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ABSTRACT

Neural Architecture Search (NAS), particularly gradient-based techniques, has
proven highly effective in automating the design of neural networks. Recent work
has extended NAS to hardware-aware settings, aiming to discover architectures
that are both accurate and computationally efficient. Many existing methods in-
tegrate hardware metrics into the optimization objective as regularization terms,
which introduces differentiability requirements and hyperparameter tuning chal-
lenges. This can either result in overly penalizing resource-intensive architec-
tures or architectures failing to meet the hardware constraints of the target device.
To address these challenges, we propose CONNAS, a novel gradient-based NAS
framework that enforces hardware constraints directly through gradient modifica-
tion. This approach eliminates the need for differentiable hardware metrics and
regularization weights. The novelty in CONNAS lies in modifying gradients with
respect to architectural choices, steering the search away from infeasible archi-
tectures while ensuring constraint satisfaction. Evaluations on the NATS-Bench
benchmark demonstrate that CONNAS consistently discovers architectures that
meet the imposed hardware constraints while achieving performance within just
0.14% of the optimal feasible architecture. Additionally, in a practical deploy-
ment scenario, CONNAS outperforms handcrafted architectures by up to 1.55%
in accuracy under tight hardware budgets.

1 INTRODUCTION

Deep neural networks have proven to be very successful in numerous applications ranging from im-
age recognition (Krizhevsky et al.,2017) and speech recognition (Hinton et al.,[2012) to time series
segmentation (Lea et al., 2017). More recently, the use of deep neural networks on constrained hard-
ware has gained significant interest in the context of machine learning on the edge (EdgeML), where
resource-constrained devices such as mobile devices, embedded computers, and microcontrollers are
used to perform inference tasks. These devices often have limited computational power, memory,
and energy resources. As a result, it is crucial to design efficient neural network architectures that
can operate effectively within these hardware constraints.

A key challenge in EdgeML is designing neural network architectures that meet hardware constraints
while maintaining high performance. In recent years, Neural Architecture Search (NAS) was intro-
duced to automate the design of neural networks, and to potentially find novel architectures that
outperform manually designed models by experts (Elsken et al.,[2019b). In NAS, a search algorithm
is used to explore a search space of possible neural network architectures, aiming to find the best-
performing architecture for a given task. Models originating from NAS techniques have already
outperformed human-designed models on tasks such as image classification (Real et al.|[2017} Zoph
et al.} |2018) and semantic segmentation (Chen et al.,|2018). Based on the type of search algorithm
used, NAS methods can be categorized into four groups: (i) Reinforcement Learning (RL) (Zoph
& Lel 2017; [Zoph et al., 2018; |Baker et al., 2017), (ii) Evolutionary Algorithms (EA) (Real et al.,
2017 |Salimans et al.| [2017), (iii) Bayesian Optimization (White et al 2021}, (iv) and Gradient-
based methods (Liu et al.,|2019). The latter has gained significant popularity in recent years due to
its efficiency and ability to scale to large search spaces compared to the other methods.

Recently, the use of NAS for designing more efficient neural network architectures has been in-
creasingly explored. Prior work, specifically on gradient-based NAS, often integrates hardware
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metrics as regularization terms into the optimization function (Cai et al.,[2019;|Wu et al.| 2019 Wan
et al., [2020). While this can help guide the search toward hardware-friendly architectures, these
approaches often face several challenges. First, to be compatible with gradient-based optimization,
the hardware metrics must be differentiable. Second, each regularization term requires appropriate
weighting, introducing additional hyperparameters that demand careful tuning. Improper weighting
can either overly penalize resource-intensive architectures (resulting to simpler models with subop-
timal performance) or fail to enforce the hardware constraints (yielding architectures unsuitable for
deployment on the target device). Consequently, these methods often require multiple search runs
with varying weights assigned to the hardware-related terms until a feasible architecture is found, a
process that can be both tedious and time-consuming.

To overcome these limitations, we introduce CONNAS, a novel hardware-aware, gradient-based
NAS algorithm. Our work makes the following key contributions:

* Direct constraint enforcement: Unlike prior approaches that incorporate hardware metrics as
regularization terms in the loss function, CONNAS modifies gradients with respect to architec-
tural choices to directly enforce hardware constraints, effectively steering the search away from
infeasible architectures.

* No need for differentiable hardware metrics: Our method eliminates the requirement for dif-
ferentiable hardware metrics and the associated techniques needed to enforce differentiability.

» Explicit constraint specification: CONNAS allows for the explicit definition of hardware con-
straints without relying on hyperparameter tuning to balance the importance of hardware metrics.

We evaluate CONNAS on the NATS-Bench benchmark (Dong et al.,2021]), demonstrating its ability
to systematically find architectures that satisfy various hardware constraints while achieving perfor-
mance close to the optimal architecture available within the search space, reaching as little as a
0.14% difference in accuracy. Our experiments show that CONNAS significantly outperforms ex-
isting loss-based methods, which often struggle to find feasible architectures under strict hardware
constraints. Additionally, we validate CONNAS in a practical use case, where it successfully dis-
covers high-performing architectures under strict hardware constraints (no more than a model size
of 64kB and 18kB memory usage), consistently outperforming the best handcrafted architectures by
up to 1.55% accuracy.

2 RELATED WORK

Hardware-aware NAS. Over the years, the focus of NAS has shifted from discovering top-
performing novel architectures to emphasizing computational efficiency. The design of neural net-
works has increasingly been guided by hardware-aware considerations, particularly in the context
of deployment on resource-constrained devices. Early works primarily focused on optimizing hard-
ware metrics which could be estimated based on the type of operations found in the model, such
as the number of Floating Point Operations (FLOPs) (Xie et al., |2019; [Zhou et al., [2018). How-
ever, other works have proposed to rely on real hardware metrics for more representative evaluation,
which are generally obtained through look-up tables or regressors trained on real on-device bench-
marks of various neural operations (Cai et al.l [2019; [Wu et al.| [2019; Wan et al., 2020; |Tan et al.,
2019). Additionally, other contributions have a more specific focus on NAS techniques and search
spaces tailored for ultra-constrained devices, such as microcontrollers (Lin et al.,2020; |Liberis et al.,
2021)).

The most straightforward way to regularize hardware-related objectives is by incorporating hardware
metrics as additional terms in the optimization function (Xie et al., 2019; Cai et al., 2019; Wu et al.,
2019; Dong & Yang| [2019a; Wan et al., [2020; Bender et al, [2020). A weighting factor is then
introduced to adjust the relative importance of these hardware metrics in comparison to the task-
specific loss, effectively determining whether more constrained architectures should be favored.
However, this fixed approach does not offer a direct mechanism for enforcing hardware constraints.
Instead, it merely guides the search toward architectures with more favorable hardware metric values
(typically simpler architectures with limited representational capacity) regardless of whether the
current architecture actually satisfies the imposed constraints. In response, [Tan et al.| (2019); Zhou
et al.| (2018); Dong & Yang| (2019a)); [Bender et al.| (2020) propose dynamic optimization functions
where hardware-related terms are adjusted depending on whether the current architecture meets the
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hardware constraints. The rationale behind this approach is to find architectures that are close to the
constraint boundary, which makes it possible to explore more complex architectures that still satisfy
the constraints. This is in contrast to methods with a fixed loss term, which may limit the search
to simpler architectures. Meanwhile, other techniques (Elsken et al., [2019a} [Liberis et al. [2021),
typically non-gradient-based methods, use a selection procedure based on hardware metric values,
selecting only architectures that satisfy hardware constraints for further optimization.

