Meta-learning with Prototypical Query Sample Editing for Low Resource
Continual Learning

Anonymous ACL submission

Abstract

Memory replay, also known as experience
rehearsal, is a mainstream method to retain
knowledge in continual learning (CL), espe-
cially in NLP. Recently, meta-learning has
been introduced to augment memory replay.
It serves to enable efficient knowledge trans-
fer, thereby alleviating catastrophic forgetting.
However, memory replay is often episodic to
avoid over-fitting to past samples. Its sparse oc-
currence also limits the convergence of model
on past samples, especially in low resource sce-
narios. This paper aims to fully exploit the
potential of meta-learning. We study the feasi-
bility of solely using meta-learning to solve
lifelong language learning. We propose an
optimization-based meta-learning framework
for CL in accordance with MAML. In particu-
lar, we edit query information for meta-learning
via a prototypical network. The meta-objective
is modified to depict a CL scenario. We con-
duct extensive experiments on benchmark text
classification datasets. The results testify the
superiority of our method in terms of forget-
ting mitigation, fast adaptation and memory
efficiency in a low resource NLP scenario.

1 Introduction

Existing continual learning (CL) algorithms up-
date model parameters whenever a new task arrives.
The important information from earlier tasks can
be easily erased or overwritten when the data distri-
bution shifts. Consequently, catastrophic forgetting
(McCloskey and Cohen, 1989) occurs and harms
performance on preceding tasks. Especially for
language models, the number of parameters in a
language model is usually huge. A small change in
parameter space could impact model output unex-
pectedly (Wang et al., 2019). Hence, replaying past
examples is the mainstream approach for lifelong
language learning. However, existing replay-based
methods not only easily over-fit to past samples
(Zhao et al., 2022), but also cause under-fitting
problem on low resource tasks.

Meta-learning can enable efficient knowledge
transfer. Recently, it has been introduced as a
learning framework for CL. Mostly, meta-learning
serves to perform efficient knowledge transfer via
fast adaptation and facilitate memory replay. Mem-
ory replay is often episodic to avoid over-fitting
problem. This episodic nature is unfavourable for
cross-domain fast adaptation when training exam-
ples are insufficient and memory budget for past
samples is small.

To address this dilemma, we propose a method to
solve low resource CL problems, namely MAML-
CL. Specifically, we use Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) as our meta-
learning framework. We argue that meta-learning
can solve CL problems without episodic mem-
ory replay. The mainstream CL methods limit
the change of non-trivial weights or parameters,
hereby retaining knowledge. In meta-learning, the
variation on parameter space is restricted by meta-
objective. We use a prototypical network to select
representative past examples for query set. It mod-
ifies the meta-objective and controls the learning
process on the new task, thereby ameliorating catas-
trophic forgetting.

We conduct extensive experiments on CL bench-
mark datasets from (Zhang et al., 2015), popular-
ized by (de Masson d’ Autume et al., 2019) in life-
long language learning. This collection of datasets
includes text classification datasets from diverse
domains. We reduce the size of the training set
for each task to its 10%, i.e., 11,500 per task. We
demonstrate our method’s robustness to forgetting
mitigation, fast adaptation and memory efficiency
in a low-resource scenario.

The contributions of this work are threefold:
(1) Our method validates the feasibility of using
meta-learning without sparse experience replay, the
mainstream lifelong language learning approach;
(2) We design a prototypical query example edit-
ing method to adapt the meta-objective to a CL

scenario. Our method addresses low resource CL
problems. It well-preserves fast adaptation abil-
ity of meta-learning while avoiding catastrophic
forgetting; (3) We perform extensive experiments
in a low resource scenario. The results testify the
superiority of our method on forgetting mitigation,
fast adaptation and memory efficiency.

2 Related Work

Robust continual learning aims to guarantee the
stability of handling various tasks, while showing
plasticity on a novel domain. Existing approaches
can be categorised into two main mainstreams, i.e.,
regularization-based methods (Kirkpatrick et al.,
2016; Li and Hoiem, 2016; Zenke et al., 2017) and
replay-based methods (Wang et al., 2019, 2020;
Chaudhry et al., 2019; Sun et al., 2019). In general,
regularization-based methods retain the updates of
non-trivial parameters or weights by adding con-
straints or penalty. Generally, language models
are deep learning networks. Given the complex-
ity of deep learning models, memory replay-based
approaches are broadly considered as a plausible
approach for lifelong language learning.

Replay-based methods save a certain amount
of previous training data and retrieval them while
training for a novel domain. Many models used
random selection strategy to select or save past
examples. But it always failed to consider sam-
ple efficiency. Recent replay-based methods
utilised episodic memory replay with a 1% replay
rate. It was first proposed in MbPA++ (de Mas-
son d’Autume et al., 2019). MbPA++ retrieved K
nearest neighbours via Euclidean distance function
for local adaptation, which is expensive in its infer-
ence process. To address this problem, (Holla et al.,
2020) introduced a replay frequency to harness the
replay sparseness in terms of time and size. Nev-
ertheless, they neglected memory constraints. The
size of occupied memory is explosively expanding
with the increase of training samples.

