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Abstract

Recommendation systems play a crucial role001
in various domains, suggesting items based on002
user behavior. And the lack of transparency in003
presenting recommendations can lead to user004
confusion. Thus, recommendation explana-005
tion methods are proposed to generate natu-006
ral language explanations for users, which usu-007
ally require intermediary representations of the008
recommendation model or need to conduct la-009
tent alignment training to the recommendation010
model. However, this additional training step011
usually causes potential performance issues due012
to the different training objectives between the013
recommendation task and the explanation task.014

In this paper, we introduce Data-level015
Recommendation Explanation (DRE), a non-016
intrusive explanation framework for black-box017
recommendation models. We propose a data-018
level alignment method, leveraging large lan-019
guage models to reason relationships between020
user data and recommended items, without any021
additional training or intermediary representa-022
tions for the recommendation model. Addition-023
ally, we also address the challenge of enriching024
the details of the explanation by introducing025
target-aware user preference distillation, uti-026
lizing item reviews. Experimental results on027
several benchmark datasets demonstrate the ef-028
fectiveness of the DRE in providing accurate029
and user-centric explanations, enhancing user030
engagement with recommended items 1.031

1 Introduction032

Recommendation systems (RecSys) play a pivotal033

role in learning user preferences and interests by an-034

alyzing historical user behavior data (Cheng et al.,035

2016; Guo et al., 2017; He et al., 2017; Johnson036

et al., 2014). Subsequently, the RecSys recom-037

mends relevant items from extensive databases,038

which are widely used in diverse domains such039

1Code is available at https://anonymous.4open.
science/r/DRE
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Figure 1: Comparison between existing latent-level
alignment and our data-level alignment recommenda-
tion explanation method.

as e-commerce, news portals, and short video ap- 040

plications (Zhang et al., 2021; Koren et al., 2009; 041

He and McAuley, 2016; Van den Oord et al., 2013). 042

However, the direct presentation of recommended 043

items may inadvertently confuse users, as they may 044

not always comprehend the rationale behind a par- 045

ticular recommendation (Lei et al., 2023; Cheng 046

et al., 2022, 2021). This lack of transparency 047

impedes users’ inclination to explore the recom- 048

mended item further (Zhang et al., 2020a; Balog 049

et al., 2019; Chen et al., 2020). Consequently, inter- 050

preting the recommendation results of a black-box 051

recommender model logically has always been an 052

important research direction (Bilgic and Mooney, 053

2005; Sharma and Cosley, 2013; Tintarev and Mas- 054

thoff, 2010). Most of the existing methods (Xu 055

et al., 2023; Wang et al., 2018b, 2024, 2023; Gao 056

et al., 2023) usually focus on how to employ an 057

additional explanation module to align with the 058

recommendation system, subsequently generating 059

natural language explanations. 060

However, there are two key challenges of these 061

methods: (1) Existing methods (Lei et al., 2023; Xu 062

et al., 2024; Chen et al., 2017, 2018) often involve 063
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intrusion into the latent representations within the064

