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Abstract

How reliably an automatic summarization001
evaluation metric replicates human judgments002
of summary quality is quantified by system-003
level correlations. We identify two ways in004
which the definition of the system-level cor-005
relation is inconsistent with how metrics are006
used to evaluate systems in practice and pro-007
pose changes to rectify this disconnect. First,008
we calculate the system score for an automatic009
metric using the full test set instead of the sub-010
set of summaries annotated by humans, which011
is currently standard practice. We demonstrate012
how this small change leads to more precise es-013
timates of system-level correlations. Second,014
we propose to calculate correlations only on015
pairs of systems which are separated by differ-016
ences in automatic scores that are commonly017
used to argue one system is of higher quality.018
This allows us to demonstrate that our best es-019
timate of the correlation of ROUGE to human020
judgments is near 0 in realistic scenarios. Fi-021
nally, the results from both analyses point to022
the need for future research to focus on devel-023
oping more consistent and reliable human eval-024
uations of summaries.1025

1 Introduction026

Automatic evaluation metrics are the most common027

method that researchers use to quickly and cheaply028

approximate how humans would annotate the qual-029

ity of a summarization system (Lin, 2004; Louis030

and Nenkova, 2013; Zhao et al., 2019; Zhang et al.,031

2020; Deutsch et al., 2021a, among others). The032

quality of a metric — how similarly it replicates033

human annotations of systems — is quantified by034

calculating the correlation between the metric’s035

scores and human judgments on a set of systems,036

known as the system-level correlation (Louis and037

Nenkova, 2013; Deutsch et al., 2021b).038

Accurately estimating system-level correlations039

is critically important. Summarization researchers040

1Our code will be released after publication.

use automatic metrics during system development 041

to make decisions about which ideas work and 042

which do not, and systems from different research 043

groups are ranked by automatic metrics to define 044

which system is the “state-of-the-art.” If we do not 045

have precise estimates of metric quality, it is not 046

clear how much trust the community should put in 047

such evaluation methodologies. 048

At present, there are disconnects between how 049

automatic metrics are evaluated and how they are 050

used to evaluate systems. First, the metrics’ scores 051

which are used in practice are not the ones which 052

are evaluated in system-level correlations: Re- 053

searchers compare systems based on metric scores 054

calculated on the entire test set but calculate scores 055

for system-level correlations when evaluating met- 056

rics on a much smaller subset of annotated sum- 057

maries. Second, metrics are evaluated in a setting 058

that is much easier than how they are actually used. 059

Metric correlations are calculated using systems 060

that vary greatly in quality, whereas researchers 061

compare new systems to recent work, which are 062

likely to be very close in quality. Discriminating 063

between two systems of similar quality is much 064

harder than doing so between low and high quality 065

systems. 066

In this work, we re-examine how system-level 067

correlations are calculated and propose two inde- 068

pendent changes to make the evaluation of metrics 069

better aligned to how they are actually used to eval- 070

uate systems. 071

First, we propose to modify the system-level 072

correlation definition to use the entire test set to 073

calculate the system scores for automatic metrics 074

instead of only the subset of summaries annotated 075

by humans (§3). With this change, the scores which 076

are used to compare systems are directly evaluated, 077

and we further demonstrate how the precision of 078

our estimate of system-level correlations improves 079

as a result. Calculating system scores over a larger 080

number of instances reduces the variance of the 081
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scores, which results in confidence intervals (CIs)082