Meta-learning in CL. Recently, meta-learning
has been introduced into CL models, considering
its ability of fast adaptation and knowledge transfer.
Recent works employed MAML (Finn et al., 2017)
to improve initial parameters. It can fast adapt to
various domains with few learning samples. Meta-
MDbPA (Wang et al., 2020) performed local adapta-
tion with episodic memory and used MAML to find
a better initialized state for local adaptation. OML-
ER (Holla et al., 2020) and ANML-ER (Holla et al.,

2020) utilised an online meta-learning model and
a neuromodulated meta-learning respectively for
fast adaptation, augmented with sparse experience
replay. Additionally, some CL models used Reptile
(Nichol et al., 2018) as their meta-learning algo-
rithms. MER (Riemer et al., 2019) regularized the
objective of experience replay via a modified Rep-
tile (Nichol et al., 2018) algorithm and memory
replay module. MLLRE (Obamuyide and Vlachos,
2019) also adopted Reptile to meta updates param-
eters via augmented training set.

3 Problem Formulation

3.1 Continual Learning

In a basic CL setup, the learner ingests a stream of
training examples. We assume the training stream
consists of K tasks, {71, 72, ..., Tk }, in an ordered
sequence. Given the latest task 7 and a CL learner
fo, - the objectives are: (a) to finetune parameter
set O over a parameter space ©, such that the task
objective L7;, is minimal. That is,

Ok = arg Join L7 (0x) (1)

(b) to perform well with the learned parameter set
0 on all preceding tasks {77, 72, ..., Tic—1 } with-
out using the past training sets. Assuming that all
tasks are equally important, the overall objective
is to minimise the expected risk of all seen tasks,

{Th, T2y ..., Tk }, as:

K

nélin Z E7, [LT, (0x)] ()
K k=1

A replay-based method allows the model to re-
tain a certain amount of past instances. Typically,
the basic CL setup allows the memory buffer size
to a constant B, where the amount of past training
data in memory should not exceed B.

In this paper, we consider a popular scenario of
continual learning, i.e., class-incremental learning
(CIL), where task identity information is not pro-
vided in inference, and a single classifier is for all
classes. We leverage cross entropy loss Lo g as the
loss of a task 7}, as,

L7,(0) = Lop(z,y;0)
|Dk| Ng, (3)

= - Z Z yji log(a(fo(;))i)
=1 i=1

where k is the task index, D, C DE . DF s

train® ~train

the ground truth label set of Ty, IVy, is the number

of classes in 7 and o is the activation function
(e.g., sigmoid or softmax).

3.2 Meta-learning

Model agnostic meta-learning (MAML) (Finn
et al., 2017) algorithm is known as “think in ad-
vance" by learning an optimal initial state of an
algorithm. We assume a task 7 and a set of initial
parameters ¢ over a parameters space . We ex-
pect ¢ to yield a minimal loss after m updates in 7
as,

min By [L7 (U7 (9))] S

where U7" is the update operation that performs
m times gradient-based updates on parameters ¢,
using samples drawn from distribution p(7"). In
an online MAML setting, each episode uses m
batches of training instances as a support set S.
The inner loop algorithm performs m-step SGD on
parameters ¢ in the inner loop, as:

" =Ur ()
=Ur,5(¢9) 5)
= ¢ —aVyLr (S, 9)

where « is the stepsize. Test examples that spec-
ified problems in outer loop algorithm are a set
of query samples (). The updated ¢* are further
optimized on () to achieve meta objective as,

min Er[LTq(¢")] = tmin Er[L7q(Ur,s(9))]
(6)

4 Prototypical Query Sample Editing

To align meta-objective with CL objective, we
edit query set () to generalize all seen tasks,
{T1, T2, ..., Tk }. Particularly, we select representa-
tive past examples as query examples for meta-
learning. We apply a prototypical network for
query sample selection, where each class is charac-
terized by a prototype.

4.1 Dynamic Prototype Computation

We devise a prototypical network, hg ., for pro-
totype computation. Each prototype c; is computed
as the mean vector of the embedded support exam-
ples from the same class [, as:

1
Cl%@ Z

(z5,y;)€S]

Pepror0 (1))

where [is the class index and S; is the support
set for class [. The devised prototypical network

R proro 18 meta-learnable and dynamically compute
and update prototypes in each episode. And, we
include the prototypical loss Jp in inner loop loss
Linner as a regularization term. For a task 7, the
prototypical loss Jp (Snell et al., 2017) is,

N

N D 0l ()0

=1
+ log Z eXp(_d(h¢pr0to (xl)a C;))])
%

(®)

JP (¢prot0) -

where @), is the query set for class I, (x;,y;) €
Q1, Ni is the number of classes in 7 and d(-)
is a distance function. In this paper, we leverage
Euclidean distance.

