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ABSTRACT

Neural Architecture Search (NAS), particularly gradient-based techniques, has
proven highly effective in automating the design of neural networks. Recent work
has extended NAS to hardware-aware settings, aiming to discover architectures
that are both accurate and computationally efficient. Many existing methods in-
tegrate hardware metrics into the optimization objective as regularization terms,
which introduces differentiability requirements and hyperparameter tuning chal-
lenges. This can either result in overly penalizing resource-intensive architec-
tures or architectures failing to meet the hardware constraints of the target device.
To address these challenges, we propose CONNAS, a novel gradient-based NAS
framework that enforces hardware constraints directly through gradient modifica-
tion. This approach eliminates the need for differentiable hardware metrics and
regularization weights. The novelty in CONNAS lies in modifying gradients with
respect to architectural choices, steering the search away from infeasible archi-
tectures while ensuring constraint satisfaction. Evaluations on the NATS-Bench
benchmark demonstrate that CONNAS consistently discovers architectures that
meet the imposed hardware constraints while achieving performance within just
0.14% of the optimal feasible architecture. Additionally, in a practical deploy-
ment scenario, CONNAS outperforms handcrafted architectures by up to 1.55%
in accuracy under tight hardware budgets.

1 INTRODUCTION

Deep neural networks have proven to be very successful in numerous applications ranging from im-
age recognition (Krizhevsky et al., 2017) and speech recognition (Hinton et al., 2012) to time series
segmentation (Lea et al., 2017). More recently, the use of deep neural networks on constrained hard-
ware has gained significant interest in the context of machine learning on the edge (EdgeML), where
resource-constrained devices such as mobile devices, embedded computers, and microcontrollers are
used to perform inference tasks. These devices often have limited computational power, memory,
and energy resources. As a result, it is crucial to design efficient neural network architectures that
can operate effectively within these hardware constraints.

A key challenge in EdgeML is designing neural network architectures that meet hardware constraints
while maintaining high performance. In recent years, Neural Architecture Search (NAS) was intro-
duced to automate the design of neural networks, and to potentially find novel architectures that
outperform manually designed models by experts (Elsken et al., 2019b). In NAS, a search algorithm
is used to explore a search space of possible neural network architectures, aiming to find the best-
performing architecture for a given task. Models originating from NAS techniques have already
outperformed human-designed models on tasks such as image classification (Real et al., 2017; Zoph
et al., 2018) and semantic segmentation (Chen et al., 2018). Based on the type of search algorithm
used, NAS methods can be categorized into four groups: (i) Reinforcement Learning (RL) (Zoph
& Le, 2017; Zoph et al., 2018; Baker et al., 2017), (ii) Evolutionary Algorithms (EA) (Real et al.,
2017; Salimans et al., 2017), (iii) Bayesian Optimization (White et al., 2021), (iv) and Gradient-
based methods (Liu et al., 2019). The latter has gained significant popularity in recent years due to
its efficiency and ability to scale to large search spaces compared to the other methods.

Recently, the use of NAS for designing more efficient neural network architectures has been in-
creasingly explored. Prior work, specifically on gradient-based NAS, often integrates hardware
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metrics as regularization terms into the optimization function (Cai et al., 2019; Wu et al., 2019; Wan
et al., 2020). While this can help guide the search toward hardware-friendly architectures, these
approaches often face several challenges. First, to be compatible with gradient-based optimization,
the hardware metrics must be differentiable. Second, each regularization term requires appropriate
weighting, introducing additional hyperparameters that demand careful tuning. Improper weighting
can either overly penalize resource-intensive architectures (resulting to simpler models with subop-
timal performance) or fail to enforce the hardware constraints (yielding architectures unsuitable for
deployment on the target device). Consequently, these methods often require multiple search runs
with varying weights assigned to the hardware-related terms until a feasible architecture is found, a
process that can be both tedious and time-consuming.

To overcome these limitations, we introduce CONNAS, a novel hardware-aware, gradient-based
NAS algorithm. Our work makes the following key contributions:

• Direct constraint enforcement: Unlike prior approaches that incorporate hardware metrics as
regularization terms in the loss function, CONNAS modifies gradients with respect to architec-
tural choices to directly enforce hardware constraints, effectively steering the search away from
infeasible architectures.

• No need for differentiable: Our method eliminates the requirement for differentiable hardware
metrics and the associated techniques needed to enforce differentiability.

• Explicit constraint specification: CONNAS allows for the explicit definition of hardware con-
straints without relying on hyperparameter tuning to balance the importance of hardware metrics.

We evaluate CONNAS on the NATS-Bench benchmark (Dong et al., 2021), demonstrating its ability
to systematically find architectures that satisfy various hardware constraints while achieving perfor-
mance close to the optimal architecture available within the search space, reaching as little as a
0.14% difference in accuracy. Our experiments show that CONNAS significantly outperforms ex-
isting baseline methods, which often struggle to find feasible architectures under strict hardware
constraints. Additionally, we validate CONNAS in a practical use case, where it successfully dis-
covers high-performing architectures under strict hardware constraints (no more than a model size
of 64kB and 18kB memory usage), consistently outperforming the best handcrafted architectures by
up to 1.55% accuracy.

2 RELATED WORK

Hardware-aware NAS. Over the years, the focus of NAS has shifted from discovering top-
performing novel architectures to emphasizing computational efficiency. The design of neural net-
works has increasingly been guided by hardware-aware considerations, particularly in the context
of deployment on resource-constrained devices. Early works primarily focused on optimizing hard-
ware metrics which could be estimated based on the type of operations found in the model, such
as the number of Floating Point Operations (FLOPs) (Xie et al., 2019; Zhou et al., 2018). How-
ever, other works have proposed to rely on real hardware metrics for more representative evaluation,
which are generally obtained through look-up tables or regressors trained on real on-device bench-
marks of various neural operations (Cai et al., 2019; Wu et al., 2019; Wan et al., 2020; Tan et al.,
2019; Hu et al., 2020). Additionally, other contributions have a more specific focus on NAS tech-
niques and search spaces tailored for ultra-constrained devices, such as microcontrollers (Lin et al.,
2020; Liberis et al., 2021).

The most straightforward way to regularize hardware-related objectives is by incorporating hard-
ware metrics as additional terms in the optimization function (Xie et al., 2019; Cai et al., 2019;
Wu et al., 2019; Dong & Yang, 2019a; Wan et al., 2020; Bender et al., 2020; Hu et al., 2020). A
weighting factor is then introduced to adjust the relative importance of these hardware metrics in
comparison to the task-specific loss, effectively determining whether more constrained architectures
should be favored. However, this fixed approach does not offer a direct mechanism for enforcing
hardware constraints. Instead, it merely guides the search toward architectures with more favorable
hardware metric values (typically simpler architectures with limited representational capacity) re-
gardless of whether the current architecture actually satisfies the imposed constraints. In response,
Tan et al. (2019); Zhou et al. (2018); Dong & Yang (2019a); Bender et al. (2020) propose dynamic
optimization functions where hardware-related terms are adjusted depending on whether the current
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architecture meets the hardware constraints. The rationale behind this approach is to find architec-
tures that are close to the constraint boundary, which makes it possible to explore more complex
architectures that still satisfy the constraints. This is in contrast to methods with a fixed loss term,
which may limit the search to simpler architectures. Meanwhile, other techniques (Elsken et al.,
2019a; Liberis et al., 2021), typically non-gradient-based methods, use a selection procedure based
on hardware metric values, selecting only architectures that satisfy hardware constraints for further
optimization.

Gradient-based NAS. Gradient-based NAS techniques, originally proposed by DARTS (Liu et al.,
2019), have been used by recent works to efficiently search for neural network architectures. In
gradient-based NAS, all possible architectures are represented within an over-parameterized net-
work, where each candidate path is associated with a continuous architecture weight α. This formu-
lation leads to a bi-level optimization problem, in which both the architecture α and its weights w
are jointly optimized using gradient descent. Traditionally, the loss function would be defined as the
task-specific loss, such as cross-entropy for classification tasks. However, in hardware-aware NAS,
the loss function is augmented with regularization terms to account for hardware metrics.

While hardware metrics for individual architectures are not differentiable, state-of-the-art techniques
ensure that these metrics can be fully factorized over the architecture parameters. This enables ex-
pressing hardware metrics as a weighted sum of contributions from each candidate operation in
the search space, thereby making them differentiable with respect to the architecture parameters.
However, this approach requires knowledge of each operation’s contribution to the overall hardware
metric, which becomes computationally intractable in large search spaces. To address this, Xie et al.
(2019) propose approximating the hardware-related terms using Monte Carlo estimation. Neverthe-
less, if the sampling distribution is poorly calibrated, the resulting estimates may be inaccurate.

