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Abstract
Memory replay, also known as experience001
rehearsal, is a mainstream method to retain002
knowledge in continual learning (CL), espe-003
cially in NLP. Recently, meta-learning has004
been introduced to augment memory replay.005
It serves to enable efficient knowledge trans-006
fer, thereby alleviating catastrophic forgetting.007
However, memory replay is often episodic to008
avoid over-fitting to past samples. Its sparse oc-009
currence also limits the convergence of model010
on past samples, especially in low resource sce-011
narios. This paper aims to fully exploit the012
potential of meta-learning. We study the feasi-013
bility of solely using meta-learning to solve014
lifelong language learning. We propose an015
optimization-based meta-learning framework016
for CL in accordance with MAML. In particu-017
lar, we edit query information for meta-learning018
via a prototypical network. The meta-objective019
is modified to depict a CL scenario. We con-020
duct extensive experiments on benchmark text021
classification datasets. The results testify the022
superiority of our method in terms of forget-023
ting mitigation, fast adaptation and memory024
efficiency in a low resource NLP scenario.025

1 Introduction026

Existing continual learning (CL) algorithms up-027

date model parameters whenever a new task arrives.028

The important information from earlier tasks can029

be easily erased or overwritten when the data distri-030

bution shifts. Consequently, catastrophic forgetting031

(McCloskey and Cohen, 1989) occurs and harms032

performance on preceding tasks. Especially for033

language models, the number of parameters in a034

language model is usually huge. A small change in035

parameter space could impact model output unex-036

pectedly (Wang et al., 2019). Hence, replaying past037

examples is the mainstream approach for lifelong038

language learning. However, existing replay-based039

methods not only easily over-fit to past samples040

(Zhao et al., 2022), but also cause under-fitting041

problem on low resource tasks.042

Meta-learning can enable efficient knowledge 043

transfer. Recently, it has been introduced as a 044

learning framework for CL. Mostly, meta-learning 045

serves to perform efficient knowledge transfer via 046

fast adaptation and facilitate memory replay. Mem- 047

ory replay is often episodic to avoid over-fitting 048

problem. This episodic nature is unfavourable for 049

cross-domain fast adaptation when training exam- 050

ples are insufficient and memory budget for past 051

samples is small. 052

To address this dilemma, we propose a method to 053

solve low resource CL problems, namely MAML- 054

CL. Specifically, we use Model-Agnostic Meta- 055

Learning (MAML) (Finn et al., 2017) as our meta- 056

learning framework. We argue that meta-learning 057

can solve CL problems without episodic mem- 058

ory replay. The mainstream CL methods limit 059

the change of non-trivial weights or parameters, 060

hereby retaining knowledge. In meta-learning, the 061

variation on parameter space is restricted by meta- 062

objective. We use a prototypical network to select 063

representative past examples for query set. It mod- 064

ifies the meta-objective and controls the learning 065

process on the new task, thereby ameliorating catas- 066

trophic forgetting. 067

We conduct extensive experiments on CL bench- 068

mark datasets from (Zhang et al., 2015), popular- 069

ized by (de Masson d’Autume et al., 2019) in life- 070

long language learning. This collection of datasets 071

includes text classification datasets from diverse 072

domains. We reduce the size of the training set 073

for each task to its 10%, i.e., 11,500 per task. We 074

demonstrate our method’s robustness to forgetting 075

mitigation, fast adaptation and memory efficiency 076

in a low-resource scenario. 077

The contributions of this work are threefold: 078

(1) Our method validates the feasibility of using 079

meta-learning without sparse experience replay, the 080

mainstream lifelong language learning approach; 081

(2) We design a prototypical query example edit- 082

ing method to adapt the meta-objective to a CL 083
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scenario. Our method addresses low resource CL084

