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Abstract

Tractable probabilistic models (TPMs) are ap-
pealing because they admit polynomial-time in-
ference for a wide variety of queries. In this
work, we extend the cutset network (CN) frame-
work, a powerful sub-class of TPMs that of-
ten outperforms probabilistic graphical models
in terms of prediction accuracy, to the tempo-
ral domain. This extension, dubbed dynamic
cutset networks (DCNs), uses a CN to model
the prior distribution and a conditional CN to
model the transition distribution. We show that
although exact inference is intractable when ar-
bitrary conditional CNs are used, particle filter-
ing is efficient. To ensure tractability of exact in-
ference, we introduce a novel conditional model
called AND/OR conditional cutset networks and
show that under certain restrictions exact infer-
ence is linear in the size of the corresponding
constrained DCN. Experiments on several se-
quential datasets demonstrate the efficacy of our
framework.

1 Introduction

Dynamic Bayesian networks (DBNs) (Dean and
Kanazawa, 1989) and their (typically) discriminatively
trained deep learning counterparts, recurrent neural net-
works, are widely used in practice to solve reasoning and
prediction tasks in temporal domains—domains in which
random variables evolve over time. However, DBNs have
a well-known shortcoming: exact probabilistic inference
over them is intractable. Moreover, approximate inference
algorithms such as particle filtering (Carpenter et al., 1999;
Doucet et al., 2001) often yield inaccurate estimates in
practice because high quality proposal distributions are not
readily accessible.
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In this paper, we address the aforementioned shortcomings
of DBNs by introducing a new probabilistic representa-
tion called dynamic cutset networks (DCNs) that extends
the cutset network (CN) framework (Rahman et al., 2014;
Rahman and Gogate, 2016a; Rahman et al., 2019) to tem-
poral domains. CNs are tractable (static or non-temporal)
probabilistic models that represent large multi-dimensional
discrete probability distributions by leveraging AND/OR
cutset conditioning (Mateescu and Dechter, 2005) as well
as fine-grained features such as identical probability val-
ues, dynamic variable orders, and context-specific inde-
pendence (Chavira and Darwiche, 2008; Boutilier et al.,
1996). A CN consists of a rooted AND/OR graph (AND
nodes are products and OR nodes are sums) with tree-
structured Bayesian networks attached to each leaf node of
the graph. Since exact posterior marginal and most proba-
ble explanation (MPE) inference is tractable on CNs, they
often have better prediction accuracy as compared to proba-
bilistic graphical models (PGMs) on which these inference
tasks are intractable, even though the latter consistently
have higher test-set log likelihood scores than the former
(Rooshenas and Lowd, 2014; Rahman et al., 2019).

We investigate two classes of DCNs; the first (class) admits
tractable exact inference algorithms and the second admits
accurate particle filtering algorithms that generate samples
from a high quality approximation of the posterior distribu-
tion. Both classes of DCNs use a templated representation
having two components (time is discretized into slices): a
prior distribution P(X') over all variables in time slice 1
and a conditional template for representing the transition
distribution P(X*| X ‘1), which has the same structure
and parameters for all time slices ¢ > 1. In DCNs, we
represent P(X1') using a CN and P(X*|X*"!) using a
conditional cutset network template. The latter is based on
a recently introduced conditionally tractable model called
conditional cutset networks (CCN) (Rahman et al., 2019)
that represents a potentially exponential number of CNs
using calibrated classifiers (Niculescu-Mizil and Caruana,
2005)—specifically, one CN defined over X! for each as-
signment of values to X*~!. We show that although exact
inference is intractable in these DCNs, at each time slice ¢,
we can generate samples from a good approximation to the
posterior distribution over X ¢ given evidence at slice ¢ and
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an assignment of values to all variables from time slice 1 to
t — 1. Since the posterior distribution is the ideal proposal
distribution, DCNSs facilitate efficient and potentially very
accurate particle filtering algorithms.

To ensure tractability of exact inference, we put further re-
strictions on the CCN template. Specifically, we show that
exact inference is tractable when the number of cutset net-
works in the CCN template is polynomial in the number
of variables in X *~! rather than exponential (as in conven-
tional CCNs). We use this result to develop a new represen-
tation called dynamic AND/OR conditional cutset network.

This paper makes the following contributions:

* We develop a new probabilistic representation called
dynamic cutset networks (DCNs) to represent and rea-
son about uncertainty in temporal domains.

We derive two classes of DCNs, one in which exact
inference is tractable and another in which particle fil-
tering algorithms have access to an accurate proposal
distribution. These two classes of DCNs help us trade
prediction accuracy with time.

We experimentally evaluate DCNs on a wide vari-
ety of synthetic and benchmark temporal datasets
comparing their generative and discriminative perfor-
mance to dynamic Bayesian networks, dynamic sum
product networks and long short term memory net-
works. Our experiments show that DCNs are superior
to the competition, both in terms of discriminative and
generative performance.