Gradient-based NAS. Gradient-based NAS techniques, originally proposed by DARTS (Liu et al.,
2019), have been used by recent works to efficiently search for neural network architectures. In
gradient-based NAS, all possible architectures are represented within an over-parameterized net-
work, where each candidate path is associated with a continuous architecture weight a. This formu-
lation leads to a bi-level optimization problem, in which both the architecture o and its weights w
are jointly optimized using gradient descent. Traditionally, the loss function would be defined as the
task-specific loss, such as cross-entropy for classification tasks. However, in hardware-aware NAS,
the loss function is augmented with regularization terms to account for hardware metrics.

While hardware metrics for individual architectures are not differentiable, state-of-the-art techniques
ensure that these metrics can be fully factorized over the architecture parameters. This enables ex-
pressing hardware metrics as a weighted sum of contributions from each candidate operation in
the search space, thereby making them differentiable with respect to the architecture parameters.
However, this approach requires knowledge of each operation’s contribution to the overall hardware
metric, which becomes computationally intractable in large search spaces. To address this, [Xie et al.
(2019) propose approximating the hardware-related terms using Monte Carlo estimation. Neverthe-
less, if the sampling distribution is poorly calibrated, the resulting estimates may be inaccurate.

Constraint-aware Training. The authors of Constraint Guided Gradient Descent
(CGGD) (Van Baelen & Karsmakers| [2023) investigated how background knowledge can be
enforced during neural network training through inequality constraints. Rather than incorporating
these constraints as penalty terms in the loss function, they proposed a novel approach that enforces
them by directly modifying the gradient updates of the weights, guiding the optimization process
toward a set of weights that satisfy the specified constraints. In this work, we explore how this
approach can be leveraged to directly enforce hardware constraints during the search process.

3 METHOD

3.1 PROBLEM FORMULATION

The search space S is modeled as an over-parameterized neural network that encompasses all pos-
sible architectures. This is achieved by defining, for each layer in the network, a set of candidate
operations (e.g., convolutions with varying kernel sizes) that can be used to construct a neural net-
work. Each candidate operation is associated with a continuous architecture weight c, which enables
the use of gradient descent to jointly optimize both operation weights w and the architecture weights
a. A final architecture A can then be derived by selecting a subset of candidate operations based on
the learned architecture weights a.. More formally, let the over-parameterized network S be defined
as a directed acyclic graph (DAG) with L edges where each edge e; is associated with a set of candi-
date operations O; = {o0;,1, . . . 0y, v } With corresponding architecture weights o,y = [ay 1, . . ., 0y N]
and operation weights w; = [w; 1, ..., w; n]. An architecture A € S is derived by selecting, for
each edge e;, the operation with the highest architecture weight, i.e., A = (01 ,,...,0Lk, ) Where
k; = arg maxy, o . Let ¢ denote the k-th hardware metric function (e.g., number of parameters),
and by, its upper bound. The set of hardware constraints is defined as C = { (¢1,b1), ..., (ear, bar) }s
where each constraint is expressed as ¢ (A) < bg. The search process can then be formulated as
follows:

argmin £ ux(w, ) st cp(A) <bg, k=1,...,M )

w,a

In other words, the goal is to find architecture weights « that yield an architecture A(«) minimizing
the task-specific loss L, While ensuring that the resulting architecture lies within the feasibility
region F'R, defined as the subset of architectures that satisfy all hardware constraints in C. Formally,
we aim to find A(a) € FR, or at least ensure that the sampled architectures A* generated during
optimization converge to F R, i.e., limy_, o, d(A*, FR) = 0.
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The value for a hardware metric is obtained using cx (A), where ¢;, may be implemented as a look-up
table or a learned regressor. Unlike prior work on hardware-aware, gradient-based NAS (Cai et al.}
2019; Wu et al., [2019; [Wan et al.,|2020; Dong & Yang,|2019a), we do not impose that the hardware
metrics are made differentiable with respect to the architecture weights a.

3.2 GRADIENT UPDATE SCHEME

We adopt the gradient update scheme as proposed in CGGD (Van Baelen & Karsmakers, 2023)
to enforce the hardware constraints ¢ (A) < by, k = 1,..., M. However, unlike CGGD, which
aims to enforce constraints on the model’s output predictions, we use this approach to manipulate
the architecture weights « to steer the search process towards feasible architectures A. Specifically,
each architecture weight oy ; is updated as follows:

Qo — Na - (Val'jﬁmsk(w, a) + R-dirc(ou,;) - max{HVal,jﬁmk(w, a)” ,e}) 2)

Here, R is a rescale factor that determines the strength of the constraints enforcement, and
dirc(oy) = [dirc(ou1), ..., dirc(oq,n)] is a unit vector indicating the direction in which the
architecture weights should be modified to satisfy the constraints. An arbitrarily small constant € is
added to allow adjustments even when the loss gradient is zero.

3.3 GRADIENT DIRECTION

The choice of R and dirc(ay) is crucial, as it determines whether the architecture weights are
modified in a way that effectively reduces the hardware constraint violations, and ultimately leads to
convergence to a feasible architecture. [Van Baelen & Karsmakers| (2023)) proved that convergence
towards the F'R is guaranteed if R > 1 and dirc (o) is chosen to be the shortest path with respect
to the Euclidean distance to the feasibility region.

The authors have shown that the performance is not highly sensitive to the exact value of R, as
long as it is strictly larger than 1. In other words, there is no need for additional hyperparameter
tuning, unlike prior work that relies on weighted regularization terms. To compute the direction of
the shortest path to F'R, we first evaluate the hardware metric values of all candidate operations
O, under the current architecture configuration. For each edge e;, we construct a set of candidate
architectures A; = {A; 1, ..., A; n} by replacing the [-th operation with o; ; while keeping the rest
fixed:

Al,j :(017k17...7ol,j,...70L7kL) (3)
We then evaluate ¢, (A; ;) for each candidate and constraint (cg,b;) € C in order to determine
dirk(ay), which is the direction to the F'R for constraint c(A; ;) < by. Based on whether the
candidate architectures .4; satisfy the hardware constraint, we distinguish three cases:

1. All candidates on e; satisfy the hardware constraint (vj € {1,..., N}, ck(Ar;) < bp).

In this case, we set dir¥(a;) = 0 for all candidates, as no modification is needed to satisfy the
constraint for this edge.

