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ABSTRACT

Finding mathematical relations underlying natural phenomena and scientific sys-
tems has been one of the fundamental tasks in the history of scientific discovery.
Recent advancements in evolutionary search with Large Language Models (LLMs),
with their embedded scientific knowledge, have shown great promise for this task.
However, discovering such mathematical models governing scientific observations
still remains significantly challenging, as it requires navigating vast combinatorial
hypothesis spaces with an explosion of possible relations. Existing LLM-based
approaches overlook the impact of data on the structure of mathematical relations,
and treat LLMs as a static hypothesis generator unaware of the observed scientific
system. This leads to suboptimal and inefficient exploration of the hypothesis
space with over-reliance on LLMs’ internal priors. To bridge this gap, we introduce
Decompose, Adapt, and Evolve (DecAEvolve), a framework that leverages granular
feedback from symbolic term decomposition and LLM refinement through rein-
forcement learning (RL) fine-tuning to enhance both robustness and efficiency of
evolutionary discovery frameworks. DecAEvolve unifies symbolic decomposition
with test-time RL adaptation, enabling adaptive rather than static hypothesis genera-
tion and reducing error by up to an order of magnitude compared to state-of-the-art
baselines. Our experiments across diverse datasets demonstrate that DecAEvolve
significantly improves the accuracy of discovered equations and the efficiency of
the discovery process compared to the state-of-the-art baselines.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has fundamentally transformed automated
problem-solving across diverse domains. Beyond their well-established capabilities in natural
language understanding and programming (Achiam et al., 2023; Touvron et al., 2023), LLMs
have recently demonstrated remarkable reasoning abilities that enable them to tackle complex
optimization and discovery tasks. Their capacity to leverage embedded domain knowledge, interpolate
between them, generate structured hypotheses and engage in iterative refinement, positions LLMs
as powerful engines for systematic exploration of complex solution spaces towards discovery goals
(Romera-Paredes et al., 2024; Novikov et al., 2025; Surina et al., 2025). This potential extends
naturally to scientific discovery tasks, where the combination of domain expertise and systematic
search/exploration in the hypothesis space can unlock new approaches to longstanding challenges of
scientific inquiry (Shojaee et al., 2025a).

Scientific equation discovery—the process of uncovering compact and interpretable mathematical
models that govern natural phenomena—represents one of the fundamental tasks in automated
scientific discovery, with applications across many fields of science such as physics, biology, and
material science (Makke & Chawla, 2024). Traditional approaches in Symbolic Regression (SR)
rely on genetic programming and evolutionary strategies (Koza, 1994b; Cava et al., 2021b); however,
these approaches often struggle with scalability limitations and inefficient exploration of the vast
combinatorial hypothesis space (Virgolin & Pissis, 2022). More recent advances have introduced
neural-guided approaches, where deep learning architectures are trained to generate or refine symbolic
expressions (Udrescu & Tegmark, 2020b; Bruneton, 2025a), and transformer-based methods that
are pre-trained with large-scale synthetic data to directly model symbolic sequences as language

1
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Figure 1: Overview of the DecAEvolve framework. The framework integrates Adaptation (LLM fine-tuning via
reinforcement learning using Group Relative Policy Optimization with data-driven rewards) and Decomposition
(granular-level feedback through symbolic atomic term analysis) within an Evolutionary search process. The
adaptation aligns the LLM to the target scientific system beyond its internal priors, while decomposition provides
fine-grained guidance for hypothesis refinement. Iterating these three key components enables effective and
efficient exploration of the combinatorial hypothesis space in equation discovery.

generation tasks (Kamienny et al., 2022a; Shojaee et al., 2023a; Meidani et al., 2024b). These
developments have demonstrated promising capabilities in data-driven learning, yet are limited in
balancing learning and search components and in incorporating scientific prior knowledge into the
process of discovery.

Several works have recently introduced promising frameworks to integrate LLMs for scientific equa-
tion discovery, leveraging their scientific priors and reasoning capabilities to navigate the complex
landscape of mathematical expressions more effectively. Notably, LLM-SR (Shojaee et al., 2025a)
combines LLMs’ scientific knowledge with multi-island evolutionary search, generating equation
hypotheses as Python function skeletons guided by data feedback. LaSR (Grayeli et al., 2024b) in-
troduces a concept learning approach that extracts abstract textual concepts from successful equation
hypotheses, using these concepts to guide both evolutionary search (with PySR (Cranmer, 2023))
and LLM-based hypothesis generation, and SGA (Ma et al., 2024b) employs a bilevel optimization
framework that iteratively combines LLMs for discrete hypothesis generation with physical simula-
tions for continuous parameter optimization. These methods demonstrate this potential by combining
LLMs’ domain expertise with systematic search strategies, treating equation discovery as a program
synthesis problem guided by scientific knowledge (Shojaee et al., 2025b; Reddy & Shojaee, 2025).

