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Abstract

Overparameterized neural networks enjoy great representation power on complex
data, and more importantly yield sufficiently smooth output, which is crucial
to their generalization and robustness. Most existing function approximation
theories suggest that with sufficiently many parameters, neural networks can well
approximate certain classes of functions in terms of the function value. The neural
network themselves, however, can be highly nonsmooth. To bridge this gap, we
take convolutional residual networks (ConvResNets) as an example, and prove that
large ConvResNets can not only approximate a target function in terms of function
value, but also exhibit sufficient first-order smoothness. Moreover, we extend our
theory to approximating functions supported on a low-dimensional manifold. Our
theory partially justifies the benefits of using deep and wide networks in practice.
Numerical experiments on adversarial robust image classification are provided to
support our theory.

1 Introduction

Deep neural networks of enormous sizes have achieved remarkable success in various applications.
Some well-known examples include ViT-Huge of 632 million parameters (Dosovitskiy et al., 2020),
and the gigantic GPT-3 of 175 billion parameters (Brown et al., 2020). In addition to outstanding
testing accuracy, there has been evidence that large neural networks favor smoothness and yield good
robustness (Madry et al., 2017; Bubeck and Sellke, 2021).

Among vast literature on explaining the success of neural networks, universal approximation theories
analyze how well neural networks can represent complex data models (see literature in related works
in Appendix A). These works focus on approximating a target function in terms of its function value
(i.e., in function L∞ norm). However, other important properties, espcifically the smoothness of the
neural networks, are less investigated. A few early results provide asymptotic results on two-layer
networks with smooth activation for approximating both function value and derivatives (Hornik
et al., 1990; Cardaliaguet and Euvrard, 1992). Recently, Gühring et al. (2020); Hon and Yang (2021)
established nonasymptotic approximation theory of feedforward networks in terms of Sobolev norms.

In real-world applications, on the other hand, practitioners empirically demonstrated a close tie
between the smoothness of a trained neural network to its adversarial robustness (Gu and Rigazio,
2014; Hein and Andriushchenko, 2017; Weng et al., 2018; Miyato et al., 2018). The intuition behind
is relatively clear. Consider, for instance, adding some adversarial perturbation to an input. A network
of small (local) Lipschitz constant produces less deviation to the original output, and therefore, is
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often resilient to adversarial attackes. On the contrary, a network that is vulnerable to adversarial
attacks usually has a large Lipschitz constant. Over the years, many computational methods are
proposed and extensively tested in experiments for promoting network smoothness (Goodfellow et al.,
2014; Madry et al., 2017; Miyato et al., 2018; Zhang et al., 2019). Apart from these explicit training
methodologies, the size of a network is also recognized as a critical factor to its generalization and
robustness (Zagoruyko and Komodakis, 2016; Madry et al., 2017; Wu et al., 2020). Yet, theoretical
understanding is largely missing.

In this paper, we investigate universal approximation ability of neural networks with smoothness
guarantees. We consider the convolutional residual networks (ConvResNet, see a description in Sec-
tion D.2) with ReLU activation as an example. We measure the approximation error of ConvResNet
in terms of not only the function value, but also higher order smoothness. Specifically, suppose given
a target function f belonging to a Sobolev space in a D-dimensional hypercube. We provide an
approximation error estimate in terms of Sobolev norm as a function of the size of ConvResNet. We
also extend our theory to functions supported on a d-dimensional Riemannian manifold (d ≪ D).
We summarize our main results in the following informal theorem.

Theorem 1 (informal). Consider a ConvResNet architecture with M̃ residual blocks and each
convolutional filter having at most J̃ channels. Let α ≥ 2 and 1 ≤ p ≤ ∞ be positive integers. Then

• (Euclidean) for any target function in a Sobolev space Wα,p((0, 1)D) with Sobolev norm
∥f∥Wα,p((0,1)D) ≤ 1, there exists f̃ yielded by the ConvResNet architecture, such that

∥f̃ − f∥W s,p ≤ const · (M̃J̃)−
α−s
D for s ∈ [0, 1]

with the constant depending on D,α, p;

• (Manifold) given M ⊂ RD a d-dimensional Riemannian manifold satisfying mild regularity
conditions, for any target function in a Sobolev space Wα,∞(M) with ∥f∥Wα,∞(M) ≤ 1, there
exists f̃ yielded by the ConvResNet architecture, such that

∥f̃ − f∥Wk,∞ ≤ const · (M̃J̃)−
α−k

d for k ∈ {0, 1}
with the constant depending on α, p,M.

Our theory restricts to s ≤ 1, since only first-order weak derivatives exist for ReLU networks.
Moreover, setting s = 0 or s = 1 is of particular interest, as s = 0 recovers the function value
approximation guarantee and s = 1 extends the guarantee to first-order derivatives. As can be seen,
to achieve the same function value approximation error, s = 1 requires a larger network, but enjoys
good smoothness. This can partially explain that larger networks are often more robust. We refer
readers to Corollary 1 for more discussion. Our manifold setting is motivated by the fact that many
high-dimensional data in real applications often have low-dimensional structures (Tenenbaum et al.,
2000; Roweis and Saul, 2000; Coifman et al., 2005; Allard et al., 2012; Pope et al., 2021). Our
results show ConvResNet can adapt to data geometric structures and does not suffer from the curse of
ambient dimensionality.

Theorem 1 implies that as the number of residual blocks increases or each filter having more channels,
ConvResNet gives better approximation of the target function. In order to achieve an ϵ-error, we
may set M̃J̃ = O(ϵ−

D
α−s ) (O(ϵ−

d
α−s ) for the manifold case), while there is no scaling restriction

between M̃ and J̃ . See an explicit configuration of ConvResNet architecture depending on M̃ and J̃
in Theorem 2 and Theorem 5.

2 Convolutional residual networks

In this paper, we consider convolutional residual networks (ConvResNet) which consists of several
residual blocks and a fully connected layer. Denote the composition of residual blocks by Q (see
(5) in Appendix D.2), and the weight matrix and bias in the fully connected layer by W and b,
respectively. We define the class of ConvResNets as
C(M,L, J,K, κ1, κ2) =

{
f | f(x) =W ⊗Q(x) + b,Q(x) has M residual blocks.

The number of filters per block is bounded by L;filter size is bounded by K; ∥W∥∞ ∨ |b| ≤ κ2,

the number of channels is bounded by J ; max
m,l

∥W(l)
m ∥∞ ∨ ∥B(l)

m ∥∞ ≤ κ1
}
. (1)

2



In (1), W(l)
m , B

(l)
m denote the convolutional filter and bias in the l-th layer of the m-th residual block.

Details on the network architecture are deferred to Appendix D.2.

3 Approximation in Euclidean Space

Consider a Sobolev function class defined on a unit hypercube (0, 1)D. We aim to use convolutional
residual networks for approximating functions in the target class in terms of the W s,p norm (see
Appendix D.1 for definitions of Sobolev spaces and Sovolev norms). Here p is a positive integer
and s can vary in [0, 1]; in particular, s = 0 corresponds to function value approximation, and s = 1
resembles the result Section 1. We formally define our target function class as a Sobolev norm ball.
Assumption 1. Let α ≥ 2, 1 ≤ p ≤ +∞ be integers. Assume the target function f satisfies
f ∈Wα,p

(
(0, 1)D

)
∥f∥Wα,p((0,1)D) ≤ 1.

We set the norm ball of radius 1 for the sake of simplicity, while the results in the sequel hold for any
constant radius. We also let α ≥ 2 for techincal convenience. In the following theorem, we show that
ConvResNets can approximate any functions in a Sobolev norm ball in terms of W s,p norm (s ≤ 1).

Theorem 2. For any positive integers K ∈ [2, D], M̃ , and J̃ > 0, we choose

L = O(log(M̃J̃)), J = O(J̃), κ1 = O((M̃J̃)1/D), κ2 = O((M̃J̃)1/D), M = O(M̃).

Then given s ∈ [0, 1], the ConvResNet architecture C(M,L, J,K, κ1, κ2) can approximate any
function f satisfying Assumption 1, i.e., there exists f̃ ∈ C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥W s,p((0,1)D) ≤ C1(M̃J̃)−
α−s
D

for some constant C1 depending on D,α, p.

Theorem 2 says that the approximation power of ConvResNet amplifies as its width and depth
increase. This property is validated by experiments on adversarial robust image classification, see
Appendix C for details. To better interpret the result, we choose s = 1 and p = ∞, which corresponds
to simultaneously approximating function value and first-order derivatives.
Corollary 1. In the setup of Theorem 2, taking s = 1 and p = ∞, the ConvResNet architecture
C(M,L, J,K, κ1, κ2) can approximate any f satisfying Assumption 1 up to first-order, i.e., there
exists f̃ ∈ C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥∞ ≤ C2(M̃J̃)−
α−1
D and sup

i
∥∂f̃/∂xi − ∂f/∂xi∥∞ ≤ C2(M̃J̃)−

α−1
D ,

where the constant C2 depends on D and α. In particular, we have Lipschitz continuity bound

∥f̃∥Lip ≤ 1 + C2

√
D(M̃J̃)−

α−1
D .

Theorem 2 and Corollary 1 have rich implications.

Large network for smooth approximation. Taking s = 0 in Theorem 2 recovers function approxi-
mation in terms of L∞ norm. The approximation error scales as O((M̃J̃)−

α
D ). A quick comparison

to Corollary 1 indicates that in order to additionally capture the first-order information of a target
function, large network is needed to achieve the same function value error bound.

Arbitrary width and depth. Gühring et al. (2020); Hon and Yang (2021) provide approximation
guarantees of feedforward networks in terms of W s,p norm. Despite different network architectures,
we remark that our theory covers general networks with arbitrary width and depth. More specifically,
for a given approximation error ϵ, Gühring et al. (2020) set the network depth and width asO(log 1/ϵ)

and O(ϵ−D/(α−s)), respectively. Yet in our result, we only need to ensure M̃J̃ = O(ϵ−D/(α−s)),
which does not require any scaling relation between M̃ and J̃ .

Theorem 2 can be used as a tool to analyze the empirical residual error. Specifically, assume the
response in the data set contains bounded zero–mean noise, we have the following probability bound
on the upper bound of the empirical residual error (see a proof in Appendix H)
Theorem 3. Let {(xi, yi)}ni=1 be a given data set where xi’s are i.i.d. samples from some distribution
defined on [0, 1]D and yi = f(xi) + ξi with i.i.d. noise ξi’s satisfying E[ξi] = 0 and |ξi| ≤ σ for
all i = 1, ..., n. Assume f satisfy Assumption 1 with p = +∞. For 0 < ε < min{σ, 1}, let
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C = C(M,L, J,K, κ1, κ2) be the network architecture in Theorem 2 with M̃J̃ = (ε/C1)
−D/α

=
O(ε−D/α). We have

P
(
∃f̃ ∈ C : ∥f̃∥Lip ≤ 1 +

√
Dε

α−1
α and

1

n

∑n

i=1
(f̃(xi)− yi)

2 ≤ 2ε2 + σ2
)
≥ 1− exp

(
− 3nε2

104σ4

)
.

Theorem 3 implies that with high probability, larger network architectures ensure the existence of
a network that has small empirical residual error as well as certain smoothness, i.e., a bounded
Lipschitz constant which is close to that of the underlying function. Our result is an upper bound
counterpart of Bubeck and Sellke (2021, Theorem 3), in which a high probability lower bound of the
Lipschitz constant is derived.

Theorem 2 is also closely related to adversarial robustness (see Appendix B for the definition), which
is commonly used to measure the smoothness of a network. Consider the supervised learning scenario
in which noisy or noiseless response is generated by a ground truth function satisfying Assumption 1.
Corollary 1 indicates the existence of a properly large ConvResNet capable of smoothly approximating
the data model. The network’s Lipschitz continuity closely relates to adversarial risk, for which we
have the following theorem (see a proof in Appendix I)
Theorem 4. Let ρ be a data distribution defined on [0, 1]D × [−R,R] for some constant R and l(·, ·)
be a loss function with Lipschitz constant LLip. Denote the population risk minimizer by f :

f = argmin
g

E(x,y)∈supp(ρ)l(g(x), y). (2)

Assume f satisfies Assumption 1 with p = +∞. For 0 < ε < 1, let C(M,L, J,K, κ1, κ2) be

the network architecture in Theorem 2 with M̃J̃ =
(

ε
C1

)−D/α

= O(ε−D/α). Then there exists

f̃ ∈ C(M,L, J,K, κ1, κ2) so that
∥f̃ − f∥∞ ≤ ε, ∥f̃∥Lip ≤ 1 +

√
Dε

α−1
α and R(f̃ , δ) ≤ R(f̃ , 0) + LLip

(
1 +

√
Dε

α−1
α

)
δ.

