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Abstract

How reliably an automatic summarization
evaluation metric replicates human judgments
of summary quality is quantified by system-
level correlations. We identify two ways in
which the definition of the system-level cor-
relation is inconsistent with how metrics are
used to evaluate systems in practice and pro-
pose changes to rectify this disconnect. First,
we calculate the system score for an automatic
metric using the full test set instead of the sub-
set of summaries annotated by humans, which
is currently standard practice. We demonstrate
how this small change leads to more precise es-
timates of system-level correlations. Second,
we propose to calculate correlations only on
pairs of systems which are separated by differ-
ences in automatic scores that are commonly
used to argue one system is of higher quality.
This allows us to demonstrate that our best es-
timate of the correlation of ROUGE to human
judgments is near O in realistic scenarios. Fi-
nally, the results from both analyses point to
the need for future research to focus on devel-
oping more consistent and reliable human eval-
uations of summaries.'

1 Introduction

Automatic evaluation metrics are the most common
method that researchers use to quickly and cheaply
approximate how humans would annotate the qual-
ity of a summarization system (Lin, 2004; Louis
and Nenkova, 2013; Zhao et al., 2019; Zhang et al.,
2020; Deutsch et al., 2021a, among others). The
quality of a metric — how similarly it replicates
human annotations of systems — is quantified by
calculating the correlation between the metric’s
scores and human judgments on a set of systems,
known as the system-level correlation (Louis and
Nenkova, 2013; Deutsch et al., 2021b).
Accurately estimating system-level correlations
is critically important. Summarization researchers

'Our code will be released after publication.

use automatic metrics during system development
to make decisions about which ideas work and
which do not, and systems from different research
groups are ranked by automatic metrics to define
which system is the “state-of-the-art.” If we do not
have precise estimates of metric quality, it is not
clear how much trust the community should put in
such evaluation methodologies.

At present, there are disconnects between how
automatic metrics are evaluated and how they are
used to evaluate systems. First, the metrics’ scores
which are used in practice are not the ones which
are evaluated in system-level correlations: Re-
searchers compare systems based on metric scores
calculated on the entire test set but calculate scores
for system-level correlations when evaluating met-
rics on a much smaller subset of annotated sum-
maries. Second, metrics are evaluated in a setting
that is much easier than how they are actually used.
Metric correlations are calculated using systems
that vary greatly in quality, whereas researchers
compare new systems to recent work, which are
likely to be very close in quality. Discriminating
between two systems of similar quality is much
harder than doing so between low and high quality
systems.

In this work, we re-examine how system-level
correlations are calculated and propose two inde-
pendent changes to make the evaluation of metrics
better aligned to how they are actually used to eval-
uate systems.

First, we propose to modify the system-level
correlation definition to use the entire test set to
calculate the system scores for automatic metrics
instead of only the subset of summaries annotated
by humans (§3). With this change, the scores which
are used to compare systems are directly evaluated,
and we further demonstrate how the precision of
our estimate of system-level correlations improves
as a result. Calculating system scores over a larger
number of instances reduces the variance of the



scores, which results in confidence intervals (Cls)
for the correlations that are 16-51% more narrow
on average (§3.2).

Second, we redefine a high quality metric to be
one for which a small difference in score reliably in-
dicates a difference in quality (§4). Then, instead of
calculating the correlation with all available system
pairs, we only evaluate with pairs of systems whose
automatic metric scores differ by some threshold.
This allows us to show that a ROUGE-1 score dif-
ference of less than 0.5 between systems has al-
most no correlation to how humans would rank the
same two systems according to our best estimates
(§4.2). For two other metrics, BERTScore (Zhang
et al., 2020) and QAEval (Deutsch et al., 2021a),
we show their correlations calculated on system
pairs of similar quality are much worse than under
the standard correlation definition. These results
cast doubt on how reliable automatic evaluation
metrics are for measuring summarization system
quality in realistic scenarios.

Although our two proposed changes are indepen-
dent from each another, our experiments using both
modifications point to the same direction for future
work: In order to have more accurate estimates
of metric correlations and to have more trustwor-
thy system evaluations, future research needs to
focus on developing more consistent and reliable
protocols for human evaluations of summaries.

