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ABSTRACT

Diffusion models have demonstrated their capabilities in modeling trajectories of
multi-tasks. However, existing multi-task planners or policies typically rely on
task-specific demonstrations via multi-task imitation, or require task-specific re-
ward labels to facilitate policy optimization via Reinforcement Learning (RL).
They heavily rely on task-specific labeled data, which can be difficult to acquire.
To address these challenges, we aim to develop a versatile diffusion planner that
can leverage large-scale inferior data that contains task-agnostic sub-optimal tra-
jectories, with the ability to fast adapt to specific tasks. In this paper, we pro-
pose SODP, a two-stage framework that leverages Sub-Optimal data to learn a
Diffusion Planner, which is generalizable for various downstream tasks. Specifi-
cally, in the pre-training stage, we train a foundation diffusion planner that extracts
general planning capabilities by modeling the versatile distribution of multi-task
trajectories, which can be sub-optimal and has wide data coverage. Then for
downstream tasks, we adopt RL-based fine-tuning with task-specific rewards to
quickly refine the diffusion planner, which aims to generate action sequences with
higher task-specific returns. Experimental results from multi-task domains includ-
ing Meta-World and Adroit demonstrate that SODP outperforms state-of-the-art
methods with only a small amount of data for reward-guided fine-tuning.

1 INTRODUCTION

There has been a long-standing pursuit to develop agents capable of performing multiple tasks (Reed
et al., 2022; Lee et al., 2022). Although traditional RL methods have made significant strides in
training agents to master individual tasks (Silver et al., 2016; OpenAI et al., 2019), expanding
this capability to handle diverse tasks remains a significant challenge due to the diversity of task
variants and optimization directions with different rewards. Multi-task RL aims to address this by
developing agents via task-conditioned optimization (Yu et al., 2020; Lee et al., 2022) or parameter-
compositional learning (Sun et al., 2022; Lee et al., 2023). However, the inherent diversity in task
trajectory distributions makes it challenging to model and accommodate modeling across different
task structures. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), originally designed
for generative tasks, provide a powerful framework to address these difficulties. Their capacity
to capture complex, multi-modal distributions within high-dimensional data spaces (Podell et al.,
2023; Ho et al., 2022; Jing et al., 2022) makes them well suited to represent the broad variability
encountered in multi-task environments.

Motivated by this, existing methods have employed diffusion models to mimic expert behaviors de-
rived from human demonstrations on various tasks (Pearce et al., 2023; Xu et al., 2023; Chi et al.,
2023). However, acquiring task-specific demonstrations is often time-consuming and costly, espe-
cially in environments requiring specialized domain expertise. Alternative approaches attempt to
optimize diffusion models with return guidance (He et al., 2024; Liang et al., 2023) or conventional
RL paradigm (Wang et al., 2022b), which demands a large volume of data with reward labels for
each task. To address the above limitations, we wonder whether a generalized diffusion planner can
be learned from a large amount of low-quality trajectories without reward labels, with the ability to
adapt quickly to various downstream tasks. We only require the inferior data to comprise a mixture
of sub-optimal state-action pairs from various tasks, which can be easily obtained in the real world.
In training, the diffusion planner seeks to model the distribution of diverse trajectories with broad
coverage, enabling it to acquire generalizable capabilities and allowing the planner to further con-
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Figure 1: The Overall framework. Different colors represent different tasks. The diffusion model
is first pre-trained on a mixed dataset drawn from multiple tasks, and is then fine-tuned for each
specific task using task-specific rewards.
centrate on high-reward regions of specific downstream tasks via fast adaptation. An overview of
our method is given in Figure 1.

In this paper, we propose a novel framework to utilize Sub-Optimal data to train a Diffusion Planner
(SODP) that can generalize across a wide range of downstream tasks. SODP consists of two stages:
pre-training and fine-tuning. By leveraging a set of trajectories of different tasks for pre-training,
we employ action-sequence prediction to capture shared knowledge across tasks. Since the state
space may vary between tasks, focusing on the common action space (e.g., end-effector poses of
a robot arm) facilitates task generalization. We frame the pre-training stage as a conditional gen-
erative problem that generates future actions based on historical states. Then, inspired by the re-
markable success of RL-based alignment for LLMs (Ouyang et al., 2022; Glaese et al., 2022), we
adopt an RL-based fine-tuning approach to tailor the pre-trained diffusion planner to specific down-
stream tasks. Specifically, we conduct online interaction based on the pre-trained planner to collect
task-specific experiences with reward labels, and perform policy gradients to iteratively refine the
predicted action-sequence distribution based on reward feedback of tasks. Through fine-tuning, the
diffusion planner can gradually adapt toward generating actions with high task-specific rewards and
eventually become optimal for the given task.

After pretraining After reward fine-tuning

low

high

R
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d

Figure 2: Illustration of SODP in Meta-World
button-press-wall task. We present trajectories gen-
erated by the diffusion model after pre-training and
fine-tuning of SODP. The pre-trained model cap-
tures a wide range of behaviors, and the fine-tuned
model discards the inferior behaviors to coverage to
high-reward regions.

Figure 2 illustrates our method. In pre-
training, the model captures diverse behav-
ior patterns from the training data, encom-
passing inferior and mediocre actions. After
fine-tuning, the model shrinks the action dis-
tribution and concentrates on generating opti-
mal action sequences for a specific task. Our
contributions can be summarized as follows.
(i) We propose a novel pre-training and fine-
tuning paradigm for learning a versatile dif-
fusion planner, which leverages sub-optimal
transitions to capture the broad action distri-
butions across tasks, and adopt task-specific
fine-tuning to transfer the planner to down-
stream tasks. (ii) We give an efficient fine-
tuning algorithm based on policy gradient for
diffusion planners, which progressively shifts
the action distribution to concentrate on re-
gions associated with higher task returns. (iii) We conduct extensive experiments using sub-optimal
data from state-based Meta-World (Yu et al., 2019) as well as image-based Adroit (Rajeswaran et al.,
2017), showcasing its superior performance compared to state-of-the-art approaches.

2 PRELIMINARIES

Multi-task RL We consider the multi-task RL problem involving N tasks, where each task T ∼
p(T ) is represented by a task-specified Markov Decision Process (MDP). Each MDP is defined by a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tuple (ST ,A, P T , RT , P T
0 , γ), where ST is the state space of task T , A is the global action space,

P T (sTt+1|sTt , aTt ) : ST × A → ST is the transition function, RT (sTt , a
T
t ) : ST × A → R is

the reward function, γ ∈ (0, 1] is the discount factor, and P T
0 is the initial state distribution. We

assume that all tasks share a common action space, executed by the same agent, while differing
in their respective reward functions, state spaces, and transition dynamics. At each timestep t, the
agent perceives a state sTt ∈ ST , takes an action aTt ∈ A according to the policy πT (aTt |sTt ), and
receives a reward rTt . The agent’s objective is to determine an optimal policy that maximizes the
expected return across all tasks: π∗ = argmaxπ ET ∼p(T )Eat∼πT

[∑∞
t=0 γ

trTt
]
.