problems. It well-preserves fast adaptation abil-085

ity of meta-learning while avoiding catastrophic086

forgetting; (3) We perform extensive experiments087

in a low resource scenario. The results testify the088

superiority of our method on forgetting mitigation,089

fast adaptation and memory efficiency.090

2 Related Work091

Robust continual learning aims to guarantee the092

stability of handling various tasks, while showing093

plasticity on a novel domain. Existing approaches094

can be categorised into two main mainstreams, i.e.,095

regularization-based methods (Kirkpatrick et al.,096

2016; Li and Hoiem, 2016; Zenke et al., 2017) and097

replay-based methods (Wang et al., 2019, 2020;098

Chaudhry et al., 2019; Sun et al., 2019). In general,099

regularization-based methods retain the updates of100

non-trivial parameters or weights by adding con-101

straints or penalty. Generally, language models102

are deep learning networks. Given the complex-103

ity of deep learning models, memory replay-based104

approaches are broadly considered as a plausible105

approach for lifelong language learning.106

Replay-based methods save a certain amount107

of previous training data and retrieval them while108

training for a novel domain. Many models used109

random selection strategy to select or save past110

examples. But it always failed to consider sam-111

ple efficiency. Recent replay-based methods112

utilised episodic memory replay with a 1% replay113

rate. It was first proposed in MbPA++ (de Mas-114

son d’Autume et al., 2019). MbPA++ retrieved K115

nearest neighbours via Euclidean distance function116

for local adaptation, which is expensive in its infer-117

ence process. To address this problem, (Holla et al.,118

2020) introduced a replay frequency to harness the119

replay sparseness in terms of time and size. Nev-120

ertheless, they neglected memory constraints. The121

size of occupied memory is explosively expanding122

with the increase of training samples.123

Meta-learning in CL. Recently, meta-learning124

has been introduced into CL models, considering125

its ability of fast adaptation and knowledge transfer.126

Recent works employed MAML (Finn et al., 2017)127

to improve initial parameters. It can fast adapt to128

various domains with few learning samples. Meta-129

MbPA (Wang et al., 2020) performed local adapta-130

tion with episodic memory and used MAML to find131

a better initialized state for local adaptation. OML-132

ER (Holla et al., 2020) and ANML-ER (Holla et al.,133

2020) utilised an online meta-learning model and 134

a neuromodulated meta-learning respectively for 135

fast adaptation, augmented with sparse experience 136

replay. Additionally, some CL models used Reptile 137

(Nichol et al., 2018) as their meta-learning algo- 138

rithms. MER (Riemer et al., 2019) regularized the 139

objective of experience replay via a modified Rep- 140

tile (Nichol et al., 2018) algorithm and memory 141

replay module. MLLRE (Obamuyide and Vlachos, 142

2019) also adopted Reptile to meta updates param- 143

eters via augmented training set. 144

3 Problem Formulation 145

3.1 Continual Learning 146

In a basic CL setup, the learner ingests a stream of 147

training examples. We assume the training stream 148

consists of K tasks, {T1, T2, ..., TK}, in an ordered 149

sequence. Given the latest task TK and a CL learner 150

fθK , the objectives are: (a) to finetune parameter 151

set θK over a parameter space Θ, such that the task 152

objective LTK is minimal. That is, 153

θ̃K = arg min
θK∈Θ

LTK (θK) (1) 154

(b) to perform well with the learned parameter set 155

θ̃K on all preceding tasks {T1, T2, ..., TK−1} with- 156

out using the past training sets. Assuming that all 157

tasks are equally important, the overall objective 158

is to minimise the expected risk of all seen tasks, 159

{T1, T2, ..., TK}, as: 160

min
θ̃K

K∑
k=1

ETk [LTk(θ̃K)] (2) 161

A replay-based method allows the model to re- 162

tain a certain amount of past instances. Typically, 163

the basic CL setup allows the memory buffer size 164

to a constant B, where the amount of past training 165

data in memory should not exceed B. 166

In this paper, we consider a popular scenario of 167

continual learning, i.e., class-incremental learning 168

(CIL), where task identity information is not pro- 169

vided in inference, and a single classifier is for all 170

classes. We leverage cross entropy loss LCE as the 171

loss of a task Tk as, 172

LTk(θ) = LCE(x,y; θ)

= −
|Dk|∑
j=1

Nk∑
i=1

yji log(σ(fθ(xj))i)
(3) 173

where k is the task index, Dk ⊆ Dk
train, Dk

train is 174

the ground truth label set of Tk, Nk is the number 175
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of classes in Tk and σ is the activation function176

(e.g., sigmoid or softmax).177

3.2 Meta-learning178

Model agnostic meta-learning (MAML) (Finn179

et al., 2017) algorithm is known as “think in ad-180

vance" by learning an optimal initial state of an181

algorithm. We assume a task T and a set of initial182

parameters ϕ over a parameters space Φ. We ex-183

pect ϕ to yield a minimal loss after m updates in T184

as,185

min
ϕ

ET [LT (Um
T (ϕ))] (4)186

where Um
T is the update operation that performs187

m times gradient-based updates on parameters ϕ,188

using samples drawn from distribution p(T ). In189

an online MAML setting, each episode uses m190

batches of training instances as a support set S.191

The inner loop algorithm performs m-step SGD on192

parameters ϕ in the inner loop, as:193

ϕ∗ = Um
T (ϕ)

= UT ,S(ϕ)

= ϕ− α∇ϕLT (S, ϕ)
(5)194

where α is the stepsize. Test examples that spec-195

ified problems in outer loop algorithm are a set196

of query samples Q. The updated ϕ∗ are further197

optimized on Q to achieve meta objective as,198

min
ϕ

ET [LT ,Q(ϕ
∗)] = min

ϕ
ET [LT ,Q(UT ,S(ϕ))]