2 Related Work

Brandherm and Jameson (2004) attempted to introduce
tractability into temporal models by compiling a DBN into
a recursive network polynomial that could be represented
as a Dynamic Arithmetic Circuit (DAC) (Darwiche, 2003).
However, the compiled DAC can be exponential in size;
so, there is no guarantee that inference will be tractable on
the compiled models. Further, this method necessitates the
learning of a DBN first, which is then compiled to a DAC.

(Peharz et al., 2014) introduced the HMM-SPN representa-
tion in which the emission distribution in a hidden Markov
model (HMM), namely the conditional distribution of the
observed variables given the hidden variable at each time
slice is represented using a sum-product network (SPN)
(Poon and Domingos, 2011). This architecture is limited
in the sense that it does not fully exploit the power of SPNs
in dynamic settings. To address these concerns, Melibari
et al. (2016) proposed Dynamic Sum Product Networks
(DSPNSs), whose structure could be learned directly from
data and that guaranteed tractability by fixing the size of
the network.

DSPNs define a template network that, much like DBNs,
can be unrolled to generate a large SPN that represents
the joint distribution P(X T EYT) of a sequence S =
{(xt,el),...,(x7,eT)} where X* = {X? .., X!} and
E' = {E!,..,E!} are, respectively, the sets of query vari-
ables and evidence variables at time slice ¢t. The struc-
ture of the template network is selected via local search
on the space of possible template structures using the log-
likelihood as a scoring function.

Note, however, that the result of the filtering query
P(X*|e'?) is dependent on the length of the sequence
in DSPNs. In other words, P(X'le'! |S| = a) #
P(X*|e'|S| = b) where | S| is the sequence length and
b > a > t. The reason for this is that the template net-
work imposes a structure that models the distribution in the
reverse direction of time (since variables in the last time
slice are near the root node of the directed acyclic graph
associated with a DSPN). This results in different joint dis-
tributions for different sequence lengths. As a result, in
DSPNs, learning a template structure that accurately repre-
sents the true joint distribution is challenging. In contrast,
DCNs (our work) use both observed and hidden variables
to represent the conditional distribution where the connec-
tions are always in the forward (chronological) direction.
This property enables us to learn the conditional distribu-
tions more easily and improve inference accuracy.

Another disadvantage of DSPNs is that encoding prior
knowledge in their SPN-based distributions can be chal-
lenging, which makes them unsuitable in cases where rich
prior knowledge is already available from domain experts.
Much like Bayesian networks, our framework easily allows
the encoding of prior knowledge into our models.

3 Cutset Networks and Tractable
Conditional Models

Let X = {Xy,...,X,} denote a set of discrete random
variables and « a complete assignment to X. Without
loss of generality, we assume all variables are binary valued
and take on values from the set {0,1}. An AND/OR Cut-
set Network (AOCN) (Rahman and Gogate, 2016b; Rah-
man et al., 2014) is a tractable probabilistic model, specifi-
cally a model in which posterior marginal and most proba-
ble explanation queries can be answered in time that scales
linearly with its size, that can be used for representing a
joint probability distribution over X. It is a rooted directed
AND/OR graph G (Dechter and Mateescu, 2007) with a
tree structured Bayesian network or Chow-Liu tree (Chow
and Liu, 1968) attached to each leaf node of G. For simplic-
ity of exposition, throughout the paper, we focus on rooted
AND/OR trees, but the methods we describe can be easily
extended to rooted AND/OR graphs (cf. Dechter and Ma-
teescu (2007); Mateescu and Dechter (2005); Rahman and
Gogate (2016b)).
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Figure 1: An AND/OR cutset network defined over the
variables X = {X7,..., X4}. The variable nodes are OR
nodes, the squares are AND nodes and the dotted rectan-
gles are Chow-Liu trees.

An AND/OR tree (AOT) denoted by 7 over the set of vari-
ables X is a rooted tree (data structure) that can be recur-
sively defined as follows:

¢ A leaf node labeled with the set X is an AOT.

¢ An OR node labeled with a variable X; € X and hav-
ing two child AOTs, denoted by 7; and 7., and each
defined over X \ {X;} is an AOT.

* Given a partition { X1, ... X} of X (namely, X; N
..NXg=0and X;U...UXg = X), an AND
node having K child AOTs {77 ... Tk} where each
T; is defined over the subset X, is an AOT.

Each internal node in T is either a labeled OR node or an
unlabeled AND node. AND nodes in T represent problem
decomposition while each OR node represents condition-
ing over the variable that it is labeled with. Without loss
of generality, given an OR node labeled by X, let the two
child AOTs 7; and 7, denote the sub-trees obtained by con-
ditioning on X; = 0 and X; = 1 respectively.

