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ABSTRACT

Neural networks are fragile when confronted with data that significantly deviates
from their training distribution. This is true in particular for simulation-based in-
ference methods, such as neural amortized Bayesian inference (ABI), where mod-
els trained on simulated data are deployed on noisy real-world observations. Re-
cent robust approaches employ unsupervised domain adaptation (UDA) to match
the embedding spaces of simulated and observed data. However, the lack of com-
prehensive evaluations across different domain mismatches raises concerns about
the reliability in high-stakes applications. We address this gap by systematically
testing UDA approaches across a wide range of misspecification scenarios in both
a controlled and a high-dimensional benchmark. We demonstrate that aligning
summary spaces between domains effectively mitigates the impact of unmodeled
phenomena or noise. However, the same alignment mechanism can lead to fail-
ures under prior misspecifications—a critical finding with practical consequences.
Our results underscore the need for careful consideration of misspecification types
when using UDA techniques to increase the robustness of ABI in practice.

1 INTRODUCTION

Synthetic data can augment numerous real-world applications (Savage, 2023), including complex
statistical workflows. In line with this perspective, amortized Bayesian inference (ABI; Gershman
& Goodman, 2014) redefines the classical sampling problem in Bayesian estimation by training gen-
erative neural networks on simulations derived from computational models (Bürkner et al., 2023).
The trained neural networks are then deployed to efficiently solve inference tasks as diverse as in-
ferring evolutionary parameters (Avecilla et al., 2022) or gravitational waves (Pacilio et al., 2024).

Evidently, the faithfulness of any simulation-based method rests on a critical assumption: That
statistical patterns learned from simulated data can be extrapolated to real observations. This as-
sumption inevitably situates ABI in a domain-shift regime, exacerbated by the degree of potential
mismatch between model simulations and reality. As such, robustness to model misspecification has
been identified as the primary challenge for amortized methods in different fields (Dingeldein et al.,
2024; Rainforth et al., 2024; Cannon et al., 2022).

Unsupervised Domain Adaptation (UDA) studies the transfer of knowledge from a labeled source
domain to an unlabeled target domain. It aims to mitigate domain shifts by aligning the embedding
spaces of the two domains. This property makes UDA a promising approach for addressing domain
shifts in ABI, as the latter typically combines inference with embedding high-dimensional data into
learned summary statistics (Radev et al., 2020; Chan et al., 2018). Indeed, recent research has
underscored the critical role of in-distribution summary statistics for achieving robust simulation-
based inference (Schmitt et al., 2023; Frazier et al., 2024; Huang et al., 2023; Wehenkel et al., 2024).

So far, only two pioneering studies (Swierc et al., 2024; Huang et al., 2023) have explored the po-
tential of UDA methods for robustifying simulation-based inference. Both approaches align the
embedding spaces by minimizing the maximum mean discrepancy (MMD; Gretton et al., 2012) be-
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tween simulated and observed summary statistics. However, despite their promising results, several
gaps remain. In particular, Huang et al. (2023) did not make an explicit connection to UDA and ex-
plored a non-amortized approach. While Swierc et al. (2024) acknowledged the connection to UDA,
their work focused on a specific gravitational lensing application. Both works mainly evaluated like-
lihood misspecification, leaving the behavior under prior shifts largely untapped. Finally, the utility
of the widely used UDA method domain-adversarial neural networks (DANN; Ganin et al., 2016)
remains completely unexplored. To address these gaps, we make the following contributions:

1. We adapt domain-adversarial neural networks for neural posterior estimation (NPE) and
evaluate their utility for robust amortized Bayesian inference.

2. We categorize robust methods by inference targets, enabling a theoretical assessment of
their strengths and limitations based on the source of misspecification.

3. We evaluate the robustness of UDA-based ABI methods across multiple misspecification
scenarios in two benchmarks, confirming the central role of the source of misspecification.

2 BACKGROUND

Amortized Bayesian Inference (ABI) Amortized methods are a subset of the simulation-based
inference (SBI; Cranmer et al., 2020) family. Their defining characteristic is the ability to per-
form zero-shot inference on model parameters θ by learning a conditional distribution q(θ | x)
that requires no further training or approximation algorithms (see Appendix A.1 for details). The
amortized distribution q(θ | x) is typically parameterized by a generative neural network that can
generate random samples θ ∼ q(θ | x), akin to a standard Markov chain Monte Carlo (MCMC)
sampler, but orders of magnitude faster. Following a potentially expensive simulation-based training
phase, the network can be queried with any new data xnew to rapidly approximate the target distri-
bution p(θ | xnew). Initially dismissed as inefficient compared to sequential methods optimized for
a specific data set xobs (Papamakarios & Murray, 2016), amortized methods have since achieved
notable successes across various domains (Bürkner et al., 2023; Zammit-Mangion et al., 2024).

Unsupervised Domain Adaptation (UDA) UDA is a subfield of transductive transfer learning
where labeled data is only available for the source domain DS = {(xi

S ,y
i
S)}

NS
i=1, distributed accord-

ing to pS(x,y), but not for the target domain DT = {xi
T }

NT
i=1, distributed according to pT (xT ,yT )

(Johansson et al., 2019). UDA methods are based on the seminal theoretical works of Ben-David
et al. (2006; 2010), who introduced generalization bounds for binary classification tasks that bound
the risk in the target domain RT of a hypothesis h ∈ H:

RT (h) ≤ RS(h) + dH∆H(pS , pT ) + λH, (1)
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Figure 1: Experiment 2:
Summary space domain dis-
tance (SSDD) vs. normal-
ized root mean squared error
(NRMSE) for a scale shift.
We observe a sweet spot
of domain alignment without
losing important information.

where RS(h) is the source domain risk, dH∆H(pS , pT ) mea-
sures the divergence between the domain distributions, and λH
is the minimum combined risk of the optimal hypothesis, λH =
infh∈H|RS(h) + RT (h)| (Johansson et al., 2019). This suggests
that domain adaptation from DS to DT can be facilitated by min-
imizing the divergence between the marginal domain distributions.
Although the domain distribution divergence cannot be reduced di-
rectly, the representation divergence d(ϕ(xS), ϕ(xT )) from a trans-
formation ϕ : X → Z can be readily minimized (Ben-David et al.,
2006). The core idea of UDA is thus twofold: (i) to minimize the
source-domain error RS(h) during training, and (ii) to align the do-
main representations ϕ(xS) and ϕ(xT ) to achieve domain-invariant
embeddings that generalize to the target domain. UDA methods
include discrepancy-based approaches, which minimize statistical
divergences like the MMD between source and target embeddings
(Tzeng et al., 2014), and, most prominently, adversarial-based ap-
proaches, such as Domain-Adversarial Neural Networks (DANN)
(Ganin et al., 2016), which learn domain-invariant embeddings via
a minimax game between a feature extractor and a domain classifier.

