanistic, and grounded in wet-lab feedback
or its simulated analogue. In contrast, DecAEvolve focuses on scientific equation discovery, where
hypotheses are explicit symbolic expressions. Our decomposition is quantitative and analytic: an
equation is ablated into symbolic terms and operators, and an influence function is used to measure
each component’s contribution to prediction error and structural behavior with respect to data. These
influence signals directly shape mutation choices, and the structured feedback used during evolution.

17

Under review as a conference paper at ICLR 2026

Although both frameworks use the general idea of breaking hypotheses into components to find
successful components, the decomposition differ fundamentally in (i) the objects being decomposed
(mechanistic chemical descriptions vs. symbolic math relations), (ii) the nature of decomposition
(qualitative functional roles vs. quantitative influence), and (iii) the role of decomposition within the
discovery framework (similarity-based ranking vs. fine-grained feedback for optimization). More-
over, decomposition is only one part of DecAEvolve that consists of a hybrid three-module system
(Decompose, Adapt, Evolve), where term-level analysis interacts directly with RL-based test-time
adaptation, an approach not explored in MOOSE-Chem3 or prior discovery methods.

E BASELINE IMPLEMENTATION DETAILS

We evaluate DecAEvolve against the baseline methods reported in|Shojaee et al|(2025a)), including
GPlearn, PySR, DSR, uDSR, NeSymReS, and E2E. These baselines represent diverse SR approaches
spanning genetic programming, reinforcement learning, and pre-trained transformers. For implemen-
tation details and hyperparameters of these methods, we refer readers to Appendix A of
(2025a)). Below, we provide additional details for the SINDy baseline, which we newly evaluate in
this work.

F ADDITIONAL EXPERIMENTS

F.1 CoOMPARISON WITH SINDY BASELINE

We evaluate SINDy: Sparse Identification of Nonlinear Dynamics method (Brunton et al.]

as an additional non-LLM baseline using the PySINDy implementation (Kaptanoglu et al.,[2022]).
SINDy discovers governing equations by performing sparse regression over a predefined library of
candidate functions, assuming dynamics can be expressed as sparse linear combinations of nonlinear
basis functions.

Experimental Setup. We configured SINDy with a polynomial library (degree 3) augmented
with Fourier terms (frequencies up to 2) to provide a balanced function library without excessive
expansion. The STLSQ optimizer used sparsity threshold 0.1, regularization o = 0.01, and 20
maximum iterations.

Model Oscillation 1 Oscillation 2 E. coli growth Stress-Strain
D) O0D| D} O0D| ID) 00D, D} OO0D|J
PySR 0.0009 0.3106 0.0002 0.0098 0.0376 1.0141 0.0331 0.1304
SINDy 0.9888 0.7097 4.62e-16 1.45e-8 1.078 1.039 0.0781 3.52e+15
LLM-SR (Qwen2.5-7B) 1.33e-5 0.0017 0.0002 0.0011 0.0109 0.1285 0.0423 0.1851

DecAEvolve (Qwen2.5-7B) 1.25e-6 1.51e-5 8.06e-7 1.64e-5 0.0007 0.0012 0.0198 0.0322

Table 2: Comparison of SINDy with representative SR baselines (best non-LLM method PySR, LLM-based
LLM-SR, and our DecAEvolve) using Qwen2.5-7B backbone.

Results and Analysis. Table[2]shows SINDy achieves the best performance on Oscillation 2 (NMSE
< 107 on OOD) among all baselines. This is because Oscillation 2 represents a typical dynamical
system, the type SINDy was explicitly designed for, where dynamics follow a linear form with
nonlinear basis functions (polynomials and trigonometrics). Given an appropriate library containing
the true functional forms, SINDy is highly efficient for such problems. However, SINDy exhibits
severe limitations on problems outside its linear-formulation assumption. On Bacterial Growth, it
completely fails (NMSE ~ 1.08) as the ground-truth involves products of multiple nonlinear terms,
which cannot be represented as linear combinations. On Stress-Strain, while fitting training data
reasonably (NMSE = 0.078), it suffers catastrophic extrapolation failure on OOD data (NMSE
= 3.52 x 10'9) as polynomial approximations diverge outside the training range. On Oscillation 1,
performance degrades significantly (NMSE = 0.99 ID) when dynamics deviate from SINDy’s
assumed form, demonstrating sensitivity to equation structure even within the dynamical systems