In Theorem 4, the difference between the adversarial risk and population risk depends on the Lipschitz
constant of the network f̃ , the Lipscthiz constant of the loss function and the adversarial parameter δ.
It implies that large networks can give rise to smooth functions with a small adversarial risk

4 Approximation on Manifold

Theorem 2 indicates a curse of data dimensionality: When data dimension D is large, such as image
data, Theorem 2 converges extremely slowly and becomes less attractive. Motivated by applications,
we model data as a low-dimensional Riemannian manifold M and extend our approximation theory
to functions defined on M. We will show that ConvResNet is adaptable to manifold structures. We
first impose some mild regularity conditions.
Assumption 2. M is a d-dimensional compact Riemannian manifold isometrically embedded in RD.
There exists a constant B > 0 such that for any x ∈ M, we have ∥x∥∞ ≤ B.
Assumption 3. The reach of M is τ > 0.

See Appendix J for the definition of reach and some other concepts related to manifolds. Similar to
Section 3, we consider a Sobolev norm ball on M as target function class.
Assumption 4. Let α ≥ 2 be an integer. Assume the target function f satisfies

f ∈Wα,∞ (M) and ∥f∥Wα,∞(M) ≤ 1.

We now present a counterpart of Theorem 2, showing an efficient approximation of functions on M.

Theorem 5. For any positive integers K ∈ [2, D], M̃ , and J̃ > 0, we choose
L = O(log(M̃J̃)) +D, J = O(DJ̃), κ1 = O((M̃J̃)1/d), κ2 = O((M̃J̃)1/d), M = O(M̃).

Then given k ∈ {0, 1}, the ConvResNet architecture C(M,L, J,K, κ1, κ2) can approximate any
function f satisfying Assumption 4, i.e., there exists f̃ ∈ C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥Wk,∞(M) ≤ C3(M̃J̃)−
α−k

d ,
where constant C3 depends on d, α,B, τ , and the surface area of M.

As can be seen, the approximation error decays at a rate only depending on intrinsic data dimension
d, which is a significant improvement over Theorem 2 given d≪ D. We also note that the size of
ConvResNet has a weak dependence onD, yet it is inevitable due to the residual connection preserves
input dimensionality.
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5 Conclusion

We provide universal approximation theories of Convolutional Residual Networks in terms of Sobolev
norms. Our theory applies to Sobolev function spaces defined on a high-dimensional hypercube
or low-dimensional Riemannian manifold. We demonstrate that deep and wide ConvResNets can
provide approximation with good first-order smoothness properties. This partially justifies why using
large networks in practice often leads to better performance and robustness.
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Appendix

A Related work

Approximation theories of feedforward neural network have been studied for a long time, most of
which dedicate to function value approximation. The earliest literature dates back to late 1980s. For
example, Irie and Miyake (1988); Funahashi (1989); Cybenko (1989); Hornik (1991); Chui and Li
(1992); Leshno et al. (1993) investigated the approximation power of two-layer feedforward neural
networks with sigmoidal activation for square integrable functions and established some asymptotic
results, where the number of neurons goes to infinity. Barron (1993); Mhaskar (1996) established
nonasymptotic results for the so-called “Barron” function space. For multi-layer feedforward neural
networks with ReLU activation, Yarotsky (2017) analyzed the approximation of Sobolev Wα,∞

functions in a D-dimensional hypercube, and proved nonasymptotic results that given a pre-specified
approximation error ϵ, the depth and width of neural networks need to be at most of the order
O(ϵ−D/α) and O(log(1/ϵ)), respectively. More recently, Suzuki (2019); Suzuki and Nitanda (2019);
Liu et al. (2021) extended to more general function classes such as Besov spaces.

Approximation theories for convolutional networks are established by Zhou (2020b,a); Petersen
and Voigtlaender (2020). In Zhou (2020b), the authors consider CNN with ReLU activation whose
width increases linearly from the first layer to the last. They show that such a CNN can approximate
functions in Sobolev Wα,2 space with arbitrary accuracy for integer α ≥ 2 + D/2. To have a
better control on the width of the network, the authors of Zhou (2020a) studied downsampled CNNs,
and show that the downsampled CNN can approximate Lipschitz ridge functions with an arbitrary
accuracy. In Petersen and Voigtlaender (2020), the authors show that any approximation bounds of
FNN can be achieved by CNNs. The results in Oono and Suzuki (2019); Liu et al. (2021) dedicate to
convolutional residual networks. In Oono and Suzuki (2019), the authors show that ConvResNets is
able to approximate Hölder functions with an arbitrary accuracy.

Theoretical results on approximating or learning functions on low-dimensional manifold can be found
in Shaham et al. (2018); Chui and Mhaskar (2018); Schmidt-Hieber (2019); Chen et al. (2019a,b,
2020); Nakada and Imaizumi (2019); Cloninger and Klock (2020); Shen et al. (2019); Montanelli and
Yang (2020); Liu et al. (2021, 2022). These works show that when the target function is defined on or
around a low-dimensional manifold, to achieve an approximation error ϵ, the network size mainly
depends on the intrinsic dimension and weakly depends on the ambient dimension.

B Adversarial risk

The adversarial risk (Uesato et al., 2018; Zhao et al., 2021) is defined as
Definition 1 (Adversarial risk). Given a data distribution ρ, and a loss function l(·, ·), for a positive
constant δ > 0, we define the adversarial risk of a network f̃ as

R(f̃ , δ) = E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

ℓ
(
f̃(x′), y

)]
, (3)

where Bδ(x) is the Euclidean ball with radius δ centered at x.

In the case δ = 0, the adversarial risk R(f̃ , 0) reduces to the population risk
E(x,y)∈supp(ρ)

[
ℓ
(
f̃(x), y

)]
.

C Numerical Experiments

We verify our theory by numerical experiments. Due to the complex structure of convolutional
residual networks, directly estimating the Lipschitz constant is rather difficult. We instead testing the
adversarial robustness as an indication of the network smoothness.

We consider the TRADES model which uses a data driven smoothness regularization and encourages
model smoothness. By keeping the same clean testing accuracy, we can compare model smoothness
through the robust testing accuracy. We follow the setup in TRADES (Zhang et al., 2019), and report
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the performance of WideResNet (Zagoruyko and Komodakis, 2016) with different widening factor
(WF) and number of convolutional layers per residual block (we term as “depth” in the sequel). We
use the CIFAR-10 data set. Hyperparameters in training are set as follows: perturbation diameter
ϵ = 0.031 under the ℓ∞ norm, step size for generating perturbation 0.007, number of iterations 10,
learning rate 0.1, batch size b = 128 and run 76 epochs on the training dataset. We run the White-box
attacks by applying PGD attack with 20 iterations (PGD-20) and the step size is 0.003. We report the
robust accuracy Arob and the natural accuracy Anat on the test data set.

The training objective is

min
f

E(x,y)∼DL(f(x), y) + max
∥x̃−x∥∞≤ϵ

R (f(x), f (x̃)) /λ,

where L is the cross entropy loss, R is the KL-divergence, x is the clean input, x̃ is the adversarial
input, y is the label, λ is the tuning parameter controlling the strength of the regularizer, and D
denotes the training dataset {xi, yi}ni=1.

For a fair comparison, we tune λ such that networks of different sizes achieve approximately the same
natural accuracy. This can be understood as achieving approximately the same L∞ approximation
error to the data model. As can be seen in Table 1, Anat of different models about matches the
performance in Zhang et al. (2019), indicating the network has been sufficiently trained. By comparing
the robust accuracy Arob, we observe that wider and deeper WideResNet attains better robustness.
When fixing the depth, a wider network can achieve a higher robust accuracy. Similarly, when fixing
the widening factor, a deeper network can achieve a higher robust accuracy.

Table 1: Performance of Wide Residual Networks with different widening factors and depths under
PGD-20 attacks.

Depth WF Anat Arob

16
1 78.87± 0.47% 34.31± 0.45%
2 79.34± 0.28 % 46.14± 0.21%
4 79.97± 0.04% 51.40± 0.16%

22
1 78.51± 0.25% 41.47± 0.11%
2 79.49± 0.48% 49.63± 0.07%
4 80.81± 0.44% 53.36± 0.21%

28
1 79.46± 0.06% 43.33± 0.57%
2 79.01± 0.11% 50.85± 0.07%
4 80.90± 0.71% 54.45± 0.14%

34
1 78.58± 0.09% 46.14± 0.16%
2 79.29± 0.35% 51.63± 0.28%
4 80.79± 0.71% 55.28± 0.35%

D Notations and definitions

Notations: We use lower case letters to denote scalars, bold lower case letters to denote vectors,
upper case letters to denote matrices, and calligraphic letters to denote tensors and sets. For x =

[x1, ..., xD]⊤,v = [v1, ..., vD]⊤, we denote xv = xv1
1 · · ·xvDD (if well-defined) and |v| =

∑D
i=1 |vi|.

Let α = [α1, ..., αD]⊤ ∈ ND be a multi-index and f be a function, we denote Dαf = ∂|α|f

∂x
α1
1 ···∂xαD

D

.

Let Ω be a subset in RD, we denote Ω as its closure and ch(Ω) as its convex hull. We use Br(c)
to denote the closed Euclidean ball with radius r and centered at c. We use ∥·∥∞ to denotes the
entrywise maximum norm, i.e., when the input argument is a vector, it returns the vector ℓ∞ norm;
when the input is a matrix or a tensor, it returns the maximum magnitude of its entries, e.g., for a
3-dimensional tensor W , ∥W∥∞ = maxj,k,l |Wj,k,l|.

D.1 Sobolev Functions

We focus on studying neural networks for approximating Sobolev functions. We provide a formal
definition of Sobolev functions in both Euclidean spaces and on manifolds. We begin with Sobolev
functions in Euclidean spaces (Brezis and Brézis, 2011, Chapter 8).
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Definition 2 (Sobolev spaces). Let α ≥ 0, 1 ≤ p ≤ ∞ be integers, and domain Ω ⊂ RD. We define
Sobolev space Wα,p(Ω) as

Wα,p(Ω) =
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all |α| ≤ α

}
,

where α is a multi-index.

For f ∈Wα,p(Ω), we define its Sobolev norm as

∥f∥Wα,p(Ω) =
( ∑

|α|≤α

∥Dαf∥pLp(Ω)

)1/p
.

In the special case of p = ∞, the Sobolev norm can be rewritten as ∥f∥Wα,∞(Ω) =
max|α|≤α ∥Dαf∥L∞(Ω). In this case, ∥f∥W 0,∞ < ∞ implies the function value is bounded,
and ∥f∥W 1,∞ <∞ implies both the function value and its gradient are bounded.

Our later approximation theories will provide error estimate in terms of Sobolev norms. To allow
more flexibility, we define fractional Sobolev norms, which can be viewed as a generalization of
Sobolev norms to non-integer α. The fractional Sobolev functions are defined as follows.
Definition 3 (Sobolev–Slobodeckij spaces (Slobodeckij, 1958)). For 0 < s < 1 and 1 ≤ p ≤ ∞, we
define W s,p(Ω) as

W s,p(Ω) =
{
f ∈ Lp(Ω) : ∥f∥W s,p(Ω) <∞

}
with

∥f∥W s,p(Ω) =(
∥f∥pLp(Ω) +

∫
Ω

∫
Ω

( |f(x)− f(y)|
∥x− y∥s+D/p

2

)p
dxdy

)1/p
for 1 ≤ p <∞ and

∥f∥W s,∞(Ω) =

max

{
∥f∥L∞(Ω), ess supx,y∈Ω

|f(x)− f(y)|
∥x− y∥s2

}
.

We restrict our attention to s < 1 for simplicity, as we focus on approximation guarantees up to
first-order continuity.

Next, we extend Sobolev spaces to Riemannian manifolds. We provide a brief introduction to
manifold; a more detailed description can be found in Appendix J. Roughly speaking, a Riemannian
manifold M is a collection of local neighborhoods, each of which is diffeomorphic to a low-
dimensional Euclidean space. These local neighborhoods are termed charts, and a collection of which
is an atlas. We provide a formal definition.
Definition 4 (Atlas). A smooth atlas for a d-dimensional manifold M ⊂ RD is a collection of
charts {(Uα, ϕα)}α∈A, which verifies

⋃
α∈A Uα = M and ϕα : Uα 7→ Rd being diffeomorphic and

pairwise compatible, i.e.,
ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) and

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are both smooth for any α, β ∈ A. An atlas is called finite if it contains finitely many charts.

