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Abstract

Structured pruning offers a viable approach to001
the local deployment of large language mod-002
els (LLMs) by reducing computational and003
memory overheads. Compared to unstructured004
pruning and quantization, structured pruning005
has the advantage of being recoverable, since006
the pruned model remains dense and high-007
precision rather than sparse or low-precision.008
However, achieving a high compression ra-009
tio for scaled-up LLMs remains a challenge,010
as the coarse-grained structured pruning poses011
large damage to the highly interconnected012
model. In this paper, we introduce TransAct,013
a task-agnostic structured pruning approach014
coupled with a compact architecture design.015
TransAct reduces transitional activations in-016
side multi-head attention (MHA) and multi-017
layer perceptron (MLP) modules, while pre-018
serving the inter-module activations that are019
sensitive to perturbations. Hence, the LLM is020
compressed into an intra-module low-rank ar-021
chitecture, significantly reducing weights and022
KV Cache. TransAct is implemented on the023
Llama2 model and evaluated on downstream024
benchmarks. Results verify the optimality of025
our approach at high compression with respect026
to both speed and performance. Furthermore,027
ablation studies revealed the strength of itera-028
tive pruning and provides insights on the re-029
dundancy of MHA and MLP modules.030

1 Introduction031

Deploying large language models (LLMs) locally032

on edge devices instead of relying on remote APIs033

has been a pressing initiative. Local deployment034

of LLMs ensures independence from network con-035

ditions and enhances privacy at an advanced level036

(Ma et al., 2023a). Nevertheless, deploying a037

scaled-up LLM onto a resource-constrained end038

device poses multifaceted challenges, encompass-039

ing inference speed, memory footprint, and power040

consumption. Therefore, comprehensive optimiza-041

Inter-module activations (sensitive) are preserved

Intra-module activations (insensitive) are pruned

MHA MLP

Smallest KV cache

All activations are pruned

MHA MLP

Smaller KV cache

TransAct
(ours)

Sheared-Llama
(Xia, et al., 2024)

activation
projection

Figure 1: An illustration of TransAct model structure.
The model weights and activations are colored green
and blue, respectively. Dashed hollow blocks represent
the weights and activations that are pruned out.

tions on the efficiency of LLMs are imperative, in- 042

cluding architecture design (Gu and Dao, 2023), 043

model compression (Zhu et al., 2023), inference 044

schemes (Leviathan et al., 2023; Cai et al., 2024), 045

compilation and runtime (Lai et al., 2023). 046

Model compression emerges as the silver-bullet 047

solution for reducing deployment costs given an 048

accessible LLM. To essentially reduce model com- 049

putation and memory overhead, pruning aims 050

to discard weights with low salience to the 051

LLM. Jaiswal et al. (2023) suggest that state-of- 052

the-art (SOTA) unstructured pruning approaches 053

i.e., SparseGPT (Frantar and Alistarh, 2023) and 054

Wanda (Sun et al., 2023), along with their semi- 055

structured variations, often underperform in down- 056

stream benchmarks. Zimmer et al. (2023) empha- 057

size the significance of post-training after pruning 058

to restore the capabilities of the LLM. However, 059

the post-training and inference of a sparse model 060

are notably inefficient. Also, an unstructured prun- 061

ing with arbitrary sparsity pattern has no speedup 062

or memory saving on the LLM, whereas a semi- 063
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structured sparse model heavily relies on specific064