Algorithm 1: Meta-training

Input: Initial parameters 6 = ¢proto U Ppred.,
training set Dsrain, SUpport set size m,
episode index 7, memory buffer Dyiemory, NO.
of support examples for each class Ng, No. of
query examples for each class Nq, inner-loop
learning rate «, outer-loop learning rate /3,
and No. of selected samples per class Nelect.

Output: Trained parameters # and memory Dytemory

1 fori=1,2, ..do

2 S < m batches of examples Dy, ,;, from the
stream
3 [Prototype Computation]
4 Ip(@proto) 0
5 for class/in S do
6 Select Ng examples of class [from S as .S;.
7 Select Ng examples of class [from S\S; as
Q.
8 Compute and update prototype c¢; as Eqn.7
and update ¢; in prototype set c.
9 Compute and update prototypical loss
Jp(Pproto) as Eqn.8.
10 end
11 [Inner Loop]
12 Perform SGD on ¢preq to minimize Eqn.10 as

¢;)red = ¢pred - Oéveﬁmner(s; 9)
13 [Prototypical Query Sample Editing]

14 for class [in prototype set ¢ do

15 Select Ngelect Nearest examples to ¢; from
S U DMemory-

16 Update examples of class [in Dytemory -

17 end

18 Q@ < Duemory OR randomly sample a batch of

data from Dnemory

19 [Outer Loop]

20 Perform Adam update on 6’ to minimize Eqn.11
as 0 < 0 — BV Louter(Q;0'), where

0 = ¢proto u (b;)red'

21 if all training data are seen then
2 | Stop Iteration

23 end

24 end

4.2 Query Sample Selection

The synthetic prototypes serve as a reference for
query sample selection. In each episode, we choose
query samples from training batches and memory
set Dmemory- In particular, we choose top Ngelect
instances for each class with the highest similar-
ity score to their corresponding prototype. The
similarity score is calculated via Euclidean dis-
tance. The newly selected samples replace past
ones and update memory set. The query samples
of T is denoted as)i, in which we expect that
(z,y) € Qr ~ p(Tx). We propose two read func-
tions to obtain query samples: (a) read all from
memory; (b) read randomly from memory, where
the amount of retrieval instances equals to the mini-
batch size, b.

5 Meta-learning with Prototypical Query
Sample Editing

The meta-objective in outer loop governs the opti-
mization process of task-specific learning in inner
loop. We edit query samples by a prototypical net-
work (Snell et al., 2017) to revise meta-objective
to CL objective. We control the variation on pa-
rameter space by the edited meta-objective, hereby
solving CL problems.

5.1 Edited Meta-objective for Continual
Learning

We edit query examples via prototypes for outer
loop algorithm. Then, we formulate a new meta-
objective edited by prototypical information as:

n;}i{n ErLroUr s(0K))]

= min E7[L7(0K)]
%

K
= min > E7[L7.0.(0k)]
k=1

K

= Helm E(z y)~p(m0) [LoB(T, Y; éK)]
K k=1

(€))

Evidently, the edited meta-objective has the same
expected loss as that of CL as shown in Eqn.2, but
different optimization parameters.

Prevent catastrophic forgetting: The consis-
tent expected loss indicates that the meta-learning
framework can depict a CL scenario. Given a

learned parameter set O heavily biased towards
the distribution of the latest task, p(7x), the objec-
tive is to perform well on all tasks, {77, T2, ..., Tx }.
Hence, we interpret CL problems into a form of
meta-learning.

Preserve fast adaptation: Different optimization
parameters suggest different learning strategy. As
shown in Eqn.2, the optimization parameters of
CL objective are finetuned parameters Or. It ne-
glects the next optimal steps, potentially causing
more update steps for learning different domains.
Conversely, the optimization parameters of edited
meta-objective are initial parameters 0. It learns
an optimal initialization state and yields a minimal
loss with few update steps on all seen tasks. Hence,
it preserves fast adaptation ability of meta-learning
while solving catastrophic forgetting.

6 Model

The proposed model fy consists of a representa-
tion learning network hg .., with learnable pa-
rameters @proto and a prediction network Ipred
with learnable parameters ¢preq. It is described as
fo(2) = 94req (Rproro (). The prototypical net-
work is a single-hidden-layer feed-forward neural
network on top of an encoder. The prediction net-
work is a single linear layer followed by a softmax.