To define Sobolev spaces on a manifold M, we shall consider function regularity on each chart,
as charts are geometrically “akin” to a Eulidean space through the chart mapping ϕα. One caveat,
however, is that the chart mapping ϕα can be arbitrarily rescaled, which results in potential unbound-
edness. We therefore, fix an atlas on M to mitigate this issue. We are ready to define Sobolev spaces
on a manifold (Driver, 2003, Definition 48.17).
Definition 5 (Sobolev spaces on manifold). Let M be a compact Riemannian manifold of dimension
d. Let {(Ui, ϕi)}CM

i=1 be a finite atlas on M and {ρi}CM
i=1 be a partition of unity on M such that

supp(ρi) ⊂ Ui. For integers k ≥ 0 and 1 ≤ p ≤ ∞, a function f : M → R is in the Sobolev space
W k,p(M) if

∥f∥Wk,p(M) :=

CM∑
i=1

∥(fρi) ◦ ϕ−1
i ∥Wk,p(ϕi(Ui)) <∞.

Since M is compact, a finite altas exists on M. Besides, we introduce the partition of unity ρi to
follow the standard definition in Tu (2010, Definition 13.4). The existence of a smooth partition of
unity is shown in Appendix J. From Definition 5, we observe that a Sobolev function on M is locally
Sobolev on each chart.
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D.2 Convolutional Residual Networks

We consider one-sided stride-one convolution in our network. Let W = {Wj,k,l} ∈ RC′×K×C be
a filter where C ′ is the output channel size, K is the filter size and C is the input channel size. For
Z ∈ RD×C , the convolution of W with Z gives Y = W ∗ Z ∈ RD×C′

with

Yi,j =

K∑
k=1

C∑
l=1

Wj,k,lZi+k−1,l,

where we set Zi+k−1,l = 0 for i+ k − 1 > D. See a graphical demonstration in Figure 1(a).

In this paper, we study convolutional residual networks (ConvResNets) equipped with the rectified
linear unit (ReLU) activation function (ReLU(z) = max(z, 0)). The ConvResNet we consider
consists consecutively of a padding layer, several residual blocks, and finally a fully connected output
layer.

Given an input vector x ∈ RD, the network first applies a padding operator P : RD → RD×C for
some integer C ≥ 1 such that

Z = P (x) = [x 0 · · · 0] ∈ RD×C .

Then the matrix Z is passed through M residual blocks. To ease the notation, we denote the input
matrix to the m-th block as Zm and its output as Zm+1 (Consequently, Z1 = Z).

In the m-th block, let Wm = {W(1)
m , ...,W(Lm)

m } and Bm = {B(1)
m , ..., B

(Lm)
m } be a collection of

filters and biases of proper sizes. The m-th residual block maps its input matrix Zm from RD×C to
RD×C by the operator

ConvWm,Bm
+ id,

where id is the identity mapping (also known as the shortcut connection) and

ConvWm,Bm
(Zm) = ReLU

(
W(Lm)

m ∗ · · · ∗ ReLU
(
W(1)

m ∗ Zm +B(1)
m

)
· · ·+B(Lm)

m

)
, (4)

with ReLU applied entrywise. We denote the mapping from input x to the output of theM -th residual
block as

Q(x) = (ConvWM ,BM
+ id) ◦ · · · ◦ (ConvW1,B1 + id) ◦ P (x). (5)

(a) Convolution. (b) A residual block.
Figure 1: (a) Convolution of W∗Z, where the input is Z ∈ RD×C , and the output is W∗Z ∈ RD×C′

.
Here W = {Wj,k,l} ∈ RC′×K×C is a filter where C ′ is the output channel size, K is the filter
size and C is the input channel size. Wj,:,: is a D × C matrix for the j-th output channel. (b) A
convolutional residual block.

Given (5), a ConvResNet applies an additional fully connected layer to Q and outputs

f(x) =W ⊗Q(x) + b,

where W ∈ RD×C and b ∈ R are a weight matrix and a bias, respectively, and ⊗ denotes sum of
entrywise product, i.e., W ⊗Q(x) =

∑
i,j Wi,j [Q(x)]i,j .

E Proof Sketch

We highlight key steps in establishing Theorem 2 and 5 in this section. Full proofs are deferred to
Appendix G and K, respectively.
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E.1 Proof Sketch of Theorem 2

The main idea consists of two stages: 1) Approximating target function f in terms ofW s,p norm using
a sum of averaged Taylor polynomials; 2) Implementing the sum of averaged Taylor polynomials
by a given width and depth ConvResNet up to a certain error. In stage 1), we rely on tools from the
finite element anaylsis to quantify approximation error. In stage 2), we first represent polynomials
using convolutional networks, and then assemble them according to the specified width and depth as
a ConvResNet. We dive into the following four steps.

Step 1: Decompose f using a partition of unity. Given the network size parameter M̃ and J̃ , we
define a partition of unity {ϕj}N

D

j=1 on (0, 1)D for an integer N = O((M̃J̃)1/D), so that each ϕj is

supported on a small hypercube of edge length 4
3N . The function f is decomposed into f =

∑ND

j=1 fj
with fj = fϕj . See Figure 2(a) for an illustration.

Step 2: Averaged Taylor polynomial approximation. Each fj is a Sobolev function, which may
not have classical derivatives but weak derivatives. Similar to approximating differentiable functions
by Taylor polynomials, we approximate fj by an averaged Taylor polynomial f̂j , which is defined in
an integral form and indeed is a polynomial. The approximation error of averaged Taylor polynomial
is similar to that of using Taylor polynomial, and can be found in Lemma 2.

Step 3: Network implementation. As shown in Lemma 16 and 5, CNN can approximate multi-
plication and compositions of muliplications well. Since a polynomial is a sum of compositions
of multiplication, each f̂i can be approximated by a sum of O(1) CNNs, and therefore

∑ND

i=1 f̂i is
approximated by a sum of O(ND) CNNs, each of which has width of O(1). We prove in Lemma 7
that such a sum can be realized by a sum of M̃ CNNs with width J̃ . The new sum can be realized by
a ConvResNet with M̃ residual blocks (Lemma 8), where each summand corresponds to a residual
block and the sum is realized using skip-layer connections.

Step 4: Error estimation. To estimate the approximation error of f̃ , we decompose the error as

∥f̃ − f∥W s,p(0,1)D ≤
ND∑
j=1

∥f̃j − f̂j∥W s,p((0,1)D)

+

ND∑
j=1

∥f̂j − fj∥W s,p((0,1)D). (6)

On the right-hand side of (6), the second term is the approximation error of averaged Taylor polyno-
mial, whose upper bound is given by Lemma 4.

The first term is the network implementation error. We derive an upper bound of it in Lemma 6. In the
proof of Lemma 6, we first derive an upper bound with respect to the W k,p norm for k = 0, 1. The
case k = 0 corresponds to the error of function value approximation, and the case k = 1 corresponds
to the error of first order weak derivative approximation. Note that each f̂j is a polynomial, and each
f̃j consists of compositions of ×̃, the network approximation of multiplication ×. The error indeed
is the approximation error of compositions of ×̃. We first derive the W k,∞ approximation error of
×̃ and then show that compositions of ×̃ have W k,p approximation errors of the same order. After
the upper bounds of W 0,p and W 1,p errors are derived, these upper bounds are generalized to W s,p

errors using an argument on interpolation spaces, which is discussed in Appendix L.2.

Combining the upper bounds of both terms in (6) gives rise to the total approximation error as a
function of N . Utilizing the relation M̃J̃ = O(ND), we can further express the approximation error
in terms of number of blocks and width of the ConvResNet.

E.2 Proof Sketch of Theorem 5

We exploit the geometric nature of manifold M and Sobolev functions on it to prove Theorem 5. By
an explicit construction of a finite atlas on M based on the curvature condition in Assumption 3, we
first restrict ourselves to a single chart on M. Recall Definition 5 that a Sobolev function f on M is
locally Sobolev on a chart. We are thus, able to locally approximate f on each chart by the results in
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(a) Partition of unity on (0, 1)D . (b) Partition of unity on M.

Figure 2: (a) Illustration of ϕj’s and fj’s in Step 1 of the proof of Theorem 2. (b) Illustration of the
construction of charts and paritition of unity in Step 1 of the proof of Theorem 5. The red curve
represents a cross section of ρi.

Theorem 2. However, the main challenge stems from combining these local approximations to obtain
a global guarantee. This requires to determine which charts a given input belongs to. We develop
a chart determination sub-network for approximating indicator functions of charts, nonetheless, its
Lipschitz continuity is troublesome due to the sharp jump on the boundary of a chart. We resolve such
an issue by carefully constructing a partition of unity vanishing at a neighborhood of the boundary of
charts. We provide more details in the following four steps.

Step 1: Decompose f using an atlas and partition of unity of M. We first construct an atlas
and a partition of unity of M so that each function in the partition of unity is compactly supported
in a chart (Lemma 9). To construct an atlas of M, we use a set of D-dimensional Euclidean balls
{Br/2(ci)}CM

i=1 with centers {ci}CM
i=1 ⊂ M and radius r/2 satisfying 0 < r < τ/4 to cover M.

Since M is compact, CM is finite. The collection of intersections between each ball and M, denoted
by {Ũi}CM

i=1 with Ũi = Br/2(ci)∩M, forms an open cover of M. It is guaranteed that there exists a
C∞ partition of unity {ρi}Mi=1 so that ρi is supported in Ũi (Lemma 19). We then double the radius
and denote Ui = Br(ci) ∩M. The collection {Ui}CM

i=1 is also an open cover of M. Since Ũi ⊂ Ui,
ρi is compactly supported in Ui and the distance between the support of ρi and ∂Ui is at least r/2.
For each Ui, an orthogonal projection φi with proper scaling and shifting, which projects any x ∈ Ui

to a tangent plane, is constructed so that φi(Ui) ⊂ (0, 1)d. See the proof of Lemma 9 for details.
With this construction, we illustrate Ui and ρi in Figure 2(b). We then focus on the atlas {Ui, φi}CM

i=1

and partition of unity {ρi}Mi=1. We decompose f as f =
∑CM

i=1 (fi ◦ φ
−1
i ) ◦ φi with fi = fρi.

Step 2: Averaged Taylor polynomial approximation. In the decomposition in Step 1, each fi ◦φ−1
i

is a Sobolev function compactly supported in φi(Ui) ⊂ (0, 1)d. Extend fi ◦ φ−1
i to (0, 1)d by 0. The

extended function has the same smoothness as fi ◦ φ−1
i , and can be approximated by a sum of local

averaged Taylor polynomials
∑Nd

i=1 f̂i,j , as what has been done in the proof of Theorem 2.

Step 3: Network implementation. Each polynomial f̂i,j can be approximated by a CNN f̃i,j . Since
we are only interested in the value of f̃i,j ◦ φi(x) when x ∈ Ui, we need to determine the chart it
belongs to. We accomplish this by introducing a chart determination function 1i(x) = 1[0,r2] ◦d2i (x),
where 1[0,r2](a) is a step function which outputs 1 when a ∈ [0, r2] and outputs 0 otherwise, d2i (x)
computes the squared Euclidean distance between x and ci. The squared distance function d2i can be
approximated by a CNN with high accuracy. To approximate the step function 1[0,r2], we construct a
CNN which outputs 1 on [0, r2−∆], 0 on [r2,∞) and is linear on [r2−∆, r2] for some small ∆. The
CNN approximation of 1i , denoted by 1̃i, is illustrated in Figure 3(a). Our network approximation
of f is constructed as

f̃(x) =

CM∑
i=1

Nd∑
j=1

×̃(f̃i,j ◦ φi(x), 1̃i(x)),

where ×̃ denotes the CNN approximation of multiplication. By Lemma 7 and 8, f̃ can be realized by
a ConvResNet with M̃ blocks and width of O(J̃) as long as M̃J̃ = O(Nd).

Step 4: Error estimation. We decompose the error into two parts: 1) the error between f and its
averaged Taylor polynomial approximation, and 2) the error between the averaged Taylor polynomial
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and its network approximation, see (39) in Appendix K. The first part can be bounded using Lemma
4. The second part is characterized by the approximation error of ×̃ for multiplication, of f̃i,j for
averaged Taylor polynomials, and of 1̃i for chart determination 1i. The first two errors can be
bounded using techniques similar to those in the proof of Theorem 2.

(a) Chart determination.

Hyper cubes

(b) Projected region in (0, 1)d.

Figure 3: (a) Illustration of an element of a chart and partition of unity. The red curve represents a
cross section of ρi. (b) Illustration of the chart determination network 1̃i. The black curve represents
a cross section of 1̃i. (c) Illustration of the projected regions in (0, 1)d.