(6)199

4 Prototypical Query Sample Editing200

To align meta-objective with CL objective, we201

edit query set Q to generalize all seen tasks,202

{T1, T2, ..., TK}. Particularly, we select representa-203

tive past examples as query examples for meta-204

learning. We apply a prototypical network for205

query sample selection, where each class is charac-206

terized by a prototype.207

4.1 Dynamic Prototype Computation208

We devise a prototypical network, hϕproto , for pro-209

totype computation. Each prototype cl is computed210

as the mean vector of the embedded support exam-211

ples from the same class l, as:212

cl ←
1

|Sl|
∑

(xj ,yj)∈Sl

hϕproto
(xj) (7)213

where l is the class index and Sl is the support214

set for class l. The devised prototypical network215

hϕproto is meta-learnable and dynamically compute 216

and update prototypes in each episode. And, we 217

include the prototypical loss JP in inner loop loss 218

Linner as a regularization term. For a task Tk, the 219

prototypical loss JP (Snell et al., 2017) is, 220

JP (ϕproto) =
1

Nk

Nk∑
l=1

(
1

|Ql|
[d(hϕproto(xl), cl)

+ log
∑
l′

exp(−d(hϕproto(xl), c
′
l))])

(8)

221

where Ql is the query set for class l, (xl, yl) ∈ 222

Ql, Nk is the number of classes in Tk and d(·) 223

is a distance function. In this paper, we leverage 224

Euclidean distance. 225

Algorithm 1: Meta-training
Input: Initial parameters θ = ϕproto ∪ ϕpred,

training set Dtrain, support set size m,
episode index i, memory buffer DMemory, No.
of support examples for each class NS , No. of
query examples for each class NQ, inner-loop
learning rate α, outer-loop learning rate β,
and No. of selected samples per class Nselect.

Output: Trained parameters θ and memory DMemory

1 for i = 1, 2, ... do
2 S ← m batches of examples Di

train from the
stream

3 [Prototype Computation]
4 Jp(ϕproto)← 0
5 for class l in S do
6 Select NS examples of class l from S as Sl.
7 Select NQ examples of class l from S\Sl as

Ql.
8 Compute and update prototype cl as Eqn.7

and update cl in prototype set c.
9 Compute and update prototypical loss

Jp(ϕproto) as Eqn.8.
10 end
11 [Inner Loop]
12 Perform SGD on ϕpred to minimize Eqn.10 as

ϕ′
pred = ϕpred − α∇θLinner(S; θ).

13 [Prototypical Query Sample Editing]
14 for class l in prototype set c do
15 Select Nselect nearest examples to cl from

S ∪DMemory.
16 Update examples of class l in DMemory.
17 end
18 Q← DMemory OR randomly sample a batch of

data from DMemory

19 [Outer Loop]
20 Perform Adam update on θ′ to minimize Eqn.11

as θ ← θ − β∇θ′Louter(Q; θ′), where
θ′ = ϕproto ∪ ϕ′

pred.
21 if all training data are seen then
22 Stop Iteration
23 end
24 end
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4.2 Query Sample Selection226

The synthetic prototypes serve as a reference for227

query sample selection. In each episode, we choose228

query samples from training batches and memory229

set Dmemory. In particular, we choose top Nselect230

instances for each class with the highest similar-231

ity score to their corresponding prototype. The232

similarity score is calculated via Euclidean dis-233

tance. The newly selected samples replace past234

ones and update memory set. The query samples235

of Tk is denoted as Qk, in which we expect that236

(x,y) ∈ Qk ∼ p(Tk). We propose two read func-237

tions to obtain query samples: (a) read all from238

memory; (b) read randomly from memory, where239

the amount of retrieval instances equals to the mini-240

batch size, b.241

5 Meta-learning with Prototypical Query242

Sample Editing243

The meta-objective in outer loop governs the opti-244

mization process of task-specific learning in inner245

loop. We edit query samples by a prototypical net-246

work (Snell et al., 2017) to revise meta-objective247

to CL objective. We control the variation on pa-248

rameter space by the edited meta-objective, hereby249

solving CL problems.250

5.1 Edited Meta-objective for Continual251

Learning252

We edit query examples via prototypes for outer253

loop algorithm. Then, we formulate a new meta-254

objective edited by prototypical information as:255

min
θK

ET [LT ,Q(UTK ,S(θK))]

= min
θK

ET [LT ,Q(θ̃K)]

= min
θK

K∑
k=1

ETk [LTk,Qk
(θ̃K)]

= min
θK

K∑
k=1

E(x,y)∼p(Tk)[LCE(x,y; θ̃K)]

= min
θK

K∑
k=1

ETk [LTk(θ̃K)]