Our key insight is that equation discovery benefits from both adaptation (aligning the model with
data distributions) and decomposition (understanding which symbolic components matter), neither
of which prior frameworks integrate. However, current LLM-based discovery methods exhibit
fundamental limitations that constrain their effectiveness. First, they treat LLMs as static hypothesis
generators, where the model’s parameters remain fixed regardless of the problem domain, nuances of
the specific observed system or, insights gained during the search process. This prevents LLMs from
adapting their generation strategies based on the specific problem, the data, and the domain-specific
requirements. Second, existing approaches mainly provide coarse-grained feedback about solution
quality, typically limited to scalar reward signals (e.g., Mean squared error) from execution of whole
hypothesis that indicate which hypotheses perform well respectively, without revealing why specific
mathematical components or patterns drive success. This limited feedback mechanism prevents
LLMs from understanding the underlying symbolic structure of successful solutions and refining
their search strategies accordingly.

2
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To address these limitations, we introduce DecAEvolve (Decompose, Adapt, and Evolve), a novel
framework that enhances the effectiveness and efficiency of LLM-based equation discovery through
several synergistic contributions:

• We develop a systematic methodology for providing LLMs with interpretable directional feedback
about which components of their generated hypothesis prove effective. Through structured hypoth-
esis decomposition and evaluations, the contributions of individual terms and their interactions are
quantified and provided as feedback. This enables LLMs to understand not just which hypotheses
succeed, but why specific mathematical building blocks are effective, transforming blind generation
into informed iterative refinement.

• We employ reinforcement learning with Group-Relative Policy Optimization (GRPO) to implicitly
distill the data distribution into the model’s parameters for better hypothesis generation process.
This test-time adaptation/training approach allows the LLM to learn from successful equation
discoveries without directly observing raw data, progressively aligning its hypothesis generation
with the underlying symbolic relationships through reward-weighted gradient updates.

• We demonstrate that these synergistic contributions dramatically improve search efficiency, requir-
ing significantly fewer iterations to discover accurate symbolic expressions. Our comprehensive
evaluation across multiple benchmarks shows superior performance compared to LLM-SR and
other baselines in both in-domain and out-of-domain settings, validating the effectiveness of our
guided discovery approach.

2 PRELIMINARIES

Problem Formulation. In scientific equation discovery, the goal is to find a compact mathematical
expression (hypothesis) h(x; T ) that approximates an unknown target function f : Rd → R within
the context of a specific problem T , using a dataset of input-output pairs D = {(xi, yi)}ni=1.
The objective is to discover functional relationships such that f(xi) ≈ yi for all i, producing
expressions that are both interpretable and capable of generalizing to unseen data. Performance is
typically evaluated using fitness to data with metrics such as mean squared error: MSE(h,D) =
− 1

n

∑n
i=1(h(xi; T )− yi)

2.

LLM-SR Framework. A recent advance in this space is LLM-SR (Shojaee et al., 2025a), which
reframes symbolic regression as a program synthesis task. Instead of traditional expression trees,
equations are represented as executable Python functions with placeholder parameters. The framework
leverages large language models (LLMs) to iteratively generate equation program skeletons, drawing
on their embedded scientific priors and reasoning abilities. Each proposed skeleton undergoes
parameter optimization (via BFGS or Adam) to fit the data, and high-scoring hypotheses are stored
in a dynamic experience buffer. Subsequent LLM prompts incorporate these top hypotheses as
in-context examples, enabling iterative refinement of the search process. Our work is based on this
work, enhancing it with decomposition and adaptation mechanisms for a more accurate and efficient
discovery.

Group-Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is an effective reinforce-
ment learning technique to fine-tune LLMs with verifiable outcome rewards. The key innovation of
GRPO is its use of group-relative advantages computed from multiple completions per prompt to
provide stable reward signals. For each prompt x with completions {yi}Gi=1 from old policy πθold and
corresponding rewards {ri}Gi=1, the method calculates group-relative advantages Ai = ri − b(x)

where baseline b(x) = 1
G

∑G
j=1 rj serves as the per-prompt baseline. This per-prompt normalization

provides variance reduction and stable credit assignment across candidates. The GRPO objective
optimizes:
L(θ) =− Ex,{yi}∼πθold

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

{
min

[ πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
Ai,t, clip

( πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
, 1− ϵ, 1 + ϵ

)
Ai,t

]
+ β Ex

[
KL(πθ(·|x) ∥πref(·|x))

]}
, (1)

where πref is the frozen reference model, β > 0 controls the KL regularization strength, and ϵ
controls the clipping ratio to avoid excessive single-step updates to the policy. This approach enables
efficient adaptation to task-specific rewards while maintaining model stability.

3
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Algorithm 1. DecAEvolve
Input: LLM πθ; dataset D; problem T ; N GRPO steps; G GRPO completions; T iterations; k in-context

examples; b samples/prompt
Output: Best equation h∗ and score s∗

# Stage 1: Test-time adaptation with GRPO
for n← 1 to N do
{hi}Gi=1 ∼ πθ(· | T ) # Sample hypothesis group

{ri}Gi=1 ← ScoreT ({hi}Gi=1,D)
πθ ← GRPO_Update(πθ, {ri}Gi=1)

# Stage 2: Evolutionary discovery with decomposition feedback
P0 ← InitPop() # Initialize population
h∗ ← null, s∗ ← −∞
for t← 1 to T − 1 do