18

Under review as a conference paper at ICLR 2026

domain. These results highlight SINDy’s fundamental constraint: performance is entirely determined
by whether the true equation lies within the predefined library’s representational capacity.

F.2 ADDITIONAL SAMPLE BUDGET FOR INFERENCE FRAMEWORKS

We also conducted additional experiments to run inference search variants (LLM-SR and +Decomp)
for total number of samples used by the GRPO-based variants (DecAEvolve and +GRPO). Specifically,
we run LLM-SR and +Decomp for additional 12800 samples (64 x 200) with Qwen2.5-7B model
backbone. As it can be observed from Figure [2] and Figure [f] the performacne of LLM-SR and
+Decomp is already well-converged by roughly 3000 samples, and allocating an additional 12800
samples offers no meaningful performance improvement. This result shows that DecAEvolve

leverages these samples more effectively for discovery than baselines.

Oscillatorl, Qwen2.5-7B

-
=)
d

@ 3 LLM-SR o 107

0 102 +GRPO 2.

= == +Decomp = L

g 103 DecAEvolve 2 107]

N L o N °

@ 104 @ 104 f

g 3 £

= o o

O 10-5 o 1073

Z Z °
106 1078 E

1000 2000 3000 15800 0 1000 2000 3000 15800
of Candidates # of Candidates

00175 BactGrow, Qwen2.5-7B StressStrain, Qwen2.5-7B

fz1 0.0150 F &3]

n »n 100

S' 0.0125F S |

E 0.0100 F ® 3 \

N ° N

= 0.0075F =

g g 1071}

E 0.0050 F g \

9] 3 It

Z. 0.0025 z — m—— °
0.0000

0 1000 2000
of Candidates

3000 15800

Oscillator2, Qwen2.5-7B

1000 2000
of Candidates

3000 15800

Figure 6: The impact of additional GRPO-matched samples on inference algorithms.

F.3 IMPACT OF PARAMETER RE-OPTIMIZATION IN DECOMPOSITION

We conducted additional ablation study to compare the impact of two strategies of parameter opti-
mization during the decomposition with structure ablations: (1) Re-opt Parameters: After ablating a
decomposed sub-term, we re-optimize the remaining parameters to obtain the best fit for the modified
structure; and (2) Freeze Parameters: After ablating a term, we keep the remaining parameters fixed
to the values learned from the original full structure of equation. Symbolic terms of an equation
are often highly coupled, and modifying part of the structure can shift the optimal values of the
remaining parameters. This coupling is indeed a general challenge across all equation discovery
methods. However, our goal is to attribute performance changes to structural differences, not to
artifacts of suboptimal parameterization. Re-optimizing parameters ensures that each ablated structure
is evaluated at its own best performance—providing a more faithful estimate of the true contribution
of each symbolic component. To examine this empirically, we performed a focused ablation study
using the Qwen2.5-7B backbone across several representative datasets (Oscillatorl, Oscillator2,
BactGrow, and StressStrain). Results are shown in Figure[7] The “Re-opt Params” curves consistently
achieve lower normalized MSE than the “Freeze Params” curves, particularly in datasets with strong
nonlinear coupling such as BactGrow and StressStrain. This indicates that re-optimization yields
more reliable and stable assessments of structural contributions.