hardware (Frantar and Alistarh, 2023).065

An alternative pruning category, i.e., structured066

pruning, has shown feasibility for LLMs. LLM-067

Pruner (Ma et al., 2023b), the pioneering struc-068

tured pruning of LLM, incorporates the approxi-069

mated Taylor series as the pruning metric. How-070

ever, this approximation loses accuracy when071

pruning a large ratio of the model (LeCun et al.,072

1989). While Taylor expansion assumes small per-073

turbations, it is not applicable when a large num-074

ber of parameters are pruned (i.e., set to zero). The075

SOTA approach Sheared-Llama (Xia et al., 2023),076

on the other hand, completely transfers the eval-077

uation of the pruning metric to supervised train-078

ing with masks. However, training with masks079

poses much more computation and memory foot-080

print at training time, as well as the training unsta-081

bleness. Also, the pruned architecture of Sheared-082

Llama, as illustrated in the upper part of Figure 1,083

involves the unified pruning of layer normalization084

(LN) weights, disregarding the varying sensitiv-085

ity of LN parameters to perturbation across layers086

(Zhao et al., 2023).087

To address the challenges of efficient and ef-088

fective LLM pruning, we propose TransAct, a089

transitional activation-based structured pruning ap-090

proach. From the perspective of pruning architec-091

tural design, TransAct reduces intra-module acti-092

vations, which prunes the MHA and MLP in LLM093

into low intrinsic dimension as depicted in Fig-094

ure 1. TransAct pruning metric is inspired by095

the observation of Dettmers et al. (2022) that a096

small proportion of activations within the LLM097

exhibit outlier magnitudes, rendering them partic-098

ularly sensitive to perturbations and need to be099

preserved. This approach effectively reduces the100

memory footprint of both model weights and KV101

cache, alleviating the memory constraints inher-102

ent in autoregressive generation on edge devices103

(Kwon et al., 2023). Specifically, the contributions104

of this paper are outlined as follows.105

• We propose a co-design of pruning archi-106

tecture and pruning metric named TransAct,107

which substantially compresses the KV cache108

as well as the model weights.109

• TransAct pruning architecture achieves the110

fastest inference speed among SOTA pruned111

models, while the pruning is efficient without112

gradients or masked training.113

• Experiment results on downstream bench- 114

marks verified the stableness of TransAct at a 115

high compression ratio. Ablation studies on 116

module redundancy provide insights for com- 117

pact model design. 118

2 Related Work 119

Extensive works have been proposed to optimize 120

the efficiency of Transformer-based LMs, cover- 121

ing pruning, quantization, dynamic acceleration, 122

etc. However, to generalize these approaches to 123

the continually scaling-up LLMs remains chal- 124

lenging. 125

Quantization, which reduces the bit representa- 126

tion of values, stands out due to its ease of im- 127

plementation. Post-training quantization (PTQ) 128

approaches, e.g., GPTQ (Frantar et al., 2022) 129

and AWQ (Lin et al., 2023), are without any 130

further tuning after the quantization. On the 131

contrary, quantization-aware training (QAT) ap- 132

proaches train the model along with the quantiza- 133

tion parameters and is still challenging when the 134

LLM is scaled up (Liu et al., 2023). Quantizing 135

an LLM from float16 to int3 with weight-only 136

PTQ approaches like GPTQ (Frantar et al., 2022) 137

can reach roughly 80% compression of model 138

weights. However, the KV cache which con- 139

tributes to a large amount of memory overheads 140

is still in float16 and uncompressed. Also, ob- 141

taining an acceptable quantization precision with 142

int3 weights remains a challenge. Xiao et al. 143

(2023) proposed a W8A8 PTQ approach where 144

both weights and activations are quantized to int8, 145

saving 50% memory footprint. The lack of flexi- 146

bility poses a significant limitation to quantization. 147

Most general computing platforms and libraries 148

primarily support low-bit representations such as 149

int8 and int4 (Nagel et al., 2021). However, opt- 150

ing for representations lower than 4 bits necessi- 151

tates dequantization back to the supported higher- 152

bit representations, thereby introducing additional 153

computation and memory overheads. 154

Apart from quantization, unstructured prun- 155

ing is also an efficient approach to obtain a 156

sparse LLM. Frantar and Alistarh (2023) and Sun 157

et al. (2023) enabled fully unstructured and semi- 158

structured N:M sparsity (i.e., N zeros in M con- 159

secutive weights) of LLM across different sizes. 160

However, there are two major obstacles hinder- 161

ing the adoption of unstructured sparsity. (1) The 162

pruned sparse LLM cannot be efficiently further 163

trained. Although Sun et al. (2023) claimed to use 164
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LoRA (Hu et al., 2022) to train the compressed165