2 Background

Automatic evaluation metrics are most commonly
used to argue that one summarization system is
better than another, typically by showing that the
value of a metric improves with the “better” sys-
tem. How similarly automatic metrics replicate
human judgments of system quality is quantified
by system-level correlations as follows.

The summaries from N systems on M, input
documents are annotated by human judges Z and
scored with an automatic metric X. Then, the
system-level correlation between X and Z is cal-
culated as

N
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where :zi and zf are the scores of X and Z for
the summary produced by the ¢-th system on the
j-th input document and CORR is some correla-
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Figure 1: The system-level correlation is calculated be-
tween the average X' and Z scores on a set of summa-
rization systems. x} and z] are the scores for the sum-
mary produced by system ¢ (represented by rows) on
input document j (represented by columns).

tion function. See Fig. 1 for an illustration of this
calculation.

In this work, we use Kendall’s 7 (the “b” vari-
ant?) as the correlation function because we are
most concerned with a metric’s ability to correctly
determine whether one system is better than an-
other since that is how metrics are used in practice.
Kendall’s 7 is computed based on the number of
system pairs out of (%) which are ranked the same
by X and Z. It is defined as

P-Q

TP P1Q L) L

where P and () are the number of pairs ranked the
same or different by X’ and Z, respectively, and
T and U are the number of ties only in X or Z,
respectively.

Because the computation of rgys involves ran-
domness — its value depends on which M, input
documents (and even which NV systems) were used
— it is only an approximate of the true correla-
tion between X and Z. As such, Deutsch et al.
(2021b) proposed various methods for calculating
confidence intervals for rgys. For instance, their
BOOT-INPUTS method uses bootstrapping to re-
peatedly resample the M, input documents used
to calculate rgys, thereby calculating a confidence
interval for the true rgyg value for X and Z.

Datasets The datasets that are used in this pa-
per’s analyses are SummEval (Fabbri et al., 2021)
and REALSumm (Bhandari et al., 2020), two

https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
kendalltau.html
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recently collected datasets with human annota-
tions for summary quality collected from the
CNN/DailyMail dataset (Nallapati et al., 2016).
SummEval has M, = 100 summaries annotated
with a summary relevance score for N = 16 sys-
tems. REALSumm has M, = 100 summaries an-
notated with a Lightweight Pyramid score (Shapira
et al., 2019) for N = 25 systems. We correlate
the scores of the automatic metrics to these anno-
tations. The CNN/DailyMail test split has 11,490
instances.

Automatic Metrics Our experiments will an-
alyze three different reference-based automatic
evaluation metrics which were chosen because
they were demonstrated to have the best corre-
lations with human judgments on the SummEval
and REALSumm datasets (Deutsch et al., 2021b).
ROUGE-n (Lin, 2004) evaluates a generated sum-
mary by calculating an F; score on the number of n-
grams it has in common with a human-written ref-
erence summary. BERTScore (Zhang et al., 2020)
aligns the generated and reference summaries’ to-
kens based on their BERT embeddings (Devlin
et al., 2019) and calculates a score based on the
similarity of the aligned tokens’ embeddings. QA-
Eval (Deutsch et al., 2021a) compares the two sum-
maries by automatically generating questions from
the reference and calculating what proportion of
those questions are answered correctly by the gen-
erated summary.

3 Evaluating with All Available Instances

Although the above definition of the system-level
correlation has been used by recent meta-evaluation
studies of metrics (Bhandari et al., 2020; Fabbri
et al., 2021; Deutsch et al., 2021b), there is a dis-
connect between how the automatic metrics are
evaluated and how they are used in practice.

Researchers who develop summarization sys-
tems evaluate those systems with automatic metrics
on all M, test instances, not just the subset of M,
instances which were annotated by humans. Eval-
uating a system on a larger number of summaries
may end up changing the system’s score, which
could potentially alter the overall ranking of a set
of systems. Therefore, the rankings that are used
by practitioners to determine system quality are not
the ones which are being evaluated in the standard
definition of system-level correlation.’