E ← {ej}kj=1 where ej ∼ SampleExp(Pt−1)
p← MakeFewShotPrompt(E)
Ht ← {hj}bj=1 where hj ∼ πθ(· | p) # Generate candidates
for f ∈ Ht do

s← ScoreT (h,D) # Data-driven score
{um} ← Decompose(h) # AST-based term extraction
for each term um do

cm ← TermContribution(um, h,D)
f ← Annotate(h, {cm}) if s > s∗ then

h∗ ← h; s∗ ← s

Pt ← Pt−1 ∪ {(h, s, {cm})} # Update population

3 METHOD

DecAEvolve (Decompose, Adapt, and Evolve) combines adaptation, decomposition, and evolutionary
search. Adaptation employs GRPO to align the LLM with data-driven rewards, while decomposition
delivers term-level feedback that highlights which symbolic components drive accuracy. Coupled
with evolutionary search, these mechanisms form a feedback-driven loop that improves both equation
quality and the model’s generation policy. We illustrate the pseudocode for DecAEvolve in Algorithm
1 and emphasize its two key contributions: (i) reinforcement-learning-based test-time adaptation and
(ii) fine-grained decomposition feedback.

3.1 TEST-TIME ADAPTATION WITH GRPO

In the adaptation stage of DecAEvolve, the generation policy πt
θ is updated to improve its ability to

propose valid and accurate symbolic equations. After each iteration of hypothesis group generation,
the policy is fine-tuned using GRPO (Shao et al., 2024) objective function (equation 1) on the
accumulated dataset {(pi, {hi, ri}Gi=1)}, where each prompt pi is paired with multiple hypothesis
completions {hi} and their data-driven rewards ri = ScoreT ({hi}Gi=1,D). Our formulation directly
optimizes scalar rewards and integrates invalid completions by assigning them a fixed floor reward
r = 0.01. Retaining invalid samples ensures that the model receives an explicit negative signal,
which suppresses invalid generations over time rather than discarding them. By continually including
both valid and invalid completions, the GRPO update not only reinforces promising functional forms
but also suppresses degenerate outputs, ensuring that the model learns to generate programs that are
executable and accurate.

Fine-tuning is performed with LoRA adapters (Hu et al., 2022), enabling efficient updates while the
base parameters remain fixed as πref. This prevents catastrophic drift while still allowing the adapted
policy to progressively shift probability mass toward valid, high-reward symbolic structures for the
given problem. Full implementation details and hyperparameters are reported in Appendix B.

3.2 DIRECTIONAL FEEDBACK WITH TERM-LEVEL CONTRIBUTION

At the heart of our framework is an iterative discovery process in which the LLM performs a form of
self-reflection: it not only generates candidate symbolic equations but also receives feedback about
why certain symbolic components succeed or fail. Rather than relying solely on coarse error scores,

4
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we introduce a contribution analysis that quantifies the role of each term and its pairwise interactions,
producing interpretable signals that guide subsequent generations.

Concretely, each candidate program is parsed into an abstract syntax tree (AST; see Appendix. D)
and decomposed into atomic symbolic units {um(x)}Mm=1 where M is the total number of units. To
evaluate the contribution of each single term ui (or a pair (ui, uj)), we first construct ablated hypothe-
ses f\ui

(x) =
∑

m ̸=i wmum(x) (or similarly f\{ui,uj}(x) =
∑

m/∈{i,j} wmum(x)). Subsequently,
we re-fit the parameters w on D, and compute the marginal effect ∆ui

= S(f,D)− S(f\ui
, D) (or

∆ui,uj
= S(f,D)− S(f\{ui,uj}, D)), where S(f,D) = − 1

n

∑n
i=1(f(xi)− yi)

2. This ensures that
each ∆ui

or ∆ui,uj
reflects the true incremental value of a term or pair, independent of parameteriza-

tion artifacts. Positive values indicate components that improve predictive accuracy, while near-zero
or negative values reveal redundancy.

Importantly, these contribution signals are serialized directly into the synthesized programs as inline
comments (without affecting executability) and stored in the evolving population. In the next iteration,
the LLM samples from this population, and the annotated programs are reused as in-context examples.
This design ensures that the model is not only guided by global error metrics but also reflects on
explicit evidence of which symbolic building blocks mattered, progressively refining its generation
strategy. Full details of the directional feedback mechanism appear in Appendix. A.

4 EXPERIMENTS

We evaluate DecAEvolve on benchmark datasets for LLM-based scientific equation discovery from
(Shojaee et al., 2025a), covering domains like physics, biology, and materials science:

Nonlinear Oscillator: Simulates two nonlinear damped oscillators (Oscillator1, Oscillator2) gov-
erned by second-order differential equations in displacement and velocity. Both systems are designed
with complex but solvable nonlinear structures that differ from standard oscillator models to challenge
LLMs towards discovery through data-driven reasoning.

Bacterial Growth: Models E. coli growth under varying conditions of density, substrate, temperature,
and pH. Novel nonlinear terms designed for temperature and pH introduce complexities that require
exploration and discovery and are hard to recover from LLM recall.

Stress-Strain Behavior: Captures tensile response of aluminum alloy across temperatures. This
dataset uses experimental measurements, providing a more realistic setting with experimental data
that challenge LLM-based models beyond synthetic formulations.