(9)256

Evidently, the edited meta-objective has the same257

expected loss as that of CL as shown in Eqn.2, but258

different optimization parameters.259

Prevent catastrophic forgetting: The consis-260

tent expected loss indicates that the meta-learning261

framework can depict a CL scenario. Given a262

learned parameter set θ̃K heavily biased towards 263

the distribution of the latest task, p(TK), the objec- 264

tive is to perform well on all tasks, {T1, T2, ..., TK}. 265

Hence, we interpret CL problems into a form of 266

meta-learning. 267

Preserve fast adaptation: Different optimization 268

parameters suggest different learning strategy. As 269

shown in Eqn.2, the optimization parameters of 270

CL objective are finetuned parameters θ̃K . It ne- 271

glects the next optimal steps, potentially causing 272

more update steps for learning different domains. 273

Conversely, the optimization parameters of edited 274

meta-objective are initial parameters θK . It learns 275

an optimal initialization state and yields a minimal 276

loss with few update steps on all seen tasks. Hence, 277

it preserves fast adaptation ability of meta-learning 278

while solving catastrophic forgetting. 279

6 Model 280

The proposed model fθ consists of a representa- 281

tion learning network hϕproto with learnable pa- 282

rameters ϕproto and a prediction network gϕpred
283

with learnable parameters ϕpred. It is described as 284

fθ(x) = gϕpred
(hϕproto(x)). The prototypical net- 285

work is a single-hidden-layer feed-forward neural 286

network on top of an encoder. The prediction net- 287

work is a single linear layer followed by a softmax. 288

Meta-training. We sample m batches of exam- 289

ples instantaneously from the data stream Dtrain as 290

support set S for inner loop. The inner loop loss 291

Linner includes the current task loss LTK , i.e., cross 292

entropy loss LCE , and prototypical network loss 293

JP , 294

Linner(S; θ) = LCE(S; θ) + JP (ϕproto)

= LCE(S;ϕproto ∪ ϕpred) + JP (ϕproto)

(10)
295

The inner loop algorithm only finetunes PN model 296

gϕpred
via SGD with learning rate α, ϕ′

pred = 297

ϕpred − α∇θLinner(S; θ). In outer loop algorithm, 298

both parameters ϕproto and ϕ′
pred are meta-trained 299

on query set Q. The outer loop loss is, 300

Louter(Q; θ′) =
K∑
k=1

ETk [LTk(θ
′)]

=

K∑
k=1

E(x,y)∼p(Tk)[LCE(x,y; θ
′)]

= LCE(Q; θ′)

(11)

301
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where θ′ = ϕproto ∪ ϕ′
pred. The optimizer of302

the outer loop algorithm is Adam optimizer with303

a learning rate β. The optimization process is304

θ ← θ − β∇θLouter(Q; θ′), where the gradients305

are computed with respect to the initial param-306

eters θ. To reduce computationally expensive,307

we use the first-order approximation, namely FO-308

MAML (Finn et al., 2017). The gradients are309

computed with respect to the finetuned parame-310

ters θ′. Then, the outer loop optimization process311

is θ ← θ − β∇θ′Louter(Q; θ′). The meta-training312

process is shown in Algorithm 1.313

Meta-inference. We randomly sample m batches314

of examples from memory set DMemory as the sup-315

port set S for inner loop. We perform SGD on316

ϕpred to minimize cross entropy loss LCE(S; θ)317

as ϕ′
pred = ϕpred − α∇θLinner(S; θ). Then, we318

output the predication on the test samples xtest as319

ŷtest = fθ(xtest) = gϕ′
pred

(hϕproto(xtest)).320

7 Experiments321

7.1 Datasets322

We use the collection of text classification datasets323

from (Zhang et al., 2015) 1, including AGNews324

(news classification; 4 classes), Yelp (sentiment325

analysis; 5 classes), Amazon (sentiment analysis;326

5 classes), DBpedia (Wikipedia article classifica-327

tion; 14 classes) and Yahoo (questions and answers328

categorization; 10 classes). Following prior work329

(de Masson d’Autume et al., 2019; Holla et al.,330

2020), we use the balanced version of the collec-331

tion and merge the classes of Yelp and Amazon.332

Thus, we have 33 classes in total. We randomly333

sample 115,000 training examples and 7,600 test334

examples from each of the datasets. Each dataset335

is seen as a separate learning task.336

Table 1: Input Datasets Orders

No. Dataset Orders
1 Yelp→ AGNews→ Amazon
2 Yelp→ Amazon→ AGNews
3 Amazon→ Yelp→ AGNews
4 Amazon→ AGNews→ Yelp
5 AGNews→ Yelp→ Amazon
6 AGNews→ Amazon→ Yelp
7 Yelp→ AGNews→ DBpedia→ Amazon→ Yahoo
8 DBpedia→ Yahoo→ AGNews→ Amazon→ Yelp
9 Yelp→ Yahoo→ Amazon→ DBpedia→ AGNews
10 AGNews→ Yelp→ Amazon→ Yahoo→ DBpedia