Diffusion Models Diffusion models (Sohl-Dickstein et al., 2015) are a type of generative model
that first add noise to the data x0 from a unknown distribution q(x0) in K steps through a forward
process defined as:

q(xk|xk−1) := N (xk;
√
1− βkxk−1, βkI), (1)

where βk is a predefined variance schedule. Then, a trainable reverse process is constructed as:

pθ(xk−1|xk) := N (xk−1;µθ(xk, k),Σk), (2)

where µθ(xk, k) is the forward process posterior mean as a function of a noise prediction neural
network ϵθ(xk, k) with a learnable parameter θ (Ho et al., 2020). ϵθ(xk, k) can be trained via a
surrogate loss as

Ldenoise(θ) := Ek∼[1,K],x0∼q,ϵ∼N (0,I)

[∥∥ϵ− ϵθ(xk, k)
∥∥2] . (3)

After training, samples can be generated by first drawing Gaussian noise xK and then iteratively
denoising xK into a noise-free output x0 over K iterations using the trained model ϵθ(xk, k) by

xk−1 =
1
√
αk

(
xk −

1− αk√
1− ᾱk

ϵθ(xk, k)

)
+ σkN (0, I), (4)

where αk := 1− βk, ᾱk :=
∏k

s=1 αs and σk =
√
βk.

3 METHOD

We propose SODP, a two-stage framework that leverages large amounts of sub-optimal data to train
a diffusion planner that can generalize to downstream tasks. The process is depicted in Figure 3. In
the pre-training stage, we train a guidance-free diffusion model to predict future actions based on
historical states, using an mixture offline dataset cross tasks without reward labels. In the fine-tuning
stage, we refine the pre-trained model using policy gradient to maximize the task-specific rewards,
additionally incorporating a regularization term to prevent the model from losing acquired skills.

3.1 PRE-TRAINING WITH LARGE-SCALE SUB-OPTIMAL DATA

Previous works (He et al., 2024) typically model multi-task RL as a conditional generative problem
using diffusion models trained on datasets composed of multiple task subsets D = ∪Ni=1Di, as:

maxθ Eτ∼∪iDi

[
log pθ(x0(τ)

∣∣ y(τ)], (5)

which requires additional condition y(τ) to guide diffusion model to generate desirable trajecto-
ries. For instance, y(τ) should contain the return of trajectory R(τ) and task description Z as
prompt. However, the reward label and trajectory description may be scarce or costly to obtain in
the real-world. To overcome this challenge, we train a diffusion planner that can learn from offline
trajectories transitions (i.e., {(st, at, st+1)}) without reward label or task descriptions. Specifically,
we model the problem as a guidance-free generation process (Chi et al., 2023):

maxθ E(st,at)∼∪iDi

[
log pθ(a

0
t

∣∣ st)]. (6)

Here, we represent x0 := a0
t = (at, at+1, ..., at+H−1) as an action sequence, where H is the

planning horizon and t is the timestep sampled from dataset D. As previous work (Chi et al., 2023),
we denote st as the historical states at timestep t with length To, i.e., st := {st−To+1, . . . st−1, st}.
The formulation in Eq. (6) enables the model to learn the broad action-sequence distribution of
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Figure 3: Overview of SODP. We initially pre-train a diffusion model using multi-task transition
data to predict action sequences from historical states. Subsequently, we fine-tune the model on
downstream tasks using policy gradient methods, incorporating a regularization term to mitigate
model degradation.

multi-tasks depending on previous observations, without requiring additional guidance. To train our
planning model, we modify Eq. (3) to obtain our pre-training objective as follows:

Lpre-train(θ) = Ek∼[1,K],(st,a0
t )∼D,ϵ∼N (0,I)

[∥∥ϵ− ϵθ(a
k
t , st, k)

∥∥2] . (7)

Following Eq. (4), we can generate action sequences through a series of denoising steps:

ak−1
t =

1
√
αk

(
ak
t −

1− αk√
1− ᾱk

ϵθ(a
k
t , st, k)

)
+ σkN (0, I). (8)

Unlike other models, the dataset D we used for the pre-training stage is not restricted to expert
trajectories. As shown in Figure 2, we aim to train a foundation model that captures diverse be-
haviors and learns general capabilities from inferior trajectories, enabling the planner to enhance its
representation and action priors through pre-training before learning on downstream tasks.

3.2 REWARD FINE-TUNING FOR DOWNSTREAM TASKS

MDP notation. The fine-tuning stage involves two distinct MDPs: one for RL decision process
and the other for the diffusion model denoising process. We use the superscript diff (e.g., sdiff

k ,
adiff
k ) to denote the MDP associated with diffusion model denoising process, while no superscript is

used for the MDP related to the RL process (e.g., st, at). Additionally, we use k ∈ {K, . . . , 0} to
represent the diffusion timestep and t ∈ {1, . . . , T} to represent the trajectory timestep.

We model the denoising process of our pre-trained diffusion planner as a K-step MDP as follows:

sdiff
k = (st,a

K−k
t ), adiff

k = aK−k−1
t , P diff

0 (sdiff
0 ) = (δst ,N (0, I)),

P diff(sdiff
k+1 | sdiff

k , adiff
k ) = (δst , δadiff

k
), Rdiff(sdiff

k , adiff
k ) =

{
r(sdiff

k+1) = r(a0
t ) if k = K − 1,

0 otherwise.
,

πdiff
θ (adiff

k | sdiff
k ) = pθ(a

K−k−1
t | aK−k

t , st), (9)

where sdiff
k and adiff

k are the state and action at timestep k, P diff
0 and P diff are the initial distribution and

transition dynamics, δ is the Dirac delta distribution, Rdiff is the reward function and pθ(a
K−k−1
t |

aK−k
t , st) is the pre-trained diffusion planner. This formulation allows the state transitions in the

MDP to be mapped to the denoising process in the diffusion model. The MDP initiates by sampling
an initial state sdiff

0 ∼ P diff
0 , which corresponds to sample Gaussian noise aK

t at the beginning of
the reverse process. At each timestep k, the policy πdiff

θ (adiff
k | sdiff

k ) takes an action adiff
k based on

current state sdiff
k , which corresponds to generate next latent aK−k−1

t based on current latent aK−k
t

following Eq. (8). The reward remains zero until a noise-free output a0
t is evaluated. Different from
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previous text-to-image studies that typically evaluate the final sample using a pre-trained reward
model (Black et al., 2023; Fan et al., 2024), we aim to fine-tune the pre-trained diffusion planner
to maximize rewards of downstream tasks, which makes constructing reward models for all tasks
costly. Therefore, we directly evaluate the generated action sequences in an online RL environment
for each specific task T . Specifically, for any given timestep t, we use the planner to generate future
actions a0

t = (at, at+1, . . . , at+H−1) and then execute the first Ta steps. Then we calculate the
discounted cumulative reward from the environment to assess the generated sample, expressed as
r(a0

t ) =
∑Ta

t γt−1rT (st, at). We write r(a0
t ) as shorthand for r(st,a0

t ) for brevity.