We compare DecAEvolve against state-of-the-art non-LLM symbolic regression (SR) baselines,
including evolutionary approaches such as GPlearn1 and PySR2 (Cranmer, 2023), deep learning
methods like DSR (Petersen et al., 2021) and uDSR (Landajuela et al., 2022), and pre-trained
Transformer SR models NeSymReS (Biggio et al., 2021) and E2E (Kamienny et al., 2022b). In
addition, we evaluate against the leading LLM-based SR baseline, LLM-SR (Shojaee et al., 2025a),
under same configurations: 3,000 LLM calls per problem with sampling temperature τ = 0.8. In
both approaches, equation parameters are optimized with the BFGS solver from SciPy python library
and a 30s timeout used for the execution of each hypothesis. In the GRPO adaptation phase, we use
batch size of 16 per device, gradient accumulation 4, learning rate 10−5, and KL coefficient β = 0.05.
For fine-tuning, we use LoRA adapters with r = 16. Decomposition analysis is also conducted based
on the AST extracted from the equation program to define each term and pairwise term contributions.
We conduct experiments on six open-source models (Qwen2.5-1.5B and Qwen2.5-3B, Qwen2.5-7B,
Llama-3.2-1B, Llama-3.1-3B, and Llama-3.1-8B) to evaluate effectiveness across different model
variants as well as the scaling behaviors across different model capacities within our computational
constraints for fine-tuning.

For the analysis, we use the normalized mean squared error (NMSE) as in (Shojaee et al., 2025b):

NMSE =
∑Ntest

i=1 (ŷi−yi)
2∑Ntest

i=1 (yi−ȳ)2
on both in-domain (ID) and out-of-domain (OOD) test settings, where Ntest

1https://gplearn.readthedocs.io/en/stable/
2https://github.com/MilesCranmer/PySR

5

https://gplearn.readthedocs.io/en/stable/
https://github.com/MilesCranmer/PySR


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1000 2000 3000
# of Search Candidates

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Llama-3.2-1B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Llama-3.2-1B

0 1000 2000 3000
# of Search Candidates

0.012

0.013

0.014

0.015

0.016

N
or

m
al

iz
ed

 M
SE

BactGrow, Llama-3.2-1B

0 1000 2000 3000
# of Search Candidates

10 2

10 1

N
or

m
al

iz
ed

 M
SE

StressStrain, Llama-3.2-1B

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Llama-3.2-3B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Llama-3.2-3B

0 1000 2000 3000
# of Search Candidates

0.008

0.010

0.012

0.014

0.016

N
or

m
al

iz
ed

 M
SE

BactGrow, Llama-3.2-3B

0 1000 2000 3000
# of Search Candidates

10 1

100

N
or

m
al

iz
ed

 M
SE

StressStrain, Llama-3.2-3B

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Llama-3.1-8B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Llama-3.1-8B

0 1000 2000 3000
# of Search Candidates

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

N
or

m
al

iz
ed

 M
SE

BactGrow, Llama-3.1-8B

0 1000 2000 3000
# of Search Candidates

10 1

100

N
or

m
al

iz
ed

 M
SE

StressStrain, Llama-3.1-8B

0 1000 2000 3000
# of Search Candidates

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Qwen2.5-1.5B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Qwen2.5-1.5B

0 1000 2000 3000
# of Search Candidates

0.70

0.75

0.80

0.85
N

or
m

al
iz

ed
 M

SE

BactGrow, Qwen2.5-1.5B

0 1000 2000 3000
# of Search Candidates

10 1

100

N
or

m
al

iz
ed

 M
SE

StressStrain, Qwen2.5-1.5B

0 1000 2000 3000
# of Search Candidates

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Qwen2.5-3B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Qwen2.5-3B

0 1000 2000 3000
# of Search Candidates

0.012

0.013

0.014

0.015

0.016

N
or

m
al

iz
ed

 M
SE

BactGrow, Qwen2.5-3B

0 1000 2000 3000
# of Search Candidates

10 1

100

N
or

m
al

iz
ed

 M
SE

StressStrain, Qwen2.5-3B

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator1, Qwen2.5-7B
LLM-SR
+GRPO
+Decomp
DecAEvolve

0 1000 2000 3000
# of Search Candidates

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 M
SE

Oscillator2, Qwen2.5-7B

0 1000 2000 3000
# of Search Candidates

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

N
or

m
al

iz
ed

 M
SE

BactGrow, Qwen2.5-7B

0 1000 2000 3000
# of Search Candidates

10 1

100

N
or

m
al

iz
ed

 M
SE

StressStrain, Qwen2.5-7B

Figure 2: Best-score trajectories of DecAEvolve and its variants against the LLM-SR baseline across benchmark
problems. Adaptation (+GRPO) and decomposition (+Decomp) each enhance discovery effectiveness and
efficiency, yielding more accurate final equations with fewer search candidates. Their integration in DecAEvolve
achieves the best result across all datasets (lower is better).

is the test size and ȳ the mean target value. NMSE normalizes errors by scale of dataset variance,
enabling comparison across datasets.