An AND/OR cutset network (AOCN), denoted by C, is a
triple (7", ©, B) where T is an AND/OR tree, © = {0|0 €
(0,1)} is a set of real numbers (parameters) and B is a set
of tree Bayesian networks. Each parameter 6 is associated
with an arc from an OR node to its child nodes in 7 such
that the parameters associated with the two child nodes 7;
and 7, of the OR node sum to a 1. Each such parameter
represents the conditional probability of the variable at an
OR node taking on the values from {0, 1} given the path
(assignment of values to variables) from the root to the OR
node. Each (tree) Bayesian network B € B is associated
with a leaf node of 7 such that B represents a probability
distribution over the set of variables that the leaf node is
labeled with. Figure 1 shows an AOCN over the set of
variables X = {X1,..., X4 }.

Given an AOCN C, the probability of a full assignment x
to X, denoted by P¢ () can be computed as follows. Each
full assignment induces a sub-tree 7, of 7. Let O, and
B, denote the set of parameters and Bayesian networks

associated with the sub-tree 7, then

Pe(z) = ( I1 9) < 11 PB(wV(m))

0EO, BEBg

where V() denotes the set of variables of B, xy (5 is the
projection of x on V(B) and P denotes the probability
distribution represented by 5.

Posterior Marginal Estimation (MAR) and Most Probable
Explanation (MPE) inference queries can be answered in
time linear in the size of the AOCN (i.e. the number of
nodes) (Rahman et al., 2014; Dechter and Mateescu, 2007).
AOCNSs often yield much smaller structured representa-
tions as compared to probabilistic graphical models (Pearl,
1988) because they take advantage of fine grained struc-
tural properties such as dynamic variable orders, context-
specific independence, determinism and conditional inde-
pendence (cf. Darwiche (2003); Chavira and Darwiche
(2007); Gogate and Domingos (2010)).

3.1 Conditional Cutset Networks

Recently (Rahman et al., 2019) proposed a new represen-
tation called conditional cutset networks (CCNs) for com-
pactly modeling the conditional distribution P(Y'| X = x)
for all assignments x. Similar to a AOCN, a CCN consists
of a labeled AND/OR tree over Y. However, the parame-
ters © over the AND/OR tree and the conditional probabili-
ties in each Bayesian network 3 € B are represented using
weighting functions that take x as input and output a real
number between 0 and 1. Rahman et al. (2019) proposed to
use probabilistic classifiers called calibrated classifiers (e.g.
logistic-regression, neural networks, random forests, etc.)
as weighting functions. Calibrated classifiers are preferred
over conventional classifiers because the former typically
yield more accurate probability estimates than the latter.

An AOCN is obtained from a CCN by instantiating the
weighting functions given an assignment x. Thus, a CCN
represents an exponentially large number of conditional
tractable models.

Example 1. Figure 2(a) shows a CCN over Y =
{Y1,...,Ys} and Figure 2(b) shows a AOCN obtained by
instantiating the CCN with the assignment (X1 = 0, Xo =
1,X5=0,X4=1).

Note that a CCN allows exact tractable inference over
the conditional multivariate joint distribution over Y only
when X is fully-observed. In other words, exact infer-
ence is intractable when one or more variables in X are
not observed or when we are interested in computing pos-
terior marginals over X. For example, P(X;|Y = y)
is intractable (NP-hard in general) to compute in CCNs
under the assumption that a tractable representation for
P(X) is available. To this end, Rahman et al. (2019)
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Figure 2: (a) A conditional cutset network (CCN) that models P(Y | X) for Y = {Y1,..

., Yy }. The branch probabilities

are calibrated classifiers o;(x) where x is an assignment of values to all variables in the set X. (b) AND/OR cutset
network obtained from the CCN in Figure (a) given the assignment X; = 0, X5 = 1, X5 = 0, X4 = 1 (¢c) An AOCCN

that models P(Y'|X) where Y = {Y1,Y2} and X = {X7,..

., X4}. The leaves are conditional distributions of the form

P(Y|x') where X’ C X. For example, instantiating the AOCCN given in (c) with X; = 0,Xs =1, X3 =0,X; =1
will reduce the AOCCN to an AOCN that contains one AND node having two child leaf nodes that represent P(Y7|—xz1)
and P(Y3|xzo, —x3) respectively where —z; denotes the assignment X; = 0 and x; denotes the assignment X; = 1.

proposed an approximate inference method based on Rao-
Blackwellised importance sampling to compute the above.

Thus, an issue with using CCNs for modeling the transi-
tion distribution P(X¢| X *~1) is that we cannot guarantee
tractability of probabilistic inference. To address this prob-
lem, we present a new conditional representation based on
AND/OR trees next.