For the approximation error of 1̃i, bounding its W 1,∞ norm is the most challenging task. To derive
an upper bound, one needs to bound |(f̃i,j ◦φi)× (∂(1̃i ◦φ−1

i )/∂zl)| for l = 1, ..., d and z ∈ φi(Ui).
In our network construction, 1̃i ◦ φ−1

i is linear on a narrow band, denoted by Ωi,2, with width of
O(∆). Its weak derivative on the narrow band is of O(1/∆), which blows up as ∆ → 0 and causes
problems. To eliminate the effect of ∆, we show that the value of f̃i,j ◦ φi is small enough so that
its product with ∂(1̃i ◦ φ−1

i )/∂zl does not blow up as ∆ → 0. Specifically, thanks to the fact that
fi is compactly supported on Ui, we have fi ◦ φ−1 is compactly supported on φi(Ui). Therefore
there exists another band Ωi,1 adjacent to φi(∂Ui) so that fi ◦ φ−1 = 0 on Ωi,1. We choose ∆ small
enough so that Ωi,2 ⊂ Ωi,1, and f̂i,j and all of its first order weak derivatives vanish on Ωi,2, see
Figure 3(a) and (b) for illustrations. Note that f̃i,j is an approximation of f̂i,j . We can show that
f̃i = 0 on φi(∂Ui), and all of its first order weak derivatives on Ωi,2 are in the same order of other
error terms. Since the width of Ωi,2 is of O(∆), by Taylor’s theorem, |f̃i,j ◦ φi| is bounded by a
linear function of ∆ on Ωi,2. With such a construction and proper choice of ∆, the resulting upper
bound is in the same order of those of other terms. See Lemma 11 for details.

Combining all of the error bounds, we can express the error in terms of N . Substituting the relation
M̃J̃ = O(Nd) proves Theorem 5.

F Convolutional neural networks and multi-layer perceptions

Our proofs are based on approximation theories of convolutional neural networks (CNN) and their
relations to multi-layer perceptions (MLP). In this section, we introduce related notations and
definitions. For the convenience of notation, we use · to denote ⊗, the sum of entrywise product.

We consider CNNs in the form of
f(x) =W · ConvW,B(x), (7)

where ConvW,B(Z) is defined in (4), W is the weight matrix of the fully connected layer, W,B are
sets of filters and biases, respectively. We define the class of CNNs as

FCNN(L, J,K, κ1, κ2) =
{
f |f(x) in the form (7) with L layers.

Each convolutional layer has filter size bounded by K.
The number of channels of each layer is bounded by J.

max
l

∥W(l)∥∞ ∨ ∥B(l)∥∞ ≤ κ1, ∥W∥∞ ≤ κ2
}
.

For MLP, we consider the following form
f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (8)
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where W1, . . . ,WL and b1, . . . ,bL are weight matrices and bias vectors of proper sizes, respectively.
The class of MLP is defined as

FMLP(L, J, κ) =
{
f |f(x) in the form (8) with L-layers and width bounded by J.

∥Wi∥∞,∞ ≤ κ, ∥bi∥∞ ≤ κ for i = 1, . . . , L
}
.

In some cases it is necessary to enforce the output of the MLP to be bounded. We define such a class
as

FMLP(L, J, κ,R) =
{
f |f(x) ∈ FMLP(L, J, κ) and ∥f∥∞ ≤ R

}
.

In some case we do not need the constraint on the output, we denote such MLP class as
FMLP(L, J, κ).

G Proof of Theorem 2

Before we prove Theorem 2, we define the Sobolev semi-norm:

Definition 6. For any integers 0 ≤ k ≤ α, 1 ≤ p < ∞ and function f ∈ Wα,p(Ω), we define its
Sobolev semi-norm as

|f |Wk,p(Ω) =
( ∑

|α|=k

∥Dαf∥pLp(Ω)

)1/p
,

|f |Wk,∞(Ω) = max
|α|=k

∥Dαf∥L∞(Ω),

Now we prove Theorem 2.

Proof of Theorem 2. We prove Theorem 2 in four steps.

Step 1: Decompose (0, 1)D using locally supported functions. We define

ψ(x) =


1 |x| < 1,

0 2 < |x|,
2− |x| 1 ≤ |x| ≤ 2

and

ϕm(x) =

D∏
k=1

ψ
(
3N
(
xk − mk

N

))
with m = (m1,m2, ...,mD) ∈ {0, ..., N}D. We have

∑
m ϕm = 1 on (0, 1)D and ϕm is supported

on B 2
3N,∥·∥∞

(mN ) ⊂ B1/N,∥·∥∞(mN ). We denote SN = {0, 1, ..., N}D. The following lemma shows
that each ψ

(
3N
(
xk − mk

N

))
can be realized by a CNN (see a proof in Appendix L.3).

Lemma 1. There exists a CNN architecture FCNN(L, J,K, κ1, κ2) such that for any N,m, such an
architecture yields a CNN ψ̃ with

ψ̃m,N (x) = ψ
(
3N
(
xk − m

N

))
, (9)

∥ψ̃m,N∥Wk,∞(0,1) ≤ (3N)k. (10)

Such an architecture has

L = 2, J = 16, K = 2, κ1 = κ2 = O(N).

Further more, the weight matrix in the fully connected layer of FCNN has nonzero entries only in the
first row.

We then decompose f as

f =
∑
m

ϕmf.
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Step 2: Approximate each ϕmf using averaged Taylor polynomials. On each B1/N,∥·∥∞(mN ),
we approximate ϕmf by an averaged Taylor polynomial. The averaged Taylor polynomial is defined
as follows:

Definition 7 (Averaged Taylor polynomials). Let α > 0, 1 ≤ p ≤ +∞ be integers and f ∈
Wα−1,p(Ω). For x0 ∈ Ω, r > 0 such that Br,∥·∥(x0) is compact in Ω, the corresponding Taylor
polynomial of order α of f averaged over Br,∥·∥(x0) is defined as

Qα
x0
f(x) =

∫
Br,∥·∥(x0)

Tαf(x, z)ϕ(z)dz

with

Tαf(x,y) =
∑

|v|≤α−1

1

v
∂vf(z)(x− z)v

and ϕ being arbitrary cut-off function satisfying

ϕ ∈ C∞
c (RD) with ϕ(x) ≥ 0 for all x ∈ RD,

supp(ϕ) = Br,∥·∥(x0) and
∫
RD

ϕ(x)dx = 1,

where C∞
c (RD) denotes the space of infinitely differentiable functions on RD with compact support.

Under proper assumptions, the averaged Taylor polynomial can approximate f and its partial deriva-
tives well. We first define the star-shaped sets and chunkiness parameter, which are used in the error
estimation result.

Definition 8 (Star-shaped sets, Definition 4.2.2 of Brenner et al. (2008)). Let Ω, Ω̃ ⊂ RD. Then Ω is
called star-shaped with respect to Ω̃ if for all x ∈ Ω, we have

ch({x} ∪ Ω̃) ⊂ Ω.

Definition 9 (Chunkiness parameter, Definition 4.2.16 of Brenner et al. (2008)). Let Ω ⊂ RD be
bounded. Define

R =
{
r > 0 : there exists x ∈ Ω such that Ω is star-shaped with respect to Br,|·|(x)

}
.

For R ≠ ∅, we define
r∗max = supR and γ =

diam(Ω)

r∗max

,

where γ is called the chunkiness parameter of Ω.

The following lemma gives an error estimation of averaged Taylor polynomials:

Lemma 2 (Bramble-Hilbert, Lemma 4.3.8 of Brenner et al. (2008)). Let Ω ⊂ RD be open and
bounded, x ∈ Ω and r > 0 such that Ω is star-shaped with respect to Br,∥·∥(x0) and r > 1

2r
∗
max,

with r∗max defined in Definition 9. Let n > 0, 1 ≤ p ≤ +∞ be integers and γ be the chunkiness
parameter of Ω. Then we have

|f −Qα
x0
f |Wα,p(Ω) ≤ Chα−k|f |Wα,p(Ω)

for k = 0, 1, ..., α, where h = diam(Ω) and C is a constant depending on D,α, γ.

Lemma 3 below shows that Qαf can be written as a weighted sum of polynomials.

Lemma 3 (Lemma B.9 of Gühring et al. (2020)). Let α > 0, 1 ≤ p ≤ +∞ be integers and
f ∈ Wα−1,p(Ω). Let x0 ∈ Ω, r > 0 such that Br,∥·∥(x0) is compact in Ω, and there exists r̃ > 0
with Br,∥·∥(x0) ⊂ Br̃,∥·∥∞(0). Then the averaged Taylor polynomial Qα

x0
(f) can be written as

Qα
x0
f(x) =

∑
|v|≤α−1

cvx
v (11)

for x ∈ Ω. There exists a constant C depending on α,D, r̃ such that

|cv| ≤ Cr−D/p∥f∥Wα−1,p(Ω)

for all |v| ≤ α− 1.
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Using averaged Taylor polynomials, we approximate ϕmf by

ϕmf ≈ (ϕmQ
α
m/Nf)(x) = ϕm

∑
|v|≤α−1

cm,vx
v =

∑
|v|≤α−1

cm,vϕmxv. (12)

Define

f̂ =
∑

m∈SN

∑
|v|≤α−1

cm,vϕmxv, (13)

where cm,v’s are the coefficients in (11). Then f̂ is an approximation of f . The following lemma
gives an upper bound on the approximation error

Lemma 4 (Lemma C.4 of Gühring et al. (2020)). Let α ≥ 2 be an integer and 1 ≤ p ≤ ∞. For any
s ∈ [0, 1] and f ∈Wα,p((0, 1)D), one has

∥f̂ − f∥W s,p((0,1)D) ≤ C

(
1

N

)α−s

∥f∥Wα,p((0,1)D),

where C is a constant depending on α, p,D. Furthermore, the coefficients in f̂ satisfies

|cm,v| ≤ C1N
D/p∥f∥Wα,p((0,1)D)

for some constant C1 depending on D,α, p.

Step 3: Network approximation Note that f̂ is a sum of functions in the form of ϕmxv with
weights cm,v’s. We next approximate each ϕmxv by a CNN.

Lemma 5. For any 0 < ε < 1,x ∈ (0, 1)D, N > 0,m ∈ {0, 1, ..., N}D, |v| < α, there exists a
CNN architecture FCNN(L, J,K, κ, κ) that yields a CNN g̃ with

∥g̃m,v(x)− ϕmxv∥Wk,∞((0,1)D ≤ C2N
kε, (14)

g̃m,v(x) = 0 if ϕmxv = 0 (15)

for k = 0, 1, where C2 is a constant depending on α, k. Such an architecture has

L = O

(
D log

1

ε

)
, J = O(D), κ = 3N.

The constants hidden in O depends on α, k. Further more, the weight matrix in the fully connected
layer of FCNN has nonzero entries only in the first row.

Lemma 5 is proved in Appendix L.4. By Lemma 5, each ϕmxv can be approximated by a CNN.
Denote the network approximation of ϕmxv by g̃m,v(x). We approximate f̂ by f̃ defined as

f̃ =
∑
m

∑
|v|≤α−1

cm,vg̃m,v(x). (16)

The following lemma gives an upper bound of the approximation error of f̃ (see a proof in Appendix
L.6).

Lemma 6. Let α ≥ 2 and 1 ≤ p ≤ ∞ be integers. For any f ∈Wα,p((0, 1)D), let ϕmQα
m/Nf(x)

be the averaged Taylor approximation of ϕmf defined in (12). For any 0 < η < 1, let g̃m,v be the
CNN approximation of ϕmQα

m/Nf(x) constructed in Lemma 5 with accuracy η. For 0 ≤ s ≤ 1, we
have

∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑
m∈SN

∑
|v|≤α−1

cm,vg̃m,v∥W s,p((0,1)D) ≤ C3∥f∥Wα,p((0,1)D)N
sη, (17)

where cm,v’s are coefficients defined in (12), C3 is a constant depending on D,α, s, p.

Note the f̃ is the sum of no more than ND(D + 1)α−1 CNNs of which the width is of J = O(D).
The following lemma shows that under appropriate conditions, the sum of n0 CNNs with width in
the same order can be realized by the sum of n1 CNNs with a proper width (see a proof in Appendix
L.8):
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Lemma 7. Let {fi}n0
i=1 be a set of CNNs with architecture FCNN(L0, J0,K0, κ0, κ0). For any

integers 1 ≤ n ≤ n0 and J̃ satisfying nJ̃ = O(n0J0) and J̃ ≥ J0, there exists a CNN architecture
FCNN(L, J,K, κ, κ) that gives a set of CNNs {gi}ni=1 such that

n∑
i=1

gi(x) =

n0∑
i=1

fi(x).