model, the LoRA modules cannot be merged into166

the sparse backbone LLM, which incurs additional167

overhead at inference time. (2) The sparsity is168

fixed at 50% with current hardware and platform169

affinity. While only NVIDIA Ampere and Hopper170

GPUs support the 2:4 sparsity pattern, achieving171

customized sparsity requires hardware co-design172

(Fang et al., 2022). This limitation restricts the173

broader application of unstructured pruning.174

The approaches discussed above are static com-175

pression of LLM, where the computation at in-176

ference is fixed. On the contrary, dynamic ac-177

celeration at inference time speeds up LLM gen-178

eration by selective computation. Early exiting179

approaches (Schuster et al., 2022; Corro et al.,180

2023) allow the LLM to finish the decoding of a181

token without passing all the layers. Mixture-of-182

Expert (MoE) architecture (Jiang et al., 2024; Lep-183

ikhin et al., 2021) incorporates multiple parame-184

ter shards in MLP as experts and selects experts185

to compute when facing different inputs. The dy-186

namic approaches usually do not reduce parame-187

ters. Thus, the storage of the model is not re-188

duced, while the runtime memory can be saved by189

fine-grained neuron-aware offloading (Song et al.,190

2023).191

3 Methodology192

In this section, we first recap the preliminaries193

of Transformer-based LLM architecture and intro-194

duce the transitional activations. Then, we pro-195

pose our approach TransAct with the pruning met-196

ric and architecture design of the pruned model.197

3.1 Transitional Activations in LLM198

Transformer-based LLMs generally consist of199

embedding, MHA (multi-head attention), MLP200

(multi-layer perceptron), and LM head.201

The majority of model weights lie in MHA202

and MLP, which exist in every Transformer layer203

of the LLM. Specifically, MHA has three matri-204

ces WQ, WK , WV with the shape of H × A,205

and one matrix WO of the inverted. The MHA206

mechanism splits the output dimension A into207

An × Ad (i.e., head number by head dimension),208

which forms An logical attention heads. The in-209

put activation hl of the l-th layer is projected210

by
{
WQ

l
k,WK

l
k,WV

l
k

}An

k=1
and split into An211

groups of query, key, and value {qlk,k
l
k,v

l
k}

An
k=1.212

Then the multi-head self-attention computation is213

as 214

actA
l
k = Softmax(qlkk

l
k
⊺
/
√

Ad)v
l
k, (1) 215

where k is the attention head index counted from 1 216

to An, and l indicates the l-th layer. H ×Ad at the 217

superscript is the shape annotation of the weight 218

matrix. Then, the results are concatenated to shape 219

A and projected back to shape H by WO. 220

hA
l = Concat[actA

l
k]

An
k=1WO

lA×H
. (2) 221

As a bound between the group of WQ, WK , 222

WV and WO, we define actAl as the transitional 223

activation of MHA module. By default, the transi- 224

tional size A of MHA is the same as hidden dimen- 225

sion H , but A can be smaller than H by reducing 226

An or Ad in the case of pruning. 227

The other module, MLP, has a pair of upcast and 228

downcast phases. In the first phase, the input hid- 229

den state h is projected to a transitional state with 230

larger dimension P through WU and an optional 231

gate WG, the later phase consists of a downcast 232

WD that projects the transitional state back to the 233

original shape H . We consider WG exists and for- 234

mulate MLP as follows. 235

actP
l = σ(hA

lWG
lH×P

)⊙ (hA
lWU

lH×P
),
(3)

236

hP
l = actP

lWD
lP×H

. (4) 237

In case there is no optional gating in the model, 238

the σ function can be viewed as σ(·) ≡ 1. Similar 239

to the MHA module, we define actlP as the tran- 240

sitional activation of the MLP module at the l-th 241

layer. 242

3.2 Pruning with Transitional Activations 243

Based on the model structure, we identify the prun- 244

ing target as the following. (1) An, i.e., the num- 245

ber of attention heads in MHA. On the other hand, 246

Ad is kept intact, as reducing it incurs the adap- 247

tion of RoPE (rotary positional embedding) (Su 248

et al., 2024) used by a high quantity of LLMs 249

and increases the training unstableness. (2) P , 250

i.e., the transitional dimension of MLP. Studies 251

(Mirzadeh et al., 2023) indicate that, with an ac- 252

tivation function suppressing negative values, the 253

transitional state of MLP is with high redundancy. 254

It is worth mentioning that H , i.e., the hidden di- 255

mension throughout the model is not compressed. 256

We justify the reason as compressing H incurs 257

the unified pruning of layer normalization (LN) 258
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Figure 2: Detailed TransAct workflow on a Transformer layer in Llama. Bar charts indicate the activation-based
pruning metric.