The vast majority of UDA research, including its theoretical foundations, focuses on classification
tasks (Redko et al., 2022; Ben-David et al., 2010; Liu et al., 2022), with some works on regression
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tasks (Cortes & Mohri, 2014; Mansour et al., 2009) and only a few on generative tasks (Uppaal et al.,
2024). More recently, UDA methods have been successfully applied to address simulation-to-reality
(sim2real) problems (Ćiprijanović et al., 2020; Swierc et al., 2023) which seek to generalize patterns
learned in a simulated source domain to a real-world target domain. These problems seem pertinent
to any simulation-based method relying on data generation from imperfect models.

From Simulated to Real Domains The preceding discussion makes the connection between UDA
and ABI immediately apparent: When the distance between the data distribution p(xobs) and the
model-implied distribution p(x) = Ep(θ) [p(x | θ)] is non-zero, the risk of extrapolation error for
atypical data xobs may increase. Indeed, this behavior has been observed repeatedly in the context of
SBI (Ward et al., 2022; Schmitt et al., 2023; Huang et al., 2023; Frazier et al., 2024). In particular,
Frazier et al. (2024) notes that ABI is especially prone to “extrapolation bias” for observed summary
statistics ϕ(x) that are far in the tails of the model-implied (i.e., prior predictive) density p(x). The
scenario can be equivalently stated by invoking the notion of a typical set (Cover & Thomas, 2012),
which denotes a subset of the support of p(x) where most of the probability mass concentrates
around the entropy H(p):

Aϵ = {x ∈ X : |− log p(x)−H(p)| ≤ ϵ} . (2)

Accordingly, for any problem-specific ϵ, observed data xobs /∈ Aϵ may result in a biased posterior
approximation q(θ | xobs). As further noted in the comprehensive theoretical exposition by Frazier
et al. (2024), matching summary statistics ϕ(xobs) to the model-implied distribution of ϕ(x) can be
a useful heuristic for reducing extrapolation bias. This observation harmonizes with the UDA liter-
ature as well (Ben-David et al., 2010). Pre-asymptotically, the success of such matching depends on
multiple factors, including (i) the type and hyperparameters of the matching method (see Figure 1);
(ii) the degree and nature of domain mismatch; (iii) the complexity of the learning problem; and (iv)
even the choice of success metric. Thus, a primary goal of this work is to systematically examine
the effects of these factors on a variety of metrics that can index potential robustness gains.

3 METHODS

3.1 UNSUPERVISED DOMAIN ADAPTATION FOR AMORTIZED BAYESIAN INFERENCE

We start with the observation that model misspecification in ABI (Schmitt et al., 2023), and also
more generally in neural SBI, can naturally be framed as an UDA problem: Ground-truth parameter
values are only available for the simulated source domain D = {(xi,θi)}Ni=1 but not the observed
target domain Dobs = {xi

obs}
Nobs
i=1 . In most machine learning applications, the collection of reliable

ground-truth values is costly but feasible, whereas in SBI, collecting ground-truth parameter val-
ues θobs of observed data is typically impossible. A general optimization objective for NPE-UDA
methods can be formulated by extending the standard negative log-posterior NPE objective:

LNPE-UDA(q, ϕ) : = LNPE + λ · LUDA (3)

= Ep(θ,x)p(xobs)

[
− log q(θ |ϕ(x)) + λ · d(ϕ(x), ϕ(xobs))

]
, (4)

where λ controls the regularization weight of the UDA loss and d(·, ·) is a divergence measure that
attains its global minimum if and only if ϕ(x) = ϕ(xobs).

LNPE-UDA incurs a trade-off between approximation performance in the simulated domain and do-
main divergence in the summary space, depending on the degree of domain mismatch. In the well-
specified case, p(x) = p(xobs), LNPE-UDA reduces to the standard NPE loss. In the misspecified case,
p(x) ̸= p(xobs), the summary network ϕ optimizes the summary statistics to both maximize infor-
mation extraction in the simulated domain and minimize domain shift in summary space. Thereby,
the approximator q(θ |ϕ(x)) needs to rely on domain-invariant information shared between the
simulated and the observed domain. The common UDA assumption that there exists a low-error hy-
pothesis for both domains (Redko et al., 2022, cf. Eq.1) suggests an upper bound on the amount of
domain shift that can be handled by NPE-UDA methods. Next, we formulate two NPE-UDA vari-
ants based on popular UDA methods with strong benchmark performance (Musgrave et al., 2021).

3.2 NPE-MMD

The maximum mean discrepancy (MMD; Gretton et al., 2012) is a popular probability integral
metric in SBI, since it can be efficiently estimated from a finite number of samples (Bischoff et al.,
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2024; Schmitt et al., 2023). For the same reason, it has been employed by various UDA works (Pan
et al., 2010; Tzeng et al., 2014; Long et al., 2015) to measure the divergence between (transformed)
samples from different domains. We categorize the combination of NPE and UDA based on MMD,
such as the variants of Huang et al. (2023) and Swierc et al. (2024), as NPE-MMD. Choosing the
MMD as LUDA, Eq. 3 becomes

LNPE-MMD(q, ϕ) := Ep(θ,x)

[
− log q(θ |ϕ(x))

]
+ λ · MMD2

[
ϕ(x) ||ϕ(xobs)

]
. (5)

The most important hyperparameter of NPE-MMD is the choice of kernel in the sample-based MMD
estimator. In our experiments, we obtained good results with a sum of inverse multiquadric kernels
(Ardizzone et al., 2018), but other choices have been explored in the context of robust ABI as well,
such as (sums of) Gaussian kernels (Schmitt et al., 2023; Huang et al., 2023).

3.3 NPE-DANN

Domain-adversarial neural networks (DANN; Ganin et al., 2016), which have not been considered
for NPE to date, introduce a domain classifier ψ(·) to reduce domain distance. Unlike typical ad-
versarial training, which alternates between objectives, DANN achieves minimax optimization in a
single-step update via a gradient reversal layer (Ganin et al., 2016). This layer flips the gradient
sign from the classifier to the feature extractor (e.g., summary network) ϕ during backpropagation,
encouraging the feature extractor to generate less domain-specific summary statistics. Similarly to
NPE-MMD, DANN can be integrated into Eq. 3 to achieve NPE-DANN:

LNPE-DANN(q, ϕ, ψ) := Ep(θ,x)

[
− log q(θ |ϕ(x))

]
+ λ · LD(ψ, ϕ). (6)

The discriminator loss LD is given by:

LD(ψ, ϕ) := −Ep(x)

[
log(p(ψ(ϕ(x)))

]
− Ep(xobs)

[
log(1− p(ψ(ϕ(xobs)))

]
, (7)

where ψ is the domain classifier and the equation represents the binary cross-entropy loss on the
domains, where a gradient reversal layer enables updating ϕ and ψ in opposing directions.

While DANN is a powerful and popular UDA method (Zhou et al., 2022), it has two important
drawbacks. First, the unstable training dynamics and convergence issues generally associated with
adversarial learning can also occur with DANN (Sener et al., 2016; Sun et al., 2019). Second,
adversarial training adds new hyperparameters, including the domain classifier architecture, an op-
tional weight for gradient reversal balance (Ganin et al., 2016), and stabilization techniques like
label smoothing (Zhang et al., 2023). Notably, although λ is a shared hyperparameter in NPE-MMD
and NPE-DANN, its effect on training dynamics will vary across applications due to differing LUDA
scales.