Meta-training. We sample m batches of exam-
ples instantaneously from the data stream Dy, as
support set .S for inner loop. The inner loop loss
Linner includes the current task loss L7, , i.e., cross
entropy loss Lo g, and prototypical network loss
Jp,

ﬁinner(s; 9) = ECE(SS 9) + JP((bproto)

= £C’E(S§ d)proto U d)pred) + JP(¢prot0)

(10)

The inner loop algorithm only finetunes PN model
Jprea Via SGD with learning rate o, ¢ .4 =
Gpred — @V Linner (S5 6). In outer loop algorithm,
both parameters ¢proto and qb;red are meta-trained
on query set (). The outer loop loss is,

K
Louter(Q; 9/) = Z E'Tk [‘C'E (6/)]
k=1

K

= Z E () p(7i) [LCB (2, 95 0)]
k=1

=Lcop(Q;9)
(11)

where 0 = ¢proto U qb;red. The optimizer of
the outer loop algorithm is Adam optimizer with
a learning rate 8. The optimization process is
0 + 0 — BVLouter(Q; 0'), where the gradients
are computed with respect to the initial param-
eters #. To reduce computationally expensive,
we use the first-order approximation, namely FO-
MAML (Finn et al., 2017). The gradients are
computed with respect to the finetuned parame-
ters 6. Then, the outer loop optimization process
is 0 «+ 0 — BV Louter(Q; 0'). The meta-training
process is shown in Algorithm 1.

Meta-inference. We randomly sample m batches
of examples from memory set Dyjemory as the sup-
port set S for inner loop. We perform SGD on
¢pred to minimize cross entropy loss Log(S;0)
as ¢;red = Ppred — @VgLinner(S;6). Then, we
output the predication on the test samples Teqt as
Yrest = fo(Trest) = g(ﬁ]’gred(hqsproto(wteSt))'

7 Experiments

7.1 Datasets

We use the collection of text classification datasets
from (Zhang et al., 2015) I including AGNews
(news classification; 4 classes), Yelp (sentiment
analysis; 5 classes), Amazon (sentiment analysis;
5 classes), DBpedia (Wikipedia article classifica-
tion; 14 classes) and Yahoo (questions and answers
categorization; 10 classes). Following prior work
(de Masson d’Autume et al., 2019; Holla et al.,
2020), we use the balanced version of the collec-
tion and merge the classes of Yelp and Amazon.
Thus, we have 33 classes in total. We randomly
sample 115,000 training examples and 7,600 test
examples from each of the datasets. Each dataset
is seen as a separate learning task.

Table 1: Input Datasets Orders

No. Dataset Orders
1 Yelp — AGNews — Amazon
2 Yelp — Amazon — AGNews
3 Amazon — Yelp — AGNews
4 Amazon — AGNews — Yelp
5 AGNews — Yelp — Amazon
6 AGNews — Amazon — Yelp
7 Yelp — AGNews — DBpedia — Amazon — Yahoo
8 DBpedia — Yahoo — AGNews — Amazon — Yelp
9 Yelp — Yahoo — Amazon — DBpedia — AGNews
10 AGNews — Yelp — Amazon — Yahoo — DBpedia
"http://goo.gl/TyCnZq

7.2 Baselines

* MAML-SEQ is a sequential learning model
using the same meta-learning (Finn et al.,
2017) framework as ours without memory re-

play.

* Replay is a sequential learning model with
episodic experience replay. It applies the
common-used write and read mechanisms,
i.e., write all and randomly read.

* A-GEM (Chaudhry et al., 2019) with episodic
memory replay is a commonly-used life-
long language learning baseline, where catas-
trophic forgetting is prevented by gradient
constraints.

* OML-ER (Holla et al., 2020) uses the same
online meta-learning framework as ours but
with episodic memory replay. Its default set-
ting is writing all and randomly read.

* PMR (Ho et al., 2021) uses the same proto-
typical sample selection criteria as ours but
use episodic memory replay.

7.3 Experimental Setup

We define our low resource scenario as insufficient
training examples and strict memory constraints.
We reduce the size of the training set to its 10%,
i.e., 11,500 per task. All models are trained in one
epoch. We consider the effect of different orders
of datasets. We conduct experiments on all six pos-
sible orders of three datasets, i.e., Yelp, AGNews
and Amazon, as shown in Table 1. Following prior
work (de Masson d’Autume et al., 2019; Holla
et al., 2020), we also run experiments on all 5 tasks,
using 4 possible orders.

The example encoder is a pre-trained ALBERT-
Base-v2 (12M) from Hugging Face Transformers
(Lan et al., 2020), where we truncate the input
sequence length to 200. For meta-learning models,
we use SGD as their inner loop optimizer with a
learning rate, o« = 1le—3, and Adam as their outer
loop optimizer with a learning rate, 3 = 3e~°. For
A-GEM (Chaudhry et al., 2019) and Replay, we use
Adam as their optimizer with learning rate, 3e°.
The number of mini-batches in each epoch, m =
5. Models with prototypical network samples data
uniformly at random without replacement, where
batch sizes depend on the number of classes from
the training sets, e.g., b = 20 for AGNews and b