Constraint-aware Training. Some recent NAS approaches incorporate hardware constraints di-
rectly into the optimization process, though this area remains relatively unexplored. HardCore-
NAS (Nayman et al., 2021) addresses hard-constrained optimization by adapting the Frank-Wolfe
algorithm to search for sub-networks within a pre-trained one-shot model. HDX (Hong et al., 2022)
introduces hardware constraints by adding hardware metrics as regularization terms and modifying
gradients based on differentiated hardware metrics. Similarly, Constraint Guided Gradient Descent
(CGGD) (Van Baelen & Karsmakers, 2023), although not a NAS algorithm, enforces inequality
constraints during training through gradient modification without penalty terms, proposing an up-
date scheme that guides optimization toward weights satisfying the specified constraints. Building
on these ideas, our work explores how such gradient-based enforcement can directly impose hard-
ware constraints during the NAS search process, without requiring additional regularization terms
or differentiable hardware metrics.

3 METHOD

3.1 PROBLEM FORMULATION

The search space S is modeled as an over-parameterized neural network that encompasses all pos-
sible architectures. This is achieved by defining, for each layer in the network, a set of candidate
operations (e.g., convolutions with varying kernel sizes) that can be used to construct a neural net-
work. Each candidate operation is associated with a continuous architecture weight α, which enables
the use of gradient descent to jointly optimize both operation weights w and the architecture weights
α. A final architecture A can then be derived by selecting a subset of candidate operations based on
the learned architecture weights α. More formally, let the over-parameterized network S be defined
as a directed acyclic graph (DAG) with L edges where each edge el is associated with a set of candi-
date operations Ol = {ol,1, . . . ol,N} with corresponding architecture weights αl = [αl,1, . . . , αl,N ]
and operation weights wl = [wl,1, . . . , wl,N ]. An architecture A ∈ S is derived by selecting, for
each edge el, the operation with the highest architecture weight, i.e., A = (o1,k1

, . . . , oL,kL
) where

kl = argmaxk αl,k. Let ck denote the k-th hardware metric function (e.g., number of parameters),
and bk its upper bound. The set of hardware constraints is defined as C = { (c1, b1), . . . , (cM , bM )},
where each constraint is expressed as ck(A) ≤ bk. The search process can then be formulated as
follows:

argmin
w,α

L task(w,α) s.t. ck(A) ≤ bk, k = 1, . . . ,M (1)
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In other words, the goal is to find architecture weights α that yield an architecture A(α) minimizing
the task-specific loss Ltask, while ensuring that the resulting architecture lies within the feasibility
region FR, defined as the subset of architectures that satisfy all hardware constraints in C. Formally,
we aim to find A(α) ∈ FR, or at least ensure that the sampled architectures Ak generated during
optimization converge to FR, i.e., limk→∞ d(Ak, FR) = 0.

The value for a hardware metric is obtained using ck(A), where ck may be implemented as a look-up
table or a learned regressor. Unlike prior work on hardware-aware, gradient-based NAS (Cai et al.,
2019; Wu et al., 2019; Wan et al., 2020; Dong & Yang, 2019a), we do not impose that the hardware
metrics are made differentiable with respect to the architecture weights α.

3.2 GRADIENT UPDATE SCHEME

We adopt the gradient update scheme as proposed in CGGD (Van Baelen & Karsmakers, 2023)
to enforce the hardware constraints ck(A) ≤ bk, k = 1, . . . ,M . However, unlike CGGD, which
aims to enforce constraints on the model’s output predictions, we use this approach to manipulate
the architecture weights α to steer the search process towards feasible architectures A. Specifically,
each architecture weight αl,j is updated as follows:

αl,j ← αl,j − ηα · (∇αl,jLtask(w,α) +R · dirC(αl,j) ·max
{∥∥∇αl,jLtask(w,α)

∥∥ , ϵ}) (2)

Here, R is a rescale factor that determines the strength of the constraints enforcement, and
dirC(αl) = [dirC(αl,1), . . . , dirC(αl,N )] is a unit vector indicating the direction in which the
architecture weights should be modified to satisfy the constraints. An arbitrarily small constant ϵ is
added to allow adjustments even when the loss gradient is zero.

3.3 GRADIENT DIRECTION

The choice of R and dirC(αl) is crucial, as it determines whether the architecture weights are
modified in a way that effectively reduces the hardware constraint violations, and ultimately leads to
convergence to a feasible architecture. Van Baelen & Karsmakers (2023) proved that convergence
towards the FR is guaranteed if R > 1 and dirC(αl) is chosen to be the shortest path with re-
spect to the Euclidean distance to the feasibility region. They also showed that performance is not
highly sensitive to the exact value of R, as long as it is strictly larger than 1. In other words, this
eliminates the need for additional hyperparameter tuning, unlike prior work that relies on weighted
regularization terms.

However, computing the exact shortest path is often intractable because it requires knowing the hard-
ware metrics for all possible architectures in the search space, or at least that these metrics are fully
factorizable across all edges. To address this, we propose a heuristic approach to approximate the
direction of the global shortest path by calculating the shortest path for each edge el independently.
However, this means that the same convergence guarantees as in Van Baelen & Karsmakers (2023)
do not strictly hold. Nevertheless, our experiments (Section 4.1) demonstrate that this heuristic is
effective in practice.

For each edge el, we first evaluate the hardware metric values of all candidate operations Ol under
the current architecture configuration. Then, we construct a set of candidate architectures Al =
{Al,1, . . . , Al,N} by replacing the l-th operation with ol,j while keeping the rest fixed:

Al,j = (o1,k1 , . . . , ol,j , . . . , oL,kL) (3)

We then evaluate ck(Al,j) for each candidate and constraint (ck, bk) ∈ C in order to determine
dirkc (αl), which is the direction to the FR for constraint ck(Al,j) ≤ bk. Based on whether the
candidate architectures Al satisfy the hardware constraint, we distinguish three cases:

1. All candidates on el satisfy the hardware constraint (∀j ∈ {1, . . . , N}, ck(Al,j) ≤ bk).
In this case, we set dirkc (αl) = 0 for all candidates, as no modification is needed to satisfy the
constraint for this edge.

2. Some candidates on el violate the hardware constraint (∃j, ck(Al,j) > bk). In this situation,
the direction is computed by aggregating the unit vectors that point away from the candidates that
violate the constraint, while pointing towards those that satisfy it. More specifically, we first identify
the set of candidates that satisfy the constraint:

F = {j | ck(Al,j) ≤ bk} (4)
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For each pair (j,m) where j ∈ F and m /∈ F , we compute the unit vector that points from candidate
m to candidate j, as shown in Figure 1a:

uj,m = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j−1

,−1, 0, . . . , 0︸ ︷︷ ︸
N−m

]/
√
2 (5)

Then, the final direction dirkc (αl) is determined by summing these unit vectors and normalizing it
back to a unit vector:

dir
k
c (αl) =

∑
j∈F

∑
m/∈F

uj,m/

∥∥∥∥∥∥
∑
j∈F

∑
m/∈F

uj,m

∥∥∥∥∥∥ (6)

3. No candidate on el satisfies the hardware constraint (∀j ∈ {1, . . . , N}, ck(Al,j) > bk). In
this case, the direction is computed in such that candidates with higher hardware metric values are
penalized while those with lower values are rewarded. First, the candidates are ranked based on their
hardware metric values. Then, for each ranked candidate, we compute unit vectors uj,m (as defined
in Equation 5) that point from candidates with higher hardware metric values to those with lower
ones. Specifically:

• First, we compute the unit vectors between the candidate with the highest hardware metric value
and all other candidates.

• Then, we compute the unit vectors between the two candidates with the highest hardware metric
values and all others.

• This process is repeated until all candidates, except the one with the lowest hardware metric value,
have been considered, as shown in Figure 1b. Finally, the unit vectors are aggregated in the same
manner as in Equation 6.

l, 1

l, 2

l (w, )
G l

l, 1
=

l, 2

l, 3

l, 2

u2, 3
l (w, )

G l

l, 2
=

l, 3

l, 3

l, 1

u1, 3

l (w, )

G l

l, 1
=

l, 3

(a) Both Al,1 and Al,2 satisfy the constraint, Al,3 violates it, so the re-
sulting gradient Gαl is decreased for αl,3 and increased for αl,1 and
αl,2.

l, 1

l, 2

u1, 2

l (w, )

G l

l, 1
=

l, 2

l, 3

l, 2

u2, 3
l (w, )

G l

l, 2
=

l, 3

l, 3

l, 1

u1, 3

l (w, )

G l

l, 1
=

l, 3

(b) No candidate for ej satisfies the constraint, so the resulting gradient
Gαl is increased / decreased based on the ranked hardware metric values
of each candidate.

Figure 1: Architecture space for a single edge el with three candidate operations, parameterized by
αl,1, αl,2, αl,3, where ck(Al,1) < ck(Al,2) < ck(Al,3). Each subfigure shows a projection onto the
plane defined by two architecture weights. The shaded area represents the feasibility region FR for
ck. Gαl is the gradient after modification projected into each plane.