2. Some candidates on e; violate the hardware constraint (35, c;(A; ;) > by). In this situation,
the direction is computed by aggregating the unit vectors that point away from the candidates that
violate the constraint, while pointing towards those that satisfy it. More specifically, we first identify
the set of candidates that satisfy the constraint:

F={jlex(Ar;) < bi} “

For each pair (j, m) where j € F and m ¢ F, we compute the unit vector that points from candidate
m to candidate j, as shown in Figure [Ta}

Wjm =[0,...,0,1,0,...,0,—1,0,...,0]/v2 )
N—— —— ——
j—1 m—j—1 N—m

Then, the final direction dir¥ () is determined by summing these unit vectors and normalizing it
back to a unit vector:

dirk (oq) = >3 W m/

JEF mgF

P> “”‘"‘H ©

JEF megF

3. No candidate on e; satisfies the hardware constraint (Vj € {1,..., N}, cx(A;;) > by). In
this case, the direction is computed in such that candidates with higher hardware metric values are
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penalized while those with lower values are rewarded. First, the candidates are ranked based on their
hardware metric values. Then, for each ranked candidate, we compute unit vectors u;, ,,, (as defined
in Equation [3)) that point from candidates with higher hardware metric values to those with lower
ones. Specifically:

* First, we compute the unit vectors between the candidate with the highest hardware metric value
and all other candidates.

* Then, we compute the unit vectors between the two candidates with the highest hardware metric
values and all others.

* This process is repeated until all candidates, except the one with the lowest hardware metric value,

have been considered, as shown in Figure[Tb] Finally, the unit vectors are aggregated in the same
manner as in Equation [6]

& >
4 a1 /// a3 NG a3
_Vmc(w,/g/ Gay /// Ga, //, [T 3
S e N ew,a) Vo L(w, )

(a) Both A; 1 and A; - satisfy the constraint, A; 3 violates it, so the
resulting gradient G, is decreased for a; 3 and increased for a1

and oy 2.
a2 4 e a,t e a1t
2 A &
o o o
. a1 e a3 s G, a3
=V, £(w, @Y | Ga el

s 1 L,
//UM“' l’“'*./—Va,ﬁ(w, a) Vo LW, Q)

(b) No candidate for e; satisfies the constraint, so the resulting gra-
dient G, is increased / decreased based on the ranked hardware
metric values of each candidate.

Figure 1: The architecture space for a single edge e; with three candidate operations parameterized by
a1, 00,2,and ag,3 where ¢ (A1) < ex(Ar2) < cr(Ars). The shaded area represents the feasibility re-
gion F'R for cx. G4, is the gradient after modification.

3.4 CONSTRAINT-GUIDED HARDWARE-AWARE NAS

We refer to Algorithm [I] for the modified training procedure. The optimization of operation w
and architecture o weights is performed in an interleaved manner, as proposed in prior work (Cai
et al., 2019; [Wu et al.l 2019; Wan et al., 2020; [Dong & Yang, 2019azb)). After optimization of w,
the gradient V, L« (w, ) is computed, but instead of immediately updating «, it is stored for
later modification. Then, for each hardware metric ¢;, and its associated constraint c;(A) < b,
the current architecture A is checked whether it violates the constraint. If so, the direction for
modification dir¥ (o) is computed as described in Section All directions are then summed and
normalized to a unit vector to obtain dirc (c). Finally, the stored gradient is modified, as explained
in Section and used to update the architecture weights a.

4 EXPERIMENTS AND RESULTS

We evaluate the effectiveness of CONNAS on two benchmark tasks: the NATS-Bench Topology and
Size Search Spaces (Section[d.T)). In addition, we apply our method to a practical use case involving
edge-based condition monitoring of induction motors, where the goal is to discover architectures
suitable for deployment across diverse hardware configurations (Section 4.2)).
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Algorithm 1 Training procedure under hardware constraints

Input: Search space S, current architecture A derived from «, hardware constraints C, rescale factor R,
epsilon ¢, learning rates 7., 7, loss function Ly, batch of data (X R y)
W 4— W — Ny - VwLux(w, @) {Update operation weights}
Go = VaLlask(w, ) {Store gradients w.r.t. architecture weights}
dirs. = [] {For each unsatisfied hardware constraint, compute direction to feasibility region}
for (Ck, bk) c Cdo

if Ck(A) > b then

Append calculate_gradient_direction(A, ck) to dirs.

end if
end for
dirc(a) = Cyirkcairs, dire/ |2 dirkcdirs, HTE {Aggregate directions into single unit vector}

Ga < Gao + R -dirc(a) - max {||Gall , €} {Modify gradient toward the feasibility region}
a + a — 1o Go {Update architecture weights}

4.1 EXPERIMENTS ON NATS-BENCH

NATS-Bench, proposed by Dong et al.|(2021]), is a unified benchmark for NAS designed for image
classification tasks, including two search spaces: the Topology Search Space (NATS-Bench-TS) and
the Size Search Space (NATS-Bench-SS). NATS-Bench-TS is a cell-based search space, which con-
tains 15,625 unique architectures, while NATS-Bench-SS is a layer-wise search space, consisting of
32,768 unique architectures. We refer to [Dong et al.| (2021) for a detailed description of the search
spaces. A key advantage of NATS-Bench over other NAS benchmarks is that it provides test accura-
cies for all architectures across both search spaces on CIFAR-10, CIFAR-100, and ImageNet16-120.
This enables rapid evaluation without the need for retraining. Additionally, we evaluate all architec-
tures using three commonly used hardware metrics relevant to edge devices: number of parameters,
number of FLOPs, and peak memory usage. A detailed explanation of how the hardware metrics
are computed is provided in Appendix |A] Importantly, our approach is not limited to these metrics
and can be integrated with any other hardware metric, regardless of how it is retrieved or computed.

We use a Gumbel-Softmax (Jang et al.l [2017), as proposed in [Dong & Yang (2019a)); [Wu et al.
(2019); [Wan et al.| (2020), to relax the categorical distribution of the candidate operations O;. At
each edge e;, the output y; is computed as a weighted sum of the outputs produced by all candidate
operations:

L= o~ _oxp((log(ony) +915)/7) 015 (@ 7
Y ZJ: Z;V exp((log(au,;) + g1,5)/7) () @

where g; ; ~ Gumbel(0, 1) and temperature 7 controls the smoothness of the distribution. A higher
temperature is used at the beginning of the search to encourage exploration, making the distribu-
tion closer to uniform. As the search progresses, the temperature is gradually lowered, making the
distribution sharper and closer to an argmax, which promotes exploitation. It is worth noting that
CONNAS is agnostic to the specific relaxation method used. Other approaches, such as proposed by
DARTS (Liu et al., 2019) or ProxylessNAS (Cai et al., 2019), although not tested here, could also
be applied.

We run CONNAS on each search space and corresponding set of hardware constraints for a total of
150 epochs. During the first 100 epochs, the temperature 7 is linearly annealed from 10 to 0.1. The
rescale factor R is set to 1.2, though additional experiments show that the performance is not very
sensitive to this choice (see Appendix [B). Among the final 50 epochs, we select the architecture
with the lowest validation loss that satisfies the hardware constraints. Finally, the performance
of the selected architecture is obtained from the test accuracies provided by NATS-Bench. Each
experiment is repeated 5 times, as in [Dong et al.| (2021)). The mean and standard deviation of the
results are reported in Table

We further compare CONNAS against several regularization-based baselines that incorporate hard-
ware constraints into the loss function, following approaches proposed in prior work on hardware-
aware, gradient-based NAS (see Table[I)). These strategies are based on the approaches used by Prox-
ylessNAS (Cai et al.| 2019), FBNet (Wu et al., 2019), FBNetV2 (Wan et al.| [2020), and TAS (Dong
& Yang| 2019a). We set the weighting factor Apyraware = 1 for all hardware metrics, however, we
refer to Appendix |C| for additional experiments with different weighting factors. We also adopt the
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Table 1: Overview of loss-based baselines used for comparison. Here, ¢}, () is the min-max normalization
of ci (). The term by represents the upper bound associated with ck. Anardware 1S @ weighting factor which is
set to 1 in our experiments.