Table 2: Accuracy on 3 Tasks with 6 Different Orderings

Method Memory Order Index Average
Constraint (B) D) 3)) (®)] (6) Accuarcy
MAML-SEQ No data saved 346 388 324 293 226 280 | 30.9+5.6
AGEM 38.4 29.8 29.9 40.4 37.3 37.8 35.6 + 4.6
Repla .. 42.5 29.8 29.6 46.5 40.4 38.7 37.9+6.9
OML.ER Unlimited, 100% seen data | 7 ¢ 954 314 408 485 392 | 38.9+9.1
PMR 26.9 26.4 21.6 26.3 19.8 25.2 24.4+3.0
Ours.(all) 5 per class, 0.13% seen data | 56.3 53.6 494 54.2 479 456 | 51.2+4.2
Ours.(random) 52.1 47.1 41.4 49.0 43.0 39.1 45.3 +4.9

Table 3: Per-task and Overall Forgetting on 3 Tasks

Yelp AGNews Amazon .
Order Index | Method Acwa £ Acv2 o Acvs 7y Overall Forgetting
OML-ER 46.8 326 | 49.2 36.8 47.3 3.2 433
Order (1) Ours.(all) 44.7 -1.3 79.5 2.8 44.5 -4.9 -3.4
Ours.(random) 41.3 0.4 74.3 6.4 40.7 -4.5 2.3
AGNews Yelp Amazon .
Order Index | Method Aovs B | Aove B | Acrs By Overall Forgetting
OML-ER 58.4 27.7 434 6.8 439 6.6 41.2
Order (5) Ours.(all) 68.0 14.3 38.2 5.2 37.6 2.0 21.5
Ours.(random) 74.1 6.6 26.9 14.8 28.0 8.2 29.6

= 25 for Yelp and Amazon. We set Ng = 3 xm
and Ng = 2 m for prototypical loss computation.
Other models utilise the random sampler, which
randomly samples examples with batch size, b =
25. The write rate pyrite 18 set to 1. All models are
executed on a Linux platform with 8 Nvidia Tesla
A100 GPU and 40 GB of RAM. All experiments
are performed using PyTorch (Paszke et al., 2019).

7.4 Evaluation Metrics

We evaluate the models after learning all tasks.
The evaluation metrics are accuracy and forget-
ting. Let Acr, » be the macro-averaged accuracy
on 7T, the overall accuracy after learning a se-
quence of K tasks is ACC = % Zle AcL k-
Let Agingle » be the accuracy of learning one task
Ti. The forgetting on a sequence of K tasks is
F= 25:1 Fy = Zf:l Asingle,k: - ACL,k, where
Fy, is the forgetting on task 7T and describes how
the updated parameters affect the performance on
T, after sequential learning all tasks.

7.5 Results

We run experiment on all 6 possible orders of train-
ing sets while learning a sequence of 3 tasks. We
record the average of 3 best results from 5 trials.

Accuracy. As shown in Table 2, our model with
read all function, obtains the best results in most
of the training sequences, except for Order (5),
which is only 0.6% smaller than the best result.

Given downsized training sets, it maintains aver-
age accuracy to more than 50%, suggesting its fast
adaptation ability. Its standard deviations of the av-
erage accuracy is 4.2%, which is smaller than most
baselines. It shows a good robustness in terms of
training set orders. The proposed method with read
random function has the second-highest average ac-
curacy. Under the same memory constraint, PMR
is inferior to our models by at least 20%. Remark-
ably, both of the proposed models even outperform
models with unlimited memory budget. The results
demonstrate the superiority of our model in a low
resource scenario.

Forgetting Measurements. Evaluation on for-
getting shows model’s ability of knowledge reten-
tion, but not directly indicating model performance.
A negative value of forgetting suggests accuracy
improvements. As shown in Table 2, our models
obtain the best performance on Order (1) and the
worst performance on Order (5). We compare our
models with all baselines on these two orders (see
Table 8 in Appendix). We show the result of our
models and a strong baseline, OML-ER, in Table 3.
For Order (1), both of our models have the negative
score of forgetting on Amazon. It demonstrates a
positive forward knowledge transfer occurs. All
models obtain a relatively high forgetting score on
AGNews. It is reasonable considering its distribu-
tion is quite different from Yelp and Amazon. As
for Order (5), the last two tasks, Yelp and Ama-

Table 4: Per-task and Overall Accuracy with Different Memory Constraints

Memory Constraint (B) | Method Yelp AGNews Amazon | Overall Accuracy
B =27 OML-ER 49.8 19.4 49.1 394
_ Ours.(all) 44.0 67.6 43.8 51.8
B =27 @ per class) Ours.(random) | 362 63.6 35.1 449
B =45 OML-ER 48.0 13.1 49.3 36.8
_ Ours.(all) 447 79.5 445 56.3
B =45 (5 per class) Ours.(random) | 413 743 40.7 52.1
B =63 OML-ER 52.7 24.6 50.3 42.5
. Ours.(all) 55.1 86.2 52.2 64.6
B =63 (7 per class) Ours.(random) | 409 69.3 39.3 49.8
OML-ER 46.8 49.2 47.3 47.8
B = 34,500 (Unlimited) | Ours.(all) — — — —
Ours.(random) | 55.1 86.2 52.2 64.6