weights across layers, whereas the sensitivity of259

LN parameters to perturbation is not unified across260

layers (Zhao et al., 2023). Although further train-261

ing can reconstruct the LN module from the dam-262

age of compressing, the significant training cost is263

contrary to efficiency.264

With the definition of transitional activations265

and the pruning objects, we propose the transi-266

tional activation-based pruning approach to com-267

press MHA and MLP modules into an intra-268

module low-rank architecture as depicted in Fig-269

ure 2. For the MHA module, we define the prun-270

ing granularity (i.e., the least separable structure)271

to be the attention head, in turn reducing An while272

keeping Ad intact. Such an attention head pruning273

is unified on WQ, WK and WV because the self-274

attention calculation, as formulated in Equation 1,275

requires the aligned head index among the three276

matrices. Then, we can define the salience of all277

heads in MHA as278

S lAk =
1

Ad

Ad∑
i=0

∥∥∥actAl
ki

∥∥∥
2
+ αmax

i

∥∥∥actAl
ki

∥∥∥
2
,

(5)

279

where α is a weight factor amplifying the maxi-280

mum activation value in the k-th head. By Equa-281

tion 5, we want to evaluate both the general and282

outlier values in the activations, so that we can pre-283

cisely prune out the most insignificant head. For284

MLP, we can simply use the corresponding value285

of actP to represent the salience of MLP transi-286

tional dimension as S lP i =
∥∥actP l

i

∥∥
2
.287

With the salience SA and SP formulated, we288

can model the activation-based structured pruning289

of a weight matrix W as290

prune(W ,K,S) = Concat[W i]i∈arg topK(S).

(6)
291

Specifically, the pruning dimension of WQ, WK , 292

WV , WG (optional) and WU is the output, while 293

the pruning dimension of WO and WD is the in- 294

put as depicted in Figure 2. 295

Obtaining the salience of the source LLM re- 296

quires only forward passes with a small amount 297

of calibration samples. Hence, the pruning pro- 298

cedure is efficient in both memory and compu- 299

tation. To avoid a single shot pruning to com- 300

pression ratio R posing unrecoverable damage to 301

the model, we provide an enhanced implementa- 302

tion where the model is iteratively pruned to the 303

target size. A set of pruning ratios is defined 304

as R = {r1, r2, · · · , rn}, where the i-th shot 305

prunes the model to the size of (A′
i, P

′
i ) subject 306

to
∑

ri∈R = R, and A′
i mod Ad = 0. During the 307

interval of two pruning steps, full fine-tuning (FT) 308

is performed on the model to recover the pruning 309

damage. The pipeline of TransAct is introduced in 310

Algorithm 1. 311

Algorithm 1 TransAct pruning and post-training

1: procedure EVAL_PRUNE(M, X, r)
2: actA,actP ←M(X)
3: for l ∈M.layers do
4: S lA,S lP ← salience(actA

l,actP
l)

5: for W i ∈ Al ∪ P l do
6: K ←

⌊
r × len(S li)

⌋
7: W ′ ← prune(W ,K,S li)
8: end for
9: end for

10: returnM
11: end procedure
12: for ri ∈ {r1, · · · rn} do
13: M← Eval_Prune(M, X, ri)
14: M← Full-FT(M)
15: end forreturnM
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4 Experimental Evaluation312