19

Under review as a conference paper at ICLR 2026

Oscillatorl, Qwen2.5-7B Oscillator2, Qwen2.5-7B
101 - - - - - - - - -
m DecAEvolve - 1071
n 102 Re-opt Params 0o
S S 10 2
== Freeze Params
g 108 2 1073
N N
T 10t T 107
E g
o 105 3 10
4 Z
1050, ! : : 1070F I I i I 1 k|
0 1000 2000 3000 0 500 1000 1500 2000 2500 3000
of Candidates # of Candidates
BactGrow, Qwen2.5-7B StressStrain, Qwen2.5-7B
(08 m
%) 0 100
= 05 =
9 k]
(] Q
=" N
e ®
107!
£ E
S 02 3
4 z
0.0 | | | Y
0 500 1000 1500 2000 2500 3000 0 1000 2000 3000
of Candidates # of Candidates

Figure 7: Ablation results comparing DecAEvolve decomposition with and without re-optimizing the parameters
after structure ablation.

G INITIAL INPUT PROMPTS

The prompts in Figs.[HIT|were used for evaluating DecAEvolve on the four regression tasks from the
LLM-SR(Shojaee et al.,[2025a) benchmark. Each prompt specifies the target problem and a Python
function template with placeholder parameters. In all cases, the prompts shown below correspond to
the initial call to the LLM. In subsequent iterations, DecAEvolve augments the prompt with examples
drawn from top-performing hypotheses in the evolving buffer, enabling in-context learning from
previously discovered candidates and their annotated contributions.

20

Under review as a conference paper at ICLR 2026

1080
1081
1082
1083
1084
You are a helpful assistant tasked with discovering mathematical function structures for scientific
1085 systems. You are given an example of the function signature in the first function equation_v@ below.
1 Your task is to complete the last 'equation' function with your mathematical relationship, considering
086 the physical meaning and relationships of inputs. Only give me the completion code of the BODY of the
1087 current 'equation' FUNCTION. Do NOT give me a new function. Do NOT give me 'pass' instead of
completion. Just give me the new mathematical relationship with inputs for completion of current
1088 function body. Do NOT use equation_v@ in your completion.
1089 wun
Find the mathematical function skeleton that represents acceleration in a damped nonlinear oscillator
1090 system with driving force, given data on position, and velocity.
1091
1092 import numpy as np
1093

#Initialize parameters
1094 MAX_NPARAMS = 10
params = [1.0]*MAX_NPARAMS

1095
1096 def equation_v@(x: np.ndarray, v: np.ndarray, params: np.ndarray) -> np.ndarray:
"""Initial example of equation."""
1097 dv = params[0] * x + params[1] * v + params[2]
return dv
1098
1099 :
def equation_v1l(x: np.ndarray, v: np.ndarray, params: np.ndarray) -> np.ndarray:
1100 """Improved version of ‘“equation_v@'."""
1101
1102 Figure 8: Oscillator I input prompt used for evaluating DecAEvolve.
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112 You are a helpful assistant tasked with discovering mathematical function structures for scientific
systems. You are given an example of the function signature in the first function equation_v@ below.
1113 Your task is to complete the last 'equation' function with your mathematical relationship, considering
the physical meaning and relationships of inputs. Only give me the completion code of the of the
he physical i d relationshi T 1 Only gi h leti de of the BODY of th
1114 current 'equation' FUNCTION. Do NOT give me a new function. Do NOT give me 'pass' instead of
completion. Just give me the new mathematical relationship with inputs for completion of current
1115 function body. Do NOT use equation_vO® in your completion.
1116 e
1117 Find the mathematical function skeleton that represents acceleration in a damped nonlinear oscillator
system with driving force, given data on time, position, and velocity.
1118 o
1119
import numpy as np
1120
#Initialize parameters
1121 MAX_NPARAMS = 10
= *
1122 PRAMS_INIT [1.0]*MAX_NPARAMS
1123)
def equation_vO(t: np.ndarray, x: np.ndarray, v: np.ndarray, params: np.ndarray) -> np.ndarray:
1124 """Initial example of equation."""
dv = params[0] * t + params[1] * x + params[2] * v + params[3]
1125 return dv
1126
1127 def equation_v1(t: np.ndarray, x: np.ndarray, v: np.ndarray, params: np.ndarray) -> np.ndarray:
"""Improved version of ‘equation_v@ ."""
1128
1129 Figure 9: Oscillator II input prompt used for evaluating DecAEvolve.
1130
1131
1132
1133