for the correlations that are 16-51% more narrow083

on average (§3.2).084

Second, we redefine a high quality metric to be085

one for which a small difference in score reliably in-086

dicates a difference in quality (§4). Then, instead of087

calculating the correlation with all available system088

pairs, we only evaluate with pairs of systems whose089

automatic metric scores differ by some threshold.090

This allows us to show that a ROUGE-1 score dif-091

ference of less than 0.5 between systems has al-092

most no correlation to how humans would rank the093

same two systems according to our best estimates094

(§4.2). For two other metrics, BERTScore (Zhang095

et al., 2020) and QAEval (Deutsch et al., 2021a),096

we show their correlations calculated on system097

pairs of similar quality are much worse than under098

the standard correlation definition. These results099

cast doubt on how reliable automatic evaluation100

metrics are for measuring summarization system101

quality in realistic scenarios.102

Although our two proposed changes are indepen-103

dent from each another, our experiments using both104

modifications point to the same direction for future105

work: In order to have more accurate estimates106

of metric correlations and to have more trustwor-107

thy system evaluations, future research needs to108

focus on developing more consistent and reliable109

protocols for human evaluations of summaries.110

2 Background111

Automatic evaluation metrics are most commonly112

used to argue that one summarization system is113

better than another, typically by showing that the114

value of a metric improves with the “better” sys-115

tem. How similarly automatic metrics replicate116

human judgments of system quality is quantified117

by system-level correlations as follows.118

The summaries from N systems on Ma input119

documents are annotated by human judges Z and120

scored with an automatic metric X . Then, the121

system-level correlation between X and Z is cal-122

culated as123

rSYS = CORR



 1

Ma

Ma∑
j

xji ,
1

Ma

Ma∑
j

zji


N

i=1

124

where xji and zji are the scores of X and Z for125

the summary produced by the i-th system on the126

j-th input document and CORR is some correla-127

Figure 1: The system-level correlation is calculated be-
tween the average X and Z scores on a set of summa-
rization systems. xji and zji are the scores for the sum-
mary produced by system i (represented by rows) on
input document j (represented by columns).

tion function. See Fig. 1 for an illustration of this 128

calculation. 129

In this work, we use Kendall’s τ (the “b” vari- 130

ant2) as the correlation function because we are 131

most concerned with a metric’s ability to correctly 132

determine whether one system is better than an- 133

other since that is how metrics are used in practice. 134

Kendall’s τ is computed based on the number of 135

system pairs out of
(
N
2

)
which are ranked the same 136

by X and Z . It is defined as 137

τ =
P −Q√

(P +Q+ T ) · (P +Q+ U)
(1) 138

139

where P and Q are the number of pairs ranked the 140

same or different by X and Z , respectively, and 141

T and U are the number of ties only in X or Z , 142

respectively. 143

Because the computation of rSYS involves ran- 144

domness — its value depends on which Ma input 145

documents (and even which N systems) were used 146

— it is only an approximate of the true correla- 147

tion between X and Z . As such, Deutsch et al. 148

(2021b) proposed various methods for calculating 149

confidence intervals for rSYS. For instance, their 150

BOOT-INPUTS method uses bootstrapping to re- 151

peatedly resample the Ma input documents used 152

to calculate rSYS, thereby calculating a confidence 153

interval for the true rSYS value for X and Z . 154

Datasets The datasets that are used in this pa- 155

per’s analyses are SummEval (Fabbri et al., 2021) 156

and REALSumm (Bhandari et al., 2020), two 157

2https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
kendalltau.html
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recently collected datasets with human annota-158