recommendation model, necessitating modifica-065

tions to align the explanation and recommendation066

modules. Considering the different training ob-067

jectives of these two modules, it could adversely068

affect the performance of both language generation069

and item recommendation. Moreover, although070

these methods aim to align two modules through071

training, they still cannot guarantee that the rec-072

ommendation predictions of the two modules are073

consistent. Thus the discrepancies between the074

explained and recommended items may lead to075

user confusion. Additionally, in real-world appli-076

cations, modifying the online serving recommen-077

dation model is very difficult. It also increases the078

overall system complexity, leading to a deep cou-079

pling between the recommendation and explanation080

modules. This does not align with the design prin-081

ciple of “low in coupling and high in cohesion” in082

software design. (2) The recommendation system083

based on ItemID models the co-occurrence rela-084

tionships among items (Zhang et al., 2014, 2020b;085

Diao et al., 2014; Wang et al., 2018a), lacking an086

understanding of the specific semantic information087

about the items, such as the specific purposes of the088

products or the particular scenarios in which users089

use them. Thus, simply aligning the explanation090

module with the recommendation module cannot091

provide rich detailed semantic information about092

the item. However, to generate helpful explana-093

tions, the explanation module requires comprehen-094

sive and diverse information to avoid generating095

explanations with hallucination information.096

In this paper, we propose the Data-level097

Recommendation Explanation (DRE) which can be098

applied to any black-box recommendation model099

without accessing intermediate representations or100

modifying the model. To avoid modifying the101

recommendation system, we propose a data-level102

alignment method to align the explanation module103

and the recommendation model. Figure 1 shows the104

comparison between our proposed paradigm and105

existing methods. Since the large language models106

(LLMs) have shown strong reasoning capability in107

many tasks (Wei et al., 2022; Mann et al., 2020;108

Dong et al., 2019; Radford et al., 2018; Zhao et al.,109

2023; Xi et al., 2023), we propose to employ the110

LLM to reason the relationships between the user’s111

historical data and recommended items. Specif-112

ically, we feed the input user historical behavior113

data used by the recommendation model and the114

recommended item to the LLM. And we leverage115

the internal knowledge of LLM to find a reasonable 116

relationship between the user preference and the at- 117

tributes of the recommended item. This data-level 118

alignment method can align these two modules 119

without requiring any internal representation or in- 120

termediate result of the recommendation model, 121

and it can easily be plugged into any RecSys. 122

For the second challenge, due to the limited 123

detailed information of item descriptions, relying 124

solely on item descriptions for inferring relation- 125

ships between items can sometimes be challeng- 126

ing in uncovering implicit relationship information. 127

Therefore, we propose utilizing the reviews of the 128

items purchased by users and the reviews of the tar- 129

get recommended items to enhance the explanation 130

module’s understanding of user preferences and the 131

semantics of target items. Since there is a lengthy 132

of reviews for items that users have purchased, ex- 133

tracting relevant information from these reviews 134

and generating explanations that better align with 135

user preferences is a challenge. Thus, we intro- 136

duce the target-aware user preference distillation 137

method, which leverages the understanding and rea- 138

soning capabilities of LLM, employing semantic 139

matching to extract target-aware information from 140

reviews on items previously purchased by users. 141

Finally, by incorporating the extracted target-aware 142

information, we generate explanations for the rec- 143

ommended target items. Experiments conducted on 144

several benchmark datasets from recommendation 145

systems demonstrate that our proposed DRE gener- 146

ates explanations accurately describing aspects that 147

users care about, thereby enhancing user interest in 148

recommended items. 149

Our contributions are as follows: 150

• We propose DRE, an LLM-based non-intrusive 151

explanation framework for recommendation sys- 152

tems. 153

• We propose a data-level alignment method to 154

align the explanation module and the recommenda- 155

tion model. 156

• We introduce a target-aware user preference dis- 157

tillation method to distill user-related information 158

from item reviews. 159

• Experimental results on several benchmark 160

datasets illustrate the advantage of DRE in terms 161

of the accuracy of explanation. 162

2 Related Work 163

Explaining the black box of recommender systems 164

has long been a prominent research direction in the 165
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field of recommender systems. Current research166