Finetuning objective. The objective of fine-tuning our pre-trained diffusion planner is to maxi-
mize the expected reward of the generated action sequences for the target downstream task T , which
can be defined as:

JT (θ) =
∑

t
Epθ(a0

t |st)[r
T (a0

t )]. (10)

Directly optimizing the objective JT (θ) is intractable since it is infeasible to evaluate the return over
all possible actions. Therefore, we utilize policy gradient methods (Sutton et al., 1999), which esti-
mate the policy gradient and apply a stochastic gradient ascent algorithm for updates. The gradient
of the objective JT (θ) can be obtained as follows:

∇θJ
T (θ) =

∑
t
Epθ(a0:K

t |st)

[
rT (a0

t )

K∑
k=1

∇θ log pθ(a
k−1
t |ak

t , st)

]
. (11)

However, optimizing with Eq. (11) can be computationally intensive, as it requires generating new
samples after each optimization step. To enhance sample efficiency and leverage historical se-
quences, we employ importance sampling, following the approach of proximal policy optimization
(PPO) (Schulman et al., 2017), and derive the loss function for reward improvement as follows:

LT
Imp(θ) =

∑
t
Epθold (a

0:K
t |st)

[
K∑

k=1

−rT (a0
t )max

(
ρk(θ, θold), clip (ρk(θ, θold), 1 + ϵ, 1− ϵ)

)]
,

(12)
where ρk(θ, θold) =

pθ(a
k−1
t |ak

t ,st)

pθold (a
k−1
t |ak

t ,st)
and ϵ is a hyperparameter. Then, we can train our model using

LT
Imp(θ) in an end-to-end manner, which is equivalent to maximizing the objective in Eq. (10).

Regularization term. However, fine-tuning the model solely depending on the reward is insuffi-
cient since the model may step too far, which can lead to performance collapse and instability during
reward maximization. To address this problem, we introduce a Behavior-Clone (BC) regularization
term during the fine-tuning process. Concretely, we aim to constrain our policy θ to closely match
a target policy µ, ensuring that θ does not deviate significantly from µ after policy updates. This
constraint can be modeled using a negative log-likelihood (NLL) loss as:

min
θ

Ea0
µ∼pµ

[
− log pθ(a

0
µ)
]
. (13)

Following Ho et al. (2020), we can obtain a surrogate loss to optimize Eq. (13) as follows:

LBC(θ) = Ek∼[1,K],ak
µ∼pµ

[∥∥ϵ(ak
µ, k)− ϵθ(a

k
µ, k)

∥∥2] , (14)

where ϵ(ak
µ, k) represents the ground-truth noise added to ak

µ at timestep k, which can be calculated

as ϵ(ak
µ, k) =

ak
µ−

√
ᾱk·a0

µ√
1−ᾱk

.

How to select the target policy? Intuitively, an ideal target policy is the optimal policy that gener-
ates samples x∗ satisfying C(x∗) ≥ C(x) for all possible x, where C(x) represents a measure of the
performance or quality of the sample, such as the accumulated reward for action sequences. Since
µ is unknown during fine-tuning, we approximate it by sampling action sequences a that satisfy
C(a) ≈ C(a∗). In practice, we denote a∗ as the best actions from recent play experience, such as
those that yielded the top n highest rewards or successfully completed the given task. We then sam-
ple ak from these proficient action sequences obtained during online interaction, nearly equivalent
to sampling from µ to regularize the fine-tuning process. We also remark that the BC regularizer

5
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is not the only way to incorporate regularization into Eq. (12). For example, a Kullback–Leibler
(KL) divergence between the fine-tuned and pre-trained models, or a diffusion pre-train loss can
be employed to regularize the fine-tuning process, as shown in text-to-image and text-to-speech
generation (Fan et al., 2024; Chen et al., 2024). However, we find these regularization may cause
the pre-trained planner trap in sub-optimal regions, hindering performance improvement. We will
further discuss them in experiments.

Combining Eq. (12) with Eq. (14), the loss function for reward fine-tuning in downstream tasks
T ∼ p(T ) is expressed as follows:

LT
fine-tuning(θ) = LT

Imp(θ) + λLBC(θ), (15)

where λ is a weight coefficient. The overall process of pre-training and fine-tuning using SODP
is summarized in Alg. 1 in the appendix. Since our goal is to generate complete trajectories rather
than individual segments, we utilize a trajectory-level buffer (Zheng et al., 2022) for estimating the
target policy µ. Further, to ensure the accuracy of the approximation, we generate several proficient
trajectories using the pre-trained model at the beginning of each iteration.

4 RELATED WORK

Diffusion Models in RL. Diffusion models are a leading class of generative models, achieving
state-of-the-art performance across a variety of tasks, such as image generation (Ramesh et al.,
2021), audio synthesis (Kong et al., 2020; Huang et al., 2023), and drug design (Schneuing et al.,
2022; Guan et al., 2024). Recent studies have applied them in imitation learning to model human
demonstrations and predict future actions (Li et al., 2024; Reuss et al., 2023). Other approaches
have trained conditional diffusion models either as planners (Ajay et al., 2022; Brehmer et al., 2024)
or policies (Hansen-Estruch et al., 2023; Kang et al., 2024). However, most of these efforts focus
on single-task settings. While some recent works aim to extend diffusion models to multi-task
scenarios, they often rely on additional conditions, such as prompts (He et al., 2024) or preference
labels (Yu et al., 2024). These methods are limited by their dependence on expert data or explicit
task knowledge. In contrast, our method learns broad action-sequence distributions from inferior
data to enhance action priors, enabling effective generalization across a range of downstream tasks.

Fine-tuning Diffusion Models. Despite the impressive success of diffusion models, they often face
challenges in aligning with specific downstream objectives, such as image aesthetics (Schuhmann
et al., 2022), fairness (Shen et al., 2023), or human preference (Xu et al., 2024), primarily due
to their training on unsupervised data. Some methods have been proposed to address this issue
by directly fine-tuning models using downstream objectives (Prabhudesai et al., 2023; Clark et al.,
2023), but they rely on differentiable reward models, which are impractical in RL since accurately
modeling rewards with neural networks is quite costly (Kim et al., 2023). Other methods reformulate
the denoising process as an MDP and apply policy gradients for fine-tuning (Black et al., 2023; Fan
et al., 2024). However, they heavily depend on strong pre-trained models and have proven ineffective
in our case. Our goal is to fine-tune a less powerful model that has been trained on inferior data.

Concurrent with our work, DPPO (Ren et al., 2024) also explores reward fine-tuning for refining RL
diffusion planners. However, their approach focuses exclusively on single-task settings and allows
access to expert demonstrations. In contrast, we train our model on multi-task data without the need
for superior demonstrations. Additionally, we analyze the limitations of current regularization meth-
ods for versatile RL diffusion models and propose a new regularizer that improves the performance
of sub-optimal pre-trained models.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate our proposed method and address the following
questions: (1) How does SODP’s performance compare to current methods? (2) Can SODP scale
to high-dimensional observation inputs? (3) How does SODP achieve higher rewards during online
fine-tuning?
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5.1 EXPERIMENTAL SETUP

We evaluate SODP in both state-based and image-based environments. We conduct experiments on
the Meta-World benchmark (Yu et al., 2019) for both state-based and image-based tasks. We also
perform image-based experiments on the Adroit benchmark (Rajeswaran et al., 2017).

Meta-World. The Meta-World benchmark comprises 50 distinct manipulation tasks, each requiring
a Sawyer robot to interact with various objects. These tasks are designed to assess the robot’s ability
to handle different scenarios, such as grasping, pushing, pulling, and manipulating objects of varying
shapes, sizes, and complexities. While the state space and reward functions differ across tasks, the
action space remains consistent. Following recent studies (He et al., 2024; Hu et al., 2024), we
extend all tasks to a random-goal setting, referred to as MT50-rand.