Such an architecture has
L = O(L0), J = O(J̃),K = K0, κ = κ0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

By Lemma 7, for any M̃, J̃ satisfying M̃J̃ = O(ND), there exists a CNN architecture
FCNN(L, J,K, κ, κ) that gives rise to {gi}ni=1 with

f̃ =

M̃∑
i=1

gi,

where

L = O

(
log

1

η

)
, J = O(J̃), κ = 3N.

The following lemma shows that the sum of CNNs can be realized by a ConvResNet:

Lemma 8 (Lemma 18 in Liu et al. (2021)). Let FCNN(L, J,K, κ1, κ2) be any CNN architecture
from RD to R. Assume the weight matrix in the fully connected layer of FCNN(L, J,K, κ1, κ2)
has nonzero entries only in the first row. Let M be a positive integer. There exists a ConvResNet
architecture C(M,L, J, κ1, κ2(1 ∨ κ−1

1 )) such that for any {fi(x)}Mi=1 ⊂ FCNN(L, J,K, κ1, κ2),
there exists f̃ ∈ C(M,L, J, κ1, κ2(1 ∨ κ−1

1 )) with

f̃(x) =

M∑
i=1

fi(x).

By Lemma 8, there exits a ConvResNet architecture C(M,L, J,K, κ1, κ2) with
L = O(log 1/η), J = O(J̃), κ1 = O(3N), κ2 = O(3N), M = O(M̃) (18)

and J̃ , M̃ satisfying
M̃J̃ = O(ND), (19)

that yields a ConvResNet realizing f̃ .

Step 4: Error estimation. We compute
∥f − f̃∥W s,p((0,1)D)

≤

∥∥∥∥∥f −

(∑
m

ϕmQ
α
m/Nf

)∥∥∥∥∥
W s,p((0,1)D)

+

∥∥∥∥∥
(∑

m

ϕmQ
α
m/Nf

)
− f̃

∥∥∥∥∥
W s,p((0,1)D)

≤C4

(
1

N

)α−s

∥f∥Wα,p((0,1)D) + C5N
sη∥f∥Wα,p((0,1)D)

≤(C4 + C5)N
−(α−s), (20)

where C4, C5 are two constants depending on D,α, s, p,R. In the second inequality, we use Lemma
4 and 6 for the first and second term, respectively. In the third inequality, we set η = N−α to balance
the two terms. Using the relation (19), we have

N = (M̃J̃)1/D, η = (M̃J̃)−
α
D . (21)

Substituting (21) into (20) gives rise to
∥f − f̃∥W s,p((0,1)D) ≤ C6(M̃J̃)−

α−s
D (22)

for some constant C6 depending on D,α, s, p,R. Substituting (21) into (18) and (19) gives rise to
the network architecture

L = O(log(M̃J̃)), J = O(J̃), κ1 = O((M̃J̃)1/D), κ2 = O((M̃J̃)1/D), M = O(M̃).
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H Proof of Theorem 3

Proof of Theorem 3. By Theorem 2 and the choice of M̃J̃ , there exits f̃ ∈ C so that ∥f̃ − f∥∞ ≤ ε
and

max
j

∥∥∥∥∥ ∂f̃∂xj − ∂f

∂xj

∥∥∥∥∥ ≤ ε
α−1
α , (23)

which implies ∥∥∥f̃∥∥∥
Lip

≤ 1 +
√
Dε

α−1
α . (24)

We have

E
[
(f̃(x1)− y1)

2
]

≤E
[
(f̃(x1)− f(x1))

2
]
+ E

[
(f(x1)− y1)

2
]

≤ε2 + σ2. (25)

Denote Xi =
1
n (f̃(xi)− yi)

2 − E
[
(f̃(xi)− yi)

2
]
. We have

|Xi| ≤
2(ε2 + σ2)

n
, E[Xi] = 0, (26)

and

E[X2
i ] ≤

8(ε4 + σ4)

n2
. (27)

By Bernstein inequality, we deduce

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2

8(ε4+σ4)
n + 2(ε2+σ2)

3n t

)

=exp

(
− 3nt2

48(ε4 + σ4) + 4(ε2 + σ2)t

)
. (28)

Therefore

P

(
1

n

n∑
i=1

(f̃(xi)− yi)
2 ≥ ε2 + σ2 + t

)

≤P

(
1

n

n∑
i=1

(f̃(xi)− yi)
2 ≥ E

[
(f̃(x1)− y1)

2
]
+ t

)

≤ exp

(
− 3nt2

48(ε4 + σ4) + 4(ε2 + σ2)t

)
. (29)

Setting t = ε2 gives rise to

P

(
1

n

n∑
i=1

(f̃(xi)− yi)
2 ≥ 2ε2 + σ2

)

≤ exp

(
− 3nε2

104σ4

)
. (30)

I Proof of Theorem 4

Proof of Theorem 4. By Theorem 2 and the choice of M̃J̃ , there exits f̃ ∈ C so that ∥f̃ − f∥∞ ≤ ε
and

max
j

∥∥∥∥∥ ∂f̃∂xj − ∂f

∂xj

∥∥∥∥∥ ≤ ε
α−1
α . (31)
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Since ∥f∥Wα,∞ ≤ 1, we have

∥f̃∥Lip ≤ 1 +
√
Dε

α−1
α . (32)

We have
R(f̃ , δ)−R(f̃ , 0)

=E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

ℓ
(
f̃(x′), y

)]
− E(x,y)∈supp(ρ)

[
ℓ
(
f̃(x′), y

)]
≤E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

∣∣∣ℓ(f̃(x′), y
)
− ℓ

(
f̃(x), y

)∣∣∣]
≤E(x,y)∈supp(ρ) sup

x′∈Bδ(x)

LLip|f̃(x′)− f̃(x)|

≤E(x,y)∈supp(ρ) sup
x′∈Bδ(x)

LLip∥f̃∥Lip∥x′ − x∥2

≤LLip(1 +
√
Dε

α−1
α )δ (33)

J A Brief Introduction to Manifold

We introduce some concepts and quantities that characterize a low-dimensional Riemannian manifold.
(Some are restatements of the main text for completeness.) These concepts and quantities are used in
our theorems and proofs. We refer readers to Lee (2006); Tu (2010) for more details.

Let M be a d-dimensional manifold embedded in RD with d ≤ D. The first concept related to
manifolds is chart, which defines a local coordinate neighborhood of a manifold.
Definition 10 (Chart). A chart on M is a pair (U, ϕ) where U ⊂ M is open and ϕ : U → Rd, is a
homeomorphism (i.e., bijective, ϕ and ϕ−1 are both continuous).

In a chart (U, ϕ), U is called a coordinate neighborhood and ϕ is a coordinate system on U . A
collection of charts which covers M is called an atlas of M.
Definition 11 (Ck Atlas). A Ck atlas for M is a collection of charts {(Uα, ϕα)}α∈A which satisfies⋃

α∈A Uα = M, and are pairwise Ck compatible, i.e.,

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) and

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are both Ck for any α, β ∈ A. An atlas is called finite if it contains finitely many charts.

With the concept of atlas, we then define smooth manifolds:
Definition 12 (Smooth Manifold). A smooth manifold is a manifold M together with a C∞ atlas.

Simple examples of smooth manifold include the Euclidean space, the torus and the unit sphere. Cs

functions on a smooth manifold M are defined as follows:
Definition 13 (Cs functions on M). Let M be a smooth manifold and f : M → R be a function
on M. We say f is a Cs function defined on M, if for every chart (U, ϕ) on M, the function
f ◦ ϕ−1 : ϕ(U) → R is a Cs function.

We next define the C∞ partition of unity which is an important tool for the study of functions on
manifolds.
Definition 14 (Partition of Unity). A C∞ partition of unity on a manifold M is a collection of C∞

functions {ρα}α∈A with ρα : M → [0, 1] such that for any x ∈ M,

1. there is a neighbourhood of x where only a finite number of the functions in {ρα}α∈A are
nonzero, and

2.
∑
α∈A

ρα(x) = 1.
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An open cover of M is called locally finite if every x ∈ M has a neighbourhood that intersects with
a finite number of sets in the cover. For a locally finite cover of a smooth manifold M, there always
exists a C∞ partition of unity subordinate to the cover (Spivak, 1973, Chapter 2, Theorem 15).
Proposition 1 (Existence of a C∞ partition of unity). Let {Uα}α∈A be a locally finite cover of a
smooth manifold M. There is a C∞ partition of unity {ρα}∞α=1 such that supp(ρα) ⊂ Uα.

Let {(Uα, ϕα)}α∈A be a C∞ atlas of M. Proposition 1 guarantees the existence of a partition of
unity {ρα}α∈A such that ρα is supported on Uα.

The reach of M introduced by Federer (Federer, 1959) is an important quantity defined below. Let
d(x,M) = infy∈M ∥x− y∥2 be the distance from x to M.
Definition 15 (Reach (Federer, 1959; Niyogi et al., 2008)). Define the set

G = {x ∈ RD : ∃ distinct p,q ∈ M such that
d(x,M) = ∥x− p∥2 = ∥x− q∥2}.

The closure of G is called the medial axis of M. The reach of M is defined as
τ = inf

x∈M
inf
y∈G

∥x− y∥2.

K Proof of Theorem 5

Proof of Theorem 5. We prove Theorem 5 in three steps.
Step 1: Decomposition of f
• Construct an atlas on M. According to Assumption 2, M is bounded. Therefore, for any given
0 < r < τ/2, we can find a finite collection of points {ci}CM

i=1 ⊂ M such that

M ⊂
CM⋃
i=1

Br(ci).

Denote Ui = Br(ci) ∩M. Then {Ui}CM
i=1 form an open cover of M and each Ui is diffeomorphic

to an open subset of Rd. The total number of partitions if bounded by CM ≤
⌈
SA(M)

rd
Td

⌉
, where

SA(M) is the surface area of M and Td is the average number of Ui’s that contain a given point on
M.

On each Ui, we define a transformation ϕi that projects any x ∈ Ui to Tci(M), the tangent space
of M at ci. Let Vi ∈ RD×d be an orthogonal matrix whose columns form an orthonomal basis of
Tci

(M). Define

φi(x) = aiV
⊤
i (x− ci) + bi for x ∈ Ui, (34)

where ai ∈ R is a scaling factor and b)i ∈ Rd is a shifting vector that ensure φi(Ui) ⊆ [0, 1]d. Then
{(Ui, φi)}CM

i=1 form an atlas of M.

•Decomposition of f by a partition of unity. The following lemma shows that under proper
assumption, there exists a partition of unity {ρi}CM

i=1 subordinate to {(Ui, φi)}CM
i=1 (see Appendix

M.1 for a proof).

Lemma 9. Let {(Ui, φi)}CM
i=1 be the atlas of M defined above with r < τ/4. There exist a finite

number CM and a C∞ partition of unity {ρi}CM
i=1 satisfying

(i) supp(ρi) is compact in Ui.

(ii)
∑CM

i=1 ρi(x) = 1 for any x ∈ M.

(iii) There exists a constant c > 0 depending on r such that for any i, we have
inf

x∈supp(ρi), x̃∈∂Ui

∥x− x̃∥2 ≥ c.

Here CM depends on the surface area of M and the average number of Ui’s that contain a given
point on M.
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Let {ρi}CM
i=1 be the partition of unity from Lemma 9. Since for each i, φi is a bijection from Ui to a

subset of [0, 1]d, φ−1 exists and is a linear operator. We decompose f as

f =

CM∑
i=1

fi with fi = (fρi).

Here each fi is compactly supported on Ui and each fi ◦ φ−1
i is compactly supportedin φi(Ui) ⊆

[0, 1]d. We extend fi ◦ φ−1
i by 0 on [0, 1]d\φi(Ui). The extended function is in Wα,k([0, 1]d). To

simplify the notation, we still use fi ◦ φ−1
i to denote the extended function. For each i, we use

averaged Taylor polynomials to approximate fi ◦ φ−1 on [0, 1]d as in (13):
fi ◦ φ−1

i ≈ f̂i =
∑
m,v

ci,m,vϕmxv.

Step 2: Network approximation
•Approximate f̂i by CNNs. Since each f̂i is the averaged Taylor polynomial approximation of
fi ◦ φ−1

i , by Lemma 5, it can be approximated by a sum of (d + 1)α−1Nd CNNs. Denote the
approximation accuracy by η as in Lemma 5, each CNN has depth O(log(1/η)), width O(1), all
weight parameters are of O(N).

•Chart determination For any input x, to determine the chart it belongs to, we are going to construct
an indicator function. With our construction of charts, we have x ∈ Ui if and only if ∥x− ci∥22 ≤ r2.
Define the indicator function

1[0,r2](a) =

{
1 if a ≤ r2,

0 otherwise,
and the squared distance function

d2i (x) = ∥x− ci∥22 =

D∑
j=1

(xj − ci,j)
2, (35)

where we used the expression x = [x1, ..., xD]⊤ and ci = [ci,1, ..., ci,D]⊤. The composition
1i = 1[0,r2] ◦ d2i outputs 1 if x ∈ Ui and outputs 0 otherwise. We are going to construct a CNN to
approximate 1i.