3We suspect this methodology is an artifact of how system-
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Figure 2: The bootstrapped 95% confidence intervals
for the BERTScore of each system in the REALSumm
dataset using M, annotated instances in blue and M,
instances in orange. Evaluating systems with M; in-
stances leads to far better estimate of their true scores.

To that end, we propose to modify the correlation
definition to use all M; instances to calculate the
system scores for the automatic metrics. That is
(differences in bold):

N
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In practice with modern, large-scale datasets, this
minor change could mean estimating system qual-
ity based on ~10k inputs instead of around 100.
This new definition now properly evaluates the way
metrics are actually used by researchers.

We expect that scoring systems with M; inputs
instead of M, should lead to a better estimate of
the true automatic metric score, which would in
turn result in a lower-variance estimate of the cor-
relation between X and Z in the form of smaller
confidence intervals for rgyg. In the next sections,
we carry out analyses to demonstrate that this is
true.

3.1 Reducing Automatic Metric Variance

First, we empirically show that scoring systems
with M; instances instead of M, does indeed re-
duce the variance of the estimate of the automatic
metric scores and subsequently increases the stabil-
ities of the system rankings.

Ideally, the X score for a system would be its
“oracle” X score, equal to the expected value of X
for a document sampled from the latent distribution
over documents defined by the dataset. Since this
cannot be calculated, it is approximated by aver-
aging the X’ score on a sample (i.e., either the M,
or M; input documents). Because M; > M,, we
level correlations were first calculated for summarization in the

DUC shared tasks when the dataset sizes were small enough
that M, = M, (Dang and Owczarzak, 2008, among others).
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Figure 3: Bootstrapped estimates of the stabilities of the system rankings for automatic metrics and human annota-
tions on SummEval (left) and REALSumm (right). The 7 value quantifies how similar two system rankings would
be if they were computed with two random sets of M input documents. When all M, test instances are used, the
automatic metrics’ rankings become near constant. The error regions represent 1 standard deviation.

expect that the variance of this estimate using M;
inputs should be lower than when using M.

To quantify this, we calculated the variance of es-
timating the oracle X score using both M, and M,
input documents via bootstrapping. We randomly
sampled M input documents with replacement, re-
computed the system scores, and calculated the
variance of those scores over 1k iterations. For all
three metrics on both datasets, we found around
a 99% reduction in the variance when M, inputs
were used instead of M,, clearly demonstrating
that evaluating systems with M; inputs results in a
better estimate of the system scores. In Fig. 2, this
is visualized for BERTScore on the REALSumm
dataset.

However, because we are interested in evaluat-
ing the metrics’ rankings, we also quantify how
much of an effect this reduction in variance has on
the stability of the system rankings induced by X'.
Similarly to the system scores, there is an oracle
ranking of systems for X, equal to the ordering of
systems by their respective oracle X scores. As the
variance of the system score estimates decreases,
the computed ranking of systems should begin to
converge to the oracle X ranking. We aim to under-
stand to what extent this happens if M, instances
are used for evaluation instead of M,,.

To quantify this notion, we calculate the
Kendall’s 7 between two system rankings for X
that were based on two sets of M input documents,
each sampled with replacement from the set of
available documents. This simulates how much
the system rankings would change if the evaluation
procedure was run twice, each time with M ran-
dom input documents. This quantity is calculated
1k times for various values of M and plotted in

Fig. 3.

As M approaches My, the automatic metrics’ 7
values approach 1, which is significantly higher
than the respective values at M, typically around
0.6-0.8. A value near 1 means that the rankings
calculated using M; inputs are almost constant,
implying the rankings have converged to the oracle
ranking. Therefore, the reduction in variance from
evaluating on M; instances does indeed greatly
stabilize the system rankings.

Fig. 3 also contains the same analysis performed
for the human judgments Z in both datasets, al-
though it is limited to a maximum of M, input
documents. We see that on both datasets the judg-
ments’ rankings are still quite variable, reaching a
maximum of around 0.8-0.85 7.

3.2 Confidence Interval Analysis

Next, we show that the improved estimate of sys-
tem scores leads to a more precise estimate of rgyg
by demonstrating the widths of the confidence in-
tervals for rgys decrease.