Table 5: Comparison of Various Query Sample Selection Methods

Query Sample Selection Method Yelp AGNews Amazon | Overall Accuracy
Random 43.6 69.4 43.7 522
. . Diversity (Ours.) | 44.7 79.5 4.5 56.3
Prototypical Sample Selection | ;o iney 282 478 2738 34.6

zon, are both from product reviews. As a result,
OML-ER has enough iterations to perform mem-
ory replay on AGNews. Its accuracy on AGNews
improves by 9.1%. our methods use few samples to
represent prior task, the increase of iterations make
them converge too well to generalize. Thereby, our
model with read all function suffers over-fitting
problems, especially on AGNews. Read random
function lessens this problem on AGNews, but de-
grades the performance on Yelp and Amazon. We
consider it as the trade-off between representation
and generalization. Still, both of our models outper-
form OML-ER and address catastrophic forgetting.

7.6 Further Analysis

We use Order (1) to perform further analysis. Note
that Yelp and Amazon datasets are product reviews,
while AGNews are news. The data distributions are
different. Hence, we pay extra attentions to model
performance on AGNews.

Memory Efficiency. We compare our models
with all baselines (see Table 9 in the Appendix).
We show the result of our models and a strong base-
line, OML-ER, in Table 4. Our method with read
all ? function achieves highest overall performance
given different memory constraints. Surprisingly,
its results are even better than OML-ER without
memory constraint by at most 16.8%. Our method
with read random function is not as good as our

2Qurs.(all) with unlimited memory means writing all data

to memory and replaying all data, which is not possible for
large scale dataset and can result in out-of-memory errors.

read all method. It suggests that read all function is
more beneficial when giving a strict memory limita-
tion. The result indicates memory efficiency of the
proposed method. Also, both of our models outper-
form OML-ER on AGNews by a large margin. It
shows our models’ ability of knowledge retention.

Effect of Query Sample Selection. Table 5 com-
pares different query sample selection strategies.
We consider two main strategies, i.e., random
and prototypical sample selections. We further
study two popular paradigms in active learning, i.e.,
diversity-based and uncertainty-based method. Our
proposed method is considered as a diversity-based
method. While, opting for examples far from pro-
totypes is an uncertainty-based method. The read
function is read all. In general, random selection
is seen as an efficient selection criteria. Diversity-
based method outperforms random selection by
more than 4% and outperforms uncertainty-based
method by more than 20%.

Effect of Query Sample Editing. We compare
our approach to the mainstream CL method, i.e.,
episodic memory replay. The sample selection
method is prototypical sample selection and write
function writes all selected samples. Table 6 shows
our approach surpasses episodic memory replay
in two different read functions. For read all func-
tion, it is superior to episodic memory replay by
nearly 20%. The performance on AGNews exceeds
episodic memory replay by more than 44%. The
reason behind this bad performance of episodic

Table 6: Comparison Between Episodic Memory Replay and Our Method

Continual Leaning Strategy | Read Function | Yelp AGNews Amazon | Overall Accuracy
Episodic Memory Replay All 34.8 34.9 34.2 34.6
Ours.(all) 4.7 79.5 44.5 56.3
Episodic Memory Replay 32.8 19.5 31.6 27.8
Ours.(random) Random 1 433 743 40.7 52.1

Table 7: Accuracy on 5 Tasks with 4 Different Orderings

Method No. S‘Zi:;i: :mg Memory Constraint) (?gc)ler Inzl7e)x) Average Accuracy
A-GEM' 707 659 675 63.6 66.9 + 3.0
MbPA++ 708 709 70.2 70.7 70.7+0.3
REPLAY* 575,000 (Unlimited) | 69.5 66.2 652 68.3 67.3+ 2.0
OML-ER? 575.000 754 765 754 754 75.7+ 0.6
PMR ’ 612 657 66.1 559 62.2+4.8
Ours.(all) 165 (0.03% seen data) | 54.2 64.1 64.6 48.1 57.8 £ 8.0
Ours.(random) 59.2 61.6 64.6 513 59.2 4+ 5.7
A-GEM 247 332 256 228 26.6 +4.7
Replay 57,500 (Unlimited) 31.0 50.8 38.8 372 39.5+8.3
OML-ER 57500 437 533 442 394 452+ 5.8
PMR ’ 26 452 50 5.7 14.6 +£20.4
Ours.(all) 165 (0.03% seen data) | 56.8 60.7 652 513 585+5.9
Ours.(random) 50.6 59.5 48.7 36.1 48.7+£9.6

memory replay is its insufficient training iterations.
Consequently, it is prone to forgetting. Similarly,
for read random function, our method outperforms
episodic memory replay by a large margin. In ad-
dition, high replay frequency often leads to over-
fitting problem, especially when the amount of
memory samples is small. Our approach revisits a
small amount of past samples every iteration. But
it still maintains a more than 52% overall accuracy.