Adroit. The Adroit benchmark includes three dexterous manipulation tasks, requiring a 24-degree-
of-freedom dexterous hand to solve complex challenges such as in-hand manipulation and tool use.
The goals in this environment are also randomized. For Adroit, we use images as the observation to
assess whether our method can scale to high-dimensional input.

Datasets. Following previous work (He et al., 2024), for Meta-World, we use a sub-optimal dataset
comprising the first 50% of experiences (50M transitions) obtained from the replay buffer of a
SAC (Haarnoja et al., 2018) agent during training. To verify the applicability of our method to
tasks of varying difficulty levels, we divide the entire dataset into four subsets based on the task
categories presented in Seo et al. (2023). For Adroit, we train a VRL3 (Wang et al., 2022a) agent
for each task and use the initial 30% experiences (90K transitions) from the converged replay buffer.
For Meta-World, all baselines and our pre-training stage are trained on the same dataset. For Adroit,
the baselines are trained on expert demonstrations and ours is trained on sub-optimal transitions.

Baselines. For Meta-World, we compare our proposed SODP with the following baselines: (1) MT-
SAC. Extended SAC with one-hot task ID as additional input. (2) MTBC. Extended BC to multi-
task learning through network scaling and a task-ID-conditioned actor. (3) MTIQL. Extended
IQL (Kostrikov et al., 2021) with multi-head critic networks and a task-ID-conditioned actor for
multi-task policy learning. (4) MTDQL. Extended Diffusion-QL (Wang et al., 2022b) which is sim-
ilar to MTIQL. (5) MTDT. Extended Decision Transformer (DT) (Chen et al., 2021a) to multitask
settings by incorporating task ID encoding and state inputs for task-specific learning. (6) Prompt-
DT (Xu et al., 2022). An extension of DT, which generates actions by utilizing trajectory prompts
and reward-to-go signals. (7) MTDIFF (He et al., 2024). A diffusion-based approach that inte-
grates Transformer architectures with prompt learning to facilitate generative planning in multitask
offline environments. We extend it with a visual extractor in image-based Meta-World experiments.
(8) HarmoDT (Hu et al., 2024). A DT-based approach that leverages parameter sharing to exploit
task similarities while mitigating the adverse effects of conflicting gradients simultaneously. The
results for these baselines are directly replicated from those reported in HarmoDT (Hu et al., 2024).

The action space for different tasks in Adroit is different and is incompatible with MTDIFF and
HarmoDT. Therefore, we compare SODP with following baselines designed for complex environ-
ments: (1) BCRNN (Mandlekar et al., 2021). A variant of BC that employs a Recurrent Neural
Network (RNN) as the policy network, predicting the sequence of actions based on the sequence of
states as input. (2) IBC (Florence et al., 2022). Extended BC with energy-based models (EBM) to
train implicit behavioral cloning policies. (3) Diffusion Policy (Chi et al., 2023). A diffusion-based
approach that predicts future action sequences based on historical states. (4) DP3 (Ze et al., 2024).
A visual imitation learning algorithm that incorporates 3D visual representations into diffusion poli-
cies, using a point clouds encoder to process visual observations into visual features. The results for
these baselines are directly replicated from those reported in DP3 (Ze et al., 2024).

5.2 RESULTS

We use the average success rate across all tasks as the evaluation metric and report the mean and
standard deviation of success rates across three seeds. All baselines are trained on sub-optimal
data. As shown in Table 1, our method achieves over a 60% success rate when learning from
inferior data, outperforming all baseline methods. Compared to the existing state-of-the-art ap-
proach, our method demonstrates a 5.9% improvement. Notably, when compared to MTDIFF, the
current leading method based on diffusion models, our approach shows a 24.4% improvement.
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Figure 4: Learning efficiency. We sample 10 tasks and present the learning curves of SODP, MTD-
IFF, and HarmoDT across five seeds. X-axis represents gradient steps. We pre-train the planner for
5e5 steps, followed by fine-tuning with a smaller number of steps. SODP rapidly converges to high
success rates, whereas MTDIFF and HarmoDT struggle with some challenging tasks.

Table 1: Average success rate across
3 seeds on Meta-World 50 tasks with
random goals (MT50-rand), using sub-
optimal data. Each task is evaluated for
50 episodes.

Method Meta-World 50 Tasks

MTSAC 42.67±0.12

MTBC 34.53±1.25

MTIQL 43.28±0.90

MTDQL 17.33±0.03

MTDT 42.33±1.89

Prompt-DT 48.40±0.16

MTDIFF-P 48.67±1.32

MTDIFF-P-ONEHOT 48.94±0.95

HarmoDT-R 53.80±1.07

HarmoDT-M 57.20±0.73

HarmoDT-F 57.20±0.68

SODP (ours) 60.56±0.14

MTBC performs the worst, as imitation learning heavily
depends on data quality, and directly cloning behaviors
from sub-optimal data typically results in inferior perfor-
mance. In contrast, our method models versatile action
distributions from low-quality data and leverages them as
priors to guide policy optimization in downstream tasks,
leading to improved performance. We conduct additional
experiments by augmenting original dataset with online
trajectories and results can be found in Appendix C.1.

To further analyze the learning dynamics, we sample 10
tasks and present their learning curves of SODP alongside
two leading baselines, MTDIFF and HarmoDT, across
five seeds. As shown in Figure 4, SODP rapidly con-
verges to high success rates, surpassing the other two
baselines. The pre-training stage equips the planner with
comprehensive action distribution priors and allows it to
rapidly transfer and enhance these capabilities across a
variety of downstream tasks. As a result, the pre-training
stage significantly accelerates convergence, leading to
more efficient learning in the fine-tuning stage. The two baseline approaches struggle to address
complex and challenging tasks such as basketball and hammer. In contrast, our method effectively
guides the model to generate proficient actions, demonstrating the benefits of fine-tuning with pol-
icy gradient concerning return maximization. Moreover, while HarmoDT exhibits instability across
different random seeds, our method demonstrates robustness against randomness.

Does SODP generalize to high-dimensional observations? We scale our method to image-based

Table 2: Average success rate across 3 seeds on
Adroit 3 tasks. IBC and BCRNN are extended by
incorporating the DP3 point cloud encoder, re-
sulting in IBD+3D and BCRNN+3D.

Adroit
Algorithm \ Task Hammer Door Pen Average
BCRNN 0±0 0±0 9±3 3.0
BCRNN+3D 8±14 0±0 8±1 5,3
IBC 0±0 0±0 9±2 3.0
IBC+3D 0±0 0±0 10±1 3.3
Diffusion Policy 48±17 50±5 25±4 31.7
Simple DP3 100±0 58±4 46±5 68.0
DP3 100±0 62±4 43±6 68.3
SODP (ours) 67±6 96±1 59±4 73.9

observations using the Adroit benchmark by em-
ploying a point-cloud encoder from DP3 (Ze
et al., 2024) to process the 3D scene represented
by point clouds. Specifically, we capture depth
images directly from the environment and con-
vert them into point clouds using Open3D (Zhou
et al., 2018). These point clouds are then pro-
cessed by the DP3 Encoder, which maps them
into visual features. We then train our diffusion
planner following the same procedure in Algo-
rithm 1 except the input states are visual fea-
tures. Following DP3 (Ze et al., 2024), We com-
pute the average of the highest 5 evaluation suc-
cess rates during training and report the mean
and std across 3 seeds. As shown in Table 2, our
method achieves an 8.2% improvement across all tasks. Since hammer is more challenging than
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door, our method may need more insightful priors from pre-training to achieve better performance.
Experiments on image-based Meta-World can be found in Appendix C.5.