The confidence intervals for rgyg calculated us-
ing bootstrapping methods proposed by Deutsch
et al. (2021b) are rather wide. For instance, the
95% CI for ROUGE-2 on SummEval is [—.09, .84],
demonstrating a rather high level of uncertainty in
its value. This is problematic because it means we
do not have a good picture of how reliable auto-
matic evaluation metrics are. Reducing the width
of the CIs will help us better understand the true
metric quality.

We suspect that the large width of the confidence
interval is due to the variance of the system rank-
ings of the automatic metrics and human judgments.
The more unstable the rankings are with respect to
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Figure 4: 95% confidence intervals for rgys calculated
with the BOOT-INPUTS resampling method when the
system rankings for the automatic metrics are calcu-
lated using only the judged data (orange) versus the
entire test set (blue). Scoring systems with more sum-
maries leads to better (more narrow) estimates of rgys.

the M inputs, the larger the variance of the estimate
of rgys should be since very different system rank-
ings would be compared on each bootstrapping
iteration. Deutsch et al. (2021b) used M, input
documents to calculate their Cls. Therefore, we ex-
pect the improved stability of the automatic metric
system rankings from evaluating on M; instances
should result in a more narrow confidence interval
for rgys since some noise has been removed from
this computation.

To demonstrate this, we calculated 95% Cls for
Tsys using the BOOT-INPUT method on SummEval
and REALSumm using both M, and M; input doc-
uments, shown in Fig. 4. We find that the widths of
the Cls shrank on average by 51% on SummEval
and 16% on REALSumm. The largest decrease in
width is in the ROUGE family of metrics on Summ-
Eval, likely because that metric and dataset com-
bination saw the biggest improvement in ranking
stability (see Fig. 3). Thus, the improved estimate
of the system scores did result in more precise esti-
mates of rsys. We repeated this analysis using the
other bootstrapping methods proposed by Deutsch
et al. (2021b), and the results are discussed in Ap-
pendix A.

3.3 Conclusions & Recommendations

By estimating system quality using automatic met-
rics on all available instances instead of only those
which were annotated, we showed that the vari-
ances of the system scores and subsequent rankings
reduce significantly, resulting in better estimates
of rgys. Because this methodology additionally
directly evaluates the system scores used by re-
searchers, we recommend future work do the same.

In order to continue to improve the estimate of
T'sys, as much variance as possible needs to be re-
moved from the system rankings. Evaluating sys-
tems using M; instances removed a large amount
of variance from the automatic metric rankings, but
as demonstrated in Fig. 3, the human annotations
still have a large amount of variance.

The human rankings’ variances can either be
reduced by annotating more summaries per system
or making the annotations more consistent. Since
the human rankings’ stabilities in Fig. 3 are mostly
beginning to plateau — especially for SummEval
— it may be prohibitively expensive to collect a
sufficient number of annotations to better stabilize
the rankings (Wei and Jia, 2021). Therefore, we
expect the more feasible solution is to improve the
consistency of the human annotations, for example
by better training the annotators or improving the
annotation interface.

4 Evaluating with Realistic System Pairs

Next, we argue that the set of systems used to eval-
uate metrics is not reflective of how metrics are
used in practice and propose a new system-level
correlation variant to address this problem.

4.1 Evaluating with All System Pairs

The N systems which are used for calculating
system-level correlations are typically those which
participated in a shared task, as in DUC/TAC (Dang
and Owczarzak, 2008, among others), or those
which have been published in the previous 3-4
years (Bhandari et al., 2020; Fabbri et al., 2021).
As such, they are typically rather diverse in terms of
their qualities, both as rated by human annotators
and automatic metrics.

The system scores of all of the systems in the
REALSumm dataset as evaluated by humans and
automatic metrics are shown in Fig. 5. Clearly, the
scores are rather diverse. For example, the systems
cluster into low, medium, and high quality groups
(with an additional outlier) as evaluated by ROUGE.
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Figure 5: The systems (each represented by a point)
on the two datasets (shown here for REALSumm) are
rather diverse in quality as measured by both human
judgments and automatic metrics.