tions for summary quality collected from the159

CNN/DailyMail dataset (Nallapati et al., 2016).160

SummEval has Ma = 100 summaries annotated161

with a summary relevance score for N = 16 sys-162

tems. REALSumm has Ma = 100 summaries an-163

notated with a Lightweight Pyramid score (Shapira164

et al., 2019) for N = 25 systems. We correlate165

the scores of the automatic metrics to these anno-166

tations. The CNN/DailyMail test split has 11, 490167

instances.168

Automatic Metrics Our experiments will an-169

alyze three different reference-based automatic170

evaluation metrics which were chosen because171

they were demonstrated to have the best corre-172

lations with human judgments on the SummEval173

and REALSumm datasets (Deutsch et al., 2021b).174

ROUGE-n (Lin, 2004) evaluates a generated sum-175

mary by calculating an F1 score on the number of n-176

grams it has in common with a human-written ref-177

erence summary. BERTScore (Zhang et al., 2020)178

aligns the generated and reference summaries’ to-179

kens based on their BERT embeddings (Devlin180

et al., 2019) and calculates a score based on the181

similarity of the aligned tokens’ embeddings. QA-182

Eval (Deutsch et al., 2021a) compares the two sum-183

maries by automatically generating questions from184

the reference and calculating what proportion of185

those questions are answered correctly by the gen-186

erated summary.187

3 Evaluating with All Available Instances188

Although the above definition of the system-level189

correlation has been used by recent meta-evaluation190

studies of metrics (Bhandari et al., 2020; Fabbri191

et al., 2021; Deutsch et al., 2021b), there is a dis-192

connect between how the automatic metrics are193

evaluated and how they are used in practice.194

Researchers who develop summarization sys-195

tems evaluate those systems with automatic metrics196

on all Mt test instances, not just the subset of Ma197

instances which were annotated by humans. Eval-198

uating a system on a larger number of summaries199

may end up changing the system’s score, which200

could potentially alter the overall ranking of a set201

of systems. Therefore, the rankings that are used202

by practitioners to determine system quality are not203

the ones which are being evaluated in the standard204

definition of system-level correlation.3205

3We suspect this methodology is an artifact of how system-
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Figure 2: The bootstrapped 95% confidence intervals
for the BERTScore of each system in the REALSumm
dataset using Ma annotated instances in blue and Mt

instances in orange. Evaluating systems with Mt in-
stances leads to far better estimate of their true scores.

To that end, we propose to modify the correlation 206

definition to use all Mt instances to calculate the 207

system scores for the automatic metrics. That is 208

(differences in bold): 209

rSYS = CORR



 1

Mt

Mt∑
j

xji ,
1

Ma

Ma∑
j

zji


N

i=1

 210

In practice with modern, large-scale datasets, this 211

minor change could mean estimating system qual- 212

ity based on ≈10k inputs instead of around 100. 213

This new definition now properly evaluates the way 214

metrics are actually used by researchers. 215

We expect that scoring systems with Mt inputs 216

instead of Ma should lead to a better estimate of 217

the true automatic metric score, which would in 218

turn result in a lower-variance estimate of the cor- 219

relation between X and Z in the form of smaller 220

confidence intervals for rSYS. In the next sections, 221

we carry out analyses to demonstrate that this is 222

true. 223

3.1 Reducing Automatic Metric Variance 224

First, we empirically show that scoring systems 225

with Mt instances instead of Ma does indeed re- 226

duce the variance of the estimate of the automatic 227

metric scores and subsequently increases the stabil- 228

ities of the system rankings. 229

Ideally, the X score for a system would be its 230

“oracle” X score, equal to the expected value of X 231

for a document sampled from the latent distribution 232

over documents defined by the dataset. Since this 233

cannot be calculated, it is approximated by aver- 234

aging the X score on a sample (i.e., either the Ma 235

or Mt input documents). Because Mt �Ma, we 236

level correlations were first calculated for summarization in the
DUC shared tasks when the dataset sizes were small enough
that Ma = Mt (Dang and Owczarzak, 2008, among others).
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Figure 3: Bootstrapped estimates of the stabilities of the system rankings for automatic metrics and human annota-
tions on SummEval (left) and REALSumm (right). The τ value quantifies how similar two system rankings would
be if they were computed with two random sets of M input documents. When all Mt test instances are used, the
automatic metrics’ rankings become near constant. The error regions represent ±1 standard deviation.