Name | Loss Function | Related Gradient-based NAS Algorithm

Summed Luask(w, @) + araware /M) - S0 ¢ () ProxylessNAS (Cai et al.[[2019)
. y . FBNet (Wu et al.|[2019),
Multiplied Lasc(w, @) - [TpL, ch(a) Mmovar FBNetV2 (Wan et al2020)
Actask('w, a) + (Ahardware/M) . 2121 h]' (a)
ci(a), ifcr(a) > by
where hj(a) =  —ci(a), ifcp(a) < by
0, otherwise

Piece-wise TAS (Dong & Yang| [2019a)

same relaxation as described in Equation [/} along with the same architecture selection procedure.
More training details are provided in Appendix

CONNAS consistently finds architectures that satisfy the specified hardware constraints while main-
taining strong predictive performance. The resulting architectures have relative errors of at most
—1.24%, —3.38%, and —4.20% compared to the optimal feasible solution on CIFAR-10, CIFAR-
100, and ImageNet16-120, respectively. Compared to the loss-based baselines, CONNAS yields
considerably better results than both the SUMMED and MULTIPLIED variants. Yet, experiments with
lower weighting factors (Appendix [C) show improved performance for these baselines, but do not
guarantee that valid architectures will be found within the given search budget. This highlights that
the weighting in loss-based baselines exhibits higher sensitivity, requiring careful tuning for each
hardware constraint setting, whereas CONNAS is more robust to the choice of rescale factor R. The
PIECE-WISE baseline, on the other hand, achieves comparable predictive performance to CONNAS,
but fails to always identify valid architectures under most constraint configurations, regardless of the
weighting factor used.

e ConNAS ® Summed Multiplied ® Piece-wise
CIFAR-10 CIFAR-100 ImageNet16-120
0 0 [
“11e o e * e °
_ 21 _ . o o ° o o _5]e o e e o °
S g _s] s -
5 4] 5 5
o_5] @ L] . i} Y . . &-109 . .
~10
61
71 -15
Cts,param Cis flops Cts,comb Cts,param Cts flops Cts,comb Cts,param Cts flops Cts,comb
Constraints Constraints Constraints
(a) NATS-Bench-TS
e ConNAS ® Summed Multiplied ® Piece-wise
CIFAR-10 CIFAR-100 ImageNet16-120
0 O | i 0 L] 0 ® ¥
1t ey ¢ Pen g, 8 i t T, 3
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X -3 S B . '
T 4] T —104 e
B~ *s| B §-| g0
057 o 8 @15 o i
-6 8 _154 8
(] °
-71 _20 °
()
8 : . - . : —201% : . .
Cssparam  Cssmem  Cssflops  Css,comb Cssparam  Cssmem  Cssflops  Css,comb Cssparam  Cssmem  Cssflops  Css,comb

Constraints Constraints Constraints

(b) NATS-Bench-SS

Figure 2: Comparison of the relative error of CONNAS with loss-based baselines. Runs that did not
satisfy the hardware constraints are excluded.

4.2 PRACTICAL USE CASE: CONDITION MONITORING OF INDUCTION MOTORS

Condition monitoring of industrial assets has received an increase interest over the years (Surucu
et al.| 2023)), preventing unexpected failures and costly downtimes. By leveraging edge machine
learning, data from these assets can be captured and processed locally to detect faults in real-time.
To demonstrate the applicability of our work, we validate our approach through a use case focused
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Table 2: NATS-Bench classification results. Test accuracy (mean + std over 5 runs) is reported under hard-
ware constraints, including the number of parameters, number of FLOPs, and peak memory usage. Memory
constraints are only applied to NATS-Bench-SS, since all architectures in NATS-Bench-TS have the same
memory usage. The constraints are chosen such that about 50% of the architectures in each search space meet
them. ciscomb and Css comb are a combination of the former constraints. Since NATS-Bench provides performance
data for each architecture in the search space, we report the relative error (between parentheses) compared to
the optimal architecture satisfying the hardware constraints. Best results for each constraint and dataset are
highlighted in bold. Performance of runs that do not always satisfy the constraints are reported in gray.

Method Top-1 accuracy (%) Satisfied
CIFAR-10 | CIFAR-100 | ImageNet16-120

NATS-Bench-TS
Cts,param - #parameters S 127514 (7984 architectures satisfied)

ConNAS 92.29 +0.00¢-1.21 | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
Summed 88.77 £0.00(473) | 62.08 +0.00(-8.74) 32.42 £0.00(-11.18) Ve
Multiplied 86.45 £0.00(-7.05) | 58.14 £0.00(-12.68) 27.82 £0.00(-15.78) v
Piece-wise | 92.29 :0.00(¢-121) | 67.48 +0.00(-3.34) 39.40 +0.00 (-4.20) v
Cts,flops - #FLOPs S 59100M (7954 architectures satisfied)

ConNAS 92.29 +0.00(-1.21) | 67.48 £0.00(-3.39) 39.40 +0.00 (-4.20) v
Summed 88.77 £0.00(-4.73) | 62.08 £0.00(-8.74) 32.42 +0.00(-11.18) v
Multiplied | 86.45 x0.00(-7.05) | 58.14 £0.00(-12.68) | 27.82 £0.00(-15.78) v
Piece-wise 92.25 +0.08 67.36 027 39.30 022 4 runs
Cts,comb (7954 architectures satisfied)

ConNAS 92.29 +0.00(-121) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
Summed 88.77 £0.00(-473) | 62.08 £0.00(-8.74) 32.42 £0.00(-11.18) v
Multiplied | 86.63 +0.18(-687) | 58.09 +0.12(-12.73) 27.98 £0.18 (-15.62) Ve

Piece-wise 92.22 +0.10 67.24 +033 39.20 x027 3 runs

NATS-Bench-SS
Css,param * #parameters < 261650 (16385 architectures satisfied)

ConNAS 91.74 +0.29-0.66) | 66.22 +0.47(-2.70) 39.77 077 (-2.26) v
Summed 85.87 «1.16(-6.66) | 51.11 £2.35(-17.81) 25.27 +2.13 (-16.76) Ve
Multiplied | 90.97 zo0.11(¢-1.56) | 62.19 +030(-6.73) 36.69 £1.10(-5.34) v
Piece-wise 92.25 +0.02 67.34 054 41.89 +0.33 0 runs

Cssmem : peak memory usage < 655k B (20480 architectures satisfied)

ConNAS 93.28 +0.15(-019) | 69.70 £1.02(-1.16) 44.58 £0.43(-1.35) v
Summed 91.33 £0.19(-209) | 68.22 £0.28(-2.64) 38.49 +0.03 (-7.44) v
Multiplied | 91.53 x0.26(-1.89) | 67.57 +0.56(-3.29) 38.55 +0.56(-7.38) Ve
Piece-wise | 92.93 +0.19¢-049) | 70.10 +0.32 (-0.76) 44.98 +0.59 (-0.95) v
Css,flops - #FLOPs S 344194M (16385 architectures satisfied)