4.1 RESULTS

To assess the contribution of our proposed framework DecAEvolve and its key compo-
nents—decomposition and adaptation—on top of the default evolutionary discovery framework, we
compared against the LLM-SR baseline under the same LLM backbones across multiple benchmark
datasets. Figure 2 reports the discovery trajectories, showing the progression of the best-achieved
normalized MSE (NMSE) across the search process. The results highlight three consistent trends.
First, both ablated variants improve over the baseline: the Adaptation (+GRPO) and Decomposition
(+Decomp) modules both help to accelerate convergence and lower discovery error. Second, these
improvements hold across diverse LLM backbones (Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B,
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Model Oscillation 1 Oscillation 2 E. coli growth Stress-Strain

ID↓ OOD↓ ID↓ OOD↓ ID↓ OOD↓ ID↓ OOD↓
GPlearn 0.0155 0.5567 0.7551 3.188 1.081 1.039 0.1063 0.4091
NeSymReS 0.0047 0.5377 0.2488 0.6472 N/A (d > 3) 0.7928 0.6377
E2E 0.0082 0.3722 0.1401 0.1911 0.6321 1.4467 0.2262 0.5867
DSR 0.0087 0.2454 0.0580 0.1945 0.9451 2.4291 0.3326 1.108
uDSR 0.0003 0.0007 0.0032 0.0015 0.3322 5.4584 0.0502 0.1761
PySR 0.0009 0.3106 0.0002 0.0098 0.0376 1.0141 0.0331 0.1304
LLM-SR (Mixtral) 7.89e-8 0.0002 0.0030 0.0291 0.0026 0.0037 0.0162 0.0946
LLM-SR (GPT-3.5) 4.65e-7 0.0005 2.12e-7 3.81e-5 0.0214 0.0264 0.0210 0.0516

LLM-SR (Llama-3.2-1B) 0.0003 0.1121 0.0105 0.0543 0.0133 0.3544 0.0934 0.3821
LLM-SR (Llama-3.2-3B) 1.41e-5 0.0014 0.0021 0.0053 0.0122 0.0588 0.0629 0.1672
LLM-SR (Llama-3.1-8B) 1.36e-5 0.0009 4.61e-6 0.0001 0.0117 0.0240 0.0376 0.0761
LLM-SR (Qwen2.5-1.5B) 0.0011 0.1233 0.0027 0.0721 0.7237 0.9483 0.1249 0.2435
LLM-SR (Qwen2.5-3B) 0.0003 0.0168 0.0018 0.0432 0.0135 0.8011 0.0905 0.2085
LLM-SR (Qwen2.5-7B) 1.33e-5 0.0017 0.0002 0.0011 0.0109 0.1285 0.0423 0.1851

DecAEvolve (Llama-3.2-1B) 2.09e-5 0.0011 0.0018 0.0136 0.0114 0.0698 0.0704 0.0924
DecAEvolve (Llama-3.2-3B) 1.57e-6 0.0004 0.0003 0.0005 0.0074 0.0102 0.0311 0.0358
DecAEvolve (Llama-3.1-8B) 1.37e-6 0.0002 3.64e-7 2.11e-5 0.0019 0.0045 0.0144 0.0322
DecAEvolve (Qwen2.5-1.5B) 0.0001 0.0784 1.22e-6 0.0012 0.6719 0.9211 0.0916 0.1134
DecAEvolve (Qwen2.5-3B) 3.23e-6 0.0002 4.36e-5 0.0008 0.0115 0.0454 0.0487 0.1612
DecAEvolve (Qwen2.5-7B) 1.25e-6 1.51e-5 8.06e-7 1.64e-5 0.0007 0.0012 0.0198 0.0322

Table 1: Comparison of DecAEvolve with SR baseline models on different scientific benchmark problems,
measured by Normalized Mean Squared Error (lower is better). The best performance for each dataset is in
bold, and the second best performance is underlined.

Qwen-2.5-1.5B, Qwen-2.5-3B, Qwen-2.5-7B), indicating that the gains are not model-specific but
instead stem from the principled design of the framework components that transfer across different
backbones. Finally, the full DecAEvolve framework, which integrates all three components of
evolution, decomposition, and adaptation, consistently delivers the lowest terminal NMSE and the
fastest convergence rate in the discovery process.

Table 1 provides a quantitative comparison of DecAEvolve against both non-LLM baselines and
the LLM-based baseline LLM-SR across in-domain (ID) and out-of-distribution (OOD) evaluations.
We observe that DecAEvolve consistently outperforms state-of-the-art non-LLM methods (e.g.,
PySR, uDSR) as well as the LLM-SR baseline when evaluated under the same LLM backbones.
These improvements are mostly robust across both ID and OOD test sets, demonstrating not only
higher accuracy but also stronger generalization to unseen data distributions. Performance gains are
particularly pronounced with larger backbones such as Llama-3.1-8B and Qwen-2.5-7B, which is
expected given that the success of DecAEvolve relies on two key components: (1) decomposition,
which requires sufficient reasoning capacity to interpret granular feedback, and (2) adaptation, which
depends on reinforcement learning finetuning to exploit reward signals from observed scientific
data. Larger models are better able to leverage both of these mechanisms, resulting in consistently
stronger performance. Nevertheless, we also find that DecAEvolve with smaller backbones can
achieve results that are competitive with, and in some cases better than, the originally reported
LLM-SR performance using much larger models such as Mixtral and GPT-3.5. This underscores
the critical role of adaptation in scientific discovery: by tailoring even modestly sized open-source
models to the specific scientific system, DecAEvolve can surpass the performance of significantly
larger general-purpose models.