expect that the variance of this estimate using Mt237

inputs should be lower than when using Ma.238

To quantify this, we calculated the variance of es-239

timating the oracle X score using both Ma and Mt240

input documents via bootstrapping. We randomly241

sampled M input documents with replacement, re-242

computed the system scores, and calculated the243

variance of those scores over 1k iterations. For all244

three metrics on both datasets, we found around245

a 99% reduction in the variance when Mt inputs246

were used instead of Ma, clearly demonstrating247

that evaluating systems with Mt inputs results in a248

better estimate of the system scores. In Fig. 2, this249

is visualized for BERTScore on the REALSumm250

dataset.251

However, because we are interested in evaluat-252

ing the metrics’ rankings, we also quantify how253

much of an effect this reduction in variance has on254

the stability of the system rankings induced by X .255

Similarly to the system scores, there is an oracle256

ranking of systems for X , equal to the ordering of257

systems by their respective oracle X scores. As the258

variance of the system score estimates decreases,259

the computed ranking of systems should begin to260

converge to the oracle X ranking. We aim to under-261

stand to what extent this happens if Mt instances262

are used for evaluation instead of Ma.263

To quantify this notion, we calculate the264

Kendall’s τ between two system rankings for X265

that were based on two sets of M input documents,266

each sampled with replacement from the set of267

available documents. This simulates how much268

the system rankings would change if the evaluation269

procedure was run twice, each time with M ran-270

dom input documents. This quantity is calculated271

1k times for various values of M and plotted in272

Fig. 3. 273

As M approaches Mt, the automatic metrics’ τ 274

values approach 1, which is significantly higher 275

than the respective values at Ma, typically around 276

0.6-0.8. A value near 1 means that the rankings 277

calculated using Mt inputs are almost constant, 278

implying the rankings have converged to the oracle 279

ranking. Therefore, the reduction in variance from 280

evaluating on Mt instances does indeed greatly 281

stabilize the system rankings. 282

Fig. 3 also contains the same analysis performed 283

for the human judgments Z in both datasets, al- 284

though it is limited to a maximum of Ma input 285

documents. We see that on both datasets the judg- 286

ments’ rankings are still quite variable, reaching a 287

maximum of around 0.8-0.85 τ . 288

3.2 Confidence Interval Analysis 289

Next, we show that the improved estimate of sys- 290

tem scores leads to a more precise estimate of rSYS 291

by demonstrating the widths of the confidence in- 292

tervals for rSYS decrease. 293

The confidence intervals for rSYS calculated us- 294

ing bootstrapping methods proposed by Deutsch 295

et al. (2021b) are rather wide. For instance, the 296

95% CI for ROUGE-2 on SummEval is [−.09, .84], 297

demonstrating a rather high level of uncertainty in 298

its value. This is problematic because it means we 299

do not have a good picture of how reliable auto- 300

matic evaluation metrics are. Reducing the width 301

of the CIs will help us better understand the true 302

metric quality. 303

We suspect that the large width of the confidence 304

interval is due to the variance of the system rank- 305

ings of the automatic metrics and human judgments. 306

The more unstable the rankings are with respect to 307
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Figure 4: 95% confidence intervals for rSYS calculated
with the BOOT-INPUTS resampling method when the
system rankings for the automatic metrics are calcu-
lated using only the judged data (orange) versus the
entire test set (blue). Scoring systems with more sum-
maries leads to better (more narrow) estimates of rSYS.