3.4 CONSTRAINT-GUIDED HARDWARE-AWARE NAS

We refer to Algorithm 1 for the modified training procedure. Within each batch, the optimization of
operation weights w and architecture weights α is performed in an interleaved manner, as proposed
in prior work (Cai et al., 2019; Wu et al., 2019; Wan et al., 2020; Dong & Yang, 2019a;b). After
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Algorithm 1 Training procedure under hardware constraints
Input: Search space S, current architecture A derived from α, hardware constraints C, rescale factor R,
epsilon ϵ, learning rates ηw, ηα, loss function Ltask, batch of data (X, y)
w ← w − ηw · ∇wLtask(w,α) {Update operation weights}
Gα = ∇αLtask(w,α) {Store gradients w.r.t. architecture weights}
dirsc = [ ] {For each unsatisfied hardware constraint, compute direction to feasibility region}
for (ck, bk) ∈ C do

if ck(A) > bk then
Append calculate gradient direction(A, ck) to dirsc

end if
end for
dirC(α) =

∑
dirk

c ∈dirsc
dirk

c/
∥∥∥∥∑dirk

c ∈dirsc
dirk

c

∥∥∥∥ {Aggregate directions into single unit vector}
Gα ← Gα +R · dirC(α) ·max {∥Gα∥ , ϵ} {Modify gradient toward the feasibility region}
α← α− ηαGα {Update architecture weights}

optimizing w, the gradient ∇αLtask(w,α) is computed, but instead of immediately updating α, it
is stored for later modification. Then, for each hardware metric ck and its associated constraint
ck(A) ≤ bk, the current architecture A is checked for violations. If a constraint is violated, the
direction for modification dirkc (α) is computed as described in Section 3.3. All directions are
summed and normalized to a unit vector to obtain dirC(α). Finally, the stored gradient is modified,
as explained in Section 3.2, and used to update the architecture weights α.

4 EXPERIMENTS AND RESULTS

We evaluate the effectiveness of CONNAS on two benchmark tasks: the NATS-Bench topology and
size search spaces (Section 4.1). In addition, we apply our method to a practical use case involving
edge-based condition monitoring of induction motors, where the goal is to discover architectures
suitable for deployment across diverse hardware configurations (Section 4.2).

4.1 EXPERIMENTS ON NATS-BENCH

NATS-Bench, proposed by Dong et al. (2021), is a unified benchmark for NAS designed for image
classification tasks, including two search spaces: the topology search space and the size search space.
The topology search space is a cell-based search space, which contains 15,625 unique architectures,
while size search space is a layer-wise search space, consisting of 32,768 unique architectures. We
refer to Dong et al. (2021) for a detailed description of the search spaces. A key advantage of NATS-
Bench over other NAS benchmarks is that it provides test accuracies for all architectures across
both search spaces on CIFAR-10, CIFAR-100, and ImageNet16-120. This enables rapid evaluation
without the need for retraining. Additionally, we combine both real on-device measurements and
proxy-based hardware metrics to define hardware constraints for our experiments. Specifically, we
use on-device measurements of inference latency and energy usage on an NVIDIA Jetson TX2
Edge GPU (NVIDIA Inc.) for the topology search space, as provided by HW-NAS-Bench (Li et al.,
2021). For the size search space, we incorporate widely used proxy-based metrics, including the
number of parameters, FLOPs, and peak memory usage, all of which can be computed directly from
the architecture definition. A detailed description of how these proxy-based hardware metrics are
calculated is provided in Appendix A. Importantly, our approach is flexible and can integrate any
other hardware metric, regardless of how it is obtained or computed.

We use a Gumbel-Softmax (Jang et al., 2017), as proposed in Dong & Yang (2019a); Wu et al.
(2019); Wan et al. (2020), to relax the categorical distribution of the candidate operations Ol. At
each edge el, the output yl is computed as a weighted sum of the outputs produced by all candidate
operations:

yl =

N∑
j

exp((log(αl,j) + gl,j)/τ)∑N
j exp((log(αl,j) + gl,j)/τ)

· ol,j(xl) (7)

where gl,j ∼ Gumbel(0, 1) and temperature τ controls the smoothness of the distribution. A higher
temperature is used at the beginning of the search to encourage exploration, making the distribu-
tion closer to uniform. As the search progresses, the temperature is gradually lowered, making the
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Table 1: Overview of baseline methods used for comparison. Here, c′k(α) is the min-max normalization
of ck(α). The term bk represents the upper bound associated with ck. λhardware is a weighting factor. We
use λhardware = 1 for ProxylessNAS, TAS, TF-NAS and HDX, and λhardware = 0.6 for FBNet. Additional
experiments with varying weighting factors for λhardware are provided in Appendix D.

Name Regularization
ProxylessNAS (Cai et al., 2019) L(w,α) = Ltask(w,α) + (λhardware/M) ·

∑M
k=1 c

′
k(α)

FBNet (Wu et al., 2019) L(w,α) = Ltask(w,α) ·
∏M

k=1 ck(logα)
λhardware

TAS (Dong & Yang, 2019a)

L(w,α) = Ltask(w,α) + (λhardware/M) ·
∑M

k=1 hj(α)

where hj(α) =


c′k(α), if ck(α) > bk
−c′k(α), if ck(α) < bk
0, otherwise

TF-NAS (Hu et al., 2020) L(w,α) = Ltask(w,α) + (λhardware/M) ·
∑M

k=1 max( ck(α)
bk
− 1, 0)

HDX (Hong et al., 2022)
Gα =

{
∇αL(w,α), if ck(α) ≤ bk
mα +∇αL(w,α), otherwise

where L(w,α) = Ltask(w,α) + (λhardware/M) ·
∑M

k=1 c
′
k(α)

distribution sharper and closer to an argmax, which promotes exploitation. It is worth noting that
CONNAS is agnostic to the specific relaxation method used. Other approaches, such as proposed by
DARTS (Liu et al., 2019) or ProxylessNAS (Cai et al., 2019), although not tested here, could also
be applied.

We run CONNAS on each search space and corresponding set of hardware constraints for a total of
150 epochs. During the first 100 epochs, the temperature τ is linearly annealed from 10 to 0.1. The
rescale factor R is set to 1.2, though additional experiments show that the performance is not very
sensitive to this choice (see Appendix B). Among the final 50 epochs, we select the architecture
with the lowest validation loss that satisfies the hardware constraints. Finally, the performance
of the selected architecture is obtained from the test accuracies provided by NATS-Bench. Each
experiment is repeated 5 times, as in Dong et al. (2021). The mean and standard deviation of the
results are reported in Table 2 and Table 3 for the topology and size search spaces, respectively. Since
NATS-Bench provides performance data for each architecture in the search space, we also report the
relative error between parentheses to the optimal architecture satisfying the hardware constraints.
Results of individual runs are shown in Figure 2.

We further compare CONNAS against several hardware-aware, gradient-based baselines listed in
Table 1. We adopt the same experimental setup and training procedure for these baselines to ensure
a fair comparison. More training details are provided in Appendix E.

CONNAS consistently identifies architectures that satisfy the specified hardware constraints while
maintaining strong predictive performance. The resulting architectures exhibit relative errors of
at most −1.18%, −3.38%, and −6.45% compared to the optimal feasible solution on CIFAR-
10, CIFAR-100, and ImageNet16-120, respectively. Compared to the baseline methods using the
weighting factors listed in Table 1, CONNAS achieves substantially better results than Proxyless-
NAS and HDX, and a performance comparable to TF-NAS. In contrast, FBNet and TAS do not
consistently produce valid architectures under all constraint configurations. Additional experiments
under stricter hardware constraints, presented in Appendix C, further demonstrate the effectiveness
of CONNAS, which continues to find valid architectures and generally outperforms all baselines.

It is important to note that the weighting factors used for the baselines may not be optimal under
the given constraints, and further tuning could potentially improve their performance. Nevertheless,
this underscores a key advantage of CONNAS: it eliminates the need for extensive hyperparameter
tuning to balance hardware metrics, thereby eliminating the need to rerun experiments multiple times
to find an appropriate weighting factor. To illustrate this, we conduct additional experiments with
alternative weighting factors for the baselines (see Appendix D) and an ablation study on the rescale
factor R for CONNAS (see Appendix B). Both analyses confirm that CONNAS is more robust to
variations in the rescale factor, whereas baseline methods exhibit higher sensitivity to weighting
factors, requiring careful tuning for each hardware constraint setting.
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Table 2: NATS-Bench topology search space classification results. Test accuracy (mean ± std over 5 runs)
is reported under hardware constraints, using on-device measurements of inference latency and energy usage
on an NVIDIA Jetson TX2 Edge GPU. The constraints are chosen so that approximately 50% of architectures
in the search space satisfy the constraints. The relative error compared to the optimal architecture satisfying
the hardware constraints is reported between parentheses. Best results for each constraint and dataset are
highlighted in bold. Performance of runs that do not always satisfy the constraints are reported in gray.