Lastly, Figure 3 shows consistent reward improvement during GRPO adaptation across both model
scales and all datasets, validating our reinforcement learning fine-tuning approach as test-time
adaptation for equation discovery. Notably, we observe some scale-dependent behaviors where
smaller models show more noise in their RL and reward improvement process than their larger model
counterparts. Interestingly, the smaller model usually matches larger model performance eventually
even on complex datasets, suggesting that targeted adaptation through GRPO can help to effectively
bridge the capability gap between model scales for scientific discovery tasks.

5 RELATED WORK

Symbolic regression. Early research in symbolic regression and scientific discovery established
a foundation for automated equation finding, relying on genetic programming and evolutionary

7
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Figure 3: Reward improvements across different models and datasets, showing the success of adaptation with
GRPO RL fine-tuning.

search to explore hypothesis spaces (Koza, 1994a; Cava et al., 2021a). While effective on small
problems, these approaches struggled with scalability and tended to rediscover shallow functional
forms. Later neural-guided methods, such as AI Feynman (Udrescu & Tegmark, 2020a), physics-
inspired constraints (Bruneton, 2025b), and transformer-based symbolic generation (Kamienny &
colleagues, 2022; Shojaee et al., 2023b; Meidani et al., 2024a), extended capabilities but remained
constrained by limited expressivity and an inability to generalize beyond training distributions.

The rise of large language models shifted this landscape. Works such as LLM-SR (Shojaee et al.,
2025a) reframed symbolic regression as program synthesis, allowing models to generate equation
skeletons enriched by internal scientific priors. Subsequent frameworks expanded this view: LaSR
(Grayeli et al., 2024a) guided search with abstracted concepts extracted from prior successes, while
bilevel optimizers (Ma et al., 2024a) combined symbolic hypothesis generation with simulation-
driven parameter tuning. Benchmarks such as LLM-SRBench (Shojaee et al., 2025c) highlighted
both the promise of these methods and their limitations, showing that LLMs, even when coupled with
evolutionary refinement, fails to capture the adaptive strategies that real scientific discovery demands.
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Test-time adaptation. Test-time adaptation has recently emerged as a way to adapt models during
inference, mitigating distribution shift without additional offline training. In reasoning benchmarks
such as ARC, gradient-based test-time training (TTT) has shown great performance in better adapting
models to tasks that require more novelty (Akyürek et al., 2024). The ARC Prize 2024 report similarly
attributes recent state-of-the-art results to pipelines that incorporate test-time training components into
the problem-solving process (Chollet & Team, 2024). Beyond empirical advances, recent theoretical
analyses establish conditions under which a single gradient step at inference provably enhances
transformers as in-context learners (Gozeten et al., 2025). Extending beyond supervised updates, Zuo
et al. introduce test-time reinforcement learning (TTRL), where models adapt using consensus-based
rewards rather than labels, yielding further improvements across reasoning and math tasks (Zuo et al.,
2025). Despite these successes and potential benefits of test-time training in better adapting to novelty,
test-time adaptation remains largely unexplored in evolutionary scientific discovery frameworks,
leaving open how inference-time learning can directly align priors of pretrained model with the
dynamics of specific scientific system during the evolutionary process of search and discovery.

Prompt Optimization and Evolution. A parallel line of work focuses on optimizing prompts
rather than model weights, treating instructions and in-context exemplars as a search space. Yang
et al. propose OPRO, which frames prompt design as black-box optimization and iteratively im-
proves instructions through model feedback (Yang et al., 2023). Guo et al. extend this perspective
with EvoPrompt, combining evolutionary operators such as mutation and crossover with LLMs to
explore diverse prompt populations (Guo et al., 2025). More recently, Opsahl-Ong et al. develop
MIPRO, a system that jointly optimizes instructions and demonstrations in multi-stage LM programs,
demonstrating robust improvements without weight updates (Opsahl-Ong et al., 2024). Agrawal et al.
introduce GEPA, which leverages reflective prompt evolution and self-feedback to surpass reinforce-
ment learning baselines like GRPO, achieving higher efficiency in both code and reasoning tasks
(Agrawal et al., 2025). Surveys on automatic prompt optimization synthesize these approaches and
position prompt evolution as a label- and compute-efficient alternative to RL fine-tuning (Ramnath
et al., 2025). Our framework builds on this perspective of self-evolving optimization via prompting
along with the test-time adaptation to search deeper and more efficient in the scientific discovery
hypothesis space. In this paper, we show how adaptation and prompt optimization can jointly advance
evolutionary discovery frameworks.