1http://goo.gl/JyCnZq

7.2 Baselines 337

• MAML-SEQ is a sequential learning model 338

using the same meta-learning (Finn et al., 339

2017) framework as ours without memory re- 340

play. 341

• Replay is a sequential learning model with 342

episodic experience replay. It applies the 343

common-used write and read mechanisms, 344

i.e., write all and randomly read. 345

• A-GEM (Chaudhry et al., 2019) with episodic 346

memory replay is a commonly-used life- 347

long language learning baseline, where catas- 348

trophic forgetting is prevented by gradient 349

constraints. 350

• OML-ER (Holla et al., 2020) uses the same 351

online meta-learning framework as ours but 352

with episodic memory replay. Its default set- 353

ting is writing all and randomly read. 354

• PMR (Ho et al., 2021) uses the same proto- 355

typical sample selection criteria as ours but 356

use episodic memory replay. 357

7.3 Experimental Setup 358

We define our low resource scenario as insufficient 359

training examples and strict memory constraints. 360

We reduce the size of the training set to its 10%, 361

i.e., 11,500 per task. All models are trained in one 362

epoch. We consider the effect of different orders 363

of datasets. We conduct experiments on all six pos- 364

sible orders of three datasets, i.e., Yelp, AGNews 365

and Amazon, as shown in Table 1. Following prior 366

work (de Masson d’Autume et al., 2019; Holla 367

et al., 2020), we also run experiments on all 5 tasks, 368

using 4 possible orders. 369

The example encoder is a pre-trained ALBERT- 370

Base-v2 (12M) from Hugging Face Transformers 371

(Lan et al., 2020), where we truncate the input 372

sequence length to 200. For meta-learning models, 373

we use SGD as their inner loop optimizer with a 374

learning rate, α = 1e−3, and Adam as their outer 375

loop optimizer with a learning rate, β = 3e−5. For 376

A-GEM (Chaudhry et al., 2019) and Replay, we use 377

Adam as their optimizer with learning rate, 3e−5. 378

The number of mini-batches in each epoch, m = 379

5. Models with prototypical network samples data 380

uniformly at random without replacement, where 381

batch sizes depend on the number of classes from 382

the training sets, e.g., b = 20 for AGNews and b 383
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Table 2: Accuracy on 3 Tasks with 6 Different Orderings

Method Memory Order Index Average
Constraint (B) (1) (2) (3) (4) (5) (6) Accuarcy

MAML-SEQ No data saved 34.6 38.8 32.4 29.3 22.6 28.0 30.9± 5.6
AGEM

Unlimited, 100% seen data

38.4 29.8 29.9 40.4 37.3 37.8 35.6± 4.6
Replay 42.5 29.8 29.6 46.5 40.4 38.7 37.9± 6.9
OML-ER 47.8 25.4 31.4 40.8 48.5 39.2 38.9± 9.1

PMR
5 per class, 0.13% seen data

26.9 26.4 21.6 26.3 19.8 25.2 24.4± 3.0
Ours.(all) 56.3 53.6 49.4 54.2 47.9 45.6 51.2± 4.2
Ours.(random) 52.1 47.1 41.4 49.0 43.0 39.1 45.3± 4.9

Table 3: Per-task and Overall Forgetting on 3 Tasks

Order Index Method Yelp AGNews Amazon Overall Forgetting
ACL,1 F1 ACL,2 F2 ACL,3 F3

Order (1)
OML-ER 46.8 3.26 49.2 36.8 47.3 3.2 43.3
Ours.(all) 44.7 -1.3 79.5 2.8 44.5 -4.9 -3.4
Ours.(random) 41.3 0.4 74.3 6.4 40.7 -4.5 2.3

Order Index Method AGNews Yelp Amazon Overall Forgetting
ACL,1 F1 ACL,2 F2 ACL,3 F3

Order (5)
OML-ER 58.4 27.7 43.4 6.8 43.9 6.6 41.2
Ours.(all) 68.0 14.3 38.2 5.2 37.6 2.0 21.5
Ours.(random) 74.1 6.6 26.9 14.8 28.0 8.2 29.6