Method Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

cts,latency : latency ≤ 5.31ms (7814 architectures satisfied)

ConNAS 93.18 ± 0.09 (-1.08) 70.12 ± 0.16 (-3.04) 40.59 ± 1.20 (-6.01) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.97) 67.48 ± 0.00 (-5.68) 39.40 ± 0.00 (-7.20) 5 / 5
FBNet 93.18 ± 0.12 (-1.08) 70.00 ± 0.08 (-3.16) 39.71 ± 0.06 (-6.89) 5 / 5
TAS 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 93.27 ± 0.00 (-1.00) 70.06 ± 0.00 (-3.10) 39.75 ± 0.00 (-6.85) 5 / 5
HDX 75.83 ± 36.80 (-18.43) 54.18 ± 29.73 (-18.98) 31.69 ± 17.25 (-14.91) 5 / 5
cts,energy : energy usage ≤ 23.95mJ (7814 architectures satisfied)

ConNAS 92.97 ± 0.54 (-1.18) 69.51 ± 1.48 (-2.43) 40.32 ± 1.56 (-6.45) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.37) 5 / 5
FBNet 93.05 ± 0.00 (-1.10) 69.91 ± 0.00 (-2.03) 39.64 ± 0.00 (-7.12) 5 / 5
TAS 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 93.01 ± 0.57 (-1.14) 69.48 ± 1.29 (-2.46) 39.62 ± 0.30 (-7.15) 5 / 5
HDX 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.37) 5 / 5
cts,comb : latency ≤ 5.31ms ∧ energy usage ≤ 23.95mJ (7586 architectures satisfied)

ConNAS 93.14 ± 0.05 (-1.01) 70.21 ± 0.17 (-1.73) 41.45 ± 1.01 (-5.08) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.13) 5 / 5
FBNet 92.01 ± 0.00 (-2.14) 67.07 ± 0.00 (-4.87) 39.19 ± 0.00 (-7.34) 5 / 5
TAS 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 93.27 ± 0.00 (-0.89) 70.06 ± 0.00 (-1.88) 39.75 ± 0.00 (-6.78) 5 / 5
HDX 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.13) 5 / 5
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Figure 2: Performance comparison of CONNAS against baseline methods. Performance is measured as
the difference in test accuracy (%) between the architecture found by each method and the optimal architecture
satisfying the hardware constraints. Each point represents a run, runs violating hardware constraints are marked
with a cross.
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Table 3: NATS-Bench size search space classification results. Test accuracy (mean ± std over 5 runs) is
reported under hardware constraints, including the number of parameters, number of FLOPs, and peak memory
usage. The constraints are chosen such that about 50% of the architectures in each search space meet them.
The relative error compared to the optimal architecture satisfying the hardware constraints is reported between
parentheses. Best results for each constraint and dataset are highlighted in bold. Performance of runs that do
not always satisfy the constraints are reported in gray.

Method Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

css,param : #parameters ≤ 261650 (16385 architectures satisfied)

ConNAS 91.74 ± 0.29 (-0.66) 66.22 ± 0.47 (-2.70) 39.77 ± 0.77 (-2.26) 5 / 5
ProxylessNAS 85.87 ± 1.16 (-6.66) 51.11 ± 2.35 (-17.81) 25.27 ± 2.13 (-16.76) 5 / 5
FBNet 93.22 ± 0.20 69.43 ± 0.22 45.68 ± 0.37 0 / 5
TAS 92.25 ± 0.02 67.34 ± 0.54 41.89 ± 0.33 0 / 5
TF-NAS 91.78 ± 0.00 (-0.75) 63.64 ± 0.00 (-5.28) 38.00 ± 0.00 (-4.03) 5 / 5
HDX 86.10 ± 1.28 (-6.43) 51.71 ± 2.88 (-17.21) 25.36 ± 2.42 (-16.67) 5 / 5
css,mem : peak mem. ≤ 655kB (20480 architectures satisfied)

ConNAS 93.28 ± 0.15 (-0.14) 69.70 ± 1.02 (-1.16) 44.58 ± 0.43 (-1.35) 5 / 5
ProxylessNAS 91.33 ± 0.19 (-2.09) 68.22 ± 0.28 (-2.64) 38.49 ± 0.03 (-7.45) 5 / 5
FBNet 93.16 ± 0.29 69.69 ± 0.05 45.53 ± 0.87 1 / 5
TAS 92.93 ± 0.19 (-0.49) 70.10 ± 0.32 (-0.76) 44.98 ± 0.59 (-0.95) 5 / 5
TF-NAS 92.99 ± 0.10 (-0.43) 70.21 ± 0.16 (-0.65) 45.25 ± 0.27 (-0.69) 5 / 5
HDX 91.59 ± 0.19 (-1.83) 68.03 ± 0.29 (-2.83) 38.41 ± 0.07 (-7.53) 5 / 5
css,flops : #FLOPs ≤ 344194M (16385 architectures satisfied)

ConNAS 92.22 ± 0.14 (-0.75) 67.10 ± 0.48 (-3.38) 41.79 ± 0.16 (-2.58) 5 / 5
ProxylessNAS 91.59 ± 0.21 (-1.38) 65.68 ± 0.85 (-4.80) 37.84 ± 0.62 (-6.53) 5 / 5
FBNet 92.87 ± 0.23 69.42 ± 0.60 44.23 ± 0.39 0 / 5
TAS 92.57 ± 0.23 68.36 ± 0.68 42.71 ± 0.46 0 / 5
TF-NAS 92.19 ± 0.18 (-0.78) 67.81 ± 0.56 (-2.67) 41.69 ± 1.16 (-2.68) 5 / 5
HDX 86.88 ± 0.00 (-6.09) 55.42 ± 0.00 (-15.06) 28.70 ± 0.00 (-15.67) 5 / 5
css,comb : #parameters ≤ 261650 ∧ peak mem. ≤ 655kB∧
#FLOPs ≤ 344194M (13342 architectures satisfied)

ConNAS 92.05 ± 0.16 (-0.48) 65.87 ± 0.55 (-3.04) 40.22 ± 0.96 (-1.81) 5 / 5
ProxylessNAS 87.76 ± 0.59 (-4.77) 56.22 ± 1.18 (-12.70) 26.39 ± 0.37 (-15.64) 5 / 5
FBNet 92.88 ± 0.19 68.83 ± 0.34 43.88 ± 0.42 0 / 5
TAS 92.26 ± 0.01 67.47 ± 0.42 41.97 ± 0.35 0 / 5
TF-NAS 91.76 ± 0.00 (-0.77) 66.46 ± 0.00 (-2.46) 38.73 ± 0.00 (-3.30) 5 / 5
HDX 84.96 ± 0.00 (-7.57) 51.84 ± 0.00 (-17.08) 23.57 ± 0.00 (-18.47) 5 / 5

4.2 PRACTICAL USE CASE: CONDITION MONITORING OF INDUCTION MOTORS

Condition monitoring of industrial assets has received an increase interest over the years (Surucu
et al., 2023), preventing unexpected failures and costly downtimes. By leveraging edge machine
learning, data from these assets can be captured and processed locally to detect faults in real-time.
To demonstrate the applicability of our work, we validate our approach through a use case focused
on condition monitoring of induction motors, aiming to detect eccentricity faults using a neural
network deployed on an edge device. An eccentricity fault occurs when the rotor is not perfectly
centered within the stator, resulting in an uneven air gap, causing an unbalanced magnetic pull (De-
senfans et al., 2024). The prediction task involves classifying the type of eccentricity, specifically
distinguishing between no eccentricity fault, static eccentricity (where the rotor remains consistently
off-center relative to the stator), dynamic eccentricity (where the rotor’s off-center position rotates
over time relative to the stator), and mixed eccentricity (a combination of static and dynamic eccen-
tricity).

The goal in this use case is to discover neural network architectures that are deployable across a
wide range of microcontrollers with diverse hardware capabilities. To define realistic deployment
constraints, we base our hardware constraints on 6 hand-crafted architectures (listed in Appendix G),
each having different resource requirements. We construct a search space based on 1D convolutions
consisting of 8 layers. Each layer has varying configurations in terms of the number of filters,
convolution types, and the inclusion of skip connections, resulting in a total of 1.94 billion unique
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architectures. The detailed description of the search space is provided in Appendix F. The dataset
contains 31,920 instances, split into 25,530 for training and 6,390 for testing. Each instance consists
of 256 time steps sampled at 5 kHz, with eight features: stator currents (3), phase voltages (3),
rotor speed (1), and rotor angle (1). We use 80% of the training set to train the supernet, while
the remaining 20% serves as a validation set for architecture selection. The training and selection
procedure follows the same approach outlined in Section 4.1. The selected architectures are retrained
from scratch using five-fold cross-validation over 200 epochs. Their performance is subsequently
evaluated on the test set. We compare the best architectures found by CONNAS with hand-crafted
models1.