A difference of around 5 ROUGE points between
them is a rather large gap for ROUGE scores.

The standard definition for a high quality eval-
uation metric is one which correctly ranks a set
of systems with respect to human judgments. As
such, the implementation of the system-level corre-
lation calculated with Kendall’s 7 will rank all N
systems according to the human annotations and an
automatic metric, then count how many pairs were
ranked the same out of all (];7 ) pairs (see §2). As a
consequence, even pairs of systems which are sepa-
rated by a large margin according to the automatic
metric — likely systems with a clear difference in
quality — are included in the evaluation. There-
fore, automatic metrics are rewarded for correctly
ranking such “easy” system pairs.

4.2 Evaluating with Realistic Pairs

This standard evaluation setting does not reflect
how summarization metrics are actually used by re-
searchers. New systems are typically only slightly
better than previous work. Based on a survey of
summarization papers in * ACL conferences over
the past few years, we found that the average im-
provement over baseline/state-of-the-art models
that was reported on the CNN/Dailymail dataset
was on average 0.5 ROUGE-1. It is rarely the case
that the improvement in automatic metrics is very
large. Therefore, evaluating metrics using pairs
of systems which are separated by a large margin
does not reflect the reality that metrics are very
frequently used to compare those separated by a
small margin. Including “easy” system pairs in the
system-level correlation likely overestimates the

quality of the metrics in settings which occur in
practice.

To that extent, we redefine a high quality evalua-
tion metric to be one for which a small difference in
scores reliably indicates a difference in quality. We
quantify this by proposing a variant of the system-
level T which is calculated between system pairs
which are separated by a pre-defined automatic met-
ric score margin. Instead of using all (];/ ) system
pairs, only pairs whose difference in scores falls
within the margin are used to calculate the system-
level correlation. We denote this correlation variant
as rsysA(¢, u) where ¢ and u are the lower- and
upper-bounds of the allowable differences in au-
tomatic metrics’ scores. This would enable, for
example, evaluating how well ROUGE correlates
to human annotations on system pairs that are sep-
arated by 0.0-0.5 ROUGE points, thereby directly
evaluating the scenario in which ROUGE is used
to make decisions about system quality.

In Fig. 6 we report the rsys A(¢, u) correlations
for £ = 0.0 and various values of u on both the
SummEval and REALSumm datasets (more com-
binations of £ and u are included in Appendix B).
That is, we evaluate rgys only on system pairs
which are separated by at most an automatic score
of w. The values of v were selected by picking the
minimum « which would result in evaluating on
10%, 20%, . .., 100% of the (g) possible system
pairs closest in score to be consistent across all
three metrics.

The correlations for each metric on the system
pairs closest in score are far lower than the corre-
lations evaluated on all of the system pairs. For
instance, the correlation of BERTScore on Summ-
Eval with the closest 20% of system pairs (u =~ 0.2)
is only 0.42 compared to 0.77 under the standard
definition of rgys. Thus, it is clear that the metrics
are much less reliable approximations of human
judgments when the system scores are close than
was previously known. Evaluating on all possible
system pairs leads to an overly optimistic view of
automatic metric quality.

The rsys A(¢, u) correlation of ROUGE for ¢ =
0.0 and v = 0.5 — a typical improvement reported
by researchers — is 0.08 and 0.0 on the Summ-
Eval and REALSumm datasets. Therefore, these
results suggest the most popular summarization
evaluation metric agrees with human judgments of
system quality in realistic scenarios only slightly
better than or equal to random chance.
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Figure 6: The 7rsysA(4, u) correlations on the SummEval (top) and REALSumm (bottom) datasets for £ = 0 and
various values of u (additional combinations of ¢ and u can be found in Appendix B). The u values were chosen to
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., 100% of the pairs of systems closest in score. Each u is displayed on the top of each plot.

For instance, 20% of the (]; ) system pairs on SummEval are separated by < 0.5 ROUGE-1, and the system-level
correlation on those pairs is around 0.08. As more systems are used in the correlation calculation, the allowable gap
in scores between system pairs increases, and are therefore likely easier to rank, resulting in higher correlations.