ConNAS 92.22 +0.14(-075 | 67.10 £0.48(-3.38) 41.79 £0.16 (-2.58) v
Summed 91.59 +021(-1.38) | 65.68 £0.85(-4.80) 37.84 +0.62(-6.53) v
Multiplied | 91.30 z0.24(-1.67) | 63.97 +0.94(-6.51) 36.97 +0.64(-7.40) v
Piece-wise 92.57 +0.23 68.36 +0.68 42.71 +0.46 0 runs
Css,comb (13342 architectures satisfied)

ConNAS 92.05 +0.16(-0.48) | 65.87 +0.55(-3.04) 40.22 +0.96 (-1.81) v
Summed 87.76 +059(-4.77) | 56.22 £1,18(-12.69) | 26.39 £0.37(-15.64) v
Multiplied | 88.30 2092423 | 56.41 +239(-12.50) 29.10 £1.37(-12.93) v
Piece-wise 92.26 x0.01 67.47 +0.42 41.97 +03s 0 runs

on condition monitoring of induction motors, aiming to detect eccentricity faults using a neural
network deployed on an edge device. An eccentricity fault occurs when the rotor is not perfectly
centered within the stator, resulting in an uneven air gap, causing an unbalanced magnetic pull (De-
senfans et al.| [2024). The prediction task involves classifying the type of eccentricity, specifically
distinguishing between no eccentricity fault, static eccentricity (where the rotor remains consistently
off-center relative to the stator), dynamic eccentricity (where the rotor’s off-center position rotates
over time relative to the stator), and mixed eccentricity (a combination of static and dynamic eccen-
tricity).

The goal in this use case is to discover neural network architectures that are deployable across a
wide range of microcontrollers with diverse hardware capabilities. To define realistic deployment
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constraints, we base our hardware constraints on the STM32 family of microcontrollersﬂ which
are widely adopted in industrial applications. We construct a search space based on 1D convolu-
tions consisting of 8 layers. Each layer has varying configurations in terms of the number of filters,
convolution types, and the inclusion of skip connections, resulting in a total of 1.94 billion unique
architectures. The detailed description of the search space is provided in Appendix |El The dataset
contains 31,920 instances, split into 25,530 for training and 6,390 for testing. Each instance consists
of 256 time steps sampled at 5 kHz, with eight features: stator currents (3), phase voltages (3),
rotor speed (1), and rotor angle (1). We use 80% of the training set to train the supernet, while the
remaining 20% serves as a validation set for architecture selection. The training and selection pro-
cedure follows the same approach outlined in Section [d.1} The selected architectures are retrained
from scratch using five-fold cross-validation over 200 epochs. Their performance is subsequently
evaluated on the test set. We compare the architectures found by CONNAS with hand-crafted mod-
elﬂ sampled from the search space (listed in Appendix E]) Further implementation details, including
hyperparameter settings, are provided in Appendix [D]

Table [3] compares the performance and resource consumption of architectures discovered by CON-
NAS with manually designed baselines. CONNAS consistently identifies architectures that outper-
form handcrafted ones in terms of accuracy under specific hardware constraints. For example, under
constraint ¢;, CONNAS discovers architectures that achieve an accuracy of 97.07%, which is 1.55%
higher than CONV 1D-REG, the best manually designed model under the same constraint. At c4, the
discovered architecture reaches 94.37% accuracy, compared to 93.93% for CONvV1D-REG-MIN.

Table 3: Classification performance and resource usage of models discovered by ConNAS under various
hardware constraints, compared to handcrafted baseline models. The constraints ci1, c2, ¢3, and c4 are
defined as follows: ci: model size < 2MB, peak memory usage < 640kB; c2: model size < 256kB, peak
memory usage < 112kB; c3: model size < 128kB, peak memory usage < 36kB; c4: model size < 64kB, peak
memory usage < 18kB.

Name Top-1 Satisfied constraints model size ~ peak memory
accuracy (%) | c1 c2 c¢c3 ca (bytes) usage (bytes)

ConNAS (unconstrained) 97.36 +0.27 6.06M = 1.61M 524Kk +0.00
ConNAS + ¢1 97.09 0.47 Ve 1.93M = 13.2¢ 524k +0.00
ConNAS + c2 96.17 +0.84 v v 122K +30.7% 69.6Kk = 0.00k
ConNAS + c3 94.96 +0.69 Ve Ve v 26.0k + 135k 16.8k = 10.1x
ConNAS + ¢4 94.37 £1.94 v v v v 8.69Kk +2.12k 12.3Kk £0.00
Conv1D-Reg 95.54 +0.29 v 135k 16.4k
ConvlD-DS 93.07 2035 v v Y v 51.3k 16.4k
Conv1D-Reg-Max 93.31 £1.86 22.1M 524k
Conv1D-DS-Max 96.72 +0.24 7.50M 524k
Conv1D-Reg-Min 90.15 +4.33 v v v v 3.47k 12.3k
Conv1D-DS-Min 93.93 1164 v v Vv v 2.32k 12.3k

5 CONCLUSION

We introduced CONNAS, a novel hardware-aware, gradient-based NAS technique that explicitly
enforces hardware constraints during the search process. Unlike prior approaches that rely on
weighted loss terms for hardware-aware regularization, CONNAS directly modifies the gradients
of architecture parameters when hardware constraints are violated, effectively steering the search
toward hardware-feasible solutions. Experiments on NATS-Bench demonstrate that CONNAS con-
sistently discovers architectures that satisfy various hardware constraints, achieving performance
close to the optimal and significantly outperforming existing loss-based methods in both perfor-
mance and compliance with hardware constraints. Furthermore, we validated CONNAS in a prac-
tical use case, where it successfully identified high-performing architectures under tight resource
limitations. These results highlight CONNAS as a promising approach for the automatic design of
deep learning models for deployment in resource-constrained environments.

ISpeciﬁcally, the STM32H56, STM32G49, STM32C09, and STM32G05 series.

>We could have also compared to the loss-based baselines as in Section However, since loss-based
baselines require differentiable hardware metrics, this comparison is not feasible as factorizing the metrics with
respect to « is intractable due to the large search space.
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A COMPUTATION HARDWARE METRICS

In this work, we focus on three hardware metrics: the number of parameters, the number of FLOPs,
and the peak memory usage during inference. The following subsections describe how each of these
metrics is computed. It is important to note that our proposed method is not limited to these metrics
and can be applied to any hardware metric, whether derived analytically, measured through profiling,
or predicted by learned models.

A.1 NUMBER OF PARAMETERS

The total number of parameters in a candidate architecture is computed by summing the number
of parameters of each individual layer. To estimate the model size in bytes, we multiply the total
number of parameters by 4, assuming 32-bit floating-point representation.

A.1.1 CONVOLUTIONAL BLOCK

A convolutional block consists of a convolutional layer, followed by a batch normalization and a
ReLU activation. We assume that batch normalization is fused into the convolutional layer during
inference.

Regular Convolution:
params = (Cjp, X kp X Ky + 1) X Coyt (8)

where C;;,, and C,,; are the input and output channels, k;, and k., are kernel dimensions, and the
+1 accounts for the bias term.