Table 4: Classification performance and resource usage of models discovered by ConNAS under various
hardware constraints, compared to handcrafted baseline models. The constraints c1, c2, c3, and c4 are
defined as follows: c1: model size ≤ 2MB, peak memory usage ≤ 640kB; c2: model size ≤ 256kB, peak
memory usage≤ 112kB; c3: model size≤ 128kB, peak memory usage≤ 36kB; c4: model size≤ 64kB, peak
memory usage ≤ 18kB.

Name Top-1 Satisfied constraints Model size Peak memory
accuracy (%) c1 c2 c3 c4 (bytes) usage (bytes)

ConNAS (unconstrained) 97.36 ±0.27 6.06M ± 1.61M 524k ± 0.00

ConNAS + c1 97.09 ±0.47 ✓ 1.93M ± 13.2k 524k ± 0.00

ConNAS + c2 96.17 ±0.84 ✓ ✓ 122k ± 30.7k 69.6k ± 0.00k

ConNAS + c3 94.96 ±0.69 ✓ ✓ ✓ 26.0k ± 13.5k 16.8k ± 10.1k

ConNAS + c4 94.37 ±1.94 ✓ ✓ ✓ ✓ 8.69k ± 2.12k 12.3k ± 0.00

Conv1D-Reg 95.54 ±0.29 ✓ 135k 16.4k
Conv1D-DS 93.07 ±0.35 ✓ ✓ ✓ ✓ 51.3k 16.4k
Conv1D-Reg-Max 93.31 ±1.86 22.1M 524k
Conv1D-DS-Max 96.72 ±0.24 7.50M 524k
Conv1D-Reg-Min 90.15 ±4.33 ✓ ✓ ✓ ✓ 3.47k 12.3k
Conv1D-DS-Min 93.93 ±1.64 ✓ ✓ ✓ ✓ 2.32k 12.3k

Table 4 compares the performance and resource consumption of architectures discovered by CON-
NAS with manually designed baselines. CONNAS consistently identifies architectures that outper-
form handcrafted ones in terms of accuracy under specific hardware constraints. For example, under
constraint c1, CONNAS discovers architectures that achieve an accuracy of 97.07%, which is 1.55%
higher than Conv1D-Reg, the best manually designed model under the same constraint. At c4, the
discovered architecture reaches 94.37% accuracy, compared to 93.93% for Conv1D-Reg-Min.

5 CONCLUSION

We introduced CONNAS, a novel hardware-aware, gradient-based NAS technique that explicitly en-
forces hardware constraints during the search process. Unlike prior approaches that rely on weighted
loss terms for hardware-aware regularization, CONNAS directly modifies the gradients of archi-
tecture parameters when hardware constraints are violated, effectively steering the search toward
hardware-feasible solutions. Experiments on NATS-Bench demonstrate that CONNAS consistently
discovers architectures that satisfy various hardware constraints, achieving performance close to the
optimal and overall outperforming existing baseline methods in both performance and compliance
with hardware constraints. Furthermore, we validated CONNAS in a practical use case, where it
successfully identified high-performing architectures under tight resource limitations. These results
highlight CONNAS as a promising approach for the automatic design of deep learning models for
deployment in resource-constrained environments.

1We could have also compared to the baseline methods as in Section 4.1. However, since all baseline
methods require differentiable hardware metrics, this comparison is not feasible as factorizing the metrics with
respect to α is intractable due to the large search space.
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A COMPUTATION HARDWARE METRICS

In this work, we focus on three hardware metrics: the number of parameters, the number of FLOPs,
and the peak memory usage during inference. The following subsections describe how each of these
metrics is computed. It is important to note that our proposed method is not limited to these metrics
and can be applied to any hardware metric, whether derived analytically, measured through profiling,
or predicted by learned models.

A.1 NUMBER OF PARAMETERS

The total number of parameters in a candidate architecture is computed by summing the number
of parameters of each individual layer. To estimate the model size in bytes, we multiply the total
number of parameters by 4, assuming 32-bit floating-point representation.

A.1.1 CONVOLUTIONAL BLOCK

A convolutional block consists of a convolutional layer, followed by a batch normalization and a
ReLU activation. We assume that batch normalization is fused into the convolutional layer during
inference.

Regular Convolution:
params = (Cin × kh × kw + 1)× Cout (8)

where Cin and Cout are the input and output channels, kh and kw are kernel dimensions, and the
+1 accounts for the bias term.

Depthwise Separable Convolution:

params = (Cin × kh × kw + 1) + (Cin × Cout + 1) (9)

where the first term corresponds to the depthwise convolution and the second to the pointwise con-
volution.

A.2 FULLY CONNECTED LAYER

params = (Nin + 1)×Nout (10)
where Nin and Nout are the input and output features, respectively, and the +1 accounts for the bias
term.

A.3 NUMBER OF FLOPS

Similar to the parameter count, the total number of FLOPs is computed by summing the FLOPs of
each individual layer.

A.3.1 CONVOLUTIONAL LAYER

FLOPs = 2× (Cin × kh × kw + 1)×Hout ×Wout × Cout (11)

Here, Hout and Wout are the output feature map dimensions.

A.3.2 RELU

FLOPs = Hout ×Wout × Cout (12)

A.3.3 LINEAR LAYER

FLOPs = 2× (Nin + 1)×Nout +Nout (13)

A.3.4 GLOBAL POOLING LAYER

FLOPs = (kh × kw + 1)×Hout ×Wout × Cout (14)
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A.4 PEAK MEMORY USAGE

Peak memory usage during inference is estimated by computing the combined size of input and
output feature maps for each layer. The maximum of these values across all layers is taken as the
peak memory usage.
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B ABLATION RESCALE FACTOR

Table 5: NATS-Bench topology search space classification results on ConNAS with different rescale
factors. Test accuracy (mean ± std over 5 runs) is reported under hardware constraints, using on-device mea-
surements of inference latency and energy usage on an NVIDIA Jetson TX2 Edge GPU. The constraints are
chosen so that approximately 50% of architectures in the search space satisfy the constraints. The relative error
compared to the optimal architecture satisfying the hardware constraints is reported between parentheses.

Rescaling Top-1 accuracy (%) Runs
factor CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

cts,latency : latency ≤ 5.31ms (7814 architectures satisfied)

1.2 93.18 ± 0.09 (-1.08) 70.12 ± 0.16 (-3.04) 40.59 ± 1.20 (-6.01) 5 / 5
1.5 93.20 ± 0.09 (-1.06) 70.07 ± 0.13 (-3.09) 40.16 ± 0.97 (-6.44) 5 / 5
2.0 93.21 ± 0.05 (-1.05) 70.19 ± 0.12 (-2.97) 41.04 ± 1.18 (-5.56) 5 / 5
5.0 93.25 ± 0.04 (-1.02) 70.10 ± 0.10 (-3.06) 40.18 ± 0.96 (-6.42) 5 / 5
10.0 92.74 ± 0.67 (-1.52) 68.83 ± 1.79 (-4.33) 39.60 ± 1.48 (-7.00) 5 / 5
cts,energy : energy usage ≤ 23.95mJ (7814 architectures satisfied)

1.2 92.97 ± 0.54 (-1.18) 69.51 ± 1.48 (-2.43) 40.32 ± 1.56 (-6.45) 5 / 5
1.5 93.20 ± 0.09 (-0.95) 70.07 ± 0.13 (-1.87) 40.16 ± 0.97 (-6.61) 5 / 5
2.0 92.95 ± 0.53 (-1.20) 69.55 ± 1.50 (-2.39) 40.75 ± 1.66 (-6.02) 5 / 5
5.0 93.17 ± 0.00 (-0.98) 70.28 ± 0.00 (-1.66) 41.90 ± 0.00 (-4.87) 5 / 5
10.0 92.72 ± 0.65 (-1.43) 68.87 ± 1.83 (-3.07) 40.03 ± 1.81 (-6.74) 5 / 5
cts,comb : latency ≤ 5.31ms ∧ energy usage ≤ 23.95mJ (7586 architectures satisfied)

1.2 93.14 ± 0.05 (-1.01) 70.21 ± 0.17 (-1.73) 41.45 ± 1.01 (-5.08) 5 / 5
1.5 92.95 ± 0.53 (-1.20) 69.55 ± 1.50 (-2.39) 40.75 ± 1.66 (-5.78) 5 / 5
2.0 93.17 ± 0.00 (-0.98) 70.28 ± 0.00 (-1.66) 41.90 ± 0.00 (-4.63) 5 / 5
5.0 92.89 ± 0.50 (-1.26) 69.45 ± 1.45 (-2.49) 40.28 ± 1.58 (-6.25) 5 / 5
10.0 92.49 ± 0.66 (-1.66) 68.19 ± 1.81 (-3.75) 39.31 ± 1.58 (-7.22) 5 / 5
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Table 6: NATS-Bench size search space classification results on ConNAS with different rescale factors.
Test accuracy (mean ± std over 5 runs) is reported under hardware constraints, including the number of pa-
rameters, number of FLOPs, and peak memory usage. The constraints are chosen so that about 50% of the
architectures in each search space meet them. The relative error compared to the optimal architecture satisfying
the hardware constraints is reported between parentheses.