can be mainly divided into two categories. The first167

category focuses on identifying the most critical168

factors influencing recommendation results(Chen169

et al., 2016; Pan et al., 2020). Tan et al. (2021)170

formulate an optimization problem to generate min-171

imal changes to item aspects, thereby altering the172

recommended result. These aspects can be viewed173

as the composition of an explanation detailing why174

the original item is recommended. Zilke et al.175

(2016); Lakkaraju et al. (2017); Shrikumar et al.176

(2017) define information-based measures to iden-177

tify the attributes that the model utilizes from the178

input to generate explanations. The second cate-179

gory mainly focuses on training a surrogate model180

to explain the target model. For example, Wang181

et al. (2018b) propose a reinforcement learning182

framework that gets rewards from the environment183

and modifies recommendation explanation. Ma184

et al. (2019); Catherine et al. (2017) propose a185

framework for generating explanations based on186

the knowledge graph. Lei et al. (2023) employ187

LLMs as surrogate models, aiming to mimic and188

understand target recommender models by leverag-189

ing both natural language and latent spaces. After190

alignment, LLMs can generate target items and191

provide recommendation explanations. However,192

existing methods either rely solely on a few en-193

tity words or keywords as explanations or employ194

complex fine-tuning approaches to generate natural195

language explanations. It makes the explanations196

not natural or complex to use, which requires fine-197

tuning or modification of existing recommendation198

systems.199

3 DRE Methodology200

In this section, we detail the Data-level201

Recommendation Explanation (DRE). An202

overview of DRE is shown in Figure 2.203

3.1 Data-level Alignment204

In order to generate precise explanations for recom-205

mended results, we propose a data-level alignment206

method to achieve behavioral consistency between207

the recommendation module and the explanation208

module. Given a list of items I = {I1, I2, . . . , IN}209

which is purchased by the user U , the recommen-210

dation model R predicts items Ip that the user U211

might find interesting. To achieve alignment be-212

tween the recommendation module and the expla-213

nation module, previous methods typically fine-214

tune the explanation module to perform the rec- 215

ommendation prediction task as well, generating 216

items Ip consistent with the predictions of the rec- 217

ommendation model R. However, this approach 218

inevitably reduces the text generation capability of 219

the explanation module due to changes in its model 220

structure and parameters. In this paper, we propose 221

leveraging the in-context learning and reasoning 222

abilities of LLM to align the explanation module 223

with the recommendation module. Given inputs I 224

and outputs Ip that are consistent with the recom- 225

mendation model R, LLM can learn this prediction 226

pattern in the context and explore the associated 227

relationships to generate natural language explana- 228

tions. 229

3.2 Target-aware User Preference Distillation 230

Relying solely on item IDs and item descriptions 231

for recommendation explanations may fail to cap- 232

ture the details or user actual experiences of the 233

item, which are crucial for users. Therefore, 234

we propose to incorporate the reviews of user- 235

purchased items I and the target item Ip predicted 236

by the recommendation model R to assist the ex- 237

planation model in obtaining more item detail infor- 238

mation. Given a purchased item Ii of user U , we re- 239

trieve M reviews Ci = {Ci
1, C

i
2, . . . , C

i
M} of item 240

Ii written by other users from the database, where 241

each Ci
1 represents a paragraph of natural language 242

product review. Then, we can retrieve M user re- 243

views for each purchased item Ii of user U , and 244

then obtain a review set C = {C1, C2, . . . , CN} 245

which contains M×N reviews of other users. Sim- 246

ilarly, we can also retrieve M reviews for the tar- 247

get item Ip denoted as Cp = {Cp
1 , C

p
2 , . . . , C

p
M} 248

which is also written by other users. In this paper, 249

we assume that the item characteristics described 250

in the review set C are the key features that user 251

U cares about, since the user U has bought these 252

items. Therefore, we need to perform semantic 253

matching between C and Cp to extract those item 254

features that are both of interest to the user in the 255

past purchased items and possessed by the target 256

product Ip. We propose the target-aware user pref- 257

erence distillation method, which involves match- 258

ing the target item reviews Cp with C to extract 259

valuable information for generating recommenda- 260

tion explanations. 261

Since the description and reviews of items are 262

usually quite long, and not all the information is 263

helpful for generating recommendation explana- 264

tions. For the target item Ip, we first construct an 265
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overview item profile Fp to distill the useful item266

features. We use the product description Dp and267

reviews information Cp = {Cp
1 , C

p
2 , . . . , C

p
M} of268

Ip as input and prompt the LLM to generate an269

item profile Fp:270

Fp = Summ
(
{Cp

1 , C
p
2 , . . . , C

p
M}, Dp

)
, (1)271

where Fp contains both the basic information of the272

target item and user usage experiences and Summ273

is an LLM-based module that is prompted by the274

following instructions:275

You are given item’s description and reviews. Re-
sponse item profile using the following format:
item: {item name}
description: {item description}
other users’ reviews: {item reviews}
Extract key features from reviews.

276

However, not all the product features mentioned277

in Fp may be of concern to the user U . Therefore,278

we need to extract product features that user U279

care about from C = {C1, C2, . . . , CN} associ-280

ated with user behavior. Specifically, we use the281

item profile Fp of the target item to filter reviews282

in set Ci of item Ii:283

Fi = Distill
(
Fp, {Ci

1, C
i
2, . . . , C

i
M}, Di

)
, (2)284

where Di is the item description of item Ii, and285

Distill is an LLM-based module that is prompted286

by the following instructions:287

Finish history item profile using relevant features
with recommended item, strictly adhere to the
following format when responding:
history item: {item name}
genre: {item genre}
relevant information: {item information}
other users’ reviews: {reviews}
which relevant information mainly describes sim-
ilarities between history item and recommended
item, and summarize other users’ reviews; 288

By integrating these two parts of information, 289

we obtain the target-aware item profiles F = 290

{F1, F2, . . . , FN} for the items the user U has pur- 291

chased. 292

3.3 Explanation Generation 293

Finally, we integrate the item profile Fp of 294

the target item with the item profiles F = 295

{F1, F2, . . . , FN} of the items the user has pur- 296

chased. We employ an in-context learning ap- 297

proach and instruct the LLM as follows to generate 298

a logically coherent recommendation explanation 299

that aligns with the recommendation system R and 300

corresponds to user attention preferences: 301

Ep = S (Fp, {F1, F2, . . . , FN}) , (3) 302

where S is an LLM-based module to generate the 303

recommendation explanation which is instructed 304

by the following instructions: 305
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Now you are a recommendation assistant, com-
bined with history relevant items, write an expla-
nation of the recommended item. The format of
response is as below:
item: {recommended item}
recommend reason: {reason}