3.4 WHAT IS THE TARGET OF ROBUSTNESS?

To better understand the strengths and limitations of robust methods, including NPE-UDA, we sug-
gest to distinguish between the following inference goals:

• Target 1: The analytic (true) posterior p(θ | xobs) ∝ p(xobs | θ) p(θ) of the assumed
probabilistic model given the observed data xobs.

• Target 2: A posterior p(θ | x̃obs) ∝ p(x̃obs | θ) p(θ) of the assumed probabilistic model
given adjusted data x̃obs.

• Target 3: A posterior p̃(θ | xobs) ∝ p(xobs | θ) p̃(θ) from an adjusted prior p̃(θ) given
the observed data xobs.

Target 1 is the most common target in Bayesian inference. Classical approximation methods such
as MCMC almost always consider this target (Carpenter et al., 2017). Target 2, an explicit deviation
from the true posterior, is often targeted by methods that seek to improve the robustness of Bayesian
inference. Their goal is to reduce the influence of unmodeled phenomena in xobs, such as additional
noise or external contamination, by approximating a target posterior p(θ | x̃obs) based on denoised
or uncontaminated data x̃obs. This can be achieved either explicitly, by transforming xobs into x̃obs,
or implicitly, by using an adjusted (implicit) likelihood p̃(xobs | θ).
Since Target 2 implies ignoring parts of the data that are in disagreement with the assumed prob-
abilistic model, we expect corresponding methods to perform worse under prior misspecification:
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When a data-generating parameter θ∗ is impossible or highly unlikely under the assumed prior, ig-
noring conflicting information effectively reduces the amount of information available to counteract
a poorly chosen prior. Generalized Bayes approaches (Bissiri et al., 2016) also aim to reduce the
influence of undesired parts of the data. They move away from the classical Bayes rule by replacing
the likelihood with a loss function, which can be interpreted as an adjusted likelihood p̃(xobs | θ)
according to Target 2. Lastly, Target 3 can directly reduce the impact of prior misspecification by
adjusting the prior based on xobs. However, compared to Target 2, it is more challenging to concep-
tualize the desired target priors p̃(θ) and posteriors p̃(θ | xobs) under model misspecification.

Given this categorization, what is the target of NPE-UDA? Unsurprisingly, the classic NPE loss LNPE
aims at Target 1. In contrast, the additional LUDA loss governs the alignment of the summary space
between simulated and observed data, effectively adjusting the observed data seen by the model.
Thus, LUDA introduces a shift towards Target 2, with λ governing its relative importance compared
to Target 1. As hypothesized above, methods aiming at Target 2 may not perform well under
prior misspecification, which is confirmed for the NPE-UDA methods throughout our experiments.
While Huang et al. (2023) suggested that their NPE-MMD variant is robust to prior mean shift, this
conclusion was based on a single tested xobs and our comprehensive evaluation could not replicate
the result.

In line with our hypothesis and empirical results, Huang et al. (2023) observed that increasing val-
ues of λ encourage trading off the information content of x to minimize the domain distance in
summary space, leading the posterior to converge to the assumed prior p(θ). Thus, the critical im-
portance of the tunable hyperparameter λ in UDA contexts (Zellinger et al., 2021) directly translates
to ABI applications, where λ controls a trade-off between improving approximation under likelihood
misspecification and degrading approximation under prior misspecification.

4 RELATED WORK

Robust Neural SBI Robustness in neural SBI has become a rapidly growing area of research,
with most approaches enhancing robustness for a single data set at the cost of amortization, e.g.,
due to additional MCMC runs or post-hoc corrections. The majority of these approaches focuses on
Target 2 by incorporating an misspecification model (Ward et al., 2022), shifting observed summary
statistics with low support (Kelly et al., 2023), reducing the influence of unmodeled data shifts
via generalized SBI (Gao et al., 2023), or using the single-data-set NPE-MMD variant previously
discussed (Huang et al., 2023). Focusing on Target 1, Siahkoohi et al. (2023) highlighted the role
of the approximator’s latent space in domain shifts and proposed a latent space correction based on
the observed data xobs. Differently, Wang et al. (2024) focus on Target 3 by using an upfront ABC
run to filter the part of the parameter space causing the highest discrepancy between x and xobs.

Robust ABI In contrast, research on robustifying inference while retaining amortization has been
sparse. Extending the scope of the training data via additive noise (Cranmer et al., 2020; Bernaerts
et al., 2023), such as the spike-and-slab noise approach of Noisy NPE (NNPE; Ward et al., 2022), can
be seen as a light modification to the simulator-implied likelihood as in Target 2, but requires strong
assumptions about the misspecification-generating process. Wehenkel et al. (2024) also approach
Target 2 by framing domain shift as an optimal transport problem in summary space, but this re-
quires observed “ground-truth” parameters θ∗

obs that are hard to obtain in most ABI settings. Swierc
et al. (2024) provided evidence for the potential of NPE-MMD for robust ABI but focused their eval-
uation on a gravitational lensing application with synthetically added noise. Finally, Glöckler et al.
(2023) proposed an efficient regularization technique that can increase robustness against adversarial
attacks and thus attain more reliable performance under Target 1.

5 EXPERIMENTS

The previous two NPE-MMD approaches mainly evaluated performance against contamination
(Huang et al., 2023), where a fraction of the sample is replaced with corrupted observations (Huber,
1981), or noise applied to all observations (Swierc et al., 2024). Both of these scenarios are cases of
likelihood misspecification where ignoring noise is desirable (Target 2). To obtain a clearer insight
into the strengths and limitations of NPE-UDA methods, we systematically evaluate the behavior of
NPE-MMD and NPE-DANN in various likelihood/data and prior misspecification scenarios.
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Figure 2: Experiment 1. Metrics of the methods in all misspecification scenarios (columns), aver-
aged across 3 runs. The first row shows the well-specified setting, with misspecification increasing
from top to bottom within each column. Metric values are centered at 0 and normalized by each
column’s/scenario’s maximum value, which is displayed below the metric name at the border of
each radar plot. Lower values indicate better performance for all metrics but SSDD. 1− PC =
1− Posterior Contraction. NRMSE = Normalized Root Mean Squared Error. SSDD = Summary
Space Domain Distance (MMD; not applicable for Analytic Posterior). PPD = Posterior Predictive
Distance (MMD). ECE = Expected Calibration Error. NPE-UDA methods fail under prior misspec-
ification but can be advantageous under likelihood misspecification, especially contamination.

Experiment 5.1 starts with a simple and controllable setting that allows for comparing the NPE-
UDA methods not only against standard NPE and NNPE (Ward et al., 2022), but also the analytic
posterior under Target 1. Afterwards, Experiment 5.2 explores whether the results can be replicated
in a challenging setting with a high-dimensional parameter space. We evaluate a range of metrics:
(i) normalized root mean squared error (NRMSE) to measure approximation error; (ii) expected cal-
ibration error (ECE) to measure probabilistic calibration; (iii) posterior contraction (PC) to measure
information gain from prior to posterior; (iv) posterior predictive distance (PPD; via MMD), the
only performance metric obtainable on xobs in real-world settings; and (v) summary space domain
distance (SSDD; via MMD) to measure domain alignment. Please refer to the Appendix for details
concerning the metrics (B.2), Experiment 5.1 (B.3), and Experiment 5.2 (B.4).