This result also offers an explanation for why a
naive metric such as ROUGE achieves moderately
strong correlations under the standard definition
of the system-level correlation (0.45 and 0.73 on
SummEval and REALSumm) despite well known
flaws and criticisms (Passonneau et al., 2005; Con-
roy and Dang, 2008; Deutsch and Roth, 2020,
among others): It has benefited from an easy evalu-
ation protocol. Despite its simplicity, it is not too
surprising that a large gap of 5-10 ROUGE points
actually does correctly rank system pairs. Most
of its positive correlation comes from such easy
examples.

4.3 Conclusions & Recommendations

One interpretation of the results in Fig. 6 is that
the correlations in realistic settings are trending
very low, meaning automatic metrics are not nearly
sensitive enough to distinguish between systems
with only minor differences in quality. This is
problematic because this is the scenario in which
metrics are most frequently used, and therefore
they are not very reliable methods of evaluating
summarization systems. However, it is not all bad
news. Because the standard system-level 7 values
are moderately positive, consistent improvements
in automatic metrics over time will likely result
in better quality systems. Similarly to stochastic
gradient descent, not every reported improvement
is real, but on average over time, the quality does
improve.

A more conservative interpretation of these re-

sults is that we cannot reach any definitive conclu-
sions about the actual correlation values from this
data because: (1) the available number of system
pairs to calculate these correlations is rather small
and (2) we may not have enough human annota-
tions to accurately distinguish between similarly
performing systems (Wei and Jia, 2021), so the
ground-truth judgments may not be reliable. Un-
fortunately, these are our best estimates of the cor-
relations with the available data. Not knowing how
much we can trust automatic metrics is not a good
outcome.

We recommend that proposals of new evaluation
metrics also report correlations on system pairs
with various differences in scores in addition to the
standard system-level correlation definition. Re-
porting this information would better inform users
of metrics about how likely humans would agree
their observed improvement is real based on its
value.

Future work should focus on improving the con-
sistency of human annotations, both to better esti-
mate the true system-level correlations and so they
may be the definitive method of evaluating systems
since automatic metrics may be unreliable. Finally,
new data collection efforts for metric evaluation
should consider collecting targeted pairwise judg-
ments between systems which are close in quality
to better evaluate realistic comparisons instead of
direct assessments across a variety of systems of
diverse quality.



5 Related Work

The methodology behind meta-evaluating summa-
rization evaluation metrics was established during
the DUC/TAC shared tasks (Dang and Owczarzak,
2008, among others). In addition to competitions
for developing high-quality summarization sys-
tems, there were also shared tasks for creating
automatic metrics that correlated well with hu-
man judgments. The benchmark datasets created
during DUC/TAC were small in size by today’s
standards because they were manually collected
multi-document summarization datasets, which are
hard to create at scale. As such, all of the model-
generated summaries on the full test set were anno-
tated (so M, = Mjy; §3), unlike for current datasets
which are too large to fully annotate.

Recently, there has been growing interest in re-
visiting the meta-evaluation of automatic evalua-
tion metrics for summarization, in part due to the
large differences between currently popular sum-
marization datasets and those used in DUC/TAC.
We view our work as continuing this direction of
research.

Peyrard (2019) argues that current evaluation
metrics do not work as well when they are used
to evaluate high-performing systems compared to
those which were evaluated in DUC/TAC.

Both Fabbri et al. (2021) and Bhandari et al.
(2020) re-evaluated how well existing evalua-
tion metrics work on the popular CNN/DailyMail
dataset (Nallapati et al., 2016) by collecting judg-
ments of summary quality using recent state-of-
the-art systems. These datasets were used in our
analyses. While the goal of these works was to
identify which metrics correlated best with human
judgments, our goal is to point out the ways in
which the current methodology of meta-evaluating
metrics is inconsistent with how they are used.

Then, the work of Deutsch et al. (2021b) pro-
posed statistical methods for estimating and com-
paring correlation values. In contrast to our work,
they provide statistical tools for analyzing correla-
tions, whereas we propose new definitions of cor-
relations.