306

4 Experimental Setup307

4.1 Implementation Details308

In our experiments, all DRE-C variants and the309

ChatGPT baseline use the gpt-3.5-turbo version,310

and the DRE-M variant and Mistral baseline use311

the Mistral 8× 7B version which is open-sourced.312

And we update the memory modules of agents in313

DRE after each turn, meaning that only the sugges-314

tions and experiences from the previous turn are315

retained.316

4.2 Evaluation Metrics317

To quantitatively measure the performance of DRE,318

we propose two evaluation metrics in our paper:319

(1)Aspect Score: We assume that the aspects men-320

tioned in the review Cp
U of the target item Ip written321

by user U are crucial to the user. We use the review322

Cp
U as a reference of the explanation Ep. We first323

employ the LLM to extract aspects of the review324

Cp
U . Subsequently, we measure the alignment be-325

tween recommendation explanations Ep and user326

preferences by calculating the extent of the aspect327

overlap between Ep and Cp
U :328

Aspect_Score =
1

Na

Na∑
i=1

hit(i) ∈ [0, 1], (4)329

where Na is the number of aspects in the user re-330

view Cp
U . To capture the user’s detailed intent, we331

set Na=7. And when the aspect i in the explana-332

tion is semantically the same as the aspect in the333

recommendation explanations Ep then hit(i) = 1,334

otherwise, hit(i) = 0. (2)Rating Score: Follow-335

ing (Lei et al., 2023), to directly evaluate the quality336

of the generated explanation, we implement a three-337

level scoring criteria to quantitatively evaluate the338

explanation generated by models: (i) RATING-1:339

Poor Explanation, using chunks of original sen-340

tence from provided data. (ii) RATING-2: Accept-341

able Explanation, consider only one aspect of user342

history and reviews, explaining unrelated items to-343

gether. (iii) RATING-3: Satisfactory Explanation.344

We employ the LLM to evaluate the generated ex-345

planation according to these criteria and calculate346

the average rating score over all the testset.347

4.3 Dataset 348

In this paper, we employ two commonly used rec- 349

ommendation datasets in the experiments: Ama- 350

zon (Ni et al., 2019) and Yelp 2. In the Amazon 351

dataset, we employ several categories, including 352

Cell Phones & Accessories, Clothing Shoes & Jew- 353

elry, and Home & Kitchen. Intuitively, in order 354

to better capture user preferences, we model user 355

preferences only using positive user reviews. Cell 356

Phones & Accessories contains 12,467 users, 6,977 357

items and 38,729 reviews. Home & Kitchen con- 358

tains 16,102 users, 1,590 items, and 20,277 reviews. 359

Clothing Shoes & Jewelry contains 19,310 users, 360

3,746 items and 24,712 reviews. To construct the 361

user purchase history, we limit the items sequence 362

to a minimum of 4 items on Clothing Shoes & 363

Jewelry, Home & Kitchen, and a minimum of 3 364

items on Cell Phones & Accessories. The last item 365

is then used as the prediction target item. We se- 366

lect 100 samples in each category as testset and 367

each item has associated reviews. We filtered the 368

data by removing the sample of items with fewer 369

than 2 user-purchased items and no accompanying 370

reviews from users. 371

In the Yelp dataset, we utilize attributes and cat- 372

egories associated with item as descriptions. The 373

Yelp dataset consists of 12,377 users, 4,446 items, 374

and 14,453 reviews. We also select 100 samples 375

from the Yelp dataset as the test set and filter the 376

data with a length of historical data of less than 3 377

or at least 1 review. 378

4.4 Comparison Methods 379

We compare DRE to a state-of-the-art LLM-based 380

recommendation explanation method and several 381

LLMs, including: (i) RecExplainer (Lei et al., 382

2023) introduces an explanation approach by lever- 383

aging LLM, which employs three methods - be- 384

havior alignment, intention alignment, and hybrid 385

alignment - in the latent spaces. (ii) ChatGPT 3 is a 386

closed-source LLM from OpenAI. We use the ver- 387

sion gpt-3.5-turbo-0613. We conduct recommenda- 388

tion explanation as a prompt learning method that 389

uses a single instruction with the same input data 390

as our DRE. (iii) Mistral (Mix) is an open-source 391

LLM and we use the mixture-of-experts version 392

with 8 × 70 billion parameters, and use the same 393

prompt as ChatGPT. 394

We also employ two variants of DRE: DRE-C 395

2https://www.yelp.com/dataset
3https://chat.openai.com/
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Table 1: Recommendation explanation performance comparison. ‡ indicates significant improvement over ChatGPT
with p ≤ 0.01 according to a Student’s t test.