theM inputs, the larger the variance of the estimate308

of rSYS should be since very different system rank-309

ings would be compared on each bootstrapping310

iteration. Deutsch et al. (2021b) used Ma input311

documents to calculate their CIs. Therefore, we ex-312

pect the improved stability of the automatic metric313

system rankings from evaluating on Mt instances314

should result in a more narrow confidence interval315

for rSYS since some noise has been removed from316

this computation.317

To demonstrate this, we calculated 95% CIs for318

rSYS using the BOOT-INPUT method on SummEval319

and REALSumm using both Ma and Mt input doc-320

uments, shown in Fig. 4. We find that the widths of321

the CIs shrank on average by 51% on SummEval322

and 16% on REALSumm. The largest decrease in323

width is in the ROUGE family of metrics on Summ-324

Eval, likely because that metric and dataset com-325

bination saw the biggest improvement in ranking326

stability (see Fig. 3). Thus, the improved estimate327

of the system scores did result in more precise esti-328

mates of rSYS. We repeated this analysis using the329

other bootstrapping methods proposed by Deutsch330

et al. (2021b), and the results are discussed in Ap-331

pendix A.332

3.3 Conclusions & Recommendations 333

By estimating system quality using automatic met- 334

rics on all available instances instead of only those 335

which were annotated, we showed that the vari- 336

ances of the system scores and subsequent rankings 337

reduce significantly, resulting in better estimates 338

of rSYS. Because this methodology additionally 339

directly evaluates the system scores used by re- 340

searchers, we recommend future work do the same. 341

In order to continue to improve the estimate of 342

rSYS, as much variance as possible needs to be re- 343

moved from the system rankings. Evaluating sys- 344

tems using Mt instances removed a large amount 345

of variance from the automatic metric rankings, but 346

as demonstrated in Fig. 3, the human annotations 347

still have a large amount of variance. 348

The human rankings’ variances can either be 349

reduced by annotating more summaries per system 350

or making the annotations more consistent. Since 351

the human rankings’ stabilities in Fig. 3 are mostly 352

beginning to plateau — especially for SummEval 353

— it may be prohibitively expensive to collect a 354

sufficient number of annotations to better stabilize 355

the rankings (Wei and Jia, 2021). Therefore, we 356

expect the more feasible solution is to improve the 357

consistency of the human annotations, for example 358

by better training the annotators or improving the 359

annotation interface. 360

4 Evaluating with Realistic System Pairs 361

Next, we argue that the set of systems used to eval- 362

uate metrics is not reflective of how metrics are 363

used in practice and propose a new system-level 364

correlation variant to address this problem. 365

4.1 Evaluating with All System Pairs 366

The N systems which are used for calculating 367

system-level correlations are typically those which 368

participated in a shared task, as in DUC/TAC (Dang 369

and Owczarzak, 2008, among others), or those 370

which have been published in the previous 3-4 371

years (Bhandari et al., 2020; Fabbri et al., 2021). 372

As such, they are typically rather diverse in terms of 373

their qualities, both as rated by human annotators 374

and automatic metrics. 375

The system scores of all of the systems in the 376

REALSumm dataset as evaluated by humans and 377

automatic metrics are shown in Fig. 5. Clearly, the 378

scores are rather diverse. For example, the systems 379

cluster into low, medium, and high quality groups 380

(with an additional outlier) as evaluated by ROUGE. 381
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Figure 5: The systems (each represented by a point)
on the two datasets (shown here for REALSumm) are
rather diverse in quality as measured by both human
judgments and automatic metrics.