= 25 for Yelp and Amazon. We set NS = 3 ∗m384

and NQ = 2 ∗m for prototypical loss computation.385

Other models utilise the random sampler, which386

randomly samples examples with batch size, b =387

25. The write rate pwrite is set to 1. All models are388

executed on a Linux platform with 8 Nvidia Tesla389

A100 GPU and 40 GB of RAM. All experiments390

are performed using PyTorch (Paszke et al., 2019).391

7.4 Evaluation Metrics392

We evaluate the models after learning all tasks.393

The evaluation metrics are accuracy and forget-394

ting. Let ACL,k be the macro-averaged accuracy395

on Tk, the overall accuracy after learning a se-396

quence of K tasks is ACC = 1
K

∑K
k=1ACL,k.397

Let Asingle,k be the accuracy of learning one task398

Tk. The forgetting on a sequence of K tasks is399

F =
∑K

k=1 Fk =
∑K

k=1Asingle,k − ACL,k, where400

Fk is the forgetting on task Tk and describes how401

the updated parameters affect the performance on402

Tk after sequential learning all tasks.403

7.5 Results404

We run experiment on all 6 possible orders of train-405

ing sets while learning a sequence of 3 tasks. We406

record the average of 3 best results from 5 trials.407

Accuracy. As shown in Table 2, our model with408

read all function, obtains the best results in most409

of the training sequences, except for Order (5),410

which is only 0.6% smaller than the best result.411

Given downsized training sets, it maintains aver- 412

age accuracy to more than 50%, suggesting its fast 413

adaptation ability. Its standard deviations of the av- 414

erage accuracy is 4.2%, which is smaller than most 415

baselines. It shows a good robustness in terms of 416

training set orders. The proposed method with read 417

random function has the second-highest average ac- 418

curacy. Under the same memory constraint, PMR 419

is inferior to our models by at least 20%. Remark- 420

ably, both of the proposed models even outperform 421

models with unlimited memory budget. The results 422

demonstrate the superiority of our model in a low 423

resource scenario. 424

Forgetting Measurements. Evaluation on for- 425

getting shows model’s ability of knowledge reten- 426

tion, but not directly indicating model performance. 427

A negative value of forgetting suggests accuracy 428

improvements. As shown in Table 2, our models 429

obtain the best performance on Order (1) and the 430

worst performance on Order (5). We compare our 431

models with all baselines on these two orders (see 432

Table 8 in Appendix). We show the result of our 433

models and a strong baseline, OML-ER, in Table 3. 434

For Order (1), both of our models have the negative 435

score of forgetting on Amazon. It demonstrates a 436

positive forward knowledge transfer occurs. All 437

models obtain a relatively high forgetting score on 438

AGNews. It is reasonable considering its distribu- 439

tion is quite different from Yelp and Amazon. As 440

for Order (5), the last two tasks, Yelp and Ama- 441
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Table 4: Per-task and Overall Accuracy with Different Memory Constraints

Memory Constraint (B) Method Yelp AGNews Amazon Overall Accuracy
B = 27 OML-ER 49.8 19.4 49.1 39.4

B = 27 (3 per class) Ours.(all) 44.0 67.6 43.8 51.8
Ours.(random) 36.2 63.6 35.1 44.9

B = 45 OML-ER 48.0 13.1 49.3 36.8

B = 45 (5 per class) Ours.(all) 44.7 79.5 44.5 56.3
Ours.(random) 41.3 74.3 40.7 52.1

B = 63 OML-ER 52.7 24.6 50.3 42.5

B = 63 (7 per class) Ours.(all) 55.1 86.2 52.2 64.6
Ours.(random) 40.9 69.3 39.3 49.8

B = 34, 500 (Unlimited)
OML-ER 46.8 49.2 47.3 47.8
Ours.(all) − − − −
Ours.(random) 55.1 86.2 52.2 64.6

Table 5: Comparison of Various Query Sample Selection Methods

Query Sample Selection Method Yelp AGNews Amazon Overall Accuracy
Random 43.6 69.4 43.7 52.2

Prototypical Sample Selection Diversity (Ours.) 44.7 79.5 44.5 56.3
Uncertainty 28.2 47.8 27.8 34.6

zon, are both from product reviews. As a result,442

OML-ER has enough iterations to perform mem-443

ory replay on AGNews. Its accuracy on AGNews444

improves by 9.1%. our methods use few samples to445

represent prior task, the increase of iterations make446

them converge too well to generalize. Thereby, our447

model with read all function suffers over-fitting448

problems, especially on AGNews. Read random449

function lessens this problem on AGNews, but de-450

grades the performance on Yelp and Amazon. We451

consider it as the trade-off between representation452

and generalization. Still, both of our models outper-453

form OML-ER and address catastrophic forgetting.454

7.6 Further Analysis455

We use Order (1) to perform further analysis. Note456

that Yelp and Amazon datasets are product reviews,457

while AGNews are news. The data distributions are458

different. Hence, we pay extra attentions to model459

performance on AGNews.460

Memory Efficiency. We compare our models461

with all baselines (see Table 9 in the Appendix).462

We show the result of our models and a strong base-463

line, OML-ER, in Table 4. Our method with read464

all 2 function achieves highest overall performance465

given different memory constraints. Surprisingly,466

its results are even better than OML-ER without467

memory constraint by at most 16.8%. Our method468

with read random function is not as good as our469

2Ours.(all) with unlimited memory means writing all data
to memory and replaying all data, which is not possible for
large scale dataset and can result in out-of-memory errors.