In (35), the function d2i is a sum of D square functions. By Lemma 16, For any 0 < θ < 1/2,
x ∈ [−B,B], and K ≥ 2, there is a CNN architecture FCNN(L, J,K, κ, κ) that yields a CNN,
denoted by d̃2, such that

∥d̃2(x)− x2∥W 1,∞([−B,B]) < θ, d̃(0) = 0.
Such a network has

L = O

(
log

1

θ

)
, J = 24, κ = 1.

Furthermore, one has
∥d̃2∥W 1,∞((−B,B)) ≤ C7B (36)

for some absolute constant C7. We approximate di by

d̃2i (x) =

D∑
j=1

d̃2(xj − ci,j).

According to Lemma 7, d̃i can be realized by a CNN with O
(
log 1

θ

)
layers, O(D) width and all

weight parameters of O(1). The approximation error is bounded as
∥d̃2i − d2i ∥L∞ ≤ 4B2Dθ.

The following Lemma shows that 1[0,r2] can be approximated by a CNN:

Lemma 10 (Lemma 9 of Liu et al. (2021)). For any 0 < θ < 1 and ∆ ≥ 8B2Dθ, there exists a
CNN 1̃∆ approximating 1[0,ω2] with

1̃∆(x) =


1, if a ≤ (1− 2−w)(r2 − 4B2Dθ),

0, if a ≥ r2 − 4B2Dθ,

2w((r2 − 4B2Dθ)−1a− 1), otherwise
for x ∈ M, where w =

⌈
log(r2/∆)

⌉
such that (1−2−k)(ω2−4B2Dθ) ≥ ω2−∆+4B2Dθ. Such

a CNN has
⌈
log(r2/∆)

⌉
+D layers, 2 channels. All weight parameters are of O(1).
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Let 1∆ be the CNN defined in Lemma 10. We have

∂1̃∆(a)

∂a
=

{
0, if a ≤ (1− 2−w)(r2 − 4B2Dθ) or a ≥ r2 − 4B2Dθ,

C8/∆, otherwise
(37)

for some constant C8 depending on r.

The function 1i is approximated by

1̃i(x) = 1̃∆ ◦ d̃2i (x).

Combining (37) and (36) gives rise to∣∣∣∣∣∂1̃i

∂xj

∣∣∣∣∣ =
∣∣∣∣∣∣ ∂1̃∆

a

∣∣∣∣∣
d̃2
i (x)

∣∣∣∣∣∣
∣∣∣∣∣ d̃i∂xj

∣∣∣∣∣ ≤
{
0, if di(x)2 ≥ r2 or d2i (x) ≤ r2 −∆,

CB/∆, otherwise.

Step 3: Error analysis. Our network approximation of f is

f̃ =

CM∑
i=1

f̃i with f̃i(x) =
∑
m,v

ci,m,v(g̃m,v ◦ φi(x))×̃1̃i(x), (38)

where g̃m,v is the CNN approximation of ϕmzv for z ∈ [0, 1]d as in (16). We decompose the error as

∥f̃ − f∥Wk,∞(M) ≤
CM∑
i=1

∥f̃i − fi∥Wk,∞(Ui)

=

CM∑
i=1

∥f̃i ◦ φ−1
i ◦ φi − fi ◦ φ−1

i ◦ φi∥Wk,∞(Ui)

≤
CM∑
i=1

∥f̃i ◦ φ−1
i (z)− fi ◦ φ−1

i (z)∥Wk,∞(φi(Ui)) (set z = φi(x))

≤
CM∑
i=1

∥f̃i ◦ φ−1
i (z)− fi ◦ φ−1

i (z)∥Wk,∞(φi(Ui))

≤
CM∑
i=1

∥f̃i ◦ φ−1
i (z)− f̂i(z)∥Wk,∞(φi(Ui)) + ∥f̂i(z)− fi ◦ φ−1

i (z)∥Wk,∞([0,1]d).

(39)

The second term can be bounded using Lemma 4. We next focus on the first term

∥f̃i ◦ φ−1
i (z)− f̂i(z)∥Wk,∞(φi(Ui))

≤

∥∥∥∥∥∑
m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− ϕm(z)zv
]∥∥∥∥∥

Wk,∞(φi(Ui))

≤

∥∥∥∥∥∑
m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1̃i ◦ φ−1
i (z))

]∥∥∥∥∥
Wk,∞(φi(Ui))

+

∥∥∥∥∥∑
m,v

ci,m,v

[
(g̃m,v(z))× (1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1i ◦ φ−1
i (z))

]∥∥∥∥∥
Wk,∞(φi(Ui))

+

∥∥∥∥∥∑
m,v

ci,m,v

[
(g̃m,v(z))× (1i ◦ φ−1

i (z))− ϕm(z)zv
]∥∥∥∥∥

Wk,∞(φi(Ui))

= ∥A1∥Wk,∞(φi(Ui))
+ ∥A2∥Wk,∞(φi(Ui))

+ ∥A3∥Wk,∞(φi(Ui))
(40)
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with

A1 =
∑
m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1̃i ◦ φ−1
i (z))

]
, (41)

A2 =
∑
m,v

ci,m,v

[
(g̃m,v(z))× (1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1i ◦ φ−1
i (z))

]
, (42)

A3 =
∑
m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv] . (43)

Denote the W 1,∞ error of ×̃ by δ. We first derive an upper bound for A1. We can show that
∥g̃m,v∥∞ ≤ α+ d (see (66)) and ∥1̃i ◦ φ−1

i ∥L∞ = 1. Therefore by Lemma 17, we have for k = 0

|A1|W 0,∞([−α−d,α+d]) ≤
∑
m,v

ci,m,v|×̃(a, b)− ab|W 0,∞([−α−D,α+D])

≤C9N
dδ, (44)

and for k = 1

|A1|W 1,∞([−α−d,α+d])

≤
∑
m,v

ci,m,vC
′|×̃(a, b)− ab|W 1,∞([−α−D,α+D])|g̃m,v|W 1,∞(φi(Ui))

∣∣∣1̃i ◦ φ−1
i

∣∣∣
W 1,∞(φi(Ui))

≤C10N
d+1δ/∆ (45)

for some constants C9, C10, C
′ depending on r, α, d, where we used Lemma 4 and (62) in the last

inequality. Combining (44) and (45) gives rise to

∥A1∥Wk,∞([−α−d,α+d]) ≤ C11N
d+kδ/∆ (46)

for k = 0, 1 and a constant C11 depending on d, α, r.

Before we derive upper bounds for A2 and A3, we define some sets which will be used in our
following proof.

Define the set

Ω̃i,1 =

{
x ∈ Ui : min

x̃∈∂Ui

∥x− x̃∥2 ≤ c

}
,

where c is the constant from Lemma 9. Denote Ωi,1 = φi(Ω̃i,1). According to Lemma 9, we have
fi|Ω̃i,1

= fi ◦ ϕi|Ωi,1
= 0. Since φi is a bijection, both Ωi,1 and Ω̃i,1 have two disjoint boundaries.

Denote the two boundaries of Ωi,1 by λi,1,1 and λi,1,2. We define the thickness of Ωi,1 as
χi,1 = min

z∈λi,1,1, z̃∈λi,1,2

∥z− z̃∥2.

Since each φi is a bijection, there exists a constant c1 depending on c and the atlas such that χi,1 ≥ c1
for all i’s. Again since ϕi is a linear bijection, its inverse exists and is linear, and there exists a
constant c2 such that

∥φ−1
i (z)− φ−1

i (z̃)∥2 ≥ c2∥z− z̃∥2. (47)

We will choose θ and ∆ small enough such that
8B2Dθ

c2
≤ ∆

c2r
≤ c1

2
. (48)

Define the region

Ωi,2 =

{
z ∈ φi(Ui) : min

z̃∈ϕi(∂Ui)
∥z− z̃∥2 ≤ ∆

c2r

}
. (49)

According to (47), (48) and the definition of Ωi,1, we have Ωi,2 ⊂ Ωi,1. For any z ∈ φi(Ui)\Ωi,2,
denote z∗ = argminz̃∈φi(∂Ui) ∥z− z̃∥2. We have

min
x̃∈∂Ui

∥φ−1
i (z)− x̃∥2 ≥ c2∥z− z∗∥2 ≥ ∆/r.

Therefore
∥φ−1

i (z)− ci∥22 ≤ (r −∆/r)2 = r2 +

(
∆

r

)2

− 2∆ ≤ r2 −∆
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when ∆ ≤ r2 and

1̃i ◦ φ−1(z) = 1,
∂1̃i ◦ φ−1

zj

∣∣∣∣∣
φi(Ui)\Ωi,2

= 0

for j = 1, ..., d, where we used the notation z = [z1, ..., zd]
⊤.

Note that each g̃m,v and ϕmzv is supported on B1/N,∥·∥∞(m/N), a hyper cube with edge length
2/N . We will choose N large enough such that

2

N
≤ ∆

4c2r
≤ c1

8
.

Such a choice of N ensures that along any directions of zj for j = 1, ..., d, there are at least 2
hypercubes that entirely locate inside Ωi,2. Since any z ∈ [0, 1]d is only covered by 2 hypercubes
along each coordinate direction, we have

{ci,m,v : there exits z ∈ φi(∂Ui) such that z ∈ B1/N,∥·∥∞(m/N)} = 0 (50)

and f̃i ◦ φi(z) = 0 for any z ∈ φi(∂Ui). See Figure 4 for an illustration.

Hyper cubes

Figure 4: Illustration of the relations of Ωi,1, Ωi,2 and φi(Ui).

We have the following lemma on the bound of ∥A2∥Wk,∞(φi(Ui)) (see Appendix M.2 for a proof):

Lemma 11. Let A2 be defined as in (42). Assume ∆ ≤ r2. We have
∥A2∥W 1,∞(φi(Ui)) ≤ C12Nη∆

1−k (51)
for k = 1, 2.

The term A3 can be bounded using Lemma 6:

∥A3∥Wk,∞(φi(Ui)) =

∣∣∣∣∣∑
m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv]

∣∣∣∣∣
Wk,∞(φi(Ui))

≤

∣∣∣∣∣∑
m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv]

∣∣∣∣∣
Wk,∞([0,1]d)

≤C13N
kη (52)

for some constant C13 depending on d, α,R. Substituting (46), (51) and (52) into (40) gives rise to
∥f̃i ◦ φ−1

i (z)− f̂i(z)∥Wk,∞(φi(Ui)) ≤ C11N
d+kδ/∆+ C12N

kη + C13Nη∆
1−k. (53)

The second term in (39) can be bounded by Lemma 4 as
∥f̂i(z)− fi ◦ φ−1

i (z)∥Wk,∞([0,1]d) ≤ C14N
−(α−k). (54)

Substituting (53) and (54) into (39) gives rise to
∥f̃ − f∥Wk,∞(M) ≤ CMC11N

d+kδ/∆+ CMC12N
kη + CMC13Nη∆

1−k + CMC14N
−(α−k).

Setting
η = N−α, ∆ = 8c2rN

−1, δ = N−(α+d+1), θ = (8B2D)−1∆,

we have
∥f̃ − f∥Wk,∞(M) ≤ C15N

−(α−k) (55)
for k = 0, 1 and a constant C15 depending on d, α, τ and the surface area of M.

•Network size We analyze the network size for each f̃i:
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• 1̃i: The chart dermination network is the composition of d̃i and 1̃∆, where d̃i has
O(log 1

θ ) = O(logN + logD) layers and O(D) width, 1̃∆ has O(log 1
δ ) + D =

O(logN) +D layers and O(1) width. In both subnetworks, all parameters are of O(1). By
Lemma 13, the chart dermination network has O(logN + logD) +D layers, O(D) width
and all weight parameters are of O(1).

• ×̃: The multiplication network has O(log 1
δ ) = O(logN) layers, O(1) width. All weight

parameters are bounded by 2(α+ d+ 1).

• φi: the projection φi can be realized by a single layer with width d. All parameters are of
O(1).

• g̃i,m,v: By Lemma 5, each g̃i,m,v has O(logN) layers and O(d) width. All parameters are
of O(N).

• ci,m,v: By Lemma 4 with p = ∞, each ci,m,v is of O(1).