A difference of around 5 ROUGE points between382

them is a rather large gap for ROUGE scores.383

The standard definition for a high quality eval-384

uation metric is one which correctly ranks a set385

of systems with respect to human judgments. As386

such, the implementation of the system-level corre-387

lation calculated with Kendall’s τ will rank all N388

systems according to the human annotations and an389

automatic metric, then count how many pairs were390

ranked the same out of all
(
N
2

)
pairs (see §2). As a391

consequence, even pairs of systems which are sepa-392

rated by a large margin according to the automatic393

metric — likely systems with a clear difference in394

quality — are included in the evaluation. There-395

fore, automatic metrics are rewarded for correctly396

ranking such “easy” system pairs.397

4.2 Evaluating with Realistic Pairs398

This standard evaluation setting does not reflect399

how summarization metrics are actually used by re-400

searchers. New systems are typically only slightly401

better than previous work. Based on a survey of402

summarization papers in *ACL conferences over403

the past few years, we found that the average im-404

provement over baseline/state-of-the-art models405

that was reported on the CNN/Dailymail dataset406

was on average 0.5 ROUGE-1. It is rarely the case407

that the improvement in automatic metrics is very408

large. Therefore, evaluating metrics using pairs409

of systems which are separated by a large margin410

does not reflect the reality that metrics are very411

frequently used to compare those separated by a412

small margin. Including “easy” system pairs in the413

system-level correlation likely overestimates the414

quality of the metrics in settings which occur in 415

practice. 416

To that extent, we redefine a high quality evalua- 417

tion metric to be one for which a small difference in 418

scores reliably indicates a difference in quality. We 419

quantify this by proposing a variant of the system- 420

level τ which is calculated between system pairs 421

which are separated by a pre-defined automatic met- 422

ric score margin. Instead of using all
(
N
2

)
system 423

pairs, only pairs whose difference in scores falls 424

within the margin are used to calculate the system- 425

level correlation. We denote this correlation variant 426

as rSYS∆(`, u) where ` and u are the lower- and 427

upper-bounds of the allowable differences in au- 428

tomatic metrics’ scores. This would enable, for 429

example, evaluating how well ROUGE correlates 430

to human annotations on system pairs that are sep- 431

arated by 0.0-0.5 ROUGE points, thereby directly 432

evaluating the scenario in which ROUGE is used 433

to make decisions about system quality. 434

In Fig. 6 we report the rSYS∆(`, u) correlations 435

for ` = 0.0 and various values of u on both the 436

SummEval and REALSumm datasets (more com- 437

binations of ` and u are included in Appendix B). 438

That is, we evaluate rSYS only on system pairs 439

which are separated by at most an automatic score 440

of u. The values of u were selected by picking the 441

minimum u which would result in evaluating on 442

10%, 20%, . . . , 100% of the
(
N
2

)
possible system 443

pairs closest in score to be consistent across all 444

three metrics. 445

The correlations for each metric on the system 446

pairs closest in score are far lower than the corre- 447

lations evaluated on all of the system pairs. For 448

instance, the correlation of BERTScore on Summ- 449

Eval with the closest 20% of system pairs (u ≈ 0.2) 450

is only 0.42 compared to 0.77 under the standard 451

definition of rSYS. Thus, it is clear that the metrics 452

are much less reliable approximations of human 453

judgments when the system scores are close than 454

was previously known. Evaluating on all possible 455

system pairs leads to an overly optimistic view of 456

automatic metric quality. 457

The rSYS∆(`, u) correlation of ROUGE for ` = 458

0.0 and u = 0.5 — a typical improvement reported 459

by researchers — is 0.08 and 0.0 on the Summ- 460

Eval and REALSumm datasets. Therefore, these 461

results suggest the most popular summarization 462

evaluation metric agrees with human judgments of 463

system quality in realistic scenarios only slightly 464

better than or equal to random chance. 465
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Figure 6: The rSYS∆(`, u) correlations on the SummEval (top) and REALSumm (bottom) datasets for ` = 0 and
various values of u (additional combinations of ` and u can be found in Appendix B). The u values were chosen to
select the 10%, 20%, . . . , 100% of the pairs of systems closest in score. Each u is displayed on the top of each plot.
For instance, 20% of the

(
N
2

)
system pairs on SummEval are separated by < 0.5 ROUGE-1, and the system-level

correlation on those pairs is around 0.08. As more systems are used in the correlation calculation, the allowable gap
in scores between system pairs increases, and are therefore likely easier to rank, resulting in higher correlations.