5.3 EFFECTIVENESS OF BC REGULARIZATION

To demonstrate the effectiveness of our BC regularization, we conduct an ablation study on fine-
tuning same pre-trained model with our BC regularization and other variants. We consider following
variants:

• SODP w/o regularization. This variant is similar to DDPO (Black et al., 2023) and DPPO (Ren
et al., 2024), which fine-tunes the model directly using Eq. (12) without any regularization.

• SODP_kl. This variant is similar to DPOK (Fan et al., 2024), with the addition of a KL regular-
ization term to constrain the divergence between the fine-tuned model and the pre-trained model.

• SODP_pl. This variant is similar to DLPO (Chen et al., 2024), incorporating the original diffusion
pre-training loss (PL) into the fine-tuning objective to prevent the model from deviation.

The details of these variants are presented in Appendix E and more ablation studies on different
fine-tuning methods can be found in Appendix C.2. Figure 5 demonstrates the effectiveness of our
regularization in achieving a higher success rate. We observe that directly fine-tuning the model
without any regularization results in the worst performance, with a decline in success rate, as the
model may degrade the capabilities acquired from pre-training due to the lack of constraints. How-
ever, adding KL and PL is insufficient, as they cause oscillations near the pre-trained model. This
aligns with the original intent of these regularizers, which is to prevent excessive deviation. This is
reasonable for methods like DPOK and DLPO, which utilize pre-trained models such as Stable Dif-
fusion (Rombach et al., 2022) and WaveGrad2 (Chen et al., 2021b). These models already exhibit
strong generative capabilities without fine-tuning, and the goal is to make slight adjustments to align
them with more fine-grained attributes, such as aesthetic scores and human preferences.

In contrast, our model is pre-trained on sub-optimal data and lacks the ability to solve complex tasks.
We expect it to develop new skills for completing these tasks through fine-tuning. However, directly
applying KL regularization to the pre-trained model leads to conservative policies that heavily rely
on the existing capability, thereby confining the model to a sub-optimal region. While PL regular-
ization allows some slight exploration, it is uncontrolled and random. Consequently, we observe
that the KL regularization almost remains unchanged and the PL regularization slightly increases
the performance in basketball but decreases in other tasks.
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Figure 5: Learning efficiency for different regularization. X-axis represents environment steps. Per-
formance declines significantly without any regularization. Both KL and PL regularization confine
the model to sub-optimal regions. In contrast, our BC regularization effectively guides the model
away from these sub-optimal areas, facilitating the attainment of optimal actions.

Visualization. We hypothesize that the effectiveness of our BC regularization lies in two aspects:
(i) it ensures that our model can reuse the skills it has acquired, thereby preventing a decline in
performance; (ii) It guides our model to effectively explore optimal regions due to the utilization
of optimal µ as the target policy. To demonstrate this, we visualize trajectories of using the actions
generated by our planner using t-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 6, the
trajectory distribution after fine-tuning with KL regularization closely resembles the original pre-
training distribution, indicating that the model is reusing learned actions and lacks exploration into
new regions. The exploration in PL is unstructured as it may lead to worse regions (e.g., the upper-
left region in basketball). In contrast, our method demonstrates superior exploration capabilities
to discover new, high-reward regions based on acquired knowledge (e.g., the lower-left region in
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basketball and the bottom region in plate-slide). Meanwhile, the model can derive valuable insights
from pre-trained knowledge by exploiting discovered high-reward actions (e.g. the central region in
plate-slide) while discarding low-reward actions.
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Figure 6: Visualization of trajectories using generated actions for different regularization. KL and
PL regularization results in conservative policies with distributions closely resembling the original.
Our BC regularization retains pre-trained knowledge while effectively discovering new actions that
can lead to high rewards.

5.4 EFFECTIVENESS OF PRE-TRAINING

We investigate the impact of pre-training. We compare the performance of SODP with a version
trained from scratch (SODP_scratch). For SODP_scratch, we use the same rollouts generated by
the pre-trained model to approximate the target policy and initialize the replay buffer.

Figure 7 shows that fine-tuning the planner from scratch results in worse performance. Without
pre-training, the planner lacks an action prior to guide its behavior, leading to stagnation as it strug-
gles to move towards high reward regions. Additionally, it becomes unstable, as the limited useful
knowledge is easily disrupted by a large number of ineffective trials.
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Figure 7: Effectiveness of pre-training. X-axis represents environment steps. Fine-tuning from
scratch struggles to identify high-reward actions due to the lack of representation prior. In contrast,
pre-training allows the planner to extract useful knowledge, guiding fine-tuning by refining the prior
distribution towards more effective behaviors.

6 CONCLUSION

We propose SODP, a novel framework for training a versatile diffusion planner using sub-optimal
data. By effectively combining pre-training and fine-tuning, we capture broad behavioral patterns
drawn from large-scale multi-task transitions and then rapidly adapt them to achieve higher perfor-
mance in specific downstream tasks. During fine-tuning, we introduce a BC regularization method,
which preserves the pre-trained model’s capabilities while guiding effective exploration. Exper-
iments demonstrate that SODP achieves superior performance across a wide range of challenging
manipulation tasks. In future work, we aim to develop embodied versatile agents that can effectively
learn to solve real-world tasks using inferior data.
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A DERIVATIONS

A.1 DERIVATION OF POLICY GRADIENT IN EQUATION (11)

Assume pθ(a0:K
t |st)rT (a0

t ) and∇θpθ(a
0:K
t |st)rT (a0

t ) are continuous (Fan et al., 2024), we have:

∇θJ
T (θ) = ∇θ

∑
t
Epθ(a0

t |st)

[
rT (a0

t )
]

=
∑

t

[
∇θ

∫
rT (a0

t ) · pθ(a0
t |st)da0

t

]
=
∑

t

[
∇θ

∫
rT (a0

t ) ·
(∫

pθ(a
0:K
t |st)da1:K

t

)
da0

t

]
=
∑

t

[∫
rT (a0

t ) · ∇θ log pθ(a
0:K
t |st) · pθ(a0:K

t |st) da0:K
t

]
=
∑

t

[∫
rT (a0

t ) · ∇θ log

(
pK(aK

t |st)
K∏

k=1

pθ(a
k−1
t |ak

t , st)

)
· pθ(a0:K

t |st) da0:K
t

]

=
∑

t
Epθ(a0:K

t |st)

[
rT (a0

t )

K∑
k=1

∇θ log pθ(a
k−1
t |ak

t , st)

]
.