4.1 Experiment Setup313

Model and Datasets Settings In this paper, we314

select the representative Llama2-7B-base (Tou-315

vron et al., 2023) as the source model to prune, as316

its size is suitable for experiments and has shown317

important features of LLMs. We also use the318

pre-trained OPT-1.3B and OPT-2.7B (Zhang et al.,319

2022) as the baseline of the pruned models.320

We use subsets of RedPajama-V1 (Together321

Computer, 2023), a 1 trillion-token corpus, as the322

training dataset. Specifically, a subset of 800 mil-323

lion tokens are randomly sampled in the iterative324

pruning process, while 50 billion tokens are ran-325

domly sampled in post-training. For evaluation,326

we select held-out downstream tasks from Hug-327

gingface open LLM leaderboard1, Llama2 paper328

(Touvron et al., 2023), and Sheared-Llama pa-329

per (Xia et al., 2023). The tasks include zero-330

shot ARC-E (Clark et al., 2018), BoolQ (Clark331

et al., 2019), LogiQA (Liu et al., 2020), Open-332

bookQA (OBQA) (Mihaylov et al., 2018), PIQA333

(Bisk et al., 2020), SciQ (Welbl et al., 2017) and334

few-shot ARC-C (Clark et al., 2018), HellaSwag335

(Zellers et al., 2019), TriviaQA (Joshi et al., 2017),336

TruthfulQA (Lin et al., 2022) and WinoGrande337

(Sakaguchi et al., 2020). Details of the evaluation338

tasks can be found in Appendix A.339

Comparative Methods and Pruning Settings340

We compare the following baselines and methods.341

(1) Taylor expansion-based pruning. We repro-342

duced LLM-Pruner (Ma et al., 2023b) with the343

same size as our model. (2) Masked training-based344

pruning. We use the open-sourced Sheared-Llama-345

pruned (Xia et al., 2023) and post-trained by us.346

The size of each module is listed in Table 1. The347

reproduced LLM-Pruner is not listed in Table 1 as348

it has the same shape with TransAct.349

LLM-Pruner and TransAct are implemented in350

iterative pruning mode. Sheared-Llama is repro-351

duced without dynamic batch loading to expose352

the real performance of pruning without adding in-353

fluential factors of training. Our implementation354

is with DeepSpeed on 8 NVIDIA A100 80G GPU,355

while the sequence length is 4096. Please refer to356

Appendix B for more implementation details.357

1https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

4.2 Experiment Results 358

4.2.1 Speed and Memory Consumption 359

We deploy TransAct-2.5B and Sheared-Llama- 360

2.7B on a single NVIDIA A100 GPU using MLC- 361

LLM (team, 2023). The models are tested in 362

the original float16 precision and with int8 and 363

int4 weight-only quantization. We report the gen- 364

eration speed with a context of 1300 words and a 365

maximum sequence length of 4096. 366

As shown in Table 2, our architecture consumes 367

11% less memory than Sheared-Llama with a simi- 368

lar number of parameters, attributed to the reduced 369

size of KV cache. Notably, an NVIDIA A100 370

GPU has a significantly large memory bandwidth, 371

which makes the acceleration of TransAct archi- 372

tecture not obvious. However, reducing the KV 373

cache size is crucial on resource-constrained edge 374

devices. This importance stems from the conven- 375

tion that when deploying an LLM on edge de- 376

vices, weight-only quantization (W4A16) is pre- 377

ferred over activation quantization (W8A8). As 378

discussed in Section 2, model weights can be quan- 379

tized to 4 bits while activations are generally pre- 380

served in 16 bits. Hence, despite the small number 381

of the KV cache compared to model weights, the 382

memory footprint of the 16-bit KV cache is com- 383

parable to that of the 4-bit model weights with 4 384

times amplified. 385

4.2.2 Pruned Model Performance 386

The evaluation results of pruned models on held- 387

out benchmarks are listed in Table 3. On few- 388

shot tasks, TransAct-2.5B achieves the best per- 389

formance performance compared to SOTA ap- 390

proaches. TransAct exhibits a significant leap over 391

LLM-Pruner and Sheared-Llama on TriviaQA and 392

TruthfulQA, which evaluate the truthfulness and 393

world knowledge of the LLM. Whereas, the pre- 394

trained OPT models achieve the highest metric on 395

the two tasks although other abilities are inferior 396

to the pruned models. We interpret that Trans- 397

Act better preserved the world knowledge of the 398

original LLM, which is much harder than preserv- 399

ing language modeling and commonsense reason- 400

ing capabilities. At 80% compression, TransAct- 401

1.3B achieves 78.0% performance of Llama-7B 402

on average, addressing the effectiveness of Trans- 403

Act at highly compressed settings. Whereas LLM- 404

Pruner fails at most few-shot tasks. Thereby, we 405

address the inapplicability of structured pruning 406

with the Taylor expansion-based metric. LLMs 407
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Model Size
L H A P

∑
model

∑
KV cache

Llama2-7B 32 4096 32× 128 11008 6.74B 1073M

Sheared-Llama-2.7B 32 2560 20× 128 6912 2.70B (-60%) 671M (-38%)
TransAct-2.5B (ours) 32 4096 16× 128 3072 2.54B (-62%) 536M (-50%)
Sheared-Llama-1.3B 24 2048 16× 128 5504 1.35B (-80%) 403M (-63%)
TransAct-1.3B (ours) 32 4096 6× 128 1536 1.27B (-81%) 201M (-81%)

Table 1: Compressed models with different architectures. L is the number of layers and H is the dimension of
hidden states. A denotes the MHA size as An ×Ad, and the transitional size of MLP is P . KV cache is computed
with a sequence length of 4096 tokens. B and M stand for billion (109) and million (106), respectively.