5.1 EXPERIMENT 1 - 2D GAUSSIAN MEANS: CONTROLLED SETTING

Setup Inspired by Schmitt et al. (2023), we set the stage with a simple and controllable task of
modeling the means of a 2-dimensional Gaussian model, enabling the comparison with an analytic
posterior. The well-specified setting uses a multivariate standard normal prior and an identity like-
lihood covariance matrix. We evaluate performance under increasing misspecification in two prior
misspecification scenarios – prior location µ0 and prior scale Σ0 = τ0I2 – and two likelihood mis-
specification scenarios – likelihood scale Σ = τI2 and contamination ϵ (see Table B.1). For the
contamination misspecification, a fraction ϵ of the observations is replaced by negative and positive
vectors of the constant c = 1.5 to obtain atypical observations without affecting overall location
or scale. Each simulated data set contains M = 100 exchangeable observations. All methods

6



Published at ICLR 2025 (Frontiers in Probabilistic Inference: Sampling meets Learning Workshop)

Prior (MNIST → USPS) Likelihood Scale Contamination (Noise) Contamination (Rows)
Method λ NRMSE ↓ PPD ↓ SSDD NRMSE ↓ PPD ↓ SSDD NRMSE ↓ PPD ↓ SSDD NRMSE ↓ PPD ↓ SSDD

NPE - 0.252 0.081 0.249 0.169 0.019 0.089 0.326 0.090 0.374 0.326 0.090 0.457

NNPE - 0.312 0.106 0.218 0.186 0.027 0.043 0.176 0.025 0.038 0.202 0.032 0.036

NPE-DANN 0.01 0.342 0.150 0.019 0.109 0.015 0.020 0.231 0.045 0.020 0.174 0.033 0.024
NPE-DANN 0.10 0.344 0.152 0.016 0.110 0.014 0.012 0.207 0.034 0.013 0.173 0.028 0.014
NPE-DANN 1.00 0.373 0.169 0.067 0.135 0.017 0.011 0.252 0.047 0.013 0.223 0.039 0.014

NPE-MMD 0.01 0.312 0.134 0.026 0.134 0.012 0.018 0.266 0.053 0.020 0.264 0.054 0.017
NPE-MMD 0.10 0.322 0.141 0.013 0.323 0.085 0.000 0.253 0.048 0.013 0.175 0.026 0.011
NPE-MMD 1.00 0.393 0.185 -0.000 0.325 0.085 0.000 0.324 0.085 0.000 0.324 0.085 0.000

Table 1: Experiment 2. Metrics of the methods in all misspecification scenarios, averaged across 3
runs. NRMSE: Normalized Root Mean Squared Error (lower is better). PPD: Posterior Predictive
Distance (NRMSE) (lower is better). SSDD: Summary Space Domain Distance (MMD). Lower
values indicate better summary space alignment, but too much alignment (i.e., vanishing SSDD) can
lead to an uninformative summary space (e.g., NPE-MMD with λ = 1.00).

train on N = 49 920 well-specified data sets, with the NPE-UDA methods additionally exposed to
Nobs = 49 920 observed data sets, and are evaluated on Nobs = 100 observed data sets (unseen by
NPE-UDA methods).

Results Figure 2 displays the results for all misspecification scenarios. We invert the meaning
of the posterior contraction (PC) metric so that lower means better for all metrics and the perfor-
mance of a method can mostly be inferred from its area. All methods perform reliably well in the
well-specified case (first row), whereas we observe distinct but consistent patterns for the differ-
ent methods under increasing mismatch. In the prior misspecification scenarios, all NPE methods
perform poorly compared to the analytic posterior, but the NPE-UDA methods perform especially
poorly in terms of NRMSE, PPD, and ECE.

In the likelihood scale misspecification scenario, the NPE methods are less sensitive to the misspec-
ification than the analytic posterior. NPE-MMD successfully aligns the summary space between
domains, leading to a slightly lower NRMSE but high ECE compared to NPE. NPE-DANN, on the
other hand, fails to align the summary space for both misspecification levels, which translates to
poor performance. This drastic failure in the observed domain is not detectable in the simulated
domain, where all methods, even NPE-DANN in the τ = 20 scenario, perform well (see Figure B2).
While NNPE mostly performs similarly to standard NPE, with lower posterior contraction resulting
from its noisier training in most settings, it achieves better calibration and a slightly lower NRMSE
than NPE for likelihood scale shifts. In the contamination scenario, deviating from the true posterior
via Target 2 enables NPE-MMD and NPE-DANN to excel, achieving much lower NRMSE and
ECE than NPE, NNPE, and even the analytic posterior.

Finally, PPD reliably detects NPE-UDA failures under prior misspecification. We suspect that its
indifference to likelihood misspecifications is due to the structure of the simple Gaussian mean
model. Nevertheless, SSDD reliably indicates NPE-UDA alignment failures, which translate to
poor approximation performance in likelihood misspecification scenarios.

5.2 EXPERIMENT 2 - BAYESIAN DENOISING: HIGH-DIMENSIONAL SETTING

Setup We base our high-dimensional benchmark on a noisy camera model, similar to Ramesh
et al. (2022). The parameter vector θ ∈ R256 represents the original image, whereas the observation
x ∈ R256 is a blurred version of the original image generated by the noisy camera. The training
data set consists of N = 50 000 images from the MNIST data set (Lecun et al., 1998), downscaled
to 16 × 16 pixels for compatibility with the USPS data set (Hull, 1994). We test four different
misspecification scenarios (see Table 2 for examples). In the prior misspecification scenario, we
keep the settings of the noisy camera model constant but use images from the USPS data set (Hull,
1994). While both data sets contain digits, the USPS data set features smaller margins, giving the
priors different support. In the likelihood scale scenario, we increase the amount of blur. In the noise
contamination scenario, we replace 10% of the pixels with salt-and-pepper noise (i.e., set them to
black or white). In the row contamination scenario, we randomly set two rows (12.5% of the pixels)
of each observation to black. We evaluate the performance on Nobs = 1, 000 observed data sets
(seen by NPE-UDA methods during training).
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Train Prior (MNIST → USPS) Likelihood Scale Contamination (Noise) Contamination (Rows)

Parameters θ

Observations x -

NPE

NNPE

NPE-DANN

NPE-MMD

Table 2: Experiment 2. Parameters, observations, and samples from the run with the lowest
NRMSE for each scenario and method. Train shows a sample from the parameters θ of the train-
ing distribution and the corresponding observations xobs. The observations are identical for NPE,
NPE-DANN, and NPE-MMD, whereas spike-and-slab noise is added for NNPE. The similarity to
the observations in the Contamination (Noise) scenario explains the good performance of NNPE.