read all method. It suggests that read all function is 470

more beneficial when giving a strict memory limita- 471

tion. The result indicates memory efficiency of the 472

proposed method. Also, both of our models outper- 473

form OML-ER on AGNews by a large margin. It 474

shows our models’ ability of knowledge retention. 475

Effect of Query Sample Selection. Table 5 com- 476

pares different query sample selection strategies. 477

We consider two main strategies, i.e., random 478

and prototypical sample selections. We further 479

study two popular paradigms in active learning, i.e., 480

diversity-based and uncertainty-based method. Our 481

proposed method is considered as a diversity-based 482

method. While, opting for examples far from pro- 483

totypes is an uncertainty-based method. The read 484

function is read all. In general, random selection 485

is seen as an efficient selection criteria. Diversity- 486

based method outperforms random selection by 487

more than 4% and outperforms uncertainty-based 488

method by more than 20%. 489

Effect of Query Sample Editing. We compare 490

our approach to the mainstream CL method, i.e., 491

episodic memory replay. The sample selection 492

method is prototypical sample selection and write 493

function writes all selected samples. Table 6 shows 494

our approach surpasses episodic memory replay 495

in two different read functions. For read all func- 496

tion, it is superior to episodic memory replay by 497

nearly 20%. The performance on AGNews exceeds 498

episodic memory replay by more than 44%. The 499

reason behind this bad performance of episodic 500
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Table 6: Comparison Between Episodic Memory Replay and Our Method

Continual Leaning Strategy Read Function Yelp AGNews Amazon Overall Accuracy
Episodic Memory Replay All 34.8 34.9 34.2 34.6
Ours.(all) 44.7 79.5 44.5 56.3
Episodic Memory Replay Random 32.8 19.5 31.6 27.8
Ours.(random) 41.3 74.3 40.7 52.1

Table 7: Accuracy on 5 Tasks with 4 Different Orderings

Method No. of Training Memory Constraint Order Index Average Accuracy
Samples (5) (6) (7) (8)

A-GEM†

575,000

575,000 (Unlimited)

70.7 65.9 67.5 63.6 66.9± 3.0

MbPA++† 70.8 70.9 70.2 70.7 70.7± 0.3

REPLAY‡ 69.5 66.2 65.2 68.3 67.3± 2.0

OML-ER‡ 75.4 76.5 75.4 75.4 75.7± 0.6
PMR

165 (0.03% seen data)
61.2 65.7 66.1 55.9 62.2± 4.8

Ours.(all) 54.2 64.1 64.6 48.1 57.8± 8.0
Ours.(random) 59.2 61.6 64.6 51.3 59.2± 5.7

A-GEM

57,500

57,500 (Unlimited)
24.7 33.2 25.6 22.8 26.6± 4.7

Replay 31.0 50.8 38.8 37.2 39.5± 8.3
OML-ER 43.7 53.3 44.2 39.4 45.2± 5.8
PMR

165 (0.03% seen data)
2.6 45.2 5.0 5.7 14.6± 20.4

Ours.(all) 56.8 60.7 65.2 51.3 58.5± 5.9
Ours.(random) 50.6 59.5 48.7 36.1 48.7± 9.6

memory replay is its insufficient training iterations.501

Consequently, it is prone to forgetting. Similarly,502

for read random function, our method outperforms503

episodic memory replay by a large margin. In ad-504

dition, high replay frequency often leads to over-505

fitting problem, especially when the amount of506

memory samples is small. Our approach revisits a507

small amount of past samples every iteration. But508

it still maintains a more than 52% overall accuracy.509

Learning More Tasks and Examples. We run510

experiments on 5 datasets in 4 different orderings.511

For comparison, the experimental setup follows512

prior work (de Masson d’Autume et al., 2019)3,513

where encoder is a pretrained BERT (Devlin et al.,514

2019). As shown in Table 7, given full training515

examples and strict memory constraint, both of our516

models are inferior to PMR by 3.0∼4.4%. The517

over-fitting problem occurs when the training it-518

erations increases. Hence, our method with read519

random function performs better than that with read520

all function. When we downsize the training sets521

to their 10%, our models are superior, validating522

their fast adaptation abilities. Furthermore, PMR523

performs surprisingly well on Order (6), compared524

to its performance on other training set orders. The525

last two tasks in Order (6) are Yelp and Amazon.526

These two datasets are both product reviews and527

3† Results obtained from (de Masson d’Autume et al.,
2019) and ‡ Results obtained from (Holla et al., 2020).