By Lemma 13, each ci,m,v(g̃m,v◦φi(x))×̃1̃i(x) is a CNN withO(logN+logD)+D layers,O(D)

width and all parameters of O(N). According to (38), f̃ can be written as a sum of CMNd(d+ 1)α

CNNs

f̃ =

CM∑
i=1

∑
m,v

ci,m,v(g̃m,v ◦ φi(x))×̃1̃i(x). (56)

By Lemma 7, for any M̃, J̃ satisfying M̃J̃ = O(Nd), there exists a CNN architecture
FCNN(L, J,K, κ, κ) that gives rise to {gi}ni=1 with

f̃ =

M̃∑
i=1

gi

and
L = O (logN + logD) +D, J = O(DJ̃), κ = O(N).

By Lemma 8, there exits a ConvResNet architecture C(M,L, J,K, κ1, κ2) with

L = O(logN) +D,J = O(DJ̃), κ1 = κ2 = O(N),M = O(M̃) (57)

and J̃ , M̃ satisfying

M̃J̃ = O(Nd), (58)

that yields a ConvResNet realizing f̃ . Setting N = O((M̃J̃)1/d) in (55) and (57) gives rise to

∥f̃ − f∥Wk,∞(M) ≤ C15(M̃J̃)−
α−k

d (59)
and the network size

L = O
(
log(M̃J̃) + logD

)
+D, J = O(DJ̃), κ = O((M̃J̃)1/d).

L Definitions, Lemmas and their proofs used in Section G

L.1 Existing lemmas on CNNs

Lemma 12 shows that any MLP can be realized by a CNN.
Lemma 12 (Theorem 1 in Oono and Suzuki (2019)). Let D be the dimension of the input. Let L, J
be positive integers and κ > 0. For any 2 ≤ K ′ ≤ D, any MLP architectures FMLP(L, J, κ) can be
realized by a CNN architecture FCNN(L′, J ′,K ′, κ′1, κ

′
2) with

L′ = L+D,J ′ = 4J, κ′1 = κ′2 = κ.

Specifically, any f̄MLP ∈ FMLP(L, J, κ) can be realized by a CNN f̄CNN ∈
FCNN(L′, J ′,K ′, κ′1, κ

′
2). Furthermore, the weight matrix in the fully connected layer of f̄CNN has

nonzero entries only in the first row.
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Lemma 13 shows that the composition of two CNNs can be realized by a CNN.

Lemma 13 (Lemma 13 in Liu et al. (2021)). Let FCNN
1 (L1, J1,K1, κ1, κ1) be a CNN ar-

chitecture from RD → R and FCNN
2 (L2, J2,K2, κ2, κ2) be a CNN architecture from R →

R. Assume the weight matrix in the fully connected layer of FCNN
1 (L1, J1,K1, κ1, κ1) and

FCNN
2 (L2, J2,K2, κ2, κ2) has nonzero entries only in the first row. Then there exists a CNN archi-

tecture FCNN(L, J,K, κ, κ) from RD → R with

L = L1 + L2, J = max(J1, J2), K = max(K1,K2), κ = max(κ1, κ2)

such that for any f1 ∈ FCNN(L1, J1,K1, κ1, κ1) and f2 ∈ FCNN(L2, J2,K2, κ2, κ2), there exists
f ∈ FCNN(L, J,K, κ, κ) such that f(x) = f2 ◦ f1(x). Furthermore, the weight matrix in the fully
connected layer of FCNN(L, J,K, κ, κ) has nonzero entries only in the first row.

L.2 Interpolation spaces

Definition 16 (Interpolation spaces). Let (B0, B1) be an interpolation couple. For any u ∈ B1,
define

K(t, u,B0, B1) = inf
v∈B1

(∥u− v∥B0
+ t∥v∥B1

)

and the norm

∥u∥(B0,B1)θ,p =

{(∫∞
0
t−θpK(t, u,B0, B1)

p dt
t

)1/p
, for 1 ≤ p <∞,

sup0<t<∞ t−θK(t, u,B0, B1), for p = ∞.

Then the interpolation space (B0, B1)θ,p is defined by

(B0, B1)θ,p =
{
u ∈ B0 : ∥u∥(B0,B1)θ,p <∞

}
.

The following lemma shows that the fractional Sobolev space is an interpolation space:

Lemma 14 (Theorem 14.2.3 of Brenner et al. (2008)). Let Ω ∈ RD be an Lipschitz domain. Then
for any 0 < s < 1 and 1 ≤ p ≤ ∞, we have

W s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.

The following lemma shows that the norm of the interpolation space of (B0, B1)θ,p can be bounded
using ∥ · ∥B0

and ∥ · ∥B1
:

Lemma 15. Let (B0, B1) be an interpolation couple. Moreover, let 0 < θ < 1 and 1 ≤ p ≤ ∞.
Then there exists a constant C depending on θ and p such that for all u ∈ B1, we have

∥u∥Bθ,p
≤ C∥u∥1−θ

B0
∥u∥θB1

.

In particular, when p = ∞, we have C = 1.

L.3 Proof of Lemma 1

Proof of Lemma 1. Note that ψ(x) can be realized by a two-layer MLP

ψ(x) = ReLU(A2 · ReLU (A1x+ b1))

with

A1 =

111
1

 , b1 =

 2
1
−1
−2

 , A2 = [1 −1 −1 1] .

According to Lemma 12, for any 2 ≤ K, such an MLP can be realized by a CNN in
FCNN(2, 16, 2, 2, 2). According to the expression of the right-hand-side of (9), we have ψ̃m,N (x) ∈
FCNN(2, 16, 2, 3N, 3N).

To prove (10), the case k = 0 follows by the definition of ψ. For k = 1, we have

dψ̃m,N (x)

dx
=
dψ
(
3N
(
xk − m

N

))
dx

= 3N.
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L.4 Proof of Lemma 5

Proof of Lemma 5. For any given m and v, ϕmxv is a product of at most α+D quantities each of
which can be realized by a CNN. The following lemma shows that the multiplication operator × can
be well approximated by a CNN (see a proof in Appendix L.5):

Lemma 16. For any 0 < η < 1/2, x, y ∈ [−B,B], and K ≥ 2, there is a CNN architecture
FCNN(L, J,K, κ, κ) that yields a CNN, denoted by ×̃(·, ·), such that

∥×̃(x, y)− xy∥W 1,∞[−B,B]2 < η, ×̃(x, 0) = ×̃(y, 0) = 0.

Such a network has
L = O

(
log

1

η

)
, J = 24, κ = 1.

Furthermore, one has
∥×̃(x, y)∥W 1,∞((−B,B)2) ≤ CB

for some absolute constant C.

For simplicity, we denote ψmk
(x) = ψ

(
3N
(
xk − mk

N

))
for k = 1, ..., D. Then we construct

g̃m,v(x) as

g̃m,v(x) = ×̃(×̃(...×̃(×̃(p̃v(x), ψm1
(x1)), ψm2

(x2)), ..., ), ψmD
(xD)),

where p̃v(x) is the network approximation of xv defined by

p̃v(x) = ×̃(...×̃(x1, x1), ..., xD).

The structure of g̃m,v is visualized in Figure 5. Here g̃m,v consists of no more than α + D − 1

compositions of ×̃ and 2D additional channels. These additional channels are used to pass the
information x+ and x−.

Figure 5: Illustration of g̃m,v.

By applying Lemma 13 α+D − 2 times, we have g̃m,v ∈ FCNN(L, J,K, κ, κ) with

L = O

(
D log

1

ε

)
, J = O(D), κ = 3N.
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We next prove (14) and (15). First note that we can express

ϕmxv = gn ≡
n∏

i=1

hi(x),

g̃m,v(x) = g̃n ≡ ×̃(×̃(· · · ×̃(h1(x), h2(x)), ...), hn(x))

for some n ≤ α+D, where each hi can be realized by one layer and satisfies

∥hi(x)∥Wk,∞(0,1) ≤ (3N)k.

To prove (14) and (15), it is enough to show

∥g̃n(x)− gn(x)∥Wk,∞((0,1)D ≤ n1−kcknN
kε (60)

g̃n(x) = 0 if gn(x) = 0, (61)

|g̃n(x)|W 1,∞((0,1)D) ≤ C16N
k (62)

for any 1 ≤ n ≤ α+D − 1, where {cn}α+D−1
n=1 and C16 are constants depending on D and α.

For n = 1, we have
|g̃n − gn|Wk,∞((0,1)D) = |×̃(h1, 1)− h1|Wk,∞((0,1)D).

By Lemma 16 with B = α+D + 1, we have for k = 0,
|×̃(h1, 1)− h1|W 0,∞((0,1)D) ≤ ε.

For k = 1, by Lemma 16, we deduce
|×̃(h1, 1)− h1|W 1,∞((0,1)D) ≤ C ′|×̃(x, y)− x · y|W 1,∞([0,1]2)|h1|W 1,∞([0,1]2) ≤ 3C ′Nε,

where C ′ is a constant depending on D. We set c1 = 3C ′. Furthermore,
|g̃1(x)|W 1,∞((0,1)D) = |×̃(h1, 1)|W 1,∞((0,1)D) ≤ C4|×̃(x, y)− x · y|W 1,∞((0,1)2)|h1|W 1,∞((0,1)2) ≤ C5N,

where C17, C18 are constants depending on D,α.

Therefore, the inequalities (60) and (62) hold for n = 1.

For (61), if g1(x) = 0, then h1(x) = 0. By Lemma 16, g̃1(x) = 0.

Assume (60)–(62) hold for any 1 ≤ n ≤ t for some integer t satisfying 1 ≤ t ≤ α+D − 2, i.e., for
any 1 ≤ n ≤ t, we have

|g̃n − gn|Wk,∞((0,1)D) ≤ n1−kcknN
kε, (63)

g̃n = 0 if gn = 0, (64)
|g̃n|W 1,∞((0,1)D) ≤ C19N. (65)

We also deduce that
|g̃t|W 0,∞((0,1)D) = |g̃t − gt|W 0,∞((0,1)D) + |gt|W 0,∞((0,1)D) ≤ tε+ 1 ≤ t+ 1. (66)

For n = t+ 1, we have
|g̃t+1 − gt+1|Wk,∞((0,1)D) = |×̃(g̃t, ht+1)− gt · ht+1|Wk,∞((0,1)D)

≤ |×̃(g̃t, ht+1)− g̃t · ht+1|Wk,∞((0,1)D) + |g̃t · ht+1 − gt · ht+1|Wk,∞((0,1)D).
(67)

Consider the first term in (67). For k = 0, we have
|×̃(g̃t, ht+1)− g̃t · ht+1|W 0,∞((0,1)D) ≤ |×̃(x, y)− x · y|W 0,∞([−t−1,t+1]2) ≤ ε. (68)

For k = 1, we have
|×̃(g̃t, ht+1)− g̃t · ht+1|W 1,∞((0,1)D)

≤C ′|×̃(x, y)− x · y|W 1,∞([−t−1,t+1]2)|g̃t|W 1,∞([−t−1,t+1]2) ≤ 3C ′ctNε, (69)

where (63) with k = 1 is used in the last inequality, C ′ is a constant depending on D.

For the second term in (67), we first consider k = 0:
|g̃t · ht+1 − gt · ht+1|W 0,∞((0,1)D) ≤ |ht+1|∞|g̃t − gt|∞ ≤ tε, (70)

where (63) with k = 0 is used.
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For k = 1, we have

|g̃t · ht+1 − gt · ht+1|W 1,∞((0,1)D)

=|ht+1(g̃t − gt)|W 1,∞((0,1)D)

≤C20|ht+1|W 1,∞((0,1)D)∥g̃t − gt∥∞ + C20∥ht+1∥∞|g̃t − gt|W 1,∞((0,1)D)

≤3C20Ntε+ C20ctNε ≤ C21Nε, (71)

where C20, C21 are constants depending on D and α. In (71), (63) with k = 0 and k = 1 are used in
the second inequality.

Combining (68)–(71) and setting ct+1 = 3C20ct + C21 gives rise to

|g̃t+1 − gt+1|Wk,∞((0,1)D) ≤ (t+ 1)1−kckt+1N
kε.

Therefore, (60) holds for n = t+ 1.

To prove (61), note that if gt+1 = 0, then either ht+1 = 0, or gt = 0. By our induction assumption,
when gt = 0, we have g̃t = 0. Since g̃t+1 = ×̃(g̃t, ht+1), by Lemma 5, we have g̃t+1 = 0 and (61)
holds for n = t+ 1.

For (62), we deduce

|g̃t+1(x)|W 1,∞((0,1)D)

=|×̃(g̃t, ht+1)|W 1,∞((0,1)D)

≤C ′|×̃(x, y)− x · y|W 1,∞((−t−1,t+1)2) max
{
|g̃t|W 1,∞((0,1)2), |ht+1|W 1,∞((0,1)2)

}
≤C22N,

where C22 is a constant depending on D and α.