3.2 AND/OR Conditional Cutset Networks

In this section, we introduce a new class of condi-
tional models that represent the conditional distribution
P(Y|X = x) using an AND/OR tree 7 defined over X
and a set C' of AND/OR cutset networks defined over Y
such that each leaf node of 7 is attached to a AND/OR
cutset network from the set C. We call these conditional
models AND/OR tree based conditional cutset networks or
AOCCN:Ss in short. Formally, given two disjoint sets of vari-
ables X and Y, an AOCCN D is a pair (T, C) where T
is a labeled AND/OR conditional tree (defined below) over
X and Y and C is a set of AOCNs defined over Y where
each C € C is associated with a leaf node of 7. A labeled
AND/OR conditional tree (AOCT) is recursively defined as
follows:

¢ A leaf node labeled with the set Y is an AOCT.

¢ An OR node that is labeled with X; € X and has two
child AOCTs, denoted by 7; and 7., and each defined
over the pair (X \ {X;},Y) is an AOCT.

* Given a partition { X7, ..., Xk} of X and a partition
{Y1,..., Yk} of Y, an AND node having K child
AOCTs {Ti,..., Tk} where each 7; is defined over
the pair (X;,Y;) is an AOCT.

Given a AOCCN D, the conditional probability Pp(y|x)
of the assignment Y = y given X = x can be computed

as follows. Note that each assignment induces a sub-tree
Tz,y of T. Let Cy 4 denote the set of AND/OR cutset
networks at the leaves of the sub-tree 7 ,, then

Pp(ylz)= [ Pe(yvic) 1)
CECqr y

where V'(C) denotes the set of variables of C, yy(¢) is the
projection of y on V(C) and P¢ denotes the probability
distribution represented by C.

Thus, given an assignment x, a AOCCN yields an
AND/OR tree cutset network over y (see Eq. (1)) and as
a result is conditionally tractable in that given «, both pos-
terior marginal and most probable explanation queries can
be answered in linear time in the size of the AOCCN.

Example 2. Figure 2(c) shows a AOCCN over Y =
{Y1,Ya} and X = {Xi,...,X4}. The AOCCN yields
a AOCN when instantiated with the assignment (X1 =
0, X5 =1,X3 =0,Xy = 1) as described in the caption of
Figure 2.

4 Dynamic Cutset Networks

Consider a general discrete time state space model having
a set of query (or hidden) variables X*¢ = { X!, .., X!} and
a set of observed or evidence variables E! = {E% .., E! }
at time slice ¢. For simplicity of exposition, we assume that
the set of query and observed variables at each time slice
is fixed. Similar to dynamic Bayesian networks (DBNs)
(Murphy, 2002; Dean and Kanazawa, 1989), we will use
the following template for representing the joint distribu-
tion over the state space:

1. A prior distribution P(X1, E'), and

2. A transition distribution template representing
P(X' EY XY Bt Y fort = 2,...,T where T is
the total number of time slices
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We make two assumptions that are commonly used in tem-
poral models. First, the variables at slice ¢ are conditionally
independent of all variables in all times slices before ¢ given
the variables in the previous time slice ¢ — 1 (1-Markov as-
sumption). Second, we assume that the transition distribu-
tion is the same for all ¢ (stationary assumption).

Given an integer 7' > 1, let X' = Ul Xt and E*T =
UL | E denote the set of query and evidence variables re-
spectively from time slices 1 through 7". Then, given the
DCN template described above, the joint distribution over
the set of variables (X7, EY'T) is given by

T
P(wl:T7elzT) — P($1,€1) HP(wt,€t|iL't_1,€t_1)

t=2

where 27 and e'*”’ denote an assignment of values to all
variables in the sets X 7 and E'*T respectively.

We consider two versions of DCNs. Our first version is
obtained by using an AND/OR cutset network to model the
prior distribution and the conditional cutset network (CCN)
representation proposed in (Rahman et al., 2019) to repre-
sent the transition distribution template (see section 3.1).
We call this version DCCN. Our second version is obtained
by using an AND/OR cutset network to model the prior dis-
tribution and the AOCCN representation proposed in sec-
tion 3.2 to represent the transition distribution template. We
call this version DAOCCN.

In the next two sections, we describe inference algorithms
for DAOCCNs and DCCNs respectively. We focus on the
filtering task noting that the algorithms presented can be
easily extended to other state space tasks such as smoothing
and most probable explanation. Formally, the filtering task
is defined as finding the following distribution:

P(xT|elcT) o Z

1. zT-1 t=2

The above sum-product expression can be computed recur-
sively using the forward algorithm (or the variable/bucket
elimination algorithm (Dechter, 1999)), eliminating all
variables at time slice ¢ — 1 before proceeding to time slice
t. The recursion is given by:

a(zh) = Z alz' Pz etz e ()

pt—1

where a(z!) = P(z!, e'?) and a(z!) = P(z!,e!). The
recursion can be solved using a message passing or a for-
ward propagation algorithm where the message a(x!) is
sent from the current time slice ¢ to the next time slice ¢+ 1.
In DBNs (Murphy, 2002), the message can be computed in
time that scales exponentially in the size of the forward in-
terface, which is the set of variables in time slice ¢ that
are connected via a directed edge to variables in time slice

P(J)l,el) HP(mt,et|a:t71,et71)

t + 1. Thus, when the forward interface is bounded by
a constant, the message passing algorithm runs in polyno-
mial time. When, it is not bounded, we typically have to
use approximate inference algorithms such as particle fil-
tering (Doucet et al., 2001; Liu and Chen, 1998).