(16)

A.2 DERIVATION OF LOSS FUNCTION IN EQUATION (12)

By using importance sampling approach, we can rewrite Eq. (16) as follows:

∑
t
Epθold (a

0:K
t |st)

[
rT (a0

t )

K∑
k=1

pθ(a
k−1
t |ak

t , st)

pθold(a
k−1
t |ak

t , st)
∇θ log pθ(a

k−1
t |ak

t , st)

]
(17)

Then, we can get a new objective function corresponding to Eq. (17) as:

JT
θold

(θ) = max
θ

∑
t
Epθold (a

0:K
t |st)

[
rT (a0

t )

K∑
k=1

pθ(a
k−1
t |ak

t , st)

pθold(a
k−1
t |ak

t , st)

]
(18)

Let ρk(θ, θold) =
pθ(a

k−1
t |ak

t ,st)

pθold (a
k−1
t |ak

t ,st)
denote the probability ratio. Based on PPO (Schulman et al.,

2017), we clip ρk and use the minimum between the clipped and unclipped ratios to derive a lower
bound of the original objective (18), which serves as our final objective function:

JT
clip(θ) = max

θ

∑
t
Epθold (a

0:K
t |st)

[
rT (a0

t )

K∑
k=1

min
(
ρk(θ, θold), clip (ρk(θ, θold), 1 + ϵ, 1− ϵ)

)]
(19)

To refine our pre-trained planner, we employ the negative of objective (19) as the loss function to
facilitate reward maximization during fine-tuning.
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A.3 DERIVATION OF LOSS FUNCTION IN EQUATION (14)

Directly computing and minimizing the NLL is difficult. However, we can derive an upper bound of
Eq. (14) as follows:

Ea0
µ∼pµ

[
− log pθ(a

0
µ)
]
≤ Ea0

µ∼pµ

[
Eq(a1:K

µ |a0
µ)

[
− log

pθ(a
0:K
µ )

q(a1:K
µ |a0

µ)

]]

= Ea0
µ∼pµ

[
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µ |a0
µ)

[
− log p(aK

µ )−
K∑
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log
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]]
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[
K∑

k=2

Eq(ak
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µ |ak

µ,a
0
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µ |ak
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DKL(q(a
K
µ |a0

µ)||p(aK
µ ))− Eq(a1

µ|a0
µ)

[
log pθ(a

0
µ|a1

µ)
]]

(20)

Following previous work (Ho et al., 2020), the optimization of the bound can be simplified as:

argmin
θ

1

2σ2
q (k)

(1− αk)
2

(1− ᾱk)αk

∥∥ϵ(ak
µ, k)− ϵθ(a

k
µ, k)

∥∥2 (21)

where:

σ2
q (k) =

(1− αk)(1− ᾱk−1)

1− ᾱk
(22)

Here, ϵθ(ak
µ, k) is a noise model that learns to predict the source noise ϵ(ak

µ, k) which determines
ak
µ from a0

µ.

B THE DETAILS OF SODP

B.1 DIFFUSION POLICY

We use diffusion policy (Chi et al., 2023) to generate future actions. For any given time step t, the
model uses the most recent To steps of states as input to generate the next Tp action steps. Then,
the first Ta steps of these generated actions are executed in the environment without re-planning. In
our experiments, we use Tp = 12, To = 2, Ta = 8 for Meta-World and Tp = 4, To = 2, Ta = 3 for
Adroit.

We employ a CNN-based diffusion policy as our noise model, utilizing a U-net architecture
that incorporates Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) to condition on
historical states. The implementation is based on the code from https://github.com/
CleanDiffuserTeam/CleanDiffuser, and we use their default hyper-parameters. For
Adroit, we use a simplified backbone provided by Simple DP3 (https://github.com/
YanjieZe/3D-Diffusion-Policy), which removes some components in the U-net.

B.2 IMPLEMENTATION DETAILS

The pseudo-code of SODP is given in Alg. 1. We describe details of pre-training and fine-tuning as
follows:

• For pretraining, we use cosine schedule for βk (Nichol & Dhariwal, 2021) and set diffusion steps
K = 100. We pre-train the model for 5e5 steps in Meta-Wrold and 3e3 steps in Adroit.

• For fine-tuning, we use DDIM (Song et al., 2020) with 10 sampling steps and η = 1. We fine-tune
each task for 1e6 steps in Meta-World and 3e3 steps in Adroit. Following DPOK (Fan et al., 2024),
we perform pstep ∈ {10, 30} gradient steps per episode. We set discount factor γ = 1 for all tasks.

• We set Ninit ∈ {10, 20} for approximating target distribution and λ = 1.0 as the BC weight
coefficient.

• Batch size is set to 256 for both pre-training and fine-tuning.
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• We use Adam optimizer (Kingma, 2014) with default parameters for both pre-training and fine-
tuning. Learning rate is set to 1e−4 for pretraining and 1e−5 for fine-tuning with exponential
decay.

Algorithm 1: SODP: Two-stage framework for learning from sub-optimal data

Input: diffsuion planner θ, N downstream tasks Ti, multi-task sub-optimal data D = ∪Ni=1DTi ,
target buffer Btarget, replay buffer B, episode length L, pre-train NPT and fine-tune NFT
steps

// pre-training model with sub-optimal data
for t = 1, . . . , NPT do

Sample (s,a) ∼ D, diffusion time step k ∼ Uniform({1, . . . ,K}), noise ϵ ∼ N (0, I);
Update θ using the loss function (7);

// fine-tuning model for downstream tasks
for Ti ∈ [T1, . . . , TN ] do

Initialization: θ ← θPT; B,Btarget ← Rollout Ninit proficient trajectories using θ;
for t = 1, . . . , NFT do

while not end of the episode do
Obtain samples a0:K

t ∼ pθ(a
0:K
t |st);

Execute the first Ta steps and get reward r(a0
t );

B ← B ∪ (st,a
0:K
t , r(a0

t ));
st ← st+Ta , t← t+ Ta;

// approximate target policy µ
if proficient then
Btarget ← Btarget ∪ {a0:K

t |t ∈ {0, Ta, . . . , L}}
Compute LTi

Imp using batches from B according to Eq. (12);
Compute LTi

BC using batches from Btarget according to Eq. (14);
Update θ using the loss function (15);

C EXTENDED RESULTS

In this section, we provide our full experimental results:

1. Baselines incorporating our online interaction trajectories as supplementary training data.
2. Ablation studies evaluating various fine-tuning strategies.
3. Analysis of the impact of pre-training dataset quality.
4. Generalizability to previously unseen tasks.
5. Evaluation on image-based Meta-World tasks across 10 environments.

C.1 AUGMENTED TRAININING DATA FOR MTDIFF AND HARMODT

Table 3: Average success rate using
augmented sub-optimal data.

Method Meta-World 50 Tasks

MTDIFF-P 27.06±0.42

HarmoDT-F 57.37±0.34

SODP (ours) 59.26±0.18

To isolate the influence of date quantity, we conducted
fine-tuning for 100k steps per task using SODP, collect-
ing online interaction samples during the fine-tuning pro-
cess. These samples were then incorporated as a sup-
plementary dataset alongside the original data, expand-
ing the dataset size from 50M to 50M+100k×50. Subse-
quently, we trained both MTDIFF and HarmoDT on this
augmented dataset to ensure consistent data usage across
our method and the baseline methods. The experimental
results are presented in Table 3, demonstrating that our method continues to outperform the baseline
methods under this configuration. For MTDIFF, we employed the default parameters provided by
the authors. However, a performance decline was observed on these new datasets, likely due to the
increased presence of inferior data introduced during the online interaction phase.
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C.2 ABLATION STUDIES EXAMINING OTHER FINE-TUNING APPROACHES

To demonstrate the effectiveness of our online fine-tuning approach, we compare it with two al-
ternative fine-tuning methods: (i) SODP_off, which involves fine-tuning using high-quality offline
data, and (ii) SODP_off_scratch, which performs direct training with high-quality data without
pre-training. Specifically, we fine-tuned the pre-trained models for 100k steps across five tasks, col-
lecting 200 successful episodes (equivalent to 100k steps) for each task. These datasets were then
used to independently train five models in an offline setting, utilizing the same loss function as in
Eq. (15) (SODP_off). Additionally, to investigate the impact of pre-training on offline fine-tuning,
we trained the model directly without pre-training (SODP_off_scratch).