Therefore, (60)–(62) hold for n = t + 1. By mathematical induction, (60)–(62) hold for any
1 ≤ n ≤ D + α+ 1, and (14) and (15) are proved.

L.5 Proof of Lemma 16

Proof of Lemma 16. The proof of Lemma 16 is based on the following lemma.

Lemma 17 (Proposition C.2 in Gühring et al. (2020)). For any 0 < η < 1/2, x, y ∈ [−B,B]. There
is an MLP, denoted by ×̃(·, ·), such that

∥×̃(x, y)− xy∥W 1,∞[−B,B]2 < η, ×̃(x, 0) = ×̃(y, 0) = 0.

Such a network has O
(
log 1

η

)
layers and parameters. The width of each layer is bounded by 6 and

all parameters are bounded by 2. Furthermore, we have

∥×̃(x, y)∥W 1,∞((−B,B)2) ≤ CM,

for some absolute constant C.

Combing Lemma 17 and 12, for any ε > 0, K ≥ 2, there exits a CNN ×̃ ∈ FCNN(L, J,K, κ, κ)
such that for any |x| ≤ B, |y| ≤ B, we have

|×̃(x, y)− xy| < ε, ×̃(x, 0) = ×̃(y, 0) = 0,

∥×̃(x, y)∥W 1,∞((−B,B)2) ≤ C23B,

where C23 is an absolute constant. Such an architecture has

L = O

(
log

1

ε

)
, J = 24, κ = 1.
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L.6 Proof of Lemma 6

Proof of Lemma 6. Denote Ωm,N = B 1
N ,∥·∥∞

(
m
N

)
. We have

∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑
m∈SN

∑
|v|≤α−1

cm,vg̃m,v∥Wk,p((0,1)D)

=

∥∥∥∥∥∥
∑

m∈SN

∑
|v|≤α−1

cm,vϕmxv −
∑

m∈SN

∑
|v|≤α−1

cm,vg̃m,v

∥∥∥∥∥∥
p

Wk,p((0,1)D)

=

∥∥∥∥∥∥
∑

m∈SN

∑
|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
p

Wk,p((0,1)D)

≤
∑

m̃∈SN

∥∥∥∥∥∥
∑

m∈SN

∑
|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
p

Wk,p(Ωm̃,N∩(0,1)D)

, (72)

where the first equality follows from (12), the last inequality holds since (0, 1)D ⊂ ∪m̃∈SN
Ωm̃,N .

For each m̃, we have∥∥∥∥∥∥
∑

m∈SN

∑
|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
Wk,p(Ωm̃,N∩(0,1)D)

≤
∑

m∈SN

∑
|v|≤α−1

|cm,v| ∥ϕmxv − g̃m,v∥Wk,p(Ωm̃,N∩(0,1)D)

≤C24N
d/p

∑
m∈SN

∑
|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N ) ∥ϕmxv − g̃m,v∥Wk,p(Ωm̃,N∩(0,1)D) , (73)

where C21 is the constant in Lemma 3, f̄ is the extension of f to RD from Stein (1970, Theorem
VI.3.1.5), which satisfies

∥f̄∥Wα,p(RD) ≤ C25∥f∥Wα,p((0,1)D) (74)
for some constant C25 depending on D, p, α.

We next derive an upper bound of the summand of (73). We first deduce that
∥ϕmxv − g̃m,v∥Wk,p(Ωm̃,N∩(0,1)D)

≤
∣∣Ωm̃,N ∩ (0, 1)D

∣∣1/p (D + 1)1/p ∥ϕmxv − g̃m,v∥Wk,∞(Ωm̃,N∩(0,1)D)

≤C26

(
1

N

)d/p

∥ϕmxv − g̃m,v∥Wk,∞(Ωm̃,N∩(0,1)D)

≤C27

(
1

N

)d/p

Nkη, (75)

where
∣∣Ωm̃,N ∩ (0, 1)D

∣∣ denotes the volume of Ωm̃,N ∩ (0, 1)D, C26, C27 are constants depending
on D,α and p. We used Lemma 5 in the last inequality. Substituting (75) into (73) gives rise to∥∥∥∥∥∥

∑
m∈SN

∑
|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
Wk,p(Ωm̃,N∩(0,1)D)

=C24

∑
m∈SN

∥m−m̃∥∞≤1

∑
|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N ) ∥ϕmxv − g̃m,v∥Wk,p(Ωm̃,N∩(0,1)D)

≤C24C27N
kη

∑
m∈SN

∥m−m̃∥∞≤1

∑
|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N )

≤C28N
kη

∑
m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N ), (76)

32



where C28 = C24C27(D + 1)α−1. By Hölder’s inequality, we have∑
m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N )

=
∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N ) · 1

≤

 ∑
m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )


1
p
 ∑

m∈SN

∥m−m̃∥∞≤1

1q


1
q

≤3
D
q

 ∑
m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )


1
p

, (77)

where q = 1/(1− 1/p). Substituting (76), (77) into (72) gives rise to
∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑
m∈SN

∑
|v|≤α−1

cm,vg̃m,v∥pWk,p((0,1)D)

≤
(
C283

D
q Nkη

)p ∑
m̃∈SN

∑
m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )


≤
(
C283

D
q Nkη

)p
3D

 ∑
m̃∈SN

∥f̄∥pWα−1,p(Ωm̃,N )


≤
(
C283

D
q Nkη

)p
3D2D∥f̄∥pWα−1,p(∪m̃∈SN

Ωm̃,N )

≤C29N
kpηp∥f∥Wα−1,p((0,1)D),

where C29 is a constant depending on D,α, p. In the above, we used (74) in the last inequality.
Lemma 6 is proved for s = 0 and s = 1. For any 0 < s < 1 and 1 ≤ p ≤ ∞, by Lemma 15, we have∥∥∥∥∥∥

∑
m∈SN

ϕmQ
α
m/Nf −

∑
m∈SN

∑
|v|≤α−1

cm,vg̃m,v

∥∥∥∥∥∥
p

Wk,p((0,1)D)

≤C30N
kpηp∥f∥Wα−1,p((0,1)D)

≤C30N
spηp∥f∥Wα,p((0,1)D)

for some constant C30 depending on D,α, s, p. The proof is finished.

L.7 Lemma 18 and its proof

Lemma 18. Let {fi}ni=1 be a set of CNNs with architecture FCNN(L0, J0,K0, κ0, κ0). Then there
for any integer 1 ≤ w ≤ n, there exists a CNN architecture FCNN(Lw, Jw,Kw, κw, κw) that gives
rise to a CNN gw such that

gw(x) =

w∑
i=1

fi(x).

Such an architecture has
L = O(L0), J = wJ0, K = K0, κ = κ0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

Proof of Lemma 18. The idea of the proof is similar to Liu et al. (2021, proof of Lemma 14).
Following the proof of Liu et al. (2021, Lemma 14), we can show that there exist a set of filters W
and biases B such that

ConvW,B(x) =

[
(f1(x))+ (f1(x))− (f2(x))+ (f2(x))− · · · (fw(x))+ (fw(x))−

⋆ ⋆ ⋆ ⋆ · · · ⋆ ⋆

]
,
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where ConvW,B has depth bounded by L0, number of channels bounded by wj0 and all weight
parameters bounded by κ0. We write gw as

gw =W1 · ConvW,B,

where W1 is given as

W1 =

[
1 −1 1 −1 · · · 1 −1
0 0 0 0 · · · 0 0

]
.

The proof is finished.

L.8 Proof of Lemma 7

Proof of Lemma 7. For any given J̃ , let c be the smallest integer such that J̃ ≤ cJ0. Then we set
J = cJ0 and n = ⌈n0/c⌉. By Lemma 18, there exists a CNN architecture FCNN(L, J,K, κ, κ) with

L = O(L0), J = cJ0, K = K0, κ = κ0.

Such an architecture gives rise to CNNs {gj}⌈n0/c⌉
j=1 such that

gj =

min{cj,n}∑
i=c(j−1)+1

fi.

The lemma is proved.

M Proof of lemmas in Appendix K

M.1 Proof of Lemma 9

Proof of Lemma 9. Following the construction in Step 1 of the proof of Theorem 5, for r̃ = r/2 <

τ/8, there exists a collection of points atlas of M denoted by {Ũi, φ̃i}C̃M
i=1 , where Ũi = Br̃(c̃i)

for some c̃i ∈ M, and φ̃i is defined according to (34). By Conway and Sloane (1988, Chapter 2
Equation (1)), the number of charts is bounded by

C̃M ≤
⌈
SA(M)

r̃d
Td

⌉
=

⌈
SA(M)

r/2
d
Td

⌉
.

The following lemma shows that for any locally finite cover of a smooth manifold, a C∞ partition of
unity always exists:

Lemma 19 (Chapter 2 Theorem 15 of Spivak (1973)). Let {Uα}α∈A be a locally finite cover of a
smooth manifold M. There is a C∞ partition of unity {ρα}∞α=1 such that supp(ρα) ⊂ Uα.

Let {ρi}C̃M
i=1 be the partition of unity in Lemma 19 with respect to {Ũi}CM

i=1 .

We set CM = C̃M and define Ui = Br(c̃i) and φi according to (34). Since r̃ < r, Ũi ⊂ Ui, we
have Ũi ⊂ Ui and

M ⊆
C̃M⋃
i=1

Ũi ⊆
CM⋃
i=1

Ui.

Therefore {Ui}CM
i=1 is an open cover of M and {Ui, φi}CM

i=1 is an atlas of M. Since supp(ρi) ⊆ Ũi,
we have supp(ρi) ⊂ Ui and

inf
x∈supp(ρi), x̃∈∂Ui

∥x− x̃∥2 ≥ inf
x∈Ũi, x̃∈∂Ui

∥x− x̃∥2 = r/2.

The lemma is proved.
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M.2 Proof of Lemma 11

Proof of Lemma 11. We deduce

|A2|Wk,∞(φi(Ui)) =

∣∣∣∣∣
(∑

m,v

ci,m,vg̃m,v(z)

)
×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣∣∣
Wk,∞(φi(Ui))

=
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(φi(Ui))

≤
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(Ωi,2)

+
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(φi(Ui)\Ωi,2)

=
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(Ωi,2)

for k = 0, 1, where the last equality holds since

1̃i ◦ φ−1
i (z) = 1i ◦ φ−1

i (z) = 1

on φi(Ui)\Ωi,2.

According to (50), f̃i ◦ φ−1
i (z) = f̂i ◦ φ−1

i (z) = 0 for z ∈ φi(∂Ui). For any z ∈ Ωi,2, let
z∗ = argmin

z̃∈φi(∂Ui)

∥z− z̃∥2.

According to (49), we have ∥z− z∗∥2 ≤ ∆/(c2r).

By Lemma 6 with some small η > 0 and for s = k = 0, 1, we have

∥f̃i ◦ φ−1
i − f̂i∥Wk,∞([0,1]d) ≤ C31N

kη, (78)

where C31 is a constant depending on d, α,R. Since ∥f̂i∥W 1,∞(Ωi,2) = 0, we have maxj

∣∣∣ ∂f̃i∂zj

∣∣∣ ≤
C31Nη for any z ∈ Ωi,2. Therefore

|f̃i ◦ φ−1
i (z)| ≤f̃i ◦ φ−1

i (z∗) + C31Nη∥z− z∗∥2 ≤ C31

c2r
Nη∆ (79)

for any z ∈ Ωi,2.

Using |1̃i ◦ φ−1
i (z)− 1i ◦ φ−1

i (z)| ≤ 1, we bound A2 as

|A2|W 0,∞(φi(Ui)) =
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
W 0,∞(Ωi,2)

≤
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 0,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 0,∞(Ωi,2)

≤C11

c2r
Nη∆ (80)

for k = 0 and

|A2|W 1,∞(φi(Ui)) =
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
W 1,∞(Ωi,2)

≤
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 0,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 1,∞(Ωi,2)

+
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 0,∞(Ωi,2)

≤C31C8

c2r
Nη∆/∆+ C11Nη

=C32Nη (81)
for k = 1, where C12 is a constant depending on α,R, τ . In the first inequality of (81), we used (79),
the inequality∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 1,∞(Ωi,2)

=
∣∣∣1̃i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

≤ C8/∆
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by (37) and the fact 1i ◦ φ−1
i (z) = 1 for z ∈ Ωi,2, and the inequality∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

=
∣∣∣f̃i ◦ φ−1

i (z)− 0
∣∣∣
W 1,∞(Ωi,2)

= ∥f̃i ◦ φ−1
i − fi ◦ φ−1

i ∥W 1,∞(Ωi,2) ≤ C31Nη

by (78).

Combining (80) and (81) gives rise to

∥A2∥W 1,∞(φi(Ui)) ≤ C32Nη∆
1−k (82)

for k = 0, 1.
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