In the next section, we will show how a structured variant of
the forward interface is bounded for DAOCCNs and as a re-
sult they admit tractable inference algorithms. For DCCNSs,
the forward interface equals all variables in the current time
slice, namely it is not bounded by a constant and therefore
we will derive efficient particle filtering algorithms.

4.1 Forward Algorithm for DAOCCNs

Next, we describe sufficient conditions for ensuring
tractability of forward inference in DCNs. We begin by
introducing two required definitions.

Definition (Dominance). An AND/OR tree T1 dominates
an AND/OR tree Ty such that the two trees are defined over
the same set of variables if the set of context-specific con-
ditional independencies represented by T, are a subset of
those represented by Ts.

In other words, 77 is an I-map of 75 (Pearl, 1988). A com-
plete OR tree which represents no conditional independen-
cies dominates all AND/OR trees while a AND/OR tree
that has one AND node connected to n leaf nodes (n is the
number of variables) is dominated by all other AND/OR
trees.

Example 3. The AOT associated with the AOCN given
in Figure 1 represents the following context specific inde-
pendencies: {X3, X4} is conditionally independent of X5
given X1 = 0. It dominates the AOT which represents the
following independence relation X5, X3 and X4 are mu-
tually independent of each other given X1 = 0. The only
difference between this AOT and the AOT given in Fig. 1 is
that the AND node on the left sub-tree will have three child
nodes labeled with X5, X3 and X4 respectively.

Definition (Projection). Given an AND/OR tree T defined
over a set of variables X and a subset’Y of X, the projec-
tion of T on'Y is a AND/OR tree Ty such that Ty exactly
captures all context-specific conditional independencies in
T overY and no more.

The intuition behind developing the aforementioned def-
initions is the following. If an AND/OR tree 7; dom-
inates another AND/OR tree 75, then it means that any
probability distribution represented by 75 can also be rep-
resented using 7;. Thus, by making appropriate param-
eter transformations, we can answer queries (exactly) by
performing inference on 77 in lieu of 75. Notice that the
recursion given in Eq. (2) involves multiplying a con-
ditional distribution represented by the AOCCN, namely
P(x!, et|zt~! e!~!) with a marginal distribution repre-
sented by a AOCN, namely a(x‘~1). If the AOCT pro-
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jected on X* in the AOCCN dominates the AOT of the
AOCN, then the product of the two distributions, namely
the joint can also be represented by a AOCN that has the
same structure as the AOCT. In other words, we can ap-
propriately transfer parameters (by performing inference)
from the AOCN to the AOCCN to yield a AOCN that rep-
resents the joint distribution P(X*, X*~1|e!*). Moreover,
the size of the resulting AOCN will be bounded by the size
of the AOCT and thus the recursion will run in time that
scales linearly with the size of the representation.

Generalizing the above argument, we can show that:

Theorem 4. The forward algorithm has linear time com-
plexity in the size of the unrolled DAOCCN if the following
condition is satisfied: the projection of the AOCT associ-
ated with the transition distribution on X'~ dominates the
AOT associated with the AOCN representation of o(xt~1)
for all 2 < t < T where T is the total number of time
slices.

Proof of Theorem 4 is included in the supplement.

An interesting corollary of the above theorem is that since
an OR tree always dominates any AND/OR tree, when the
AOCT is an OR tree, the filtering task can always be solved
using the forward algorithm in linear time. Formally,

Corollary 5. The forward algorithm has linear time com-
plexity in the size of the unrolled DAOCCN if the AOCT
associated with the transition distribution is an OR tree.

When the condition in Theorem 4 is not satisfied, we can
use the following (tractable) expectation propagation style
approximation (Minka, 2001). Given a AOCN represent-
ing a(x'~1), compute the parameter for each edge from
the OR node to its child node in the AOCT associated with
the transition distribution by performing marginal inference
on the AOCN. With these parameters, the AOCT yields
a AOCN that represents a joint distribution over the set
Xt U Xt of variables given evidence. Since the size of
new AOCN is bounded by the size of the AOCT, forward
inference remains tractable.