6 CONCLUSION

We introduce DecAEvolve, a framework that enhances LLM-based equation discovery through
granular term-level feedbacks, test-time adaptation via GRPO and, evolutionary search with LLMs.
Our approach transforms static hypothesis generation into adaptive learning, enabling LLMs to
progressively align with nuances of underlying observed scientific systems through reinforcement
learning model adaptation and interpretable feedback mechanisms. Experimental results across
diverse benchmark datasets demonstrate that DecAEvolve consistently outperforms state-of-the-art
baselines in both discovery accuracy and search efficiency, while maintaining strong out-of-domain
generalization. The success of smaller models through targeted test-time adaptation suggests promis-
ing directions for democratizing scientific discovery tools without requiring large, resource-intensive
models. Future work could extend our simple decomposition mechanisms to more complex structures
and explore better optimization strategies for the evolutionary process. The term-level feedback
approach developed here may also prove valuable for broader program synthesis tasks requiring
iterative refinement in the symbolic space of programs based on component-level understanding.
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APPENDIX

A DETAILED TERM DECOMPOSITION AND CONTRIBUTION ATTRIBUTION

We give a complete account of how generated programs are decomposed into weighted symbolic units
and how single and pairwise contributions are computed. This procedure mirrors the implementation
used by the evaluator: the function body is parsed into an AST, simple assignment chains are inlined,
the returned expression is decomposed at additive nodes, and ablation is carried out by rewriting
only the final assignment return and re-executing in a sandbox. All annotations are serialized as
comments in the program without changing executable semantics. Unless otherwise specified, all
ablations include re-fitting of the remaining weights on the dataset to ensure that contributions reflect
true incremental value independent of parameterization artifacts.

Scoring. Given data D = {(xi, yi)}ni=1 and a candidate program f , we evaluate

S(f,D) = − 1

n

n∑
i=1

(
f(xi)− yi

)2
, (2)

where f is executed inside a restricted sandbox with timeouts and numeric checks.

Program-to-symbol map and weighted additive form. Let r denote the expression returned by
the function (or a final assigned variable). We parse the function body into an AST, build a line-level
assignment map, inline r if it is an intermediate variable, and traverse the AST with the following
rules: (i) addition/subtraction split terms, (ii) multiplication/division/power subtrees are preserved as
atomic units, and (iii) unary ops and function calls (e.g., sin, exp, np.abs) are atomic.

The resulting model has the form

f(x;w) =

T∑
t=1

wt τt(x), (3)

where each τt(x) is an extracted atomic unit and wt is a scalar weight optimized to fit the dataset.
We estimate w using quasi-Newton optimization (BFGS) provided by NumPy/SciPy, minimizing
the squared error loss. This ensures that decomposition is not only symbolic but also numerically
calibrated to data.

Single-term ablation and contribution. For each index t, we form the ablated function

f\t(x;w) ≜
T∑

j=1
j ̸=t

wj τj(x), (4)

by rewriting the final return so that term wtτt(x) is removed. After ablation, the remaining weights
w\t are re-optimized on D (using the same BFGS procedure as in Eq. 3), ensuring that the marginal
effects reflect the true incremental value of each term independent of parameterization artifacts. Its
marginal contribution is defined as

∆t ≜ S
(
f(·;w), D

)
− S

(
f\t(·;w\t), D

)
. (5)

If removal yields invalid outputs, we treat wtτt(x) as essential and assign maximal contribution under
the current score scale.

Pairwise interaction. Similarly, for a pair (t, u) we define

f\{t,u}(x;w) ≜
T∑

j=1
j /∈{t,u}

wj τj(x), ∆t,u ≜ S
(
f(·;w), D

)
− S

(
f\{t,u}(·;w\{t,u}), D

)
. (6)

As with the single-term case, the weights are re-optimized after removal to isolate the genuine
interaction effect. These values reveal redundancy versus synergy by comparing ∆t,u against ∆t and
∆u.
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Figure 4: Example of program-level annotations. A candidate equation for a damped nonlinear oscillator
is annotated in-line with single-term and pairwise ablation contributions (as comments) immediately above
the return. The evaluator computes these after optimizing weights w via BFGS, decomposing the return
expression, and re-evaluating ablations in a sandbox. All ablations re-fit the remaining weights to data to ensure
consistency with the definitions in Sec. 3.2 of the main paper.

Annotation and persistence. After computing {∆t} and {∆t,u}, we serialize them as human-
readable comments directly in the function body (above the return), and store the annotated
program in the experience buffer. This preserves executable semantics while exposing interpretable,
component-level feedback that guides subsequent in-context learning.

B REINFORCEMENT LEARNING FORMULATION OF OFFLINE GRPO

We formulate our offline fine-tuning procedure as reinforcement learning over a deterministic Markov
Decision Process (MDP)

M = (S,A,R, T ).

States. The state space S consists of partial sequences (x, y1:k) where x is the prompt and y1:k is a
prefix of the generated output.

Actions. At each step the action space A corresponds to selecting the next token yk+1 ∈ V .

Transitions. The transition function T is deterministic and appends the chosen token:
(x, y1:k) 7→ (x, y1:k+1).

Rewards. Rewards are assigned only at terminal states. For a completed sequence y1:K , we execute
the synthesized program on a held-out test suite and compute the mean squared error (MSE). The
scalar reward is

r(x, y1:K) = exp
(
−clip

(
|MSE(x, y1:K)|, 0, 10

))
,

with invalid completions included in training and assigned a fixed floor reward r = 0.01. We use
γ = 1 since rewards are terminal.

Offline contextual bandit view. The offline dataset consists of prompts paired with groups of
candidate completions and their evaluator rewards:

Doff = {(x, {yi, ri}Gi=1)}.
This induces a contextual bandit formulation: the context is x, the action is the entire completion y,
and the observed return is r(x, y).
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Policy objective with trust region. We optimize with a KL-regularized objective relative to a
frozen reference model πref :

max
θ

E(x,{yi})∼Doff

[
1
G

G∑
i=1

r(x, yi)

]
− β Ex

[
KL

(
πθ(·|x) ∥πref(·|x)

)]
, (7)

with β = 0.05.