Learning More Tasks and Examples. We run
experiments on 5 datasets in 4 different orderings.
For comparison, the experimental setup follows
prior work (de Masson d’Autume et al., 2019)3,
where encoder is a pretrained BERT (Devlin et al.,
2019). As shown in Table 7, given full training
examples and strict memory constraint, both of our
models are inferior to PMR by 3.0~4.4%. The
over-fitting problem occurs when the training it-
erations increases. Hence, our method with read
random function performs better than that with read
all function. When we downsize the training sets
to their 10%, our models are superior, validating
their fast adaptation abilities. Furthermore, PMR
performs surprisingly well on Order (6), compared
to its performance on other training set orders. The
last two tasks in Order (6) are Yelp and Amazon.
These two datasets are both product reviews and

3t Results obtained from (de Masson d’Autume et al.,
2019) and ¥ Results obtained from (Holla et al., 2020).

from the same domain. It increases the number of
training iterations for PMR to learn different prob-
ability distributions via episodic memory replay.
Thus, it results in a better accuracy.

8 Conclusion

In this paper, we propose an enhanced meta-
learning framework for continual text classifica-
tion model learning, where we use a prototypical
network to edit query samples and adapt meta-
objective for continual learning. The experimental
results manifest that our method has an outstand-
ing performance in a low resource scenario, i.e.,
insufficient training examples and strict memory
constraints. It also validates our method ensures
fast adaptation while preventing catastrophic for-
getting.

9 Limitations

Our method works well in a low resource sce-
nario, where the amount of training data is not
plentiful and the memory budget is strictly lim-
ited. Its performance also relies heavily on pre-
trained language models. In addition, the meta-
learning framework we used, namely MAML, is
the standard framework. The effect of different
meta-learning frameworks should be studied. We
leave this investigation to future work. Further-
more, we can extend our model to other NLP tasks.

References

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with A-GEM. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Cyprien de Masson d’ Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 13122-13131.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1126—-1135. PMLR.

Stella Ho, Ming Liu, Lan Du, Longxiang Gao, and Yong
Xiang. 2021. Prototypes-guided memory replay for
continual learning. CoRR, abs/2108.12641.

Nithin Holla, Pushkar Mishra, Helen Yannakoudakis,
and Ekaterina Shutova. 2020. Meta-learning with
sparse experience replay for lifelong language learn-
ing. CoRR, abs/2009.04891.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. CoRR, abs/1612.00796.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Zhizhong Li and Derek Hoiem. 2016. Learning without
forgetting. In Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume

9908 of Lecture Notes in Computer Science, pages
614-629. Springer.

M. McCloskey and N. J. Cohen. 1989. Catastrophic
interference in connectionist networks: The sequen-
tial learning problem. Psychology of Learning and
Motivation, 24:109-165.

Alex Nichol, Joshua Achiam, and John Schulman. 2018.
On first-order meta-learning algorithms. CoRR,
abs/1803.02999.

Abiola Obamuyide and Andreas Vlachos. 2019. Meta-
learning improves lifelong relation extraction. In
Proceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 224-229,
Florence, Italy. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024-8035. Curran Associates, Inc.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao
Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. 2019.
Learning to learn without forgetting by maximizing
transfer and minimizing interference. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4077-4087.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
LAMAL: language modeling is all you need for life-
long language learning. CoRR, abs/1909.03329.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo,
Shiyu Chang, and William Yang Wang. 2019. Sen-
tence embedding alignment for lifelong relation ex-
traction. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 796-806. Association for Computational Lin-
guistics.

Zirui Wang, Sanket Vaibhav Mehta, Barnabds Péc-
zos, and Jaime G. Carbonell. 2020. Efficient meta
lifelong-learning with limited memory. In Proceed-
ings of the 2020 Conference on Empirical Methods in

https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://proceedings.neurips.cc/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://arxiv.org/abs/2108.12641
http://arxiv.org/abs/2108.12641
http://arxiv.org/abs/2108.12641
http://arxiv.org/abs/2009.04891
http://arxiv.org/abs/2009.04891
http://arxiv.org/abs/2009.04891
http://arxiv.org/abs/2009.04891
http://arxiv.org/abs/2009.04891
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.1007/978-3-319-46493-0_37
http://arxiv.org/abs/1803.02999
https://doi.org/10.18653/v1/W19-4326
https://doi.org/10.18653/v1/W19-4326
https://doi.org/10.18653/v1/W19-4326
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
http://arxiv.org/abs/1909.03329
http://arxiv.org/abs/1909.03329
http://arxiv.org/abs/1909.03329
https://doi.org/10.18653/v1/n19-1086
https://doi.org/10.18653/v1/n19-1086
https://doi.org/10.18653/v1/n19-1086
https://doi.org/10.18653/v1/n19-1086
https://doi.org/10.18653/v1/n19-1086
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.39

Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 535-548. Association
for Computational Linguistics.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence. In Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
3987-3995. PMLR.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649-657.