Results Table 1 displays an overview of the metrics in all scenarios. Table 2 shows samples from
the best run (lowest NRMSE) for each scenario and method. We observe worse approximations
for all robust methods compared to NPE in the prior misspecification scenario, even though the
summary space domain distance (SSDD) is strongly diminished for NPE-DANN and NPE-MMD.
This is somewhat expected, as performance improvements would also require an adaptation of the
approximator, which cannot be induced by the methods tested here. NNPE is beneficial in the
two contamination scenarios, whereas NPE-DANN and NPE-MMD improve performance in all
three likelihood misspecification scenarios. The results highlight the differences between the robust
methods: While NNPE mainly excels in the noise contamination scenario, where its misspecification
model matches the domain shift, NPE-UDA methods effectively adapt to different likelihood shifts.

Overall, NPE-DANN achieves good performance over a wide range of λ values. In contrast, NPE-
MMD is prone to overregularizing the summary space, leading to a complete loss of information
in the summary space (see also Figure 1). This is indicated by a huge drop in performance and
vanishing SSDD. We found NPE-MMD highly sensitive to the chosen batch size, which we had to
increase from 32 to 128 to achieve acceptable results. Thus, increasing the batch size and reduc-
ing λ can counteract excessive regularization in higher-dimensional problems. Finally, the close
correspondence between the NRMSE and PPD metrics confirms our hypothesis that the limited di-
agnostic power of PPD in the likelihood misspecification scenarios of Experiment 5.1 was caused
by the limited informativeness of data simulated from a simple Gaussian model.

6 CONCLUSION

We argued that introducing UDA to NPE methods shifts the inference goal from the standard ana-
lytic posterior p(θ | xobs) to another posterior p(θ | x̃obs) based on adjusted data x̃obs. This implies
potential robustness gains under likelihood misspecification, where ignoring unmodeled phenomena
in the observed data can be desirable, but reduces the amount of information available to counteract
prior misspecification. We consistently found these patterns throughout our systematic evaluations
for both the existing NPE-MMD and a new NPE-DANN method. Whereas NPE-DANN was less
stable than NPE-MMD in the low-dimensional benchmark, it excelled in the likelihood misspec-
ification scenarios of the high-dimensional benchmark. Lastly, we confirmed the existence of an
application-specific optimal amount of UDA regularization (Zellinger et al., 2021) in the NPE con-
text. In light of our results, we propose a two-step approach for diagnosing NPE-UDA methods
in real-world applications relative to an NPE baseline: (1) assessing summary space alignment via
summary space domain distance and (2) evaluating whether this alignment improves fit to empirical
data via posterior predictive distance.
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APPENDIX

A THEORETICAL DETAILS

A.1 DEFINING AMORTIZED BAYESIAN INFERENCE

The term “amortized” has been used inconsistently throughout the literature, often denoting different
generalization scopes. To clarify this concept for the discussion within this work, we offer the
following definition:

Definition 1. Let A denote a learner, y denote target variables, x represent input data, and c
denote context variables. A learner y ∼ A(x, c) is an amortized Bayesian approximator of a target
quantity y with respect to a joint distribution p(x,y, c) if it can directly approximate p(y | x, c) for
any (x, c) ∼ p(x, c) without requiring further training or additional approximation algorithms.

By this definition, sequential methods that necessitate further training for new data (Papamakar-
ios & Murray, 2016; Glöckler et al., 2022) are not considered amortized. Similarly, neural likeli-
hood estimation (NLE; Papamakarios & Murray, 2016) and neural ratio estimation (NRE) (Hermans
et al., 2020) which depend on MCMC algorithms do not qualify as amortized. In contrast, recent
transformer-based (Gloeckler et al., 2024) or context-aware methods (Elsemüller et al., 2024) clearly
fall within the scope of amortized neural posterior estimation (NPE).

B EXPERIMENTAL DETAILS

Since the analytic posterior is only obtainable in Experiment 5.1, we measure performance relative
to the data-generating parameters θ∗ to enable a direct comparison between the experiments. For
likelihood misspecification settings, θ∗ is closely related to the posterior p(θ | x̃obs) based on ad-
justed (e.g., decontaminated) data x̃obs (Target 2). Thus, the NPE-UDA posterior approximations
being closer to θ∗ than the analytic posterior p(θ | x) in the contamination scenario of Experiment
5.1 indicates that NPE-UDA methods indeed focus Target 2.

In all experiments, we build upon the BayesFlow Python library for amortized Bayesian work-
flows using generative neural networks (Radev et al., 2023).

B.1 METHOD DETAILS

NNPE We implemented NNPE following the original implementation of Ward et al. (2022) at
https://github.com/danielward27/rnpe, who used a spike scale of σ = 0.01 and a
slab scale of τ = 0.25 for all experiments. Whether spike (standard normal) or slab (standard
Cauchy) noise is applied to a simulated data point is determined by sampling from a Bernoulli
distribution with p = 0.5.

Sensitivities of NPE-UDA In both experiments, we found the typical UDA phenomenon of sen-
sitivity to higher learning rates (Perone et al., 2019) in the form of unstable learning dynamics such
as exploding gradients. We also found sensitivity to short training times, suggesting that finding a
stable optimum for the two-component NPE-UDA loss in Eq. 3 requires more gradient updates than
usual.

Computational Cost of NPE-UDA Since the NPE-UDA methods operate in the compressed sum-
mary space, the runtime increase during training is minimal compared to NPE. For example, despite
the relatively large (32-dimensional) summary space in Experiment 5.2, NPE and NPE-MMD took
12s/epoch and NPE-DANN 13s/epoch during GPU training on a cluster.

B.2 METRICS

We compute multiple metrics that measure the performance based on the approximation perfor-
mance of J data-generating parameters {θ∗j }Jj=1 via S posterior samples (we forego the obs nota-
tion where possible for brevity here). Depending on the metric, results are averaged across the J
parameters and/or N observed data sets.
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Normalized root mean squared error (NRMSE):

NRMSE =
1

N

N∑
n=1

 1

J

J∑
j=1

√
1
S

∑S
s=1(θ

∗
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(s)
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2

max(θ∗j )−min(θ∗j )

 . (8)

Expected calibration error (ECE) via the fraction of ground-truth inliers for R linearly spaced α-
confidence intervals in [0.005, 0.995] (Ardizzone et al., 2018; Radev et al., 2020):

ECE =
1

J

J∑
j=1
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)
, (9)

where medianR
r=1 represents the median fraction of inliers across the R = 20 credible intervals and

Qk(θ̂
(n)
j ) represents the k-th quantile of the posterior samples for the n-th data set. We estimate

the ECE on all test data sets via the median calibration error of R = 20 linearly spaced credible
intervals, averaged across J model parameters.

Posterior contraction (PC) relative to the prior distribution (Betancourt, 2018):

PC =
1

N

N∑
n=1

 1

J

J∑
j=1

(
1−

Var(θ̂(s)j,n)

Var(θ∗j,n)

) . (10)

Posterior predictive distance (PPD):

PPD =
1

N

N∑
n=1

[
1

S

S∑
s=1

d
(
xn, x̂

(s)
n

)]
. (11)

where x̂(s) represents a re-simulation based on a posterior sample of all parameters, θ̂(s), and we
use the MMD (Experiment 5.1) or NRMSE (Experiment 5.2) for d(·, ·).
The summary space domain distance (SSDD), which does not measure approximation performance

but the degree of summary space alignment, is based on the biased sample-based M̂MD
2

estimator
(Gretton et al., 2012):

SSDD =
1

N

N∑
n=1

M̂MD
2[
{ϕ(xn)} || {ϕ(xobs

n )}
]
, (12)

where {ϕ(xn)} and {ϕ(xobs
n )} are sets of summary statistics over which the expectations are ap-

proximated.