This result also offers an explanation for why a466

naive metric such as ROUGE achieves moderately467

strong correlations under the standard definition468

of the system-level correlation (0.45 and 0.73 on469

SummEval and REALSumm) despite well known470

flaws and criticisms (Passonneau et al., 2005; Con-471

roy and Dang, 2008; Deutsch and Roth, 2020,472

among others): It has benefited from an easy evalu-473

ation protocol. Despite its simplicity, it is not too474

surprising that a large gap of 5-10 ROUGE points475

actually does correctly rank system pairs. Most476

of its positive correlation comes from such easy477

examples.478

4.3 Conclusions & Recommendations479

One interpretation of the results in Fig. 6 is that480

the correlations in realistic settings are trending481

very low, meaning automatic metrics are not nearly482

sensitive enough to distinguish between systems483

with only minor differences in quality. This is484

problematic because this is the scenario in which485

metrics are most frequently used, and therefore486

they are not very reliable methods of evaluating487

summarization systems. However, it is not all bad488

news. Because the standard system-level τ values489

are moderately positive, consistent improvements490

in automatic metrics over time will likely result491

in better quality systems. Similarly to stochastic492

gradient descent, not every reported improvement493

is real, but on average over time, the quality does494

improve.495

A more conservative interpretation of these re-496

sults is that we cannot reach any definitive conclu- 497

sions about the actual correlation values from this 498

data because: (1) the available number of system 499

pairs to calculate these correlations is rather small 500

and (2) we may not have enough human annota- 501

tions to accurately distinguish between similarly 502

performing systems (Wei and Jia, 2021), so the 503

ground-truth judgments may not be reliable. Un- 504

fortunately, these are our best estimates of the cor- 505

relations with the available data. Not knowing how 506

much we can trust automatic metrics is not a good 507

outcome. 508

We recommend that proposals of new evaluation 509

metrics also report correlations on system pairs 510

with various differences in scores in addition to the 511

standard system-level correlation definition. Re- 512

porting this information would better inform users 513

of metrics about how likely humans would agree 514

their observed improvement is real based on its 515

value. 516

Future work should focus on improving the con- 517

sistency of human annotations, both to better esti- 518

mate the true system-level correlations and so they 519

may be the definitive method of evaluating systems 520

since automatic metrics may be unreliable. Finally, 521

new data collection efforts for metric evaluation 522

should consider collecting targeted pairwise judg- 523

ments between systems which are close in quality 524

to better evaluate realistic comparisons instead of 525

direct assessments across a variety of systems of 526

diverse quality. 527
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5 Related Work528