4.2 Forward Inference in DCCNs

The filtering task over DCCNs is intractable in general
and can be approximately solved using the particle filter-
ing algorithm (Doucet et al., 2001; Liu and Chen, 1998),
a sequential importance sampling algorithm that generates
samples from a proposal distribution and estimates the pos-
terior distribution using a weighted average over the gen-
erated samples. The performance of the particle filtering
algorithm is highly dependent on the quality of the pro-
posal distribution; higher the quality better the estimate. It
is known that the ideal proposal distribution is the posterior
distribution P(x'7|e!T). Unfortunately, it is NP-hard to
compute in DCCNs. Therefore, we propose to approximate

the ideal proposal using the following

T
P(xl:T|elcT) ~ P(£C1|61) Hp(wt|m1:t717elzt)
t=2

Thus we propose to use evidence up to the current time
slice to approximate the ideal proposal, namely we use
P(xt|ztt=1 el!) to approximate P(z!|z!~1 el'T). It
is easy to see that this approximation is likely to yield
higher quality estimates as compared to conventional likeli-
hood weighting approach which uses the prior distribution
as the proposal. Note that P(z!|z'*~1 e!’) can be com-
puted in linear time in DCCNs because they use CCNs,
which are conditionally tractable models to represent the
transition distribution.

4.3 Learning Dynamic Cutset Networks: Practical
Considerations

The structure (and parameters) of the prior model P(X1)
and the transition distribution template P(X*|X*~!) can
be learned from data in a straight forward manner by adapt-
ing the structure learning algorithms for learning uncondi-
tional as well as conditional models described in prior work
(cf. (Rahman et al., 2014; Vergari et al., 2015; Di Mauro
et al., 2015; Rahman et al., 2019; Mauro et al., 2017)). For
lack of space, we describe them in the supplement.

To improve the practical performance of our learning al-
gorithms, we propose to use mixtures of cutset networks
as the prior distribution and mixtures of conditional cutset
networks for modeling the transition distribution template.
These mixture models can be learned from data either us-
ing the EM algorithm or via boosting and bagging (Rah-
man and Gogate, 2016a; Mauro et al., 2017). In our ex-
periments, we used the EM algorithm (or the Baum-Welch
algorithm). Sufficient statistics for this algorithm can be
obtained by performing smoothing inference, namely com-
puting P(h?|x*¥) where H' is the hidden variable at time
slice t and K is the length of the sequence.

S Experiments

We compare the performance of dynamic cutset networks
to several state-of-the-art temporal models. We perform
a number of experiments on both artificial and real-world
problems. In both scenarios, we conduct two sets of ex-
periments. The first set of experiments learns a model and
computes the average test-set log-likelihood. The objective
of these experiments is to see how well the models fit the
data. The second set of experiments uses the learned mod-
els to evaluate their prediction/inference accuracy by com-
paring the average log-probability of evidence (evidence
log-likelihood (ELL)) on the test sequences on a fraction
of the state variables. The goal of these experiments is
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Table 1: Average test set log-likelihood (LL) scores and av-
erage log-probability of evidence (ELL) on 25%, 50% and
75% of the variables on synthetic datasets. Each dataset
synthV has V binary random variables, 1000V training
samples and 700V test samples.

Dataset

Model Average
synthS  synth1l0 synthl5 synth20 synth25
LL
DSPN -1.2917  -3.3442  -3.8867  -4.9907 -6.6554  -4.0337
CLDBN  -12726 -37315 -6.3186 -8.7462 -10.5283 -6.1194
LSTM -0.3884  -1.4658  -1.3333  -2.3455 -4.0355  -1.9137
DAOCCN  -0.3055  -1.1981  -1.1123  -1.9994 -3.0268 -1.5284
DCCN -0.3203  -1.0519  -0.8071 -1.4780 -1.6129  -1.0541
ELL (25% Evidence)
DSPN -0.3429  -1.2035  -1.4965  -1.8447 -2.8677  -1.5511
CLDBN  -1.0275 -1.5729 -1.9624  -2.5828 -3.5345  -2.1360
LSTM -0.6500  -2.5216  -2.5753  -4.4501 -5.1741  -3.0742
DAOCCN  -0.1680  -0.6205  -0.4227  -0.1286 -0.9453  -0.4570
DCCN -1.0301  -1.7161  -1.6831  -2.489%4 -2.3164  -1.8470
ELL (50% Evidence)
DSPN -0.7077  -1.6886  -2.8986  -3.2960 -4.0901  -2.5362
CLDBN  -1.3741 -2.0797 -4.0102 -5.2187 -5.6115  -3.6588
LSTM -1.3381  -1.7225  -3.6040  -4.2276 -8.2878  -3.8360
DAOCCN -0.2139  -0.8794 -0.6785 -1.3810 -1.9205 -1.0147
DCCN -0.9981  -1.5569  -1.7916  -2.2763 -2.9141  -1.9074
ELL (75% Evidence)
DSPN -0.9282  -3.0691  -3.4214  -4.2832 -5.8286  -3.5061
CLDBN  -1.5773 -34166 -55778 -7.5724 -9.3606  -5.5009
LSTM -1.4635  -1.9006 -2.9134  -3.0892 -4.9145 -2.8562
DAOCCN  -0.2991  -1.0201  -0.9467 -1.6992 -2.0236 -1.1977
DCCN -1.0686  -1.5821  -1.3649  -2.1118 -2.1983  -1.6651

to measure the accuracy of inference since arbitrary non-
evidence variables need to be summed out at each time-
slice. A higher ELL score would indicate that the interme-
diate distributions obtained by summing out over the X *’s
are being computed accurately. This makes it a good metric
for measuring performance at prediction time.