The experimental results, presented in Table 4, report the success rates averaged over three seeds.
Without pre-training, the model lacks the necessary action priors to efficiently identify high-reward
action distributions. Furthermore, directly fine-tuning with high-quality offline data proves insuf-
ficient, as static reward labels may fail to provide adequate guidance in dynamic environments,
hindering the model’s ability to facilitate efficient exploration.

Table 4: Average success rate for different fine-tuning approaches.

Tasks SODP_off SODP_off scratch SODP

button-press-topdown 58.67±0.03 40.67±0.08 60.67±0.03

hammer 71.33±0.05 13.33±0.06 73.33±0.03

handle-pull-side 60.67±0.03 42.67±0.08 81.67±0.07

peg-insert-side 25.33±0.03 0.0±0.0 32.67±0.06

handle-pull 66.67±0.03 31.33±0.06 75.33±0.04

Average success rate 56.53±0.18 25.6±0.18 64.73±0.19

To highlight the importance of modeling the diffusion process as a MDP for reward fine-tuning, we
consider an alternative approach that directly applies BC during fine-tuning, using only Eq. (14) as
the loss function. As shown in Table 5, directly using BC results in poorer performance, as BC
lacks reward labels to effectively guide exploration. While BC during the fine-tuning phase enables
access to dynamic actions, it is limited to ’imitation’ rather than ’evolution,’ as the model is unable
to differentiate between good and bad actions.

Table 5: Average success rate for directly BC during fine-tuning.

Task Directly BC SODP

button-press-topdown 51.3±0.05 60.7±0.03

basketball 21.3±0.03 41.2±0.16

stick-pull 26.7±0.08 50.5±0.04

C.3 PRE-TRAINING USING NEAR-OPTIMAL DATA

To evaluate the impact of pre-training data quality on fine-tuning performance, we modified the
near-optimal dataset provided by He et al. (2024) by retaining only the last 50% of the data. This
modification ensured that the total number of transitions remained the same as the sub-optimal data
used in the main paper, while significantly increasing the proportion of expert trajectories. We refer
to this modified dataset as near-optimal data and pre-trained a model on the Meta-World 10 tasks.
Subsequently, we followed the same fine-tuning procedure outlined in the main paper to fine-tune the
model on each task. The experimental results are presented in Table 6. Incorporating more optimal
data during the pre-training stage leads to better performance, as the model gains more priors about
the optimal action distributions.
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Table 6: Average success rate achieved after fine-tuning models pre-trained on different datasets.

Tasks Sub-optimal dataset Near-optimal dataset

basketball 52.67±0.03 80.67±0.03

button-press 88.00±0.02 89.33±0.03

dial-turn 80.67±0.02 74.00±0.04

drawer-close 100.00±0.00 100.00±0.00

peg-insert-side 62.67±0.02 84.67±0.02

pick-place 36.67±0.03 59.33±0.03

push 33.33±0.03 50.67±0.03

reach 68.67±0.05 95.33±0.01

sweep-into 60.67±0.03 75.33±0.01

window-open 69.33±0.04 100.0±0.00

Average success rate 65.27±0.21 80.93±0.16

C.4 FINE-TUING ON UNSEEN TASKS

To evaluate the generalizability of SODP, we conduct experiments to fine-tune the model on tasks
that were not included in the pre-training dataset. We pre-train a model on the MT-10 dataset
(SODP_mt10) and fine-tune it on three tasks that are not present in the pre-training data. Addi-
tionally, to investigate the advantages of pre-training on a multi-task dataset versus a single-task
dataset, we compare SODP_mt10 with a variant that is pre-trained solely on the basketball dataset
(SODP_bas). As shown in Table 7, pre-training on multi-task data enhances generalizability to
unseen tasks, as multi-task data provide a broader range of action distribution priors compared to
single-task data.

Table 7: Average success rate achieved after fine-tuning on unseen tasks.

Unseen tasks SODP_mt10 SODP_bas

drawer-open 34.7±0.06 0.0±0.0

plate-slide-side 55.3±0.33 0.0±0.0

handle-pull-side 71.3±0.13 0.0±0.0

C.5 EXPERIMENTS IN IMAGE-BASED META-WORLD

Table 8: Average success rate
of image-based MT-10 tasks.

Methods Success rate

DP3 32.6±0.23

MTDIFF_3D 38.0±0.82

SODP 47.5±0.18

To further validate the scalability of SODP in handling high-
dimensional observations, we conduct experiments on image-based
Meta-World 10 tasks. Since no existing image-based sub-optimal
dataset for Meta-World is available, we collect data for the 10 tasks
by training separate SAC agents for each task, as done in He et al.
(2024), and rendering the environments to obtain image data. We
then follow the same procedure as in Adroit to convert the images
into point clouds and use the DP3 encoder to extract visual features.
For comparison, we consider the following baselines: DP3 and MT-
DIFF_3D, an extended variant of MTDIFF that employs the same 3D visual encoder used in SODP.
The experimental results are presented in Table 8, demonstrating the generalizability of our method
to complex inputs.

D THE DETAILS OF BASELINES

We describe the details of baselines used for comparison in our experiments. For Meta-World, we
consider following baselines:

• MTSAC. The one-hot encoded task ID is incorporated into the original SAC as an additional
input.
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• MTBC. The actor network is modeled using a 3-layer MLP with Mish activation. In training and
inference, the scalar task ID is processed through a separate 3-layer MLP with Mish activation to
produce a latent variable z. The input to the actor network is then formed by concatenating the
original state with this latent variable z

• MTIQL. Similar to MTBC, the actor network incorporates the task ID through a task-aware em-
bedding. A multi-head critic network is employed to estimate the Q-values for each task, with
each head being parameterized by a 3-layer MLP using Mish activation.

• MTDQL. Similar to MTIQL, a multi-head critic network is utilized to predict the Q-value for
each task, and the original diffusion actor is extended with an additional task ID input.

• MTDT. The task ID is embedded into a latent variable z of size 12. This latent variable is then
concatenated with the raw state to form the input tokens.

• Prompt-DT. Actions are generated based on trajectory prompts and the reward-to-go. A GPT-2
transformer model is utilized as the noise network.

• MTDIFF. Actions are generated by a GPT-based diffusion model that incorporates prompt learn-
ing to capture task knowledge. MTDIFF considers a variant: MTDIFF-ONEHOT, which replaces
the prompt with a one-hot task ID. We borrow the official codes from https://github.com/
tinnerhrhe/MTDiff and use their default hyper-parameters.