B.3 EXPERIMENT 1 - 2D GAUSSIAN MEANS

Misspecification Setting Prior Likelihood

Well-specified µ ∼ N (0, I2) xk ∼ N (µ, I2)
Prior location misspecification µ ∼ N (µ0, I2) xk ∼ N (µ, I2)
Prior scale misspecification µ ∼ N (0, τ0I2) xk ∼ N (µ, I2)
Likelihood scale misspecification µ ∼ N (0, I2) xk ∼ N (µ, τI2)
Contamination misspecification µ ∼ N (0, I2) xk ∼ ϵ

2
· δ(x− c) + ϵ

2
· δ(x+ c) + (1− ϵ) · N (µ, I2)

Table B.1: Experiment 1: Overview of the model specifications in the different misspecification
settings.

Table B.1 provides an overview of the well-specified setting and the different misspecification sce-
narios inspired by Schmitt et al. (2023)
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B.3.1 NETWORK ARCHITECTURE

We use a deep set architecture (Zaheer et al., 2017) for the summary network ϕ, compressing the
input to 4-dimensional summary statistics. For the generative inference network of the approximator
q, we use an affine coupling flow architecture (Ardizzone et al., 2021; Kingma & Dhariwal, 2018)
with 3 coupling layers.

For the domain classifier ψ in NPE-DANN, we use a standard feedforward network with 2 hidden
layers of width 256. We do not use label smoothing or weight the gradient reversal balance.

B.3.2 TRAINING AND EVALUATION DETAILS

To rule out any overfitting effects, we use an online training approach where new data from the
simulated and the observed domain is simulated at each training step, resulting in overall simulation
budgets of N = 49, 920 and Nobs = 49, 920. Since we use a batch size of 32, also for the observed
data in NPE-UDA methods, online training amounts to 1560 mini-batches and thus gradient updates.
We use an Adam optimizer with an initial learning rate of 5 · 10−4 and cosine decay.

We use S = 100 posterior samples per method to limit the computational cost of the PPD calcula-
tion, where an MMD distance is calculated for each re-simulated data set and thus posterior sample.
While we did not observe different result patterns with higher values of S, we will increase S in the
full version of this work.

B.3.3 ADDITIONAL RESULTS

We provide additional results iterating over three factors: (i) performance in the simulated vs. the
observed domain, (ii) λ = [0.1, 1, 10], and (iii) comparison of the posterior approximations to the
analytic posterior instead of the data-generating parameters θ∗.

Performance in the Simulated Domain Figure B1, Figure B2, and Figure B3 show the perfor-
mance in the simulated domain. Despite notable performance differences in the observed domain,
all methods perform well in the simulated domain for the vast majority of settings, with the only
exception being the failures of NPE-DANN for high regularization weights in Figure B3. NNPE
performs worse in the simulated (noiseless) domain since it was optimized based on noisy training
data. Besides the NPE-DANN failures, we mostly do not observe a trade-off of the summary space
alignment of the NPE-UDA methods. Only in the high regularization setting λ = 10, the ECE is
systematically higher compared to NPE.

Performance in the Observed Domain Figure B4 and Figure B5 confirm our finding of an
application- and also method-specific λ optimum: Whereas the difference of the NPE-UDA methods
to NPE is often small for λ = 0.1, λ = 10 still leads to performance improvements of NPE-MMD
in likelihood misspecification scenarios but renders NPE-DANN highly unstable when large domain
shifts are present.

Performance Compared to the Analytic Posterior Figure B6, Figure B7, and Figure B8 com-
pare the different approximation algorithms to the analytic posterior under Target 1, also showing
the clear separation between NPE and NNPE vs. the NPE-UDA methods as a function of λ. The
inference network latent distance (INLD) to its base distribution, a proxy of approximation quality
(Siahkoohi et al., 2023), is closely related to a methods performance (compare for example Figure 2
and Figure B7).

B.4 EXPERIMENT 2

Simulator (Noisy Camera Model) We adopt a noisy camera model similar to the one presented
in Ramesh et al. (2022). First, the input image is clipped to the range [−1, 1]. Next, we use scikit-
image (van der Walt et al., 2014) to add Poisson noise to the image, then filter it using a Gaussian
filter from SciPy (Virtanen et al., 2020) with a standard deviation σ for the Gaussian kernel. The
result is a blurred image with identical size as the input image.

Data Preparation For each data set, we normalize the images to the range [−1, 1]. The MNIST
(Lecun et al., 1998) images are rescaled from 28 × 28 to 16 × 16 with anti-aliasing enabled. To
produce the training data x, the images are processed by the simulator, with σ0 = 1.4. For NNPE,
we then add noise to x using the spike-and-slab error model from Ward et al. (2022).

16



Published at ICLR 2025 (Frontiers in Probabilistic Inference: Sampling meets Learning Workshop)

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
2.46

Prior Location
0 = 0

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.77

Prior Scale
0 = 1

NRMSE
0.03

1 PC
0.02

ECE
0.08

PPD
0.12

SSDD
1.19

Likelihood Scale
 = 1

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.36

Contamination Fraction
 = 0

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
2.46

0 = 2.5

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.77

0 = 3

NRMSE
0.03

1 PC
0.02

ECE
0.08

PPD
0.12

SSDD
1.19

 = 10

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.36

 = 0.25

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
2.46

0 = 5

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.77

0 = 5

NRMSE
0.03

1 PC
0.02

ECE
0.08

PPD
0.12

SSDD
1.19

 = 20

NRMSE
0.03

1 PC
0.02

ECE
0.09

PPD
0.12

SSDD
0.36

 = 0.5

NPE NNPE NPE-MMD ( = 0.1) NPE-DANN ( = 0.1) Analytic Posterior

Figure B1: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) on simulated (i.e., well-specified) data for λ = 0.1 in NPE-MMD and NPE-DANN,
averaged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). 1− PC = 1− Posterior Contraction. NRMSE = Normalized Root Mean
Squared Error. SSDD = Summary Space Domain Distance (MMD; not applicable for Analytic
Posterior). PPD = Posterior Predictive Distance (MMD). ECE = Expected Calibration Error.

While the training data remains constant across scenarios, the observed data is generated in different
ways. For the prior misspecification scenario, we use the USPS data set (Hull, 1994) instead of
MNIST, but the parameters of the simulator remain identical (i.e., σ = σ0). For the likelihood scale
scenario, we use σ̃ = 1.25 · σ0, leading to an increased blur. For the noise contamination scenario,
we randomly set 10% of the pixels of each observation to black or white. For the row contamination
scenario, we randomly set 2 rows of each observation (i.e., 12.5% of the pixels) to black. Refer to
Table 2 for samples from each scenario.

Network Architecture For the summary network, we use a 4-layer convolutional neural network,
which outputs 32 learned summary variables.