from the same domain. It increases the number of 528

training iterations for PMR to learn different prob- 529

ability distributions via episodic memory replay. 530

Thus, it results in a better accuracy. 531

8 Conclusion 532

In this paper, we propose an enhanced meta- 533

learning framework for continual text classifica- 534

tion model learning, where we use a prototypical 535

network to edit query samples and adapt meta- 536

objective for continual learning. The experimental 537

results manifest that our method has an outstand- 538

ing performance in a low resource scenario, i.e., 539

insufficient training examples and strict memory 540

constraints. It also validates our method ensures 541

fast adaptation while preventing catastrophic for- 542

getting. 543

9 Limitations 544

Our method works well in a low resource sce- 545

nario, where the amount of training data is not 546

plentiful and the memory budget is strictly lim- 547

ited. Its performance also relies heavily on pre- 548

trained language models. In addition, the meta- 549

learning framework we used, namely MAML, is 550

the standard framework. The effect of different 551

meta-learning frameworks should be studied. We 552

leave this investigation to future work. Further- 553

more, we can extend our model to other NLP tasks. 554
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Table 8: Per-task and Overall Forgetting on 3 Tasks

Order Index Method Yelp AGNews Amazon Overall Forgetting
ACL,1 F1 ACL,2 F2 ACL,3 F3

Order (1)

MAML-SEQ 38.5 10.7 32.7 51.3 32.6 8.4 70.4
AGEM 54.9 3.6 4.7 85.3 55.4 1.8 90.7
Replay 56.7 1.8 13.3 76.7 57.5 -0.3 78.2
OML-ER 46.8 3.26 49.2 36.8 47.3 3.2 43.3
PMR 41.6 1.6 0.2 84.9 38.9 -0.9 85.6
Ours.(all) 44.7 -1.3 79.5 2.8 44.5 -4.9 -3.4
Ours.(random) 41.3 0.4 74.3 6.4 40.7 -4.5 2.3

Order Index Method AGNews Yelp Amazon Overall Forgetting
ACL,1 F1 ACL,2 F2 ACL,3 F3

Order (5)

MAML-SEQ 27.9 56.1 20.4 28.8 19.4 21.6 106.5
AGEM 0.1 89.9 55.8 2.7 56.1 1.1 93.7
Replay 7.6 82.4 56.5 2.0 57.2 0.0 84.4
OML-ER 58.4 27.7 43.4 6.8 43.9 6.6 41.2
PMR 0.0 85.1 28.2 15.0 31.4 6.6 106.7
Ours.(all) 68.0 14.3 38.2 5.2 37.6 2.0 21.5
Ours.(random) 74.1 6.6 26.9 14.8 28.0 8.2 29.6

Table 9: Per-task and Overall Accuracy with Different Memory Constraints

Memory Constraint (B) Method Yelp AGNews Amazon Overall Accuracy

B = 27
AGEM 57.3 0.0 58.0 38.5
Replay 57.1 1.6 57.3 38.7
OML-ER 49.8 19.4 49.1 39.4

B = 27 (3 per class)
PMR 39.1 0.4 39.6 26.4
Ours.(all) 44.0 67.6 43.8 51.8
Ours.(random) 36.2 63.6 35.1 44.9

B = 45
AGEM 57.0 1.7 56.7 38.5
Replay 57.3 2.1 57.8 39.0
OML-ER 48.0 13.1 49.3 36.8

B = 45 (5 per class)
PMR 41.6 0.2 38.9 26.9
Ours.(all) 44.7 79.5 44.5 56.3
Ours.(random) 41.3 74.3 40.7 52.1

B = 63
AGEM 57.2 0.0 57.9 38.4
Replay 56.9 3.3 57.5 39.3
OML-ER 52.7 24.6 50.3 42.5

B = 63 (7 per class)
PMR 38.4 3.6 36.1 26.0
Ours.(all) 55.1 86.2 52.2 64.6
Ours.(random) 40.9 69.3 39.3 49.8

B = 34, 500 (Unlimited)

AGEM 54.9 4.7 55.4 38.4
Replay 56.7 13.3 57.5 42.5
OML-ER 46.8 49.2 47.3 47.8
PMR − − − −
Ours.(all) − − − −
Ours.(random) 55.1 86.2 52.2 64.6
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(a) Unigram distribution in episode 50

(b) Unigram distribution in episode 150

(c) Unigram distribution in episode 250

(d) Comparison of unigram distributions

Figure 1: The unigram distribution of the selected query samples. For simplicity, X-axis is the unigram index and
Y-axis is the number of each unigram, where it is in the range [1, 26). Note that the size of selected sample set is
fixed.
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