Model Metrics fp16 int8-fp16 int4-fp16

Sheared-Llama-2.7B Speed (token/s) ↑ 78.5 96.4 101.0
Memory (MiB) ↓ 7258 5000 3704

TransAct-2.5B (ours) Speed (token/s) ↑ 83.4 101.9 105.3
Memory (MiB) ↓ 6544 4294 3082

Table 2: Generation speed tested on NVIDIA A100 with models compiled by MLC-LLM.

are fundamentally pre-trained on a large corpus408

to obtain world knowledge. However, the Taylor409

expansion-based metric, which guides the pruning410

by minimizing the approximated language model-411

ing loss on a small calibration set, fails to preserve412

knowledge and degrade the pruned LLM. Ampli-413

fying the calibration set by a significant order of414

magnitude is an intuitive solution. However, the415

computation of Jacobian and Hessian matrices of416

LLM weights on a large calibration set is enor-417

mous.418

Notably, the reproduced LLM-Pruner-2.5B419

with iterative pruning reaches 83.6% performance420

of the uncompressed Llama2-7B. Whereas in its421

original paper, the performance at 50% compres-422

sion ratio can barely reach 78% of the original423

model (Ma et al., 2023b). The results strengthen424

the necessity of iterative pruning at LLM struc-425

tured pruning. Specifically, iterative pruning is426

gradual and conservative at each step, lessening427

the approximation error of pruning metrics.428

Figure 3 illustrate the zero-shot LAMBADA429

language modeling performance at each check-430

point of the pruned model post-training. Although431

TransAct-2.5B has a clear advantage between 10b432

to 30b tokens trained, the gap between differ-433

ent pruning approaches diminishes as the pruned434

model is gradually recovered by post-training. No-435

tably, the result of LLM-Pruner-2.5B exhibits the436

lowest perplexity in Figure 3. However, it does not437

necessarily indicate the highest accuracy on LAM-438

BADA, nor the performance on other tasks.439

10 20 30 40 50
#Billion tokens

7.0

7.5

8.0

8.5

9.0

9.5
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pp
l
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0.52

0.53

0.54

0.55
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ac
c

TransAct-ppl
TransAct-acc

LLM-Pruner-ppl
LLM-Pruner-acc

Sheared-Llama-ppl
Sheared-Llama-acc

Figure 3: LAMBADA perplexity and accuracy on ev-
ery checkpoint of TransAct-2.5B, LLM-Pruner-2.5B
and Sheared-Llama-2.7B post-training.

4.2.3 Ablation Studies 440

We conduct a comprehensive evaluation of the 441

pruned LLM, considering factors of pruning shots, 442

calibration samples, and the pruning ratio of each 443

module. The findings provide insights for the fur- 444

ther development of compact LMs. 445

Impact of iterative pruning While LLM- 446

Pruner has demonstrated a close performance gap 447

to the original model at a moderate ratio of 20%, 448

the significant performance degradation observed 449

at over 50% pruned is far from acceptable in the 450

original implementation (Ma et al., 2023b). How- 451

ever, the results in Table 3 indicate that LLM- 452

Pruner achieves comparable performance to the 453

SOTA approach Sheared-Llama even at a compres- 454
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Model ARC-E BoolQ LogiQA OBQA PIQA SciQ

Llama2-7B 74.4 80.7 30.4 43.8 76.7 94.7

OPT-2.7B 60.8 60.4 25.7 35.2 74.5 85.9
Sheared-Llama-2.7B† 66.8 66.0 28.1 38.6 76.9 89.9
LLM-Pruner-2.5B∗ 67.0 65.9 27.7 38.8 77.1 90.1

TransAct-2.5B (ours) 65.5 66.3 27.9 38.2 76.9 91.0
OPT-1.3B 57.1 57.7 27.0 33.4 72.4 84.4

Sheared-Llama-1.3B† 59.3 61.6 27.5 33.0 74.2 85.8
LLM-Pruner-1.3B∗ 60.0 59.5 28.7 35.2 73.6 86.1

TransAct-1.3B (ours) 57.4 63.4 27.5 33.8 74.4 86.7

Model ARC-C HellaSwag TriviaQA TruthfulQA WinoGrande Average(25) (10) (5) ∗∗ (5)

Llama2-7B 53.4 78.6 55.1 44.6 72.3 64.1

OPT-2.7B 34.0 61.4 23.7 37.6 61.7 51.0
Sheared-Llama-2.7B† 40.0 71.0 21.2 32.0 65.0 54.1
LLM-Pruner-2.5B∗ 38.6 70.8 17.3 32.9 63.6 53.6

TransAct-2.5B (ours) 38.9 71.2 33.9 33.6 65.5 55.3
OPT-1.3B 29.7 54.6 16.7 38.7 60.0 48.3