Depthwise Separable Convolution:
params = (C;y, X kp, X ky + 1) + (Cin X Cour + 1) 9)

where the first term corresponds to the depthwise convolution and the second to the pointwise con-
volution.

A.2 FULLY CONNECTED LAYER

params = (N;, + 1) X Nyt (10)

where N;, and N, are the input and output features, respectively, and the +1 accounts for the bias
term.

A.3 NUMBER OF FLOPs

Similar to the parameter count, the total number of FLOPs is computed by summing the FLOPs of
each individual layer.

A.3.1 CONVOLUTIONAL LAYER
FLOPs = 2 x (Ciy, X kp, X kyy + 1) X Hour X Wour X Cout (11

Here, H,,; and W,,,; are the output feature map dimensions.

A.3.2 RELU
FLOPS - Hout X Wout X Cout (12)

A.3.3 LINEAR LAYER

FLOPs = 2 X (Ny, + 1) X Nyut + Nous (13)

A.3.4 GLOBAL POOLING LAYER

FLOPs = (kh X k"w + 1) X Hout X Wout X Cout (14)

12
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A.4 PEAK MEMORY USAGE
Peak memory usage during inference is estimated by computing the combined size of input and

output feature maps for each layer. The maximum of these values across all layers is taken as the
peak memory usage.

13
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B ABLATION RESCALE FACTOR

Table 4: NATS-Bench classification results on ConNAS with different rescale factors. Test accuracy
(mean + std over 5 runs) is reported under hardware constraints, including the number of parameters, number
of FLOPs, and peak memory usage. Memory constraints are only applied to NATS-Bench-SS, since all archi-
tectures in NATS-Bench-TS require the same amount of memory. The constraints are chosen so that about 50%
of the architectures in each search space meet them. ciscomp and Csscomb are a combination of the former con-
straints. Since NATS-Bench provides performance data for each architecture in the search space, we report the
relative error (between parentheses) compared to the optimal architecture satisfying the hardware constraints.

Rescaling Top-1 accuracy (%) Satisfied
factor CIFAR-10 [ CIFAR-100 [ ImageNet16-120
NATS-Bench-TS
Cis.param : #parameters < 127514 (7984 architectures satisfied)
1.2 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) Ve
1.5 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
2.0 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
5.0 90.24 +187(-3.26) | 64.38 +2.83(-6.44) 35.36 £3.69(-8.24) ve
10.0 89.58 +151(-3.92) | 63.31 £233(-7.51) 33.96 +£3.04 (-9.64) Ve
Cts,flops - #FLOPs S 59100M (7954 architectures satisfied)
1.2 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
1.5 91.61 +152(-1.89) | 66.45 £2.31(-4.37) 38.05 +3.01(-5.55) Ve
2.0 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
5.0 90.24 +187(-3.26) | 64.38 £2.83(-6.44) 35.36 +3.69(-8.24) Ve
10.0 89.56 +152(-3.94) | 63.35 £231(-7.47) 34.01 £3.01(-9.59 ve
Cts,comb (7954 architectures satisfied)
1.2 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) ve
1.5 91.61 x1.52(-1.89) | 66.45 +2.31(-4.37) 38.05 £3.01(-5.55 Ve
2.0 92.29 +0.00(-1.21) | 67.48 £0.00(-3.34) 39.40 +0.00 (-4.20) v
5.0 89.56 +152(-3.94) | 63.35 £231(-7.47) 34.01 £3.01(-9.59 v
10.0 89.56 +152(-3.94) | 63.35 £231(-7.47) 34.01 +£3.01(-9.59 ve
NATS-Bench-SS
Css,param : #parameters < 261650 (16385 architectures satisfied)
1.2 91.74 +029(-0.79) | 66.22 +0.47(-2.70) 39.77 +0.77(-2.27) v
1.5 92.09 +024(-044) | 65.92 +0.65(-3.00) 40.29 +1.10(-1.74) Ve
2.0 91.87 +0.07-0.66) | 66.22 +0.60(-2.70) 39.48 +129(-2.55) v
5.0 91.85 +0.19(-0.68) | 65.97 +0.38(-2.95) 39.55 +0.53 (-2.48) Ve
10.0 91.67 +0.08(-0.86) | 65.99 +0.36(-2.93) 39.31 x021(-2.73) v
Css,mem © Peak memory usage < 655k B (20480 architectures satisfied)
1.2 93.28 +020(-0.14) | 69.70 = 1.02(-1.16) 44.58 +0.43(-1.35) v
1.5 93.26 +0.15(-0.16) | 70.14 2032 (-0.72) 44.67 +0.68 (-1.26) Ve
2.0 93.19 20.17(-023) | 69.54 +0.95(-1.32) 44.42 +038(-1.51) ve
5.0 93.26 +0.16 (-0.16) | 70.06 =0.15 (-0.80) 44.65 +0.18 (-1.29) Ve
10.0 93.29 z0.11(-0.13) | 70.01 £0.24 (-0.85) 44.62 +0.22(-1.31) ve
Css,flops - #FLOPs S 344194 M (16385 architectures satisfied)
1.2 92.22 +0.14(-0.75) | 67.10 £0.48(-3.38) 41.79 +0.16 (-2.57) Ve
1.5 92.23 +0.19(-0.74) | 67.00 £0.80 (-3.48) 41.45 +092(-2.92) v
2.0 92.10 £0.16(-0.87) | 67.08 =124 (-3.40) 41.63 1.19(-2.74) Ve
5.0 92.22 +0.08(-0.75) | 67.54 £1.09(-2.94) 42.09 +0.53 (-2.28) v
10.0 92.31 +0.14(-066) | 66.76 £0.73 (-3.72) 41.70 051 (-2.67) Ve
Css,comb (13342 architectures satisfied)
1.2 92.01 £0.19(-052) | 66.65 +0.39(-2.27) 41.01 2033 (-1.02) Ve
1.5 91.72 +0.16(-0.81) | 66.02 +0.70 (-2.90) 40.23 +0.51(-1.81) ve
2.0 91.99 +038(-054) | 66.15 +0.45(-2.77) 40.63 +0.98 (-1.40) Ve
5.0 91.94 +027(-059) | 66.02 +0.50 (-2.90) 40.57 +0.84(-1.46) ve
10.0 91.67 2036 (-0.86) | 65.36 +0.89(-3.56) 40.13 +0.65(-1.91) Ve
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C ABLATION WEIGHTING FACTOR LOSS-BASED BASELINE METHODS

Table 5: Comparison of classification results on NATS-Bench-TS across baseline methods and weighting
factors. Test accuracy (mean = std over 5 runs) is reported under hardware constraints, including the number
of parameters, and number of FLOPS. cscomb are a combination of the former constraints. The relative error
compared to the optimal architecture satisfying the hardware constraints is reported between parentheses. Best
results for each method, constraint, and dataset are highlighted in bold. Performance of experiments that do not
satisfy the hardware constraints are reported in gray.