In our experiments, we compare the performance of two
classes of dynamic cutset networks: 1) A dynamic cut-
set network with a transition distribution modeled by a
conditional cutset network with logistic regression classi-
fiers; denoted by DCCN and 2) A DCN with transition
distribution modeled using our proposed AND/OR condi-
tional cutset network (see section 3.2); denoted by DAOC-
CNs. We compare both the modeling capacity and infer-
ence accuracy of the learned DCNs to the following di-
verse classes of models falling into both generative and dis-
criminative categories: 1) dynamic sum-product networks
(DSPNs) (Melibari et al., 2016; Kalra et al., 2018) 2) Tree
Structured Dynamic Bayesian Networks (CLDBNs) and
3) Long-Short-Term-Memory (LSTMs) networks (Hochre-
iter and Schmidhuber, 1997). A tree structured dynamic
Bayesian network is a dynamic Bayesian network in which
both the initial distribution P(X ') and the transition distri-
bution P(X!|X!~! = x!~1) are tree structured Bayesian
networks. Details on learning algorithms for these repre-
sentations are provided in the supplement.

5.1 Artificial Problems

We generated training and test samples from complex,
multi-modal, high-dimensional Dynamic Bayesian Net-
works (DBNs). Both the structure and parameters of the
DBNs were generated randomly ensuring that the resulting
graph is a DAG in both the initial state and transition dis-
tributions. From the generated DBNs, we sampled fixed
length (length of 10) sequences as training and test data.
Table 1 compares the average log-likelihood and average
log-probability of evidence on sampled test data.

5.2 Real World Problems

We chose five real-world datasets (#train, #test,
#avg_train_length, #avg_test_length) from the Time
Series Classification website (Bagnall et al., 2017) and
the UCI Repository (Dua and Graff, 2017) — diabetes
(56,14, 425, 388), racketsport (151,152, 30, 30), airqual-
ity (1,1,6379, 562), handwriting (150,850, 152, 152) and
Japanvowels (512,128,16,16). The datasets contain a
large number of continuous variables which were first
discretized using Symbolic Aggregate Approximation
(SAX) (Lin et al., 2003) into bins of sizes 8, 16, 32 and
64. The only exception was the dataset diabetes which
had all binary attributes except the class variable which
was discretized into 8 bins. The discretized datasets were
then binarized using log-encoding. Table 2 shows the
average log-likelihood scores w.r.t. bin sizes 8 and 16 and
the average log-probability of evidence achieved by the
models on the test data. (Detailed experimental results and
analysis is included in the supplementary material.)

5.3 Model’s Fit to Data

We compare the average test set log-likelihood scores of
the learned models on both the synthetic and real-world
datasets in Tables 1 and 2 respectively. It is observed that
DCNs outperform the competitors in terms of generaliza-
tion accuracy. DCCNs with logistic regression classifier
CPDs achieved the highest average test set log-likelihood
scores in all cases followed by DAOCCNs. This shows
that the DCN framework is flexible enough to allow for
highly expressive representations that can model the data
well. DSPNs generally performed better than CLDBN's
while LSTMs outperformed both DSPNs and CLDBNS.
This implies that the expressivity of dynamic models is sig-
nificantly improved by latent variables. However, it is to
be noted that learning DSPN structures is generally much
harder in practice, which is probably why they are inferior
to CLDBNSs on real data.

5.4 Inference/Prediction Accuracy

From each test sequence we randomly set 25%, 50% and
75% of the variables in the domain as evidence variables
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Table 2: Experimental results on real datasets. The metrics used are (1) Average test-set log-likelihood scores (LL) (2)
Average test-set evidence log-likelihood scores for randomly chosen 25%, 50% and 75% variables. A B/V value is specified
below each dataset where B is the total number of bins used for binarization and V is the total number of variables in the

final binarized dataset.