The methodology behind meta-evaluating summa-529

rization evaluation metrics was established during530

the DUC/TAC shared tasks (Dang and Owczarzak,531

2008, among others). In addition to competitions532

for developing high-quality summarization sys-533

tems, there were also shared tasks for creating534

automatic metrics that correlated well with hu-535

man judgments. The benchmark datasets created536

during DUC/TAC were small in size by today’s537

standards because they were manually collected538

multi-document summarization datasets, which are539

hard to create at scale. As such, all of the model-540

generated summaries on the full test set were anno-541

tated (soMa = Mt; §3), unlike for current datasets542

which are too large to fully annotate.543

Recently, there has been growing interest in re-544

visiting the meta-evaluation of automatic evalua-545

tion metrics for summarization, in part due to the546

large differences between currently popular sum-547

marization datasets and those used in DUC/TAC.548

We view our work as continuing this direction of549

research.550

Peyrard (2019) argues that current evaluation551

metrics do not work as well when they are used552

to evaluate high-performing systems compared to553

those which were evaluated in DUC/TAC.554

Both Fabbri et al. (2021) and Bhandari et al.555

(2020) re-evaluated how well existing evalua-556

tion metrics work on the popular CNN/DailyMail557

dataset (Nallapati et al., 2016) by collecting judg-558

ments of summary quality using recent state-of-559

the-art systems. These datasets were used in our560

analyses. While the goal of these works was to561

identify which metrics correlated best with human562

judgments, our goal is to point out the ways in563

which the current methodology of meta-evaluating564

metrics is inconsistent with how they are used.565

Then, the work of Deutsch et al. (2021b) pro-566

posed statistical methods for estimating and com-567

paring correlation values. In contrast to our work,568

they provide statistical tools for analyzing correla-569

tions, whereas we propose new definitions of cor-570

relations.571

Finally, Wei and Jia (2021) provided a theoreti-572

cal analysis of the bias and variance of automatic573

and human evaluations of machine translations574

and summaries. Among their conclusions, they575

argue for evaluating metrics with pairwise accu-576

racy (Kendall’s τ ) and that it may be prohibitively577

expensive to collect enough human annotations to578

distinguish between two systems with very simi- 579

lar quality. Our work further argues that metrics 580

should be evaluated with a variant of Kendall’s τ 581

calculated using realistic system pairs (§4). Unfor- 582

tunately, their results suggest that collecting enough 583

human annotations to accurately measure how well 584

automatic metrics perform in this setting may be 585

very difficult. 586

6 Conclusion 587

In this work, we proposed two independent changes 588

to how the system-level correlation of metrics is 589

calculated to better align with how they are used to 590

evaluate systems. Our analyses showed that these 591

modifications led to lower-variance estimates of 592

correlations and that commonly reported improve- 593

ments in metric scores may not reliably predict 594

how humans would annotate system quality. The 595

results from both analyses point to the need for 596

future work to develop more consistent and reliable 597

methods of manually annotating summary quality. 598
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A Additional Confidence Interval702

Results703

In addition to the BOOT-INPUTS CI method pro-704

posed by Deutsch et al. (2021b), the authors also705

proposed BOOT-SYSTEMS and BOOT-BOTH. Each706

of the three methods makes assumptions about707

whether the set of N systems and M input docu-708

ments are fixed or variable during the bootstrapping709

calculation. For instance, BOOT-INPUTS assumes710

the N systems are always the same and the M711

input documents are random, then subsequently re-712

samples M input documents on each bootstrapping713

iteration to calculate the confidence interval. BOOT-714

SYSTEMS does the opposite by resampling which715

N systems are used while holding the original M716

input documents fixed. BOOT-BOTH assumes both717

the systems and inputs are variable.718

Figures 7 and 8 contain the 95% CIs for ROUGE,719

BERTScore, and QAEval on the SummEval and720

REALSumm datasets using the BOOT-SYSTEMS721

and BOOT-BOTH methods calculated using all Mt722

test instances and only the Ma annotated instances723

(BOOT-INPUTS included in the main body of the724

paper, Fig. 4). The widths of the BOOT-BOTH CIs725

decreased by 14% and 12%, whereas the BOOT-726

SYSTEMS CIs only decreased by 1% and 6%.727

The BOOT-SYSTEMS widths likely decreased728

less because its estimation of rSYS is not dependent729

on the variance of the system score estimates. Since730

the set of M input documents is fixed, the system731

scores do not change at all during bootstrapping,732

so increasing the number of summaries used to733

estimate those scores should not have a major effect734

on the estimation of rSYS.735

B Additional rSYS∆(`, u) Results736

Fig. 9 contains the rSYS∆(`, u) correlations for737

ROUGE, BERTScore, and QAEval for various738

combinations of ` and u on both the SummEval739

and REALSumm datasets. The first rows of each740

heatmap are plotted in Fig. 6.741

We see that as the allowed score gap between742

system pairs is allowed to increase (i.e., adding743

“easier” pairs to rank), the correlation increases by744

a large margin over the correlation on pairs close745

in score. All of the metrics have nearly perfect746

correlation when the system pairs are separated by747

large margins.748
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Figure 7: The 95% CIs calculated using the BOOT-
SYSTEMS bootstrapping method with Ma summaries
in orange and Mt in blue.
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Figure 8: The 95% CIs calculated using the BOOT-
BOTH bootstrapping method with Ma summaries in or-
ange and Mt in blue.
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Figure 9: rSYS∆(`, u) correlations for various combinations of ` and u (see §4.2) for ROUGE (top), BERTScore
(middle), and QAEval (bottom) on SummEval (left) and REALSumm (right). The values of ` and uwere chosen so
that each value in the heatmaps evaluates on 10% more system pairs than the value to its left. For instance, the first
row evaluates on 10%, 20%, . . . , 100% of the system pairs. The second row evaluates on 10%, 20%, . . . , 90% of
the system pairs, never including the 10% of pairs which are closest in score. The first row of each of the heatmaps
is plotted in Fig. 6. The correlations on realistic score differences between systems are in the upper left portion of
the heatmaps and contain the lowest correlations overall. Evaluating on all pairs is the top-rightmost entry, and the
“easiest” pairs (those separated by a large score margin) are in the bottom right.
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