Method
Home & Kitchen Clothing Shoes & Jewelry Cell Phones & Accessories Yelp

Aspect (↑) Rating (↑) Aspect (↑) Rating (↑) Aspect (↑) Rating (↑) Aspect (↑) Rating (↑)

RecExplainer (Lei et al., 2023) 0.6057 2.64 0.5628 2.68 0.6028 2.64 0.3238 2.86
Mistral (Mix) 0.7028 2.65 0.5757 2.79 0.6571 2.00 0.4642 2.65
ChatGPT 3 0.6971 2.51 0.6362 2.86 0.6229 2.67 0.4200 2.79

DRE-M 0.7142 2.68 0.6485 2.89 0.6857 2.57 0.5542 2.82
DRE-C 0.7714‡ 2.88† 0.6728‡ 2.94‡ 0.7400‡ 2.90‡ 0.5600‡ 2.91‡
DRE-C w/o Rev. 0.6914 2.64 0.6400 2.65 0.6542 2.66 0.4242 2.83
DRE-C w/o Dist. 0.6278 2.79 0.5714 2.77 0.6057 2.89 0.5542 2.86
DRE-C w/o Dist.+Fp 0.5828 2.77 0.5671 2.82 0.5971 2.83 0.5028 2.83
DRE-C w/ Fp 0.7385 1.64 0.5814 2.06 0.6585 2.03 0.4285 1.50

Table 2: Human evaluation results for two datasets.

Clothing Shoes & Jewelry Cell Phones & Accessories

RexExplainer (Lei et al., 2023) 1.80 1.80
Mistral (Mix) 1.60 1.87
ChatGPT 3 1.87 1.60

DRE-M 2.60 2.53
DRE-C 2.67 2.73

and DRE-M which use ChatGPT and Mistral as396

the LLM backbone respectively. To verify the effec-397

tiveness of each module in DRE, we also employ398

several ablation models: (i) DRE-C w/o Rev.: We399

remove all the reviews in our model and only use400

the description as input. (ii) DRE-C w/o Dist.: We401

directly summarize the description and reviews for402

the user-purchased item using Equation 1 without403

using the Distill method in Equation 2. (iii) DRE-C404

w/o Dist.+Fp: Based on DRE w/o Dist., we405

also directly utilize the description and reviews of406

the target item without using the Summ method in407

Equation 1. (iv) DRE-C w/ Fp: We directly gener-408

ate the explanation by using the Fp as input to LLM,409

without using any information from user-purchased410

items. All the ablation studies are conducted based411

on DRE-C.412

5 Experimental results413

5.1 Main Results414

Table 1 shows the performance of our proposed415

DRE and baselines in terms of two metrics. We416

can find that DRE shows superior performance417

in terms of all metrics compared to the state-418

of-the-art recommendation explanation method419

RecExplainer.This phenomenon indicates that420

compared to the latent-level alignment, our data-421

level alignment is capable of generating explana-422

tions of higher quality. Since we employ the data-423

level alignment method between the explanation424

model and the recommendation model, our DRE425

not only exhibits high quality, but also does not re- 426

quire any data for model training. This significantly 427

enhances the applicability of the method, making it 428

usable in scenarios without labeled data, and also 429

reduces the issue of domain transfer caused by the 430

labeled datasets. 431

We can also find our proposed DRE achieves su- 432

perior performance compared with its LLM back- 433

bones respectively. Although the LLM backbones 434

(e.g., Mistral and ChatGPT) use the same input 435

data as our proposed DRE, they cannot generate a 436

high-quality recommendation explanation. Since 437

LLMs can only reveal a limited relationship be- 438

tween user-purchased items and target item based 439

solely on descriptions. This phenomenon demon- 440

strates that our proposed target-aware user prefer- 441

ence distillation method can assist the model in 442

capturing more user preference information. 443
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Figure 3: Performance analysis of using different num-
bers of user history and reviews.