Sheared-Llama-1.3B† 30.3 62.6 14.0 34.1 59.3 49.2
LLM-Pruner-1.3B∗ 30.3 59.0 7.9 35.9 56.4 48.4

TransAct-1.3B (ours) 32.2 59.9 18.4 39.6 56.5 50.0

Table 3: Results on standard evaluation benchmarks with 50 billion tokens for post-training. Llama2-7B is the
source model used as the baseline. Results of LLM-Pruner∗ are reproduced by us with the same training setting,
while Sheared-Llama† models are post-trained without data selection. (n) below task name indicates n-shots eval-
uation. Note that TruthfulQA∗∗ prepends 6 examples even in the zero-shot setting. The best results are in bold.

sion ratio of 85%. This achievement can be at-455

tributed to our iterative implementation of prun-456

ing.457

To further verify the effectiveness of iterative458

pruning, we conduct experiments on LLM-Pruner-459

2.5B and TransAct-2.5B with different numbers460

of pruning shots. Specifically, we explore prun-461

ing shots ranging from {1, 2, 4, 8, 16}. Except462

for single-shot pruning, all others have a total of463

800 million tokens throughout the iterative prun-464

ing stage. After the final pruning, all models465

undergo full fine-tuning with 200 million tokens.466

Sheared-Llama is considered an ∞-shot pruning467

approach with all the parameters trained and is not468

compared.469

Results in Figure 4 indicate the relationship be-470

tween pruning shots and performance on LAM-471

BADA language modeling. Although iterative472

pruning is beneficial, the pruning shots need to be473

controlled with a total number of tokens is fixed.474

The performance of 2.5B models degrades when475

the pruning shot is increased from 4 to 8. The ratio-476

nale of this phenomenon is that when training is in-477

sufficient between two pruning shots, the pruning478

would be misguided and the pruned model would479

exhibit a degradation. Whereas, for 1.3B models, 480

the performance exhibits a slight degradation at 16 481

shots, indicating the benefit of increased shots has 482

not yet been overwhelmed by the insufficiency of 483

training data. LLM-Pruner has a slight advantage 484

over TransAct at 16 shots pruning, as fewer param- 485

eters pruned at each shot reduce the approximation 486

error of loss with Taylor expansion. 487
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Figure 4: LAMBADA perplexity and accuracy on mod-
els with different numbers of pruning shots.

Impact of calibration samples To evaluate the 488

sensitivity of pruning methods to calibration sam- 489

ples used in the pruning process, we conduct 490

single-shot pruning experiments on different num- 491

bers of calibration samples. 200 million tokens are 492
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used for the restoration after pruning.493

The results in Figure 5 indicate that increasing494

the sample size can bring gains, but the marginal495

benefits decrease after increasing to 128 samples.496

When leveraging 256 samples, the performance of497

both TransAct and LLM-Pruner degrade. Also,498

the degradation trend is more obvious on LLM-499

Pruner than on TransAct. We attribute this to early500

overfitting of calibration samples, where the prun-501

ing guided by Taylor expansion of loss quickly502

overfits on the calibration set, and the calibration503

samples are not large enough to exhibit diversity.504

As pruning is efficient in our implementation, we505

prefer using 128 samples for the pruning metric,506

which can be computed in less than 1 minute on a507

single A100 GPU to prune Llama2-7B.508
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Figure 5: LAMBADA perplexity and accuracy on mod-
els with different numbers of calibration samples.