Finally, Wei and Jia (2021) provided a theoreti-
cal analysis of the bias and variance of automatic
and human evaluations of machine translations
and summaries. Among their conclusions, they
argue for evaluating metrics with pairwise accu-
racy (Kendall’s 7) and that it may be prohibitively
expensive to collect enough human annotations to

distinguish between two systems with very simi-
lar quality. Our work further argues that metrics
should be evaluated with a variant of Kendall’s 7
calculated using realistic system pairs (§4). Unfor-
tunately, their results suggest that collecting enough
human annotations to accurately measure how well
automatic metrics perform in this setting may be
very difficult.

6 Conclusion

In this work, we proposed two independent changes
to how the system-level correlation of metrics is
calculated to better align with how they are used to
evaluate systems. Our analyses showed that these
modifications led to lower-variance estimates of
correlations and that commonly reported improve-
ments in metric scores may not reliably predict
how humans would annotate system quality. The
results from both analyses point to the need for
future work to develop more consistent and reliable
methods of manually annotating summary quality.
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A Additional Confidence Interval
Results

In addition to the BOOT-INPUTS CI method pro-
posed by Deutsch et al. (2021b), the authors also
proposed BOOT-SYSTEMS and BOOT-BOTH. Each
of the three methods makes assumptions about
whether the set of N systems and M input docu-
ments are fixed or variable during the bootstrapping
calculation. For instance, BOOT-INPUTS assumes
the N systems are always the same and the M
input documents are random, then subsequently re-
samples M input documents on each bootstrapping
iteration to calculate the confidence interval. BOOT-
SYSTEMS does the opposite by resampling which
N systems are used while holding the original M
input documents fixed. BOOT-BOTH assumes both
the systems and inputs are variable.

Figures 7 and 8 contain the 95% CIs for ROUGE,
BERTScore, and QAEval on the SummEval and
REALSumm datasets using the BOOT-SYSTEMS
and BOOT-BOTH methods calculated using all M;
test instances and only the M, annotated instances
(BOOT-INPUTS included in the main body of the
paper, Fig. 4). The widths of the BOOT-BOTH Cls
decreased by 14% and 12%, whereas the BOOT-
SYSTEMS Cls only decreased by 1% and 6%.

The BOOT-SYSTEMS widths likely decreased
less because its estimation of rgyg is not dependent
on the variance of the system score estimates. Since
the set of M input documents is fixed, the system
scores do not change at all during bootstrapping,
so increasing the number of summaries used to
estimate those scores should not have a major effect
on the estimation of rgys.

B Additional rgysA(/, u) Results

Fig. 9 contains the rgysA(¢,u) correlations for
ROUGE, BERTScore, and QAEval for various
combinations of ¢ and u on both the SummEval
and REALSumm datasets. The first rows of each
heatmap are plotted in Fig. 6.

We see that as the allowed score gap between
system pairs is allowed to increase (i.e., adding
“easier” pairs to rank), the correlation increases by
a large margin over the correlation on pairs close
in score. All of the metrics have nearly perfect
correlation when the system pairs are separated by
large margins.
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Figure 7: The 95% ClIs calculated using the BOOT-
SYSTEMS bootstrapping method with M, summaries
in orange and M, in blue.
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Figure 8: The 95% ClIs calculated using the BOOT-

BOTH bootstrapping method with M, summaries in or-
ange and M, in blue.
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Figure 9: r5ysA(¢, u) correlations for various combinations of ¢ and u (see §4.2) for ROUGE (top), BERTScore
(middle), and QAEval (bottom) on SummEval (left) and REALSumm (right). The values of ¢ and u were chosen so
that each value in the heatmaps evaluates on 10% more system pairs than the value to its left. For instance, the first
row evaluates on 10%, 20%, . .., 100% of the system pairs. The second row evaluates on 10%, 20%, . .., 90% of
the system pairs, never including the 10% of pairs which are closest in score. The first row of each of the heatmaps
is plotted in Fig. 6. The correlations on realistic score differences between systems are in the upper left portion of
the heatmaps and contain the lowest correlations overall. Evaluating on all pairs is the top-rightmost entry, and the
“easiest” pairs (those separated by a large score margin) are in the bottom right.
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