5.2 Ablation Study 444

To evaluate the effectiveness of each module in 445

DRE, we also conduct ablation studies with model 446

DRE-C, and the results are shown in Table 1. We 447

found that the DRE-C w/o Rev. method achieves 448

lower scores compared to other ablation models, 449

indicating the effectiveness of integrating review 450

information in our approach. Due to the complex- 451
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ity of information in reviews, generating meaning-452

ful explanations requires extracting target-aware453

information. Therefore, DRE-C w/o Dist. also454

exhibited lower performance after removal Distill455

module from DRE.456

Additionally, since descriptions and reviews are457

usually quite long, extracting helpful information458

about recommended item requires distilling useful459

features from description and reviews. Therefore,460

DRE-C w/o Dist.+Fp method exhibited lower per-461

formance after removal Summ module from DRE-C462

w/o Dist.463

5.3 Human Evaluation464

In previous experiments, we used LLM to assess465

recommendation explanation quality. In this sec-466

tion, we employ two well-educated human annota-467

tors evaluate it directly. We use the same evaluation468

criteria as the rating score as shown in § 4.2. We469

conducted human evaluation on 60 randomly se-470

lected recommendation explanation samples from471

the Clothing Shoes & Jewelry and Cell Phones &472

Accessories dataset respectively. From Table 2, we473

can find that although the scores from the human474

evaluation and LLM scores (as shown in Table 1)475

do not fully align, the rankings among the baselines476

are consistent. To validate LLM-based evaluations,477

we assessed consistency with human evaluation478

using Cohen’s kappa. The kappa value of 0.463 in-479

dicates moderate agreement, further supporting the480

consistency between LLM and human evaluations.481

Additionally, to directly compare the differ-482

ences in recommendation explanations generated483

by DRE-C and ChatGPT, we asked data annota-484

tors to directly compare the results from the two485

models. Specifically, we presented the data an-486

notators with recommendation explanations gen-487

erated by DRE-C and ChatGPT in random order488

and classified them according to the following cri-489

teria: (i) No significant difference between the two490

explanations; (ii) DRE-C better aligns with user491

preferences; (iii) ChatGPT better aligns with user492

preferences; The final results showed that 18.88%493

of samples are classified as category I, 61.11% as494

category II, and 20% as category III. This demon-495

strates that our proposed method offers significant496

advantages over directly prompting ChatGPT.497

5.4 Case Study498

Table 3 shows an example of recommendation ex-499

planations generated by ChatGPT, RecExplainer,500

and DRE based on information about user-501

Table 3: Examples of the generated recommendation
explanation of two baselines and DRE.

Item Information

Recommended Item: Kobwa (TM) Bumper Case
for Apple iPhone 5, (Black & Clear)
User Historical Purchased Items: [BlueAnt Su-
pertooth Light Bluetooth Speakerphone (Black);
XS Earbuds with Microphone and Volume Con-
trol.]

ChatGPT

Based on your purchased history ... I recommend
the Kobwa (TM) Bumper Case for Apple iPhone 5
to you ... The black and clear color option matches
your preference for sleek and minimalist designs
(Hallucination for non-exist user preference). Ad-
ditionally, this case is specifically designed for the
iPhone 5 and 5G models, which you have shown in-
terest in through your history of viewing electronic
items (Not combining target-aware information).

RecExplainer

No, user will not like the item. Based on the user‘s
purchase history ... shown an interest in technology-
related items such as Bluetooth speakerphones,
headphones ... user has shown an interest in acces-
sories related to iPhones, such as earbuds and Blue-
tooth headphones (Not combining target-aware in-
formation.). From a recommendation model per-
spective ... the item matches their iPhone model
and has features such as being made of hard plastic
and soft rubber, it aligns with the user’s preferences
for durable and protective items. This consistency
in compatibility may also appeal to the user. (Rec-
ommendation result not align with explanation re-
sult) ...

DRE

Based on your purchased history and other users’
reviews, I recommend the Kobwa (TM) Bumper
Case for Apple iPhone 5 to you ... While there
may not be a direct relation between the Kobwa
(TM) Bumper Case and the XS Earbuds in your
viewing history, both items are accessories for Ap-
ple devices. Additionally, in the history item you
viewed, the BlueAnt Supertooth Light Bluetooth
Speakerphone (Black) is mentioned as being an
electronic accessory with a black color option, sim-
ilar to the Kobwa(TM) Bumper Case. Both items
have also garnered positive feedback from users ...
the Kobwa(TM) Bumper Case for Apple iPhone 5
would be a suitable recommendation for you.
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purchased items and recommended item. The un-502