Method Ahardware Top-1 accuracy (%) Satisfied
CIFAR-10 [ CIFAR-100 [ ImageNet16-120
Cts,param + #parameters § 127514 (7984 architectures satisfied)
Summed 0.5 92.29 +0.00(-1.21) 67.48 +0.00(-3.39 39.40 +0.00 (-4.20) v
Summed 1.0 88.77 +0.00 (-4.73) 62.08 +0.00(-8.74) 32.42 +0.00(-11.18) v
Summed 1.5 88.77 £0.00(-4.73) 62.08 +£0.00(-8.74) 32.42 £0.00(-11.18) v
Multiplied 0.5 86.45 +0.00(-7.05) | 58.14 £0.00(-12.68) | 27.82 +0.00(-15.78) v
Multiplied 1.0 86.45 +0.00(-7.05) | 58.14 +0.00 (-12.68) 27.82 +0.00 (-15.78) v
Multiplied 1.5 86.42 £0.06(-7.08) | 58.09 x0.12(-1273) | 27.92 £021(-15.68) v
Piece-wise 0.5 92.06 +0.06 66.98 +0.14 39.00 z0.14 0 runs
Piece-wise 1.5 92.29 +0.00 (-1.21) 67.48 +0.00 (-3.39) 39.40 +0.00 (-4.20) v
Piece-wise 1.5 92.29 +0.00 (-1.21) 67.48 +0.00(-3.39 39.40 +0.00 (-4.20) v
Cts,ﬂops . #FLOPs S 59100M (7954 architectures satisfied)
Summed 0.5 92.29 +0.00(-1.21) 67.48 +0.00 (-3.39 39.40 +0.00 (-4.20) v
Summed 1.0 88.77 £0.00(-4.73) 62.08 £0.00(-8.74) 32.42 £0.00(-11.18) v
Summed 1.5 88.77 £0.00 (-4.73) 62.08 +0.00(-8.74) 32.42 +0.00(-11.18) Ve
Multiplied 0.5 86.45 +0.00(-7.05) | 58.14 £0.00(-12.68) | 27.82 +0.00(-1578) v
Multiplied 1.0 86.45 +0.00(-7.05) | 58.14 +0.00 (1268 | 27.82 £0.00(-15.78) v
Multiplied 1.5 86.40 £0.08(-7.10) | 58.03 x0.15(-1279) | 28.01 £0.26(-15.59) v
Piece-wise 0.5 92.25 +0.57 67.73 130 39.24 1029 0 runs
Piece-wise 1.0 92.25 +0.08 67.36 027 39.30 z0.22 4 runs
Piece-wise 1.5 92.29 +0.00(-1.21) 67.48 +0.00 (-3.39 39.40 +0.00 (-4.20) v
Cts,comb (7954 architectures satisfied)
Summed 0.5 92.29 +0.00-1.21) | 67.48 £0.00(-3.39) 39.40 +0.00 (-4.20) v
Summed 1.0 88.77 £0.00(-4.73) 62.08 +0.00(-8.74) 32.42 +0.00(-11.18) v
Summed 1.5 88.77 +0.00 (-4.73) 62.08 +0.00(-8.74) 32.42 +0.00(-11.18) v
Multiplied 0.5 86.45 +0.00(-7.05) | 58.14 +£0.00(-12.68) 27.82 £0.00(-15.78) v
Multiplied 1.0 86.63 018687 | 58.09 x012(1273) | 27.98 £0.18(-15.62) v
Multiplied 1.5 81.15 +624(-1235 | 51.40 +7.44(-19.42) 23.89 +4.02(-19.71) v
Piece-wise 0.5 92.04 +0.06 67.06 +0.16 39.01 +o0.10 0 runs
Piece-wise 1.0 92.22 +0.10 67.24 +033 39.20 027 3 runs
Piece-wise 1.5 92.29 +0.00 (-1.21) 67.48 +0.00 (-3.39 39.40 +0.00 (-4.20) v
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Table 6: Comparison of classification results on NATS-Bench-SS across baseline methods and weighting
factors. Test accuracy (mean = std over 5 runs) is reported under hardware constraints, including the number
of parameters, number of FLOPs, and peak memory usage. cg.comb is @ combination of the former constraints.
The relative error compared to the optimal architecture satisfying the hardware constraints is reported between
parentheses. Best results for each method, constraint, and dataset are highlighted in bold. Performance of
experiments that do not satisfy the hardware constraints are reported in gray.

Method Ahardware Top-1 accuracy (%) Satisfied
CIFAR-10 [ CIFAR-100 [ ImageNet16-120
Css,param - #parameters S 261650 (16385 architectures satisfied)
Summed 0.5 90.87 +0.02(-1.66) | 61.31 0.61(-7.61) 35.34 +0.31(-6.69 Ve
Summed 1.0 85.87 x1.16(-666) | S1.11 £235¢-17.81) | 25.27 +2.13(-16.76) v
Summed 1.5 83.47 £0.74(-9.06) | 45.36 £2.95(-23.56) | 21.59 +1.01(-20.44) Ve
Multiplied 0.5 92.11 2020 66.24 +0.94 41.21 +0.84 1 run
Multiplied 1.0 90.97 +011(-1.56) | 62.19 030 -6.73) 36.69 +1.10(-5.39 Ve
Multiplied 1.5 89.77 029 (-2.76) | 59.22 +1.93(-9.70) 33.97 +1.05(-8.06) v
Piece-wise 0.5 92.26 +0.01 67.41 +038 42.10 +0.15 0 runs
Piece-wise 1.0 92.25 +0.02 67.34 054 41.89 +033 0 runs
Piece-wise 1.5 92.25 +0.02 67.34 +0.54 41.89 +033 0 runs
Cssmem © Peak memory usage < 655k B (20480 architectures satisfied)
Summed 0.5 91.61 +0.09¢-1.81 | 67.90 0.24(-2.96) 38.30 +0.18 (-7.63) Ve
Summed 1.0 91.33 £0.19(-2.09) | 68.22 +0.28 (-2.64) 38.49 +0.03(-7.49) v
Summed 1.5 91.33 +0.19(-209) | 68.22 +0.28(-2.64) 38.49 +0.03(-7.49) v
Multiplied 0.5 92.01 +045¢-1.41) | 68.24 £034(-2.62) 40.20 +0.98 (-5.73) v
Multiplied 1.0 91.53 £026(-1.89) | 67.57 £0.56(-3.29) 38.55 £0.56(-7.38) Ve
Multiplied 1.5 91.67 £033(-1.75 | 67.04 £0.97(-3.82) 38.07 £137(-7.86) v
Piece-wise 0.5 93.08 £0.20(-034) | 70.23 £0.16 (-0.63) 45.14 +0.31(-0.79) Ve
Piece-wise 1.0 92.93 +0.19(-049) | 70.10 £0.32(-0.76) 44.98 +0.59 (-0.95) v
Piece-wise 1.5 93.13 £0.19¢029) | 70.30 +0.19 (-0.56) 45.02 £0.32(-091) v
Css,flops - #FLOPs S 344194M (16385 architectures satisfied)
Summed 0.5 91.98 +0.00(-0.99) | 66.66 +0.00(-3.52) 40.00 £0.00 (-4.37) v
Summed 1.0 91.59 2021 (-1.38) | 65.68 +£0.85(-4.80) 37.84 +0.62(-6.53) Ve
Summed 1.5 90.82 +0.12(-2.15) | 63.58 £0.91(-6.90) 36.03 +0.59 (-8.34) v
Multiplied 0.5 91.96 +0.04(-1.01) | 66.76 +0.23(-3.72) 39.94 :0.13(-4.43) Ve
Multiplied 1.0 91.30 +0.24(-1.67) | 63.97 £094(-6.51) 36.97 +0.64(-7.40) v
Multiplied 1.5 91.14 +0.46(-1.83) | 64.88 £0.91(-5.60) 37.27 +0.86(-7.10) Ve
Piece-wise 0.5 92.70 +0.18 69.10 +0.24 44.08 +0.18 0 runs
Piece-wise 1.0 92.57 +0.23 68.36 +0.68 42.71 +0.46 0 runs
Piece-wise 1.5 92.33 2 0.00 67.66 =0.00 43.27 +0.00 0 runs
Css,comb (13342 architectures satisfied)
Summed 0.5 90.66 +0.11(-1.87) 63.04 +0.34(-5.87) 35.59 +0.19 (-6.49) Ve
Summed 1.0 87.76 £059(-4.77) | 56.22 +1.18(-12.69) | 26.39 £037(-15.64) v
Summed 1.5 83.99 +0.00(-854) | 48.64 £0.00(-2027) | 22.50 +0.00(-19.53) v
Multiplied 0.5 90.08 +0.26(-2.45) | 61.02 +1.21(7.89) 34.06 =088 (-7.97) v
Multiplied 1.0 88.30 £092(-423) | 56.41 +2.39(-1250) | 29.10 £137(-12.93) v
Multiplied 1.5 88.45 £0.96 (-4.08) | 56.25 +3.19(-12.66) 30.13 +2.11(-11.90) Ve
Piece-wise 0.5 92.53 +0.14 67.69 =063 4278 057 0 runs
Piece-wise 1.0 92.26 +0.01 67.47 042 41.97 035 0 runs
Piece-wise 1.5 92.26 +0.00 67.58 +0.00 42.03 +0.00 0 runs
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D TRAINING DETAILS
To facilitate reproducibility, we provide additional experimental details in this appendixE]