Rescaling Top-1 accuracy (%) Runs
factor CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

css,param : #parameters ≤ 261650 (16385 architectures satisfied)

1.2 91.74 ± 0.29 (-0.79) 66.22 ± 0.47 (-2.70) 39.77 ± 0.77 (-2.27) 5 / 5
1.5 92.09 ± 0.24 (-0.44) 65.92 ± 0.65 (-3.00) 40.29 ± 1.10 (-1.74) 5 / 5
2.0 91.87 ± 0.07 (-0.66) 66.22 ± 0.60 (-2.70) 39.48 ± 1.29 (-2.55) 5 / 5
5.0 91.85 ± 0.19 (-0.68) 65.97 ± 0.38 (-2.95) 39.55 ± 0.53 (-2.48) 5 / 5
10.0 91.67 ± 0.08 (-0.86) 65.99 ± 0.36 (-2.93) 39.31 ± 0.21 (-2.73) 5 / 5
css,mem : peak mem. ≤ 655kB (20480 architectures satisfied)

1.2 93.28 ± 0.20 (-0.14) 69.70 ± 1.02 (-1.16) 44.58 ± 0.43 (-1.35) 5 / 5
1.5 93.26 ± 0.15 (-0.16) 70.14 ± 0.32 (-0.72) 44.67 ± 0.68 (-1.26) 5 / 5
2.0 93.19 ± 0.17 (-0.23) 69.54 ± 0.95 (-1.32) 44.42 ± 0.38 (-1.51) 5 / 5
5.0 93.26 ± 0.16 (-0.16) 70.06 ± 0.15 (-0.80) 44.65 ± 0.18 (-1.29) 5 / 5
10.0 93.29 ± 0.11 (-0.13) 70.01 ± 0.24 (-0.85) 44.62 ± 0.22 (-1.31) 5 / 5
css,flops : #FLOPs ≤ 344194M (16385 architectures satisfied)

1.2 92.22 ± 0.14 (-0.75) 67.10 ± 0.48 (-3.38) 41.79 ± 0.16 (-2.57) 5 / 5
1.5 92.23 ± 0.19 (-0.74) 67.00 ± 0.80 (-3.48) 41.45 ± 0.92 (-2.92) 5 / 5
2.0 92.10 ± 0.16 (-0.87) 67.08 ± 1.24 (-3.40) 41.63 ± 1.19 (-2.74) 5 / 5
5.0 92.22 ± 0.08 (-0.75) 67.54 ± 1.09 (-2.94) 42.09 ± 0.53 (-2.28) 5 / 5
10.0 92.31 ± 0.14 (-0.66) 66.76 ± 0.73 (-3.72) 41.70 ± 0.51 (-2.67) 5 / 5
css,comb : #parameters ≤ 261650 ∧ peak mem. ≤ 655kB∧
#FLOPs ≤ 344194M (13342 architectures satisfied)

1.2 92.01 ± 0.19 (-0.52) 66.65 ± 0.39 (-2.27) 41.01 ± 0.33 (-1.02) 5 / 5
1.5 91.72 ± 0.16 (-0.81) 66.02 ± 0.70 (-2.90) 40.23 ± 0.51 (-1.81) 5 / 5
2.0 91.99 ± 0.38 (-0.54) 66.15 ± 0.45 (-2.77) 40.63 ± 0.98 (-1.40) 5 / 5
5.0 91.94 ± 0.27 (-0.59) 66.02 ± 0.50 (-2.90) 40.57 ± 0.84 (-1.46) 5 / 5
10.0 91.67 ± 0.36 (-0.86) 65.36 ± 0.89 (-3.56) 40.13 ± 0.65 (-1.91) 5 / 5
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C EXPERIMENTS WITH STRICTER HARDWARE CONSTRAINTS

Table 7: NATS-Bench topology search space classification results under stricter hardware constraints.
Test accuracy (mean ± std over 5 runs) is reported under hardware constraints, using on-device measurements
of inference latency and energy usage on an NVIDIA Jetson TX2 Edge GPU. Stricter hardware constraints were
set so that approximately 25% and 10% of architectures in the search space satisfy the constraints. The relative
error compared to the optimal architecture satisfying the hardware constraints is reported between parentheses.

Method Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

cts,latency25 : latency ≤ 4.14ms (3908 architectures satisfied)

ConNAS 92.08 ± 0.07 (-1.97) 67.09 ± 0.20 (-4.43) 39.09 ± 0.72 (-5.88) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
FBNet 93.22 ± 0.09 70.03 ± 0.07 39.73 ± 0.05 0 / 5
TAS 93.27 ± 0.00 70.06 ± 0.00 39.75 ± 0.00 0 / 5
TF-NAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
HDX 10.00 ± 0.00 (-84.05) 1.00 ± 0.00 (-70.52) 0.83 ± 0.00 (-44.13) 5 / 5
cts,latency10 : latency ≤ 3.03ms (1564 architectures satisfied)

ConNAS 92.05 ± 0.07 (-0.73) 67.01 ± 0.20 (-1.35) 38.83 ± 0.72 (-1.61) 5 / 5
ProxylessNAS 92.29 ± 0.00 67.48 ± 0.00 39.40 ± 0.00 0 / 5
FBNet 93.22 ± 0.09 70.03 ± 0.07 39.73 ± 0.05 0 / 5
TAS 92.00 ± 0.01 67.13 ± 0.05 39.13 ± 0.05 0 / 5
TF-NAS 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
HDX 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
cts,energy25 : energy usage ≤ 18.6mJ (3908 architectures satisfied)

ConNAS 92.06 ± 0.06 (-1.98) 67.09 ± 0.20 (-4.43) 39.04 ± 0.68 (-5.93) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
FBNet 93.14 ± 0.12 69.97 ± 0.08 39.69 ± 0.06 0 / 5
TAS 93.01 ± 0.57 69.48 ± 1.29 39.62 ± 0.30 1 / 5
TF-NAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
HDX 10.00 ± 0.00 (-84.05) 1.00 ± 0.00 (-70.52) 0.83 ± 0.00 (-44.13) 5 / 5
cts,energy10 : energy usage ≤ 13.3mJ (1564 architectures satisfied)

ConNAS 92.05 ± 0.07 (-0.73) 67.01 ± 0.20 (-1.35) 38.83 ± 0.72 (-1.61) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-0.49) 67.48 ± 0.00 (-0.88) 39.40 ± 0.00 (-1.03) 5 / 5
FBNet 93.14 ± 0.12 69.97 ± 0.08 39.69 ± 0.06 0 / 5
TAS 92.00 ± 0.01 67.11 ± 0.05 39.15 ± 0.05 3 / 5
TF-NAS 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
HDX 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
cts,comb25 : latency ≤ 4.14ms ∧ energy usage ≤ 18.6mJ (3785 architectures satisfied)

ConNAS 92.10 ± 0.06 (-1.95) 67.16 ± 0.16 (-4.36) 39.35 ± 0.59 (-5.61) 5 / 5
ProxylessNAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
FBNet 92.01 ± 0.00 (-2.04) 67.07 ± 0.00 (-4.45) 39.19 ± 0.00 (-5.78) 5 / 5
TAS 93.27 ± 0.00 70.06 ± 0.00 39.75 ± 0.00 0 / 5
TF-NAS 92.29 ± 0.00 (-1.76) 67.48 ± 0.00 (-4.04) 39.40 ± 0.00 (-5.57) 5 / 5
HDX 10.00 ± 0.00 (-84.05) 1.00 ± 0.00 (-70.52) 0.83 ± 0.00 (-44.13) 5 / 5
cts,comb10 : latency ≤ 3.03ms ∧ energy usage ≤ 13.3mJ (1526 architectures satisfied)

ConNAS 92.08 ± 0.06 (-0.70) 67.20 ± 0.21 (-1.16) 39.10 ± 0.70 (-1.33) 5 / 5
ProxylessNAS 92.29 ± 0.00 67.48 ± 0.00 39.40 ± 0.00 0 / 5
FBNet 92.01 ± 0.00 67.07 ± 0.00 39.19 ± 0.00 0 / 5
TAS 91.99 ± 0.01 67.15 ± 0.04 39.11 ± 0.04 0 / 5
TF-NAS 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
HDX 10.00 ± 0.00 (-82.78) 1.00 ± 0.00 (-67.36) 0.83 ± 0.00 (-39.60) 5 / 5
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Table 8: NATS-Bench size search space classification results under stricter hardware constraints. Test
accuracy (mean ± std over 5 runs) is reported under hardware constraints, including the number of parameters,
number of FLOPs, and peak memory usage. Stricter hardware constraints were set so that approximately 25%
and 10% of architectures in the search space satisfy the constraints. The relative error compared to the optimal
architecture satisfying the hardware constraints is reported between parentheses.