Kang Zhao, Hua Xu, Jiangong Yang, and Kai Gao. 2022.
Consistent representation learning for continual re-
lation extraction. In Findings of the Association for
Computational Linguistics: ACL 2022, Dublin, Ire-
land, May 22-27, 2022, pages 3402-3411. Associa-
tion for Computational Linguistics.

A Appendix

10

http://proceedings.mlr.press/v70/zenke17a.html
http://proceedings.mlr.press/v70/zenke17a.html
http://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/2022.findings-acl.268
https://doi.org/10.18653/v1/2022.findings-acl.268
https://doi.org/10.18653/v1/2022.findings-acl.268

Table 8: Per-task and Overall Forgetting on 3 Tasks

Yelp AGNews Amazon .
Order Index | Method Aot P Acws 2 Acws 7y Overall Forgetting
MAML-SEQ 38.5 10.7 32.7 51.3 32.6 8.4 70.4
AGEM 54.9 3.6 4.7 85.3 55.4 1.8 90.7
Replay 56.7 1.8 133 767 | 575 -0.3 78.2
Order (1) OML-ER 46.8 326 | 492 368 | 473 3.2 43.3
PMR 41.6 1.6 0.2 84.9 38.9 -0.9 85.6
Ours.(all) 44.7 -1.3 79.5 2.8 44.5 -4.9 -3.4
Ours.(random) | 41.3 0.4 74.3 6.4 40.7 -4.5 2.3
AGNews Yelp Amazon .
Order Index | Method Acia I Acvs 7 Acvs 7y Overall Forgetting
MAML-SEQ 279 56.1 204 28.8 194 216 106.5
AGEM 0.1 89.9 | 55.8 2.7 56.1 1.1 93.7
Replay 7.6 824 | 56.5 2.0 572 0.0 84.4
Order (5) OML-ER 584 277 | 434 6.8 439 6.6 41.2
PMR 0.0 85.1 28.2 150 | 314 6.6 106.7
Ours.(all) 68.0 14.3 38.2 5.2 37.6 2.0 21.5
Ours.(random) | 74.1 6.6 26.9 14.8 | 28.0 8.2 29.6

Table 9: Per-task and Overall Accuracy with Different Memory Constraints

Memory Constraint (B) | Method Yelp AGNews Amazon | Overall Accuracy
AGEM 57.3 0.0 58.0 38.5
B =27 Replay 57.1 1.6 57.3 38.7
OML-ER 49.8 19.4 49.1 394
PMR 39.1 0.4 39.6 26.4
B = 27 (3 per class) Ours.(all) 44.0 67.6 43.8 51.8
Ours.(random) | 36.2 63.6 35.1 44.9
AGEM 57.0 1.7 56.7 38.5
B =45 Replay 57.3 2.1 57.8 39.0
OML-ER 48.0 13.1 49.3 36.8
PMR 41.6 0.2 38.9 26.9
B = 45 (5 per class) Ours.(all) 44.7 79.5 44.5 56.3
Ours.(random) | 41.3 74.3 40.7 52.1
AGEM 57.2 0.0 57.9 38.4
B =63 Replay 56.9 33 57.5 39.3
OML-ER 52.7 24.6 50.3 42.5
PMR 38.4 3.6 36.1 26.0
B = 63 (7 per class) Ours.(all) 55.1 86.2 52.2 64.6
Ours.(random) | 40.9 69.3 39.3 49.8
AGEM 54.9 4.7 55.4 38.4
Replay 56.7 13.3 57.5 42.5
.. OML-ER 46.8 49.2 47.3 47.8
B = 34,500 (Unlimited) PMR B B B B
Ours.(all) — — — —
Ours.(random) | 55.1 86.2 52.2 64.6

11

5 + Episode 50
20 4+
2151
5 4
8
nrs
-
-
51w
-_——
——y
0 500 1000 1500 2000
Unigram Index
(a) Unigram distribution in episode 50
5 Episade 150
20 1
2151
5
8
101
5
0 500 1000 1500 2000
Unigram Index
(b) Unigram distribution in episode 150
251 « Episode 250
201
8151,
3 *
8,1 .
13 * *
; ** - * * * * *
ST RN e Y - . . kS
ﬂ:;hﬁ ** *m* i*ﬁ il i riallairiel :r ﬁ*% L **t *** i** b4 * - * -
Lt e % > s
0 500 1000 1500 2000
Unigram Index
(c) Unigram distribution in episode 250
5 + Episode 50
Episode 150
2071 * Episode 250
2151 .
3 x
w3 *
; * -
*g’ ** - w - * * -
51 HE A e - o i kS
W: -Af ****t i** el el :# #‘“ L3 **t *** ‘;** . * * * -
L L — e
0 500 1000 1500 2000

Unigram Index

(d) Comparison of unigram distributions

Figure 1: The unigram distribution of the selected query samples. For simplicity, X-axis is the unigram index and
Y-axis is the number of each unigram, where it is in the range [1, 26). Note that the size of selected sample set is
fixed.

12