D.1 NATS-BENCH

We adopt the same data augmentation techniques and training procedure as described in Dong et al.
(2021). The search process is performed in two stages.

In the first stage, a supernet is trained on 50% of the CIFAR-10 training set (25,000 images) for
150 epochs, using a batch size of 64. The operation weights are optimized via Nesterov momentum
Stochastic Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 5 x 10~%. The
initial learning rate is set to 0.0025 and annealed to 0.001 over 100 epochs using a cosine schedule.
Architecture parameters are optimized using Adam with a learning rate of 0.001, weight decay of
1x 1073, and B; = 0.5, B2 = 0.999. The sampling temperature starts at 10 and is linearly annealed
to 0.1 over 100 epochs. The rescale factor R is kept constant throughout training (we use R = 1.2
for most experiments; an ablation study on the rescale factor is presented in Appendix [B).

In the second stage, an architecture is selected based on the lowest cross-entropy loss, evaluated
on the remaining 50% of the training set, while satisfying the imposed hardware constraints. The
NATS-Bench performance lookup table is then used to retrieve the test accuracy of the sampled
architecture on CIFAR-10, CIFAR-100, and ImageNet16-120.

All experiments are repeated five times using fixed random seeds. The search is performed on a
single NVIDIA V100 GPU and took approximately 5 hours to complete.

D.2 CONDITION MONITORING USE CASE

For the condition monitoring use case, a dataset is created from /Desenfans et al.|(2025)), representing
readings from a voltage meter, a current sensor and an encoderE] The complete dataset contains
31,920 time series instances, split into 25,530 train for training and 6,390 for testing. Each instance
consists of 256 time steps with 8 features: 3-phase current, 3-phase voltage, motor speed, and rotor
angle. The instances are labeled as either no fault, static eccentricity fault, dynamic eccentricity
fault, or mixed eccentricity fault. A Fast Fourier Transform (FFT) is applied to the 3-phase current
and voltage signals, and all 8 features are normalized to the range [0, 1]. The search process is again
performed in two stages.

In the first stage, a supernet is trained on 80% of the training set (20424 instances) for 150 epochs,
using a batch size of 128. The operation weights are optimized via Nesterov momentum Stochastic
Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 5 x 10~*. The initial learn-
ing rate is set to 0.0025 and annealed to 0.001 over 100 epochs using a cosine schedule. Architecture
parameters are optimized using Adam with a learning rate of 0.001, weight decay of 1 x 1073, and
B1 = 0.5, B2 = 0.999. The sampling temperature starts at 10 and is linearly annealed to 0.1 over
100 epochs. The rescale factor R is kept constant at 1.2.

In the second stage, an architecture is selected based on the lowest cross-entropy loss, evaluated
on the remaining 20% of the training set, while satisfying the imposed hardware constraints. The
selected architectures are trained using 5-fold cross-validation, where each fold uses 80% of the
training data for training over 250 epochs with a batch size of 16. Optimization is performed using
SGD with a momentum of 0.9 and a weight decay of 1 x 10~%. The initial learning rate is set to
0.0025 and annealed to 0.0001 using a cosine scheduler.

All experiments are repeated five times using fixed random seeds. The search is performed on a
single NVIDIA P100 GPU and took approximately 7 hours to complete.

3The code required to run all experiments will be made publicly available upon publication of the paper.
*The dataset will be made publicly available upon publication of the paper.
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E CONDITION MONITORING SEARCH SPACE

The search space for the condition monitoring use case is defined as a supernet composed of eight
consecutive edges. Each edge can select from the following candidate operations:

* A 1D convolution followed by a batch normalization and a ReLU activation

* A 1D depthwise separable convolution, where each convolution is followed by a batch
normalization and a ReLU activation

* An identity operation (available only on even-numbered edges)

The classification head consists of a global average pooling layer followed by a fully connected
layer.

For each convolution, the number of output channels can be chosen from {16, 32, 64, 256, 512}.
Additionally, a stride of 2 is applied to convolutions on odd-numbered edges. Convolutional filters
are shared across operations, as proposed in [Wan et al.[ (2020), to reduce the number of trainable
parameters and improve memory and computational efficiency.
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F CONDITION MONITORING HAND-CRAFTED BASELINES

Table 7: Overview of hand-crafted architectures used for comparison. Each convolutional block consists
of a convolutional operation (regular or depthwise seperable (Chollet, 2017)), a batch normalization, and a

ReLU activation.

Name Number of | Kernel Channels Strides Convolution
blocks type
ConvlD-Reg 4 3 [16, 32, 64, 128] 2,2,2,2] Regular
Conv1D-DS 4 3 [16, 32, 64, 128] [2,2,2,2] | Depthwise Separable
Conv1D-Reg-Max 8 3 [512,512,512,512, | [2,1,2,1, Regular
512,512,512, 512] 2,1,2,1]
Conv1D-DS-Max 8 3 [512,512,512,512, | [2,1,2,1, | Depthwise Separable
512,512,512, 512] 2,1,2,1]
Conv1D-Reg-Min 4 3 [8, 8, 8, 8] 2,2,2,2] Regular
Conv1D-DS-Min 4 3 [8, 8, 8, 8] [2,2,2,2] | Depthwise Separable
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G DISCLOSURE ON THE USE OF GENERATIVE ARTIFICIAL INTELLIGENCE

We used a large language model (LLM) as a writing aid. Ideation, scientific content, experimental
design, and analysis were conducted entirely by the authors without any contribution of an LLM.
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