For the inference network, we use flow matching (Lipman et al., 2023; Wildberger et al., 2023)
to convert a multivariate Gaussian distribution to the approximate posterior distribution. We use a
U-Net architecture (Ronneberger et al., 2015) to learn the flow field conditional on the summary
variables.

For NPE-DANN, we use a domain classifier ψ consisting of a standard feedforward network with 3
hidden layers of width 256, a gradient reversal layer (GRL) weight of 1, and no label smoothing.

Training and Evaluation Details We use an AdamW optimizer with an initial learning rate of
5 · 10−4 and cosine decay. We use a batch size of 32 and train for 20 epochs, except for NPE-MMD,
which required increasing the batch size to 128. To keep the number of gradient updates constant,
we also increased the number of epochs to 80 for NPE-MMD. The training budget is 50 000 training
images, and 1 000 observed images. Training one neural network takes approximately 10 minutes
on a GPU.
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Figure B2: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) on simulated (i.e., well-specified) data for λ = 1 in NPE-MMD and NPE-DANN,
averaged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). 1− PC = 1− Posterior Contraction. NRMSE = Normalized Root Mean
Squared Error. SSDD = Summary Space Domain Distance (MMD; not applicable for Analytic
Posterior). PPD = Posterior Predictive Distance (MMD). ECE = Expected Calibration Error.

Similar to Experiment 5.1, we use a relatively low number of posterior samples (here: S = 10)
per method to limit the computational cost of the experiment, allowing for a broader exploration
of hyperparameters and the variance between multiple runs. While we observe a low variance of
posterior samples and additionally average over observations and samples, we will increase S in the
full version of this work.

Additional Metrics Table B.2 displays the performance on a held-out in-distribution data set, to
assess the influence on the loss on the in-domain observations. Table B.3 displays the same data as
Table 1, but with uncertainty indicators (standard deviation).

Additional Figures Figure B9 shows the plots corresponding to Figure 1 for the remaining three
scenarios.

18



Published at ICLR 2025 (Frontiers in Probabilistic Inference: Sampling meets Learning Workshop)

NRMSE
0.24

1 PC
0.69

ECE
0.09

PPD
0.60

SSDD
5.20

Prior Location
0 = 0

NRMSE
0.05

1 PC
0.06

ECE
0.12

PPD
0.14

SSDD
0.77

Prior Scale
0 = 1

NRMSE
0.22

1 PC
0.61

ECE
0.08

PPD
0.55

SSDD
3.37

Likelihood Scale
 = 1

NRMSE
0.16

1 PC
0.41

ECE
0.09

PPD
0.38

SSDD
1.75

Contamination Fraction
 = 0

NRMSE
0.24

1 PC
0.69

ECE
0.09

PPD
0.60

SSDD
5.20

0 = 2.5

NRMSE
0.05

1 PC
0.06

ECE
0.12

PPD
0.14

SSDD
0.77

0 = 3

NRMSE
0.22

1 PC
0.61

ECE
0.08

PPD
0.55

SSDD
3.37

 = 10

NRMSE
0.16

1 PC
0.41

ECE
0.09

PPD
0.38

SSDD
1.75

 = 0.25

NRMSE
0.24

1 PC
0.69

ECE
0.09

PPD
0.60

SSDD
5.20

0 = 5

NRMSE
0.05

1 PC
0.06

ECE
0.12

PPD
0.14

SSDD
0.77

0 = 5

NRMSE
0.22

1 PC
0.61

ECE
0.08

PPD
0.55

SSDD
3.37

 = 20

NRMSE
0.16

1 PC
0.41

ECE
0.09

PPD
0.38

SSDD
1.75

 = 0.5

NPE NNPE NPE-MMD ( = 10.0) NPE-DANN ( = 10.0) Analytic Posterior

Figure B3: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) on simulated (i.e., well-specified) data for λ = 10 in NPE-MMD and NPE-DANN,
averaged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). 1− PC = 1− Posterior Contraction. NRMSE = Normalized Root Mean
Squared Error. SSDD = Summary Space Domain Distance (MMD; not applicable for Analytic
Posterior). PPD = Posterior Predictive Distance (MMD). ECE = Expected Calibration Error.
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Figure B4: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) for λ = 0.1 in NPE-MMD and NPE-DANN, averaged across 3 separate runs. Lower
values indicate better performance (for SSDD only for NPE-MMD and NPE-DANN). 1− PC =
1− Posterior Contraction. NRMSE = Normalized Root Mean Squared Error. SSDD = Summary
Space Domain Distance (MMD; not applicable for Analytic Posterior). PPD = Posterior Predictive
Distance (MMD). ECE = Expected Calibration Error.
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Figure B5: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) for λ = 10 in NPE-MMD and NPE-DANN, averaged across 3 separate runs. Lower
values indicate better performance (for SSDD only for NPE-MMD and NPE-DANN). 1− PC =
1− Posterior Contraction. NRMSE = Normalized Root Mean Squared Error. SSDD = Summary
Space Domain Distance (MMD; not applicable for Analytic Posterior). PPD = Posterior Predictive
Distance (MMD). ECE = Expected Calibration Error.
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Figure B6: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) compared to the analytic posterior for λ = 0.1 in NPE-MMD and NPE-DANN, av-
eraged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). MMD = Maximum Mean Discrepancy to analytic posterior. RMSE =
Root Mean Squared Error to analytic posterior. SSDD = Summary Space Domain Distance (MMD;
not applicable for Analytic Posterior). INLD = Inference Network Latent Distance (MMD) to base
distribution.
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Figure B7: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) compared to the analytic posterior for λ = 1 in NPE-MMD and NPE-DANN, aver-
aged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). MMD = Maximum Mean Discrepancy to analytic posterior. RMSE =
Root Mean Squared Error to analytic posterior. SSDD = Summary Space Domain Distance (MMD;
not applicable for Analytic Posterior). INLD = Inference Network Latent Distance (MMD) to base
distribution.
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Figure B8: Experiment 1: Performance metrics of the methods in all misspecification scenarios
(columns) compared to the analytic posterior for λ = 10 in NPE-MMD and NPE-DANN, av-
eraged across 3 separate runs. Lower values indicate better performance (for SSDD only for NPE-
MMD and NPE-DANN). MMD = Maximum Mean Discrepancy to analytic posterior. RMSE =
Root Mean Squared Error to analytic posterior. SSDD = Summary Space Domain Distance (MMD;
not applicable for Analytic Posterior). INLD = Inference Network Latent Distance (MMD) to base
distribution.
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Figure B9: Experiment 2: Relationship of summary space domain distance (SSDD) and normalized
root mean squared error (NRMSE, lower is better). For a) we see that despite the reduced SSDD,
there is no gain in performance. For b) and c), we observe a sweet spot at a low SSDD value, before
performance drops again when approaching zero. Refer to Table 1 for numerical values.
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Prior (MNIST → USPS) Likelihood Scale
Method λ NRMSE ↓ PPD ↓ NRMSE ↓ PPD ↓

NPE - 0.076 (9.3e-04) 0.009 (8.4e-05) 0.077 (4.4e-04) 0.009 (1.1e-04)