derlined text in the explanation indicates the rec-503

ommended item and user-purchased items. We504

use the text in red to illustrate the shortcomings505

of the explanation, which is not generated by the506

model. The text in green shows target-aware infor-507

mation generated by the model. The text in blue508

represents the consistent information of reviews509

from user U for user-purchased items and recom-510

mended item. The target item profile and target-511

aware item profiles generated by DRE are shown512

in the Appendix 7.2. From this case, we can find513

that ChatGPT fails to establish convincing and rea-514

sonable relationships between recommended items515

and user preferences. Although RecExplainer em-516

ploys the complicated alignment training step for517

the recommendation module, the generated expla-518

nation still fails to align with the recommendation519

result (as shown in the red text in the bracket). And520

DRE provides target-aware information that is per-521

suasive and aligns with user preferences. This ob-522

servation demonstrates that our proposed target-523

aware user preference distillation can effectively524

filter target-aware information from reviews and525

descriptions.526

5.5 Analysis of Different Input527

To verify the impact of the quantity of product re-528

views and the amount of user’s historical purchase529

items on the model’s performance, we measured530

the change in model performance under different531

input data settings. Figure 3(a) shows the effect532

of the amount of user’s historical purchase items533

on the model’s performance, From this figure, we534

can observe an upward trend in both aspect and535

rating scores, which demonstrates that incorporat-536

ing more user historical purchase items into the537

model helps the model to more comprehensively538

understand user preferences.539

Figure 3(b) shows the trend in model perfor-540

mance as the number of input reviews changes. As541

the number of item reviews a user has increased,542

the model pays more attention to these reviews, re-543

sulting in a focus on analyzing other user reviews544

of the item and a reduction in the description of545

item features. Since the aspect score focuses more546

on evaluating the description of the item features,547

this leads to a decrease in the score as shown in Fig-548

ure 3(b). However, this decrease does not indicate a549

decline in the quality of the recommendation expla-550

nation. Therefore, the number of product reviews551

can be adjusted according to the user’s preference552
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Figure 4: Performance of using different temperature
settings in DRE.

to achieve the desired recommendation explana- 553

tion. 554

5.6 Analysis of Different Hyper-parameters 555

The temperature parameter in the transformer- 556

based language model controls the randomness and 557

diversity of text generation, and higher tempera- 558

ture results in generating more diverse text 4. To 559

assess the influence of temperature setting on the 560

DRE, we conducted experiments using different 561

temperature configurations on the Home & Kitchen 562

dataset. Since the recommendation explanation 563

task requires both diverse explanations and fidelity 564

to product attributes and user reviews, from Fig- 565

ure 4, we can find that both too high and too low 566

temperature parameter can lead to a decrease in 567

model performance. 568

6 Conclusion 569

In this paper, we introduced Data-level 570

Recommendation Explanation (DRE), a non- 571

intrusive explanation framework for black-box rec- 572

ommendation models. We propose a data-level 573

alignment method to align the explanation module 574

and the recommendation model without additional 575

parameter training or intermediate representations 576

in recommendation model. Since the detailed in- 577

formation in the item description is limited, we 578

propose the target-aware user preference distilla- 579

tion method to enhance semantic understanding by 580

incorporating item reviews when generating rec- 581

ommendation explanations. Experimental results 582

demonstrate the effectiveness of DRE in providing 583

accurate and user-centric explanations, contribut- 584

ing to the improvement of recommendation system 585

interpretability and user engagement. 586

4https://platform.openai.com/docs/guides/
text-generation/completions-api
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Limitations587

In this paper, the gpt-3.5-0125 model we used can588

handle a maximum text length of 16k. In the real589

world, user historical interactions are often lengthy,590

leading to excessive text length that needs to be591

processed. Since existing long-context LLMs can592

easily handle large text inputs, our method can593

be readily adapted to these models for recommen-594

dation explanation. We plan to incorporate long-595

context LLMs into recommendation explanations596

in our future work.597

Ethics Statement598

While LLMs have the potential to generate halluci-599

nation information, our method leverages LLMs to600

distill target-aware information from ground truth601

data and generate explanations, ensuring that the602

explanations align as closely as possible with the603

user’s information. As recommendation explana-604

tions are mostly applied in recommendation sys-605

tem, they are unlikely to raise significant ethical606

concerns.607
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7 Appendix824

7.1 Computational Cost825

Table 4: Statistics of token consumption for baselines.
We show the token consumption of each module in
DRE in the first three rows. The number in the bracket
represents the percentage of tokens consumed by the
module relative to the total token consumption of the
model.