Method Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

css,param25 : #param. ≤ 187210 (8193 architectures satisfied)

ConNAS 91.33 ± 0.18 (-0.50) 64.03 ± 0.66 (-2.55) 38.25 ± 0.29 (-1.01) 5 / 5
ProxylessNAS 85.87 ± 1.16 (-5.96) 51.11 ± 2.35 (-15.47) 25.27 ± 2.13 (-13.99) 5 / 5
FBNet 93.22 ± 0.20 69.43 ± 0.22 45.68 ± 0.37 0 / 5
TAS 91.55 ± 0.31 64.09 ± 0.61 39.01 ± 1.39 0 / 5
TF-NAS 89.43 ± 0.64 (-2.40) 58.75 ± 2.84 (-7.83) 31.99 ± 1.56 (-7.28) 5 / 5
HDX 79.79 ± 0.00 (-12.04) 32.30 ± 0.00 (-34.28) 15.53 ± 0.00 (-23.73) 5 / 5
css,param10 : #param. ≤ 78906 (3278 architectures satisfied)

ConNAS 90.04 ± 0.53 (-1.06) 60.86 ± 2.01 (-3.34) 34.09 ± 0.83 (-2.71) 5 / 5
ProxylessNAS 85.87 ± 1.16 (-5.23) 51.11 ± 2.35 (-13.09) 25.27 ± 2.13 (-11.53) 5 / 5
FBNet 93.22 ± 0.20 69.43 ± 0.22 45.68 ± 0.37 0 / 5
TAS 91.08 ± 0.40 63.75 ± 0.09 37.04 ± 0.83 0 / 5
TF-NAS 85.62 ± 0.00 (-5.48) 47.74 ± 0.00 (-16.46) 25.43 ± 0.00 (-11.37) 5 / 5
HDX 79.79 ± 0.00 (-11.31) 32.30 ± 0.00 (-31.90) 15.53 ± 0.00 (-21.27) 5 / 5
css,memory25 : peak mem. ≤ 393kB (12288 architectures satisfied)

ConNAS 92.91 ± 0.08 (-0.21) 69.28 ± 0.24 (-1.20) 43.65 ± 0.10 (-1.05) 5 / 5
ProxylessNAS 91.33 ± 0.19 (-1.79) 68.22 ± 0.28 (-2.26) 38.49 ± 0.03 (-6.21) 5 / 5
FBNet 93.16 ± 0.29 69.69 ± 0.05 45.53 ± 0.87 0 / 5
TAS 92.82 ± 0.28 (-0.30) 69.40 ± 0.46 (-1.08) 43.69 ± 0.49 (-1.01) 5 / 5
TF-NAS 92.35 ± 0.09 (-0.77) 69.52 ± 0.13 (-0.96) 43.09 ± 0.61 (-1.61) 5 / 5
HDX 79.79 ± 0.00 (-13.33) 32.30 ± 0.00 (-38.18) 15.53 ± 0.00 (-29.17) 5 / 5
css,memory10 : peak mem. ≤ 229kB (3584 architectures satisfied)

ConNAS 92.30 ± 0.17 (-0.50) 68.80 ± 0.32 (-0.50) 40.80 ± 0.65 (-1.30) 5 / 5
ProxylessNAS 91.33 ± 0.19 (-1.47) 68.22 ± 0.28 (-1.08) 38.49 ± 0.03 (-3.61) 5 / 5
FBNet 93.16 ± 0.29 69.69 ± 0.05 45.53 ± 0.87 0 / 5
TAS 92.31 ± 0.16 68.67 ± 0.46 41.98 ± 0.91 0 / 5
TF-NAS 91.33 ± 0.19 (-1.47) 68.22 ± 0.28 (-1.08) 38.49 ± 0.03 (-3.61) 5 / 5
HDX 79.79 ± 0.00 (-13.01) 32.30 ± 0.00 (-37.00) 15.53 ± 0.00 (-26.57) 5 / 5
css,flops25 : #FLOPs ≤ 147235M (8193 architectures satisfied)

ConNAS 91.58 ± 0.12 (-0.70) 64.94 ± 0.60 (-3.98) 39.53 ± 0.97 (-1.77) 5 / 5
ProxylessNAS 91.59 ± 0.21 (-0.69) 65.68 ± 0.85 (-3.24) 37.84 ± 0.62 (-3.46) 5 / 5
FBNet 92.87 ± 0.23 69.42 ± 0.60 44.23 ± 0.39 0 / 5
TAS 92.19 ± 0.13 68.06 ± 0.44 41.76 ± 0.04 0 / 5
TF-NAS 90.88 ± 0.02 (-1.40) 65.87 ± 0.56 (-3.05) 38.09 ± 0.33 (-3.21) 5 / 5
HDX 79.79 ± 0.00 (-12.49) 32.30 ± 0.00 (-36.62) 15.53 ± 0.00 (-25.77) 5 / 5
css,flops10 : #FLOPs ≤ 67063M (3278 architectures satisfied)

ConNAS 90.96 ± 0.40 (-0.43) 63.48 ± 0.53 (-3.10) 36.57 ± 0.77 (-2.43) 5 / 5
ProxylessNAS 91.37 ± 0.50 65.30 ± 1.07 37.63 ± 0.63 2 / 5
FBNet 92.87 ± 0.23 69.42 ± 0.60 44.23 ± 0.39 0 / 5
TAS 91.95 ± 0.04 66.54 ± 0.16 39.33 ± 0.91 0 / 5
TF-NAS 89.59 ± 0.60 (-1.80) 58.31 ± 1.52 (-8.27) 32.15 ± 0.69 (-6.85) 5 / 5
HDX 79.79 ± 0.00 (-11.60) 32.30 ± 0.00 (-34.28) 15.53 ± 0.00 (-23.47) 5 / 5
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css,comb25 : #param. ≤ 187210 ∧ peak mem. ≤ 393kB∧
#FLOPs ≤ 147235M (5364 architectures satisfied)

ConNAS 91.29 ± 0.11 (-0.37) 64.88 ± 0.54 (-1.70) 38.03 ± 0.09 (-1.24) 5 / 5
ProxylessNAS 87.76 ± 0.59 (-3.90) 56.22 ± 1.18 (-10.36) 26.39 ± 0.37 (-12.87) 5 / 5
FBNet 92.88 ± 0.19 68.83 ± 0.34 43.88 ± 0.42 0 / 5
TAS 91.90 ± 0.11 66.93 ± 0.13 40.39 ± 0.26 0 / 5
TF-NAS 90.59 ± 0.19 (-1.07) 63.30 ± 0.59 (-3.28) 36.58 ± 0.55 (-2.69) 5 / 5
HDX 79.79 ± 0.00 (-11.87) 32.30 ± 0.00 (-34.28) 15.53 ± 0.00 (-23.73) 5 / 5
css,comb10 : #param. ≤ 78906 ∧ peak mem. ≤ 229kB∧
#FLOPs ≤ 67063M 970 architectures satisfied

ConNAS 89.43 ± 0.20 (-1.00) 61.70 ± 0.46 (-1.38) 31.78 ± 1.01 (-2.52) 5 / 5
ProxylessNAS 87.76 ± 0.59 (-2.67) 56.22 ± 1.18 (-6.86) 26.39 ± 0.37 (-7.91) 5 / 5
FBNet 92.88 ± 0.19 68.83 ± 0.34 43.88 ± 0.42 0 / 5
TAS 91.10 ± 0.19 64.45 ± 0.02 36.96 ± 0.06 0 / 5
TF-NAS 88.71 ± 0.13 (-1.72) 58.14 ± 1.13 (-4.94) 28.84 ± 1.24 (-5.46) 5 / 5
HDX 79.79 ± 0.00 (-10.64) 32.30 ± 0.00 (-30.78) 15.53 ± 0.00 (-18.77) 5 / 5
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D ABLATION WEIGHTING FACTOR BASELINE METHODS

Table 9: Comparison of classification results on NATS-Bench topology search space across baseline
methods and weighting factors. Test accuracy (mean ± std over 5 runs) is reported under hardware constraints,
using on-device measurements of inference latency and energy usage on an NVIDIA Jetson TX2 Edge GPU.
The relative error compared to the optimal architecture satisfying the hardware constraints is reported between
parentheses. Best results for each method, constraint, and dataset are highlighted in bold. Performance of
experiments that do not satisfy the hardware constraints are reported in gray.