NNPE - 0.178 (2.0e-03) 0.028 (9.6e-04) 0.179 (2.5e-03) 0.027 (4.0e-04)

NPE-DANN 0.01 0.092 (3.2e-03) 0.011 (6.4e-04) 0.081 (1.0e-04) 0.009 (1.2e-04)
NPE-DANN 0.10 0.144 (1.3e-02) 0.020 (2.1e-03) 0.096 (2.2e-03) 0.012 (2.8e-04)
NPE-DANN 1.00 0.286 (2.9e-02) 0.064 (1.6e-02) 0.126 (5.8e-03) 0.016 (8.1e-04)

NPE-MMD 0.01 0.064 (1.1e-03) 0.007 (7.4e-05) 0.064 (3.7e-04) 0.007 (5.3e-05)
NPE-MMD 0.10 0.065 (1.1e-03) 0.008 (1.1e-04) 0.324 (4.8e-04) 0.085 (1.8e-04)
NPE-MMD 1.00 0.324 (5.1e-04) 0.085 (1.6e-04) 0.324 (3.1e-04) 0.085 (1.1e-04)

Contamination (Noise) Contamination (Rows)
Method λ NRMSE ↓ PPD ↓ NRMSE ↓ PPD ↓

NPE - 0.077 (4.0e-04) 0.009 (6.4e-05) 0.076 (5.6e-04) 0.009 (1.5e-04)

NNPE - 0.179 (4.0e-03) 0.027 (1.2e-03) 0.176 (3.5e-03) 0.027 (1.6e-03)

NPE-DANN 0.01 0.094 (4.8e-03) 0.011 (7.7e-04) 0.087 (5.4e-04) 0.010 (1.2e-04)
NPE-DANN 0.10 0.127 (4.2e-03) 0.015 (8.0e-04) 0.122 (9.7e-03) 0.015 (1.3e-03)
NPE-DANN 1.00 0.197 (1.2e-02) 0.029 (3.1e-03) 0.193 (2.5e-02) 0.029 (7.5e-03)

NPE-MMD 0.01 0.065 (6.5e-04) 0.007 (4.4e-05) 0.070 (8.2e-03) 0.008 (7.6e-04)
NPE-MMD 0.10 0.067 (1.1e-03) 0.008 (2.1e-04) 0.065 (4.3e-04) 0.008 (9.7e-05)
NPE-MMD 1.00 0.324 (5.2e-04) 0.086 (2.0e-04) 0.325 (6.4e-04) 0.086 (2.9e-04)

Table B.2: Experiment 2: Overview of the metrics on a held-out validation data set from the
training distribution (mean and standard deviation of three runs). For NNPE and NPE-DANN we see
reduced performance on the training distribution. For NPE-MMD, we see that for successful runs,
the performance on the training distribution improves. For settings with vanishing SSDD (compare
Table 1) the performance drops massively, for both training distribution and observed distribution.
This supports the notion that no meaningful information is learned in the summary space.

Prior (MNIST → USPS) Likelihood Scale
Method λ NRMSE ↓ PPD ↓ SSDD NRMSE ↓ PPD ↓ SSDD

NPE - 0.252 (2.6e-03) 0.081 (2.8e-03) 0.249 (1.3e-03) 0.169 (3.1e-03) 0.019 (5.8e-04) 0.089 (1.3e-02)

NNPE - 0.312 (1.7e-03) 0.106 (7.4e-04) 0.218 (1.9e-02) 0.186 (2.0e-03) 0.027 (5.0e-04) 0.043 (9.5e-03)

NPE-DANN 0.01 0.342 (2.3e-03) 0.150 (5.3e-04) 0.019 (2.1e-03) 0.109 (1.2e-02) 0.015 (3.0e-03) 0.020 (5.5e-03)
NPE-DANN 0.10 0.344 (3.5e-03) 0.152 (2.9e-03) 0.016 (6.6e-04) 0.110 (1.5e-03) 0.014 (1.9e-04) 0.012 (4.4e-04)
NPE-DANN 1.00 0.373 (1.4e-02) 0.169 (1.2e-02) 0.067 (6.8e-02) 0.135 (5.1e-03) 0.017 (7.3e-04) 0.011 (3.0e-04)

NPE-MMD 0.01 0.312 (2.3e-03) 0.134 (1.0e-03) 0.026 (2.0e-04) 0.134 (1.9e-03) 0.012 (1.2e-04) 0.018 (3.1e-04)
NPE-MMD 0.10 0.322 (9.9e-04) 0.141 (4.9e-04) 0.013 (9.7e-05) 0.323 (4.6e-04) 0.085 (1.8e-04) 0.000 (1.8e-06)
NPE-MMD 1.00 0.393 (2.9e-04) 0.185 (2.0e-04) -0.000 (9.0e-07) 0.325 (3.1e-04) 0.085 (3.7e-05) 0.000 (1.6e-06)

Contamination (Noise) Contamination (Rows)
Method λ NRMSE ↓ PPD ↓ SSDD NRMSE ↓ PPD ↓ SSDD

NPE - 0.326 (1.3e-02) 0.090 (8.9e-03) 0.374 (1.7e-02) 0.326 (7.2e-03) 0.090 (5.7e-03) 0.457 (3.7e-02)

NNPE - 0.176 (2.1e-03) 0.025 (5.8e-04) 0.038 (1.8e-02) 0.202 (8.1e-03) 0.032 (2.4e-03) 0.036 (5.8e-03)

NPE-DANN 0.01 0.231 (1.0e-02) 0.045 (6.3e-03) 0.020 (1.7e-03) 0.174 (2.5e-03) 0.033 (2.5e-03) 0.024 (4.6e-03)
NPE-DANN 0.10 0.207 (9.2e-03) 0.034 (2.6e-03) 0.013 (1.7e-04) 0.173 (5.4e-03) 0.028 (6.9e-04) 0.014 (8.7e-04)
NPE-DANN 1.00 0.252 (1.3e-02) 0.047 (4.4e-03) 0.013 (8.3e-04) 0.223 (3.3e-02) 0.039 (1.0e-02) 0.014 (1.2e-03)

NPE-MMD 0.01 0.266 (2.3e-03) 0.053 (9.3e-04) 0.020 (7.8e-04) 0.264 (5.6e-03) 0.054 (2.5e-03) 0.017 (2.4e-03)
NPE-MMD 0.10 0.253 (1.8e-03) 0.048 (1.3e-03) 0.013 (9.2e-05) 0.175 (7.2e-03) 0.026 (1.5e-03) 0.011 (1.0e-04)
NPE-MMD 1.00 0.324 (1.2e-04) 0.085 (1.6e-04) 0.000 (3.9e-06) 0.324 (1.4e-04) 0.085 (1.5e-04) 0.000 (2.4e-06)

Table B.3: Experiment 2: Overview of the metrics in the different misspecification scenarios (mean
and standard deviation of three runs). Please refer to Table 1 for a detailed description. Note that
each standard deviation is given for a constant set of hyperparameters, so it only covers the com-
putational uncertainty for a given setting. As shown by the performance changes when changing λ,
hyperparameters have a large influence on the results, and different hyperparameter choices might
lead to qualitative changes in the results.
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