• HarmoDT. Incorporate trainable task-specific masks to address gradient conflict by identifying
an optimal harmony subspace of parameters for each task. There are three variants of HarmoDT:
HarmoDT-R, which keeps task masks unchanged; HarmoDT-F and HarmoDT-M utilize differ-
ent methods to weight masks. We borrow the official codes from https://github.com/
charleshsc/HarmoDT and use their default hyper-parameters.

For Adroit, we consider following baselines:

• BCRNN. A variant of BC that models the policy network as an RNN. The network is trained on
temporal sequences of length H , denoted as (st, at, ..., st+H , at+H), to predict action sequences
based on historical states.

• IBC. BC is represented as a conditional energy-based modeling problem, where implicit policies
are trained to imitate expert demonstrations.

• Diffusion Policy. The generation of robot behaviors is formulated as a conditional denoising dif-
fusion process, where the diffusion model predicts action sequences based on given observations
as conditions.

• DP3. Diffusion Policy is extended by incorporating 3D visual representations. The 3D scenes
from the environment are represented as point clouds, which are then cropped and downsampled
to reduce redundant information. These processed point clouds are passed through an MLP to
generate visual representations, which serve as conditions for the diffusion models.

For image-based Meta-World, we extended MTDIFF by integrating the same 3D visual encoder
used in SODP to extract visual features from input point clouds.

E VARIANTS OF SODP

In Eq. (15), we introduce a BC regularization term to preserve the pre-trained knowledge and demon-
strate its effectiveness compared to two existing regularization approaches presented in DPOK(Fan
et al., 2024) and DLPO (Chen et al., 2024). Specifically, the regularization term LKL used in DPOK
is expressed as:

LKL(θ) =

K∑
k=1

KL(pθ(xk−1|xk)||ppre(xk−1|xk)). (23)

And the regularization term LPL used in DLPO is expressed as:

LPL(θ) = Ek∼[1,K],pθ(x1:K)

[
∥ϵ(xk, k)− ϵθ(xk, k)∥2

]
. (24)
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These methods can be considered as different approaches to selecting the target policy in line with
our analysis and can be seen as variants of Eq. (14), where DPOK selects µ = θpre-train and DLPO
selects µ = θ. The rationale behind their selection is based on the assumption that θ ≈ θpre-train ≈ θ∗.
This assumption is reasonable in text-to-image or text-to-speech tasks, as the pre-trained models
they used are already strong and perform exceptionally well even without fine-tuning. However, this
assumption does not apply to our pre-trained planner, as the model is trained on sub-optimal data.
As a result, as shown in Section 5.3, these regularization methods may lead the pre-trained planner
to be stuck in inferior regions, limiting its ability to improve performance.

F COMPARISON TO DPPO

We summarize some similarities and differences between our work and the concurrent work
DPPO (Ren et al., 2024) as follows:

• Both DPPO and our approach formulate the diffusion policy denoising process as an MDP and
use policy gradients to fine-tune the model for higher environment rewards.

• DPPO demonstrated that reward-based RL fine-tuning promotes effective exploration, which is
consistent with our observations.

• While DPPO requires task-specific expert demonstrations for pre-training, our method pre-trains
a foundation model capable of capturing useful behavior patterns from multi-task inferior data.

• We show that directly fine-tuning the pre-trained planner without any regularization, as done in
DPPO, fails in the multi-task setting. We further analyze the limitations of current regularization
methods and propose a novel BC regularization term. By employing our regularizer, the pre-
trained model achieves higher success rates after fine-tuning.

• Unlike DPPO, we don’t employ advantage estimator.

G SINGLE-TASK PERFORMANCE

We evaluate the performance for each task for 50 episodes. We report the average evaluated return
of pre-trained and fine-tuned models in Table 9.
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Table 9: Evaluated return of SODP pre-trained model and fine-tuned model for each task in MT50-
rand. We report the mean and standard deviation for 50 episodes for each task.

Tasks Return of pre-trained model Return of fine-tuned model
basketball-v2 133.5± 100.7 2347.1± 580.8

bin-picking-v2 96.8± 23.9 602.7± 72.8
button-press-topdown-v2 1405± 20.3 1679± 25.9

button-press-v2 1397± 15.6 2452.7± 89.3
button-press-wall-v2 1375± 10.58 2524.7± 18.1

coffee-button-v2 293.2± 12.1 451.5± 14.4
coffee-pull-v2 39.5± 6.2 117.9± 23.3
coffee-push-v2 33.8± 6.1 273.3± 36.6

dial-turn-v2 1217.7± 239.3 1557.3± 226.7
disassemble-v2 237± 117.2 502± 164.6
door-close-v2 3347.7± 124.9 4116.3± 118.6
door-lock-v2 1042.3± 94.9 2491± 79.5
door-open-v2 2036.3± 79.3 2460.3± 57.7

door-unlock-v2 1335± 46.9 2257.7± 323.0
hand-insert-v2 85.9± 56.7 449.5± 54.9

drawer-close-v2 2468.3± 167.2 3953.7± 214.3
drawer-open-v2 1656± 45.6 2489.7± 188.4
faucet-open-v2 2728.7± 424.1 4094.7± 290.3
faucet-close-v2 2156.7± 113.6 3772± 70.1

handle-press-side-v2 1919.7± 449.5 3478.3± 98.0
handle-press-v2 2216.3± 182.0 3415.7± 221.6

handle-pull-side-v2 1351.7± 119.0 2665.7± 243.9
handle-pull-v2 1510.7± 111.6 2734± 64.3
lever-pull-v2 650.7± 32.5 1068.8± 110.4

peg-insert-side-v2 300.3± 122.2 1969.7± 237.6
pick-place-wall-v2 596.7± 10.6 1175.7± 150.1
pick-out-of-hole-v2 38.5± 6.3 106.7± 7.9

reach-v2 2664.3± 77.5 3083.7± 149.7
push-back-v2 55.8± 26.7 350.9± 30.3

push-v2 46.8± 35.9 148.9± 43.9
pick-place-v2 3.9± 0.2 5.9± 1.8
plate-slide-v2 1268.7± 75.8 2862± 234.5

plate-slide-side-v2 826.4± 54.3 1929.7± 104.5
plate-slide-back-v2 795.8± 62.9 1587.7± 125.0

plate-slide-back-side-v2 626.7± 36.9 1541.3± 78.5
soccer-v2 863.8± 159.5 1234.2± 225.8

push-wall-v2 175.2± 35.0 471.7± 73.9
shelf-place-v2 260.4± 111.5 785.1± 81.5
sweep-into-v2 621.0± 132.9 1282.3± 135.9

sweep-v2 442.3± 83.0 1081.7± 58.0
window-open-v2 1342.3± 60.1 2474.3± 266.4
window-close-v2 1087.7± 78.9 1816.7± 166.3

assembly-v2 282.5± 4.3 446.1± 26.9
button-press-topdown-wall-v2 1374± 16.1 1702.7± 71.5

hammer-v2 1678.3± 52.5 1907.7± 25.4
peg-unplug-side-v2 34.2± 2.9 52.9± 4.6

reach-wall-v2 3373.7± 41.7 3839.7± 69.3
stick-push-v2 412.9± 95.8 833.5± 99.1
stick-pull-v2 1977± 155.9 3116.3± 58.1
box-close-v2 692.3± 22.8 1300.1± 53.2
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