Group-Relative Policy Optimization (GRPO). We adopt GRPO with per-prompt group baselines
to reduce variance:

Ai(x, yi) = ri − b(x), b(x) = 1
G

G∑
j=1

rj .

The GRPO objective becomes

max
θ

Ex∼Doff

[
G∑
i=1

Ai(x, yi) · log πθ(yi | x)

]
− β Ex

[
KL

(
πθ(·|x) ∥πref(·|x)

)]
. (8)

Autoregressive factorization. For LMs,

log πθ(yi | x) =
Ti∑
t=1

log πθ(yi,t | x, yi,<t),

and advantages are distributed uniformly across tokens (Ai/Ti for each position). We apply PPO-style
clipping with ϵ = 0.2 for stability.

Implementation details. We fine-tune using Adam with learning rate 10−6 and a
warmup–stable–decay schedule (200 warmup steps). Training uses an effective batch size of 64
(16 per device with gradient accumulation 4). Each prompt is sampled with G = 64 completions
at temperature 0.8 and top-p = 0.9. Only LoRA adapter parameters are updated (r = 8, α = 16,
dropout 0.05), while the base model remains frozen as πref .

C INCLUSION OF INVALID EXAMPLES

A key design choice in DecAEvolve is to retain invalid hypotheses during adaptation rather than
discarding them. While the base model frequently produces non-executable fragments, filtering them
out removes informative signals about failure modes. Instead, we assign invalid completions a fixed
floor reward:

ri =

{
evaluator_score(hi), if hi is valid,
0.01, otherwise.

(9)

These values enter the Group-Relative Policy Optimization (GRPO) update through the loss

L(θ) = −Ex,{hi}

[
G∑
i=1

(
ri − b(x)

)
log πθ(hi | x)

]
+ β Ex

[
KL

(
πθ(· | x) ∥πref(· | x)

)]
, (10)

where b(x) = 1
G

∑G
j=1 rj is the per-prompt baseline and πref is the frozen reference policy. Since

invalid completions always yield a reward below the baseline, they contribute negative advantages and
shift probability mass away from degenerate outputs. Empirically, this mechanism steadily reduced
the fraction of invalid generations and stabilized adaptation.

D ABSTRACT SYNTAX TREE (AST)

An Abstract Syntax Tree (AST) is a language-agnostic representation of a program that makes explicit
the hierarchical composition of an expression. Internal nodes correspond to operators or function
applications (e.g., +, *, **, np.sin), and leaves correspond to parameters or input variables. In
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Figure 5: Parsing an equation program into an AST.

our setting, we parse each LLM-generated equation program into an AST and split only at additive
nodes, while preserving multiplicative, divisional, power, and functional subtrees as atomic units.
This yields a linear combination f(x) =

∑T
t=1 τt(x) of symbolic atoms τt. Figure 5 illustrates this

mapping from the generated hypothesis function (left) to its AST (right): a return expression such as
y = t1 + t2 + t3 − t4 becomes a top-level sum where each ti is an intact subtree, enabling principled
decomposition without altering operator precedence.

Operationally, the evaluator isolates the evolved function body, executes it in a sandbox to obtain a
scalar score, and then reconstructs the returned expression by expanding intermediate assignments
via an assignment map and dependency graph before parsing with Python’s ast module. From the
resulting atoms {τt}, we perform ablation-based attribution: for each term t, we remove τt, rebuild a
syntactically valid RHS with correct parentheses, re-execute the modified program, and compute a
marginal contribution ∆t = S(f,D)−S(f\t, D), where S is the evaluator score (negative MSE). We
analogously compute pairwise signals ∆t,u by removing (τt, τu). The evaluator writes these results
back as inline comments within the function body, so subsequent iterations can consume structured,
term-level feedback rather than a single scalar reward. This AST-centric pipeline is lightweight,
robust to multi-line programs, and provides the granular guidance that underpins our evolutionary
refinement.

E INPUT PROMPTS

The prompts in Figure 6 were used for evaluating DecAEvolve on the four regression tasks from the
LLM-SR(Shojaee et al., 2025a) benchmark. Each prompt specifies the target problem and a Python
function template with placeholder parameters. In all cases, the prompts shown below correspond to
the initial call to the LLM. In subsequent iterations, DecAEvolve augments the prompt with examples
drawn from top-performing hypotheses in the evolving buffer, enabling in-context learning from
previously discovered candidates and their annotated contributions.
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((a)) Oscillator I ((b)) Oscillator II

((c)) BactGrow ((d)) StressStrain

Figure 6: Input prompts used for evaluating DecAEvolve. (a) Oscillator I, (b) Oscillator II, (c) BactGrow, (d)
StressStrain.

17


	Introduction
	Preliminaries
	Method
	Test-Time Adaptation with GRPO
	Directional Feedback with Term-Level Contribution

	Experiments
	Results

	Related Work
	Conclusion
	Detailed Term Decomposition and Contribution Attribution
	Reinforcement Learning Formulation of Offline GRPO
	Inclusion of Invalid Examples
	Abstract Syntax Tree (AST)
	Input Prompts