Dataset
Model diabetes racketsport airquality handwriting japanvowels #wins
8/23 8/20 16/26 8/36 16/48 8/14 16/17 8/36 16/48
LL

DSPN -3.4704 -11.7904 -15.8884 -20.9276 -28.5568 -8.3088 -9.8981 -22.5540 -30.9468 0
CLDBN  -4.2973 -10.0665 -14.0407 -17.5278 -25.7498 -3.5313 -5.0874 -17.4166 -25.6584 0
LSTM  -2.8913 -10.8268 -15.0085 -18.7659 -28.5243 -3.0549 -4.2957 -16.1458 -24.4584 0
DAOCCN -2.9783 -9.4796 -13.4243 -18.2101 -26.4619 -3.1417 -4.7081 -17.7284 -25.9749 0
DCCN  -2.7937 -9.3250 -13.3693 -14.1960 -22.2492 -2.9192 -4.2143 -14.3364 -23.9097 9

ELL (25% Evidence)
DSPN -1.9445 -3.0569 -4.3808 -4.5045 -6.4277 -2.4523 -2.9725 -5.8527 -7.9281 0
CLDBN -2.0814 -3.5298 -4.8550 -5.0975 -7.1543 -1.8299 -2.6761 -4.3883 -6.3977 0
LSTM  -2.1654 -3.9112 -5.2564 -7.4319 -8.9709 -1.9939 -3.3351 -4.5935 -6.9295 0
DAOCCN -1.0421 -2.7403 -4.0347 -4.5915 -6.6539 -1.0132 -1.8496 -3.7340 -5.7508 7
DCCN  -2.0704 -3.4099 -4.7212 -4.1872 -6.1439 -1.9845 -2.4061 -4.1333 -6.2628 2

ELL (50% Evidence)
DSPN -2.4445 -6.1893 -8.2456 -8.2161 -11.8838 -4.0216 -4.9167 -11.4185 -15.6623 0
CLDBN -2.8427 -6.5708 -8.5814 -9.2754 -13.3765 -3.3787 -4.4094 -8.3541 -12.4169 0
LSTM  -2.5282 -7.2410 -9.3001 -11.1287 -15.8784 -3.4381 -4.3014 -8.5292 -12.6195 0
DAOCCN -1.7502 -5.6880 -7.7075 -8.8828 -11.6483 -2.4452 -3.4493 -7.7883 -10.5403 5
DCCN  -2.4330 -6.3249 -6.1389 -7.2728 -11.0823 -2.9491 -3.7885 -7.3508 -11.5892 4

ELL (75% Evidence)
DSPN -2.6355 -8.6471 -12.7824 -13.7354 -19.4720 -6.7459 -8.0359 -16.5135 -22.7662 0
CLDBN -3.7654 -9.0854 -12.9670 -13.0501 -20.1111 -4.2973 -5.8580 -11.3934 -18.1961 0
LSTM  -2.7393 -10.5267 -14.5238 -15.3121 -22.1672 -3.7216 -4.9373 -11.8173 -17.8363 0
DAOCCN -2.2617 -8.0616 -11.9545 -12.8790 -18.7257 -3.2241 -4.7035 -10.9022 -16.4302 6
DCCN  -2.5129 -8.5676 -12.5698 -10.8123 -16.6209 -3.5826 -4.8709 -10.7863 -17.3695 3

while the remaining variables as unobserved/hidden and
compute the average log-probability of evidence (ELL) for
the entire sequence. We perform exact inference in DSPNss
and DAOCCNSs and use particle filtering with 500 particles
in CLDBNs, LSTMs and DCCNs.

The ELL scores are shown in Tables 1 and 2 for synthetic
and real world datasets respectively. DCNs in general have
higher ELL scores than other state-of-the-art models. This
outcome is expected as DCNs performed significantly bet-
ter than other models in terms of LL scores. Although
it was observed that DCCNs had higher LL scores than
DAOCCNS, approximate inference in DCCNs resulted in
lower ELL scores compared to DAOCCNs. Moreover, the
ELL scores of DAOCCNS are significantly higher than DC-
CNs and others as more variables are unobserved. LSTM
also does well in the modeling task but shows poor per-
formance in the inference task. We speculate that this is
because LSTMs use imputation methods which are known
to perform poorly in presence of multi-modal distributions.

6 Conclusion

In this work, we developed a tractable framework for mod-
eling temporal and sequential data called Dynamic Cutset
Networks. We demonstrated that while the tractability of
exact inference cannot be guaranteed for a transition distri-
bution modeled using arbitrary AND/OR graph structure,
efficient approximate inference can still be performed us-
ing particle filtering since the posterior probabilities can be
computed exactly. We then proposed a new conditional
model called dynamic AND/OR Conditional Cutset net-
works (DAOCCN) that incorporates certain constraints in
its structure which, in turn, allows for exact inference in
time that scales linearly in the size of the model. Finally,
we empirically evaluated our models on several synthetic
and real-world datasets. Our experiments clearly show the
promise and efficacy of our algorithms.

Future work includes developing online learning algo-
rithms; investigating the use of expectation propagation al-
gorithms when the dominance constraint is violated; de-
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veloping discriminative dynamic architectures; using our
framework to model spatio-temporal data; etc.
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