Analysis on module redundency To help future509

compact model design, we conduct experiments510

on different compression ratios. After single-shot511

pruning with TransAct and post-training on 200512

million tokens, the accuracy of LAMBADA lan-513

guage modeling is evaluated. Specifically, us-514

ing the shape of our TransAct-2.5B as the cen-515

ter point, we vary the MHA size A ranged from516

{512, 1280, 2048, 2816, 3584} and the MLP size517

P ranged from {1024, 2048, 3072, 4096, 5120}.518

These configurations resulted in 25 distinct mod-519

els obtained by pairwise combinations. Notably,520

the 25 models are organized into 9 groups, each521

containing an equal number of parameters. These522

groups are visually distinguished by color in Fig-523

ure 6.524

The results presented in Figure 6 reveal a clear525

trend that, the models at the center exhibit the best526

performance within each group, and in some cases,527

even surpass models of larger sizes. For instance,528

the combination of 2048A-3072P (i.e., TransAct-529

2.5B) model surpasses both 3584A-2048P and530

1280A-5120P (2.9B) models. Also, when prun-531

ing the MHA intermediate size to 512, the perfor-532

mance drops to the worst within each group. We 533

interpret that MHA functions as the crucial mod- 534

ule of Transformer-based LLMs while MLP has 535

a larger redundancy that can be compressed. Fur- 536

ther, the findings indicate that models with a uni- 537

form MHA and MLP size generally outperform 538

the others. For 2048A-3072P, an MHA module 539

has 33.5 million parameters and an MLP module 540

has 37.7 million parameters. On the contrary, ex- 541

treme pruning of either MHA or MLP alone leads 542

to severe performance degradation. Hence, the col- 543

laborative compression of both MHA and MLP is 544

encouraged. 545
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4096
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MHA inter size A 512
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ac
c
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Figure 6: LAMBADA accuracy on 25 pruned models
with different architectures. Bars with the same color
indicate models with the same number of parameters.

5 Conclusion 546

In this paper, we introduce TransAct, an effec- 547

tive and efficient pruning approach coupled with 548

an architecture designed for pruned LLMs. Trans- 549

Act compresses the original LLM into a compact 550

dense model with an intra-module low-rank struc- 551

ture, achieving the fastest inference speed com- 552

pared to models of similar sizes. To identify the 553

dimensions to preserve, we investigate the transi- 554

tional activations at the low-rank bottleneck and 555

use their magnitudes as the pruning metric. Exper- 556

iments on downstream benchmarks demonstrate 557

the strength of our approach, particularly at high 558

compression rates. Also, we thoroughly evaluated 559

the pruned LLM with respect to calibration sam- 560

ples, pruning ratio, and pruning shots. The results 561

provide valuable insights for the further develop- 562

ment of compact LMs. 563

8



Limitations564

Although InterAct is found effective in the experi-565

ments, some points are not fully covered in this pa-566

per. We list the limitations and future directions as567

follows. (1) InterAct is a static pruning approach568

where the computation of the pruned LLM is irrel-569

vant to input instances. However, recent research570

progress in MoE (Jiang et al., 2024) indicates that571

dynamically compressed models are model power-572

ful than statically compressed ones. Hence, a prun-573

ing approach integrating static and dynamic com-574

pression with approporate ratio can be further stud-575

ied. (2) InterAct is targeted to Transformer-based576

LLMs. Different architectures including RWKV577

(Peng et al., 2023), Mamba (Gu and Dao, 2023)578

are not yet investigated. (3) The pruning of Inter-579

Act is conducted on base models, and further align-580

ment is needed before the pruned model can be581

used in human-computer interaction. Structurally582

pruning a human-aligned LLM still remains chal-583

lenging.584
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Task
Used by

#samples #shots Metric
(1) (2) (3)

ARC-C (Clark et al., 2018) ✓ ✓ ✓ 1172 25 acc_norm
ARC-E (Clark et al., 2018) ✓ ✓ 2376 - acc
BoolQ (Clark et al., 2019) ✓ ✓ 3270 - acc

HellaSwag (Zellers et al., 2019) ✓ ✓ ✓ 10042 10 acc_norm
LAMBADA (Paperno et al., 2016) ✓ 5153 - ppl & acc

LogiQA (Liu et al., 2020) ✓ ✓ 651 - acc_norm
OBQA (Mihaylov et al., 2018) ✓ 500 - acc_norm

PIQA (Bisk et al., 2020) ✓ ✓ 1838 - acc_norm
SciQ (Welbl et al., 2017) ✓ 1000 - acc

TriviaQA (Joshi et al., 2017) ✓ 11313 5 em
TruthfulQA (Lin et al., 2022) ✓ ✓ 817 * mc2

WinoGrande (Sakaguchi et al., 2020) ✓ ✓ ✓ 1267 5 acc

Table 4: Details of evaluation tasks. (1), (2) and (3) refer to Open LLM Leaderboard, Llama2 paper and Sheared-
Llama paper, respectively. TruthfulQA prepends 6 examples even in zero-shot setting.

Argument Value

Length 4096
N GPUs 8

Global batch size 64
Optimizer AdamW
β1, β2 0.9, 0.95

Learning rate 5e-5
Learning rate schelduler Cosine

Warmup 0.03
Data type bfloat16

DeepSpeed Zero-2
Attention implementation FlashAttention2

Table 5: Details of training arguments.
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