Home & Kitchen Clothing Shoes & Jewelry Cell Phones & Accessories Yelp

Sub-modules in DRE
Summ 2059 (15.09%) 3138 (15.40%) 2530 (21.41%) 1438 (12.42%)
Distill 9046 (66.31%) 12752 (62.59%) 7055 (59.69%) 7847 (67.78%)
Explain 2536 (18.59%) 4484 (22.01%) 2234 (18.90%) 2293 (19.80%)

DRE 13641 20374 11819 11578
ChatGPT 3331 2227 3096 2850

Since our proposed DRE is a multi-module826

method based on prompting LLM, we provide827

statistics on the total token consumption of DRE828

and the token consumption of each module sepa-829

rately. Table 4 compares the token consumption of830

our proposed method with several baseline meth-831

ods. Firstly, from the results, it can be seen that the832

Distill module in our proposed DRE consumes the833

most tokens compared to the other two modules.834

Since the Distill module is responsible for generat-835

ing target-aware items profiles FN , which requires836

using a large amount of item information as input837

and analyzing product associations, it consumes838

a significant number of tokens. Furthermore, as839

shown in the ablation study in Table 1, the Distill840

module contributes the most to the overall perfor- 841

mance improvement in DRE (compared between 842

DRE-C and DRE-C w/o Dist.). 843

The token consumption for the Summ module is 844

mainly around 2k in three subsets in the Amazon 845

dataset, while the token consumption for the Summ 846

module in the Yelp dataset is lower than the other 847

three datasets. Since the Yelp dataset treats cate- 848

gories and attributes as item descriptions, resulting 849

in shorter item information compared to the other 850

three datasets in Amazon, which have long item 851

descriptions. 852

Since ChatGPT uses only simple instructions as 853

prompts to directly generate recommendation ex- 854

planations, its token consumption is lower than our 855

method. However, the quality of the explanation 856

generated by ChatGPT is significantly lower than 857

those produced by our proposed DRE as shown in 858

Table 1. 859

7.2 Case Study 860

The target item profile and target-aware item pro- 861

files generated by DRE. 862

Table 5: Details of the target item profile

Target Item Profile

item: Kobwa(TM) Bumper Case for Apple iPhone
5, 5G
description: Kobwa(TM) Bumper Case is made
of hard plastic and soft rubber, available in black
and clear colors. It is compatible with the newest
iPhone 5 5S. The package includes 1 case and 1
Kobwa’s keyring. Only authorized Kobwa online
retailers provide original packaging and keyring
with printed logo.
other users’ reviews: Kobwa(TM) Bumper Case
for Apple iPhone 5, 5G is commended for its afford-
able pricing and functionality. Some users noted
slight stiffness in the volume button and the case’s
color not being entirely transparent. Despite the
shipping delay and personal preference for covered
back cases, the overall rating is positive due to the
budget-friendly nature of the product.
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Table 6: Details of the Target-aware Item Profile for
BlueAnt Supertooth Light Bluetooth Speakerphone

Target-aware Item Profile: BlueAnt Supertooth
Light Bluetooth Speakerphone

history item: BlueAnt Supertooth Light Bluetooth
Speakerphone (Black)
genre: electronics
relevant information: Both the BlueAnt Su-
pertooth Light Bluetooth Speakerphone and
Kobwa(TM) Bumper Case focus on design and
functionality. The BlueAnt speakerphone empha-
sizes hands-free technology with clear audio pro-
cessing, while the Kobwa bumper case highlights
a combination of hard plastic and soft rubber for
iPhone protection. Both items aim to enhance user
experience through innovative design and practical
features.
other users’ reviews: Users appreciate the
BlueAnt speakerphone for its outstanding audio
quality, convenient design, and long-lasting battery
life. They highlight the ease of use, clear com-
munication, and smart features like the pop-out
microphone and metallic visor clip. Despite minor
issues like squishy volume buttons, the overall sat-
isfaction is high.

Table 7: Details of the Target-aware Item Profile for XS
Earbuds

Target-aware Item Profile: XS Earbuds

history item: XS Earbuds with Microphone and
Volume Control, Bluetooth Headphones Noise Can-
celing
genre: electronics
relevant information: Both the XS Earbuds and
Kobwa(TM) Bumper Case are designed for specific
Apple devices - the XS Earbuds for iPhones and
the Kobwa(TM) Bumper Case for iPhone 5 and
5G. They both provide secure mounting for Apple
devices with different functionalities, with the XS
Earbuds focusing on hands-free device usage while
the Kobwa(TM) Bumper Case offers protection
and style.
other users’ reviews: Users appreciate the secure
grip and functionality of the iOttie Easy Flex 2,
noting its strong suction cup and easy phone grip
mechanism. Some users suggest improvements,
like longer arms for better positioning or a more
secure grip for larger phones. Overall, users find it
durable, convenient for daily use, and suitable for
various car models.
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