21

Under review as a conference paper at ICLR 2026

1134
1135
1136
1137
1138
You are a helpful assistant tasked with discovering mathematical function structures for scientific
1139 systems. You are given an example of the function signature in the first function equation_v0 below.
1140 Your task is to complete the last 'equation' function with your mathematical relationship, considering
the physical meaning and relationships of inputs. Only give me the completion code of the BODY of the
1141 current 'equation' FUNCTION. Do NOT give me a new function. Do NOT give me 'pass' instead of
completion. Just give me the new mathematical relationship with inputs for completion of current
1142 function body. Do NOT use equation_v@ in your completion.
1143 win
Find the mathematical function skeleton that represents E. Coli bacterial growth rate, given data on
1144 population density, substrate concentration, temperature, and pH level.
1145
1146 import numpy as np
1147

#Initialize parameters
1148 MAX_NPARAMS = 10
PRAMS_INIT = [1.@]*MAX_NPARAMS

1149
1150 def equation_v@(b: np.ndarray, s: np.ndarray, temp: np.ndarray, pH: np.ndarray, params: np.ndarray) ->
np.ndarray:
1151 """Initial example of equation."""
p q
1152 return params[@] * b + params[1] * s + params[2] * temp + params[3] * pH + params[4]
1153

def equation_vl(b: np.ndarray, s: np.ndarray, temp: np.ndarray, pH: np.ndarray, params: np.ndarray) ->

1154 np.ndarray:

"""Improved version of ‘equation_v@'.

1155
1156 - . : :
Figure 10: BactGrow input prompt used for evaluating DecAEvolve.
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
You are a helpful assistant tasked with discovering mathematical function structures for scientific
1167 systems. You are given an example of the function signature in the first function equation_v@ below.
Your task is to complete the last 'equation' function with your mathematical relationship, considering
1168 the physical meaning and relationships of inputs. Only give me the completion code of the BODY of the
1169 current 'equation' FUNCTION. Do NOT give me a new function. Do NOT give me 'pass' instead of
completion. Just give me the new mathematical relationship with inputs for completion of current
1170 function body. Do NOT use equation_vO® in your completion.
17
Find the mathematical function skeleton that represents stress, given data on strain and temperature in
1172 an Aluminium rod for both elastic and plastic regions.
1173
1174 import numpy as np
1175

#Initialize parameters
117 MAX_NPARAMS = 10
6 params = [1.0]*MAX_NPARAMS

1177

1178 def equation_v@(strain: np.ndarray, temp: np.ndarray, params: np.ndarray) -> np.ndarray:
"""Initial example of equation."""

1179 return params[0] * strain + params[1l] * temp

1180

1181 def equation_vl(strain: np.ndarray, temp: np.ndarray, params: np.ndarray) -> np.ndarray:
"""Improved version of ‘equation_v@'."""

1182

1183 Figure 11: StressStrain input prompt used for evaluating DecAEvolve.

1184

1185

1186

1187

22

	Introduction
	Preliminaries
	Method
	Test-Time Adaptation with GRPO
	Directional Feedback with Term-Level Contribution

	Experiments
	Results

	Related Work
	Conclusion
	LLM-SR Multi-Island Evolutionary Buffer & Sampling
	Detailed Term Decomposition and Contribution Attribution
	AST-based Decomposition

	Detailed Test-time Adaptation with Reinforcement Learning
	How is Decomposition Different than MOOSE-Chem3?
	Baseline Implementation Details
	Additional Experiments
	Comparison with SINDy Baseline
	Additional Sample Budget for Inference Frameworks
	Impact of Parameter Re-optimization in Decomposition

	Initial Input Prompts