Method λhardware Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

cts,latency : latency ≤ 5.31ms (7814 architectures satisfied)

ProxylessNAS 0.5 92.06 ± 0.13 (-2.20) 67.15 ± 0.18 (-6.01) 39.23 ± 0.09 (-7.37) 5 / 5
ProxylessNAS 1.0 92.29 ± 0.00 (-1.97) 67.48 ± 0.00 (-5.68) 39.40 ± 0.00 (-7.20) 5 / 5
ProxylessNAS 1.5 42.92 ± 45.07 (-51.34) 27.59 ± 36.41 (-45.57) 16.26 ± 21.12 (-30.34) 5 / 5
FBNet 0.5 93.10 ± 0.09 (-1.16) 69.94 ± 0.07 (-3.22) 39.67 ± 0.05 (-6.93) 5 / 5
FBNet 0.6 93.18 ± 0.12 (-1.08) 70.00 ± 0.08 (-3.16) 39.71 ± 0.06 (-6.89) 5 / 5
FBNet 0.7 93.27 ± 0.00 (-1.00) 70.06 ± 0.00 (-3.10) 39.75 ± 0.00 (-6.85) 5 / 5
TAS 0.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.0 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 0.5 93.27 ± 0.00 (-1.00) 70.06 ± 0.00 (-3.10) 39.75 ± 0.00 (-6.85) 5 / 5
TF-NAS 1.0 93.27 ± 0.00 (-1.00) 70.06 ± 0.00 (-3.10) 39.75 ± 0.00 (-6.85) 5 / 5
TF-NAS 1.5 93.01 ± 0.57 (-1.25) 69.48 ± 1.29 (-3.68) 39.62 ± 0.30 (-6.98) 5 / 5
HDX 0.5 42.86 ± 44.99 (-51.40) 27.51 ± 36.30 (-45.65) 16.22 ± 21.07 (-30.38) 5 / 5
HDX 1.0 75.83 ± 36.80 (-18.43) 54.18 ± 29.73 (-18.98) 31.69 ± 17.25 (-14.91) 5 / 5
HDX 1.5 59.37 ± 45.07 (-34.89) 40.89 ± 36.41 (-32.27) 23.97 ± 21.12 (-22.63) 5 / 5
cts,energy : energy usage ≤ 23.95mJ (7814 architectures satisfied)

ProxylessNAS 0.5 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.37) 5 / 5
ProxylessNAS 1.0 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.37) 5 / 5
ProxylessNAS 1.5 26.46 ± 36.80 (-67.69) 14.30 ± 29.73 (-57.64) 8.55 ± 17.25 (-38.22) 5 / 5
FBNet 0.5 93.05 ± 0.00 (-1.10) 69.91 ± 0.00 (-2.03) 39.64 ± 0.00 (-7.12) 5 / 5
FBNet 0.6 93.05 ± 0.00 (-1.10) 69.91 ± 0.00 (-2.03) 39.64 ± 0.00 (-7.12) 5 / 5
FBNet 0.7 93.22 ± 0.09 (-0.93) 70.03 ± 0.07 (-1.91) 39.73 ± 0.05 (-7.04) 5 / 5
TAS 0.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.0 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 0.5 93.27 ± 0.00 (-0.89) 70.06 ± 0.00 (-1.88) 39.75 ± 0.00 (-7.02) 5 / 5
TF-NAS 1.0 93.01 ± 0.57 (-1.14) 69.48 ± 1.29 (-2.46) 39.62 ± 0.30 (-7.15) 5 / 5
TF-NAS 1.5 91.99 ± 0.01 (-2.16) 67.15 ± 0.04 (-4.79) 39.11 ± 0.04 (-7.66) 5 / 5
HDX 0.5 42.92 ± 45.07 (-51.23) 27.59 ± 36.41 (-44.35) 16.26 ± 21.12 (-30.51) 5 / 5
HDX 1.0 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.37) 5 / 5
HDX 1.5 10.00 ± 0.00 (-84.15) 1.00 ± 0.00 (-70.94) 0.83 ± 0.00 (-45.93) 5 / 5
cts,comb : latency ≤ 5.31ms ∧ energy usage ≤ 23.95mJ (7586 architectures satisfied)

ProxylessNAS 0.5 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.13) 5 / 5
ProxylessNAS 1.0 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.13) 5 / 5
ProxylessNAS 1.5 42.92 ± 45.07 (-51.23) 27.59 ± 36.41 (-44.35) 16.26 ± 21.12 (-30.27) 5 / 5
FBNet 0.7 92.01 ± 0.00 (-2.14) 67.07 ± 0.00 (-4.87) 39.19 ± 0.00 (-7.34) 5 / 5
FBNet 0.6 92.01 ± 0.00 (-2.14) 67.07 ± 0.00 (-4.87) 39.19 ± 0.00 (-7.34) 5 / 5
FBNet 0.7 92.01 ± 0.00 (-2.14) 67.07 ± 0.00 (-4.87) 39.19 ± 0.00 (-7.34) 5 / 5
TAS 0.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.0 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TAS 1.5 93.67 ± 0.00 70.91 ± 0.00 41.02 ± 0.00 0 / 5
TF-NAS 0.5 93.27 ± 0.00 (-0.89) 70.06 ± 0.00 (-1.88) 39.75 ± 0.00 (-6.78) 5 / 5
TF-NAS 1.0 93.27 ± 0.00 (-0.89) 70.06 ± 0.00 (-1.88) 39.75 ± 0.00 (-6.78) 5 / 5
TF-NAS 1.5 92.76 ± 0.69 (-1.39) 68.89 ± 1.61 (-3.05) 39.51 ± 0.34 (-7.02) 5 / 5
HDX 0.5 92.23 ± 0.13 67.40 ± 0.18 39.36 ± 0.09 1 / 5
HDX 1.0 92.29 ± 0.00 (-1.86) 67.48 ± 0.00 (-4.46) 39.40 ± 0.00 (-7.13) 5 / 5
HDX 1.5 59.37 ± 45.07 (-34.78) 40.89 ± 36.41 (-31.05) 23.97 ± 21.12 (-22.56) 5 / 5
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Table 10: Comparison of classification results on NATS-Bench size search space across baseline meth-
ods and weighting factors. Test accuracy (mean ± std over 5 runs) is reported under hardware constraints,
including the number of parameters, number of FLOPs, and peak memory usage. The relative error compared
to the optimal architecture satisfying the hardware constraints is reported between parentheses. Best results for
each method, constraint, and dataset are highlighted in bold. Performance of experiments that do not satisfy
the hardware constraints are reported in gray.

Method λhardware Top-1 accuracy (%) Runs
CIFAR-10 CIFAR-100 ImageNet16-120 satisfied

css,param : #parameters ≤ 261650 (16385 architectures satisfied)

ProxylessNAS 0.5 90.87 ± 0.02 (-1.66) 61.31 ± 0.61 (-7.61) 35.34 ± 0.31 (-6.69) 5 / 5
ProxylessNAS 1.0 85.87 ± 1.16 (-6.66) 51.11 ± 2.35 (-17.81) 25.27 ± 2.13 (-16.76) 5 / 5
ProxylessNAS 1.5 83.47 ± 0.74 (-9.06) 45.36 ± 2.95 (-23.56) 21.59 ± 1.01 (-20.45) 5 / 5
FBNet 0.5 93.12 ± 0.17 69.36 ± 0.44 45.43 ± 0.48 0 / 5
FBNet 0.6 93.22 ± 0.20 69.43 ± 0.22 45.68 ± 0.37 0 / 5
FBNet 0.7 92.91 ± 0.26 69.36 ± 0.24 45.40 ± 0.41 0 / 5
TAS 0.5 92.26 ± 0.01 67.41 ± 0.38 42.10 ± 0.15 0 / 5
TAS 1.0 92.25 ± 0.02 67.34 ± 0.54 41.89 ± 0.33 0 / 5
TAS 1.5 92.25 ± 0.02 67.34 ± 0.54 41.89 ± 0.33 0 / 5
TF-NAS 0.5 91.30 ± 0.19 (-1.23) 64.88 ± 0.28 (-4.04) 40.43 ± 0.24 (-1.61) 5 / 5
TF-NAS 1.0 91.78 ± 0.00 (-0.75) 63.64 ± 0.00 (-5.28) 38.00 ± 0.00 (-4.03) 5 / 5
TF-NAS 1.5 91.56 ± 0.30 (-0.97) 64.05 ± 0.56 (-4.87) 38.17 ± 0.24 (-3.86) 5 / 5
HDX 0.5 88.00 ± 0.91 (-4.53) 54.74 ± 1.31 (-14.18) 29.33 ± 3.50 (-12.71) 5 / 5
HDX 1.0 86.10 ± 1.28 (-6.43) 51.71 ± 2.88 (-17.21) 25.36 ± 2.42 (-16.67) 5 / 5
HDX 1.5 83.37 ± 0.88 (-9.16) 45.20 ± 3.12 (-23.72) 21.54 ± 1.51 (-20.49) 5 / 5
css,mem : peak memory usage ≤ 655kB (20480 architectures satisfied)

ProxylessNAS 0.5 91.61 ± 0.09 (-1.81) 67.90 ± 0.24 (-2.96) 38.30 ± 0.18 (-7.63) 5 / 5
ProxylessNAS 1.0 91.33 ± 0.19 (-2.09) 68.22 ± 0.28 (-2.64) 38.49 ± 0.03 (-7.45) 5 / 5
ProxylessNAS 1.5 91.33 ± 0.19 (-2.09) 68.22 ± 0.28 (-2.64) 38.49 ± 0.03 (-7.45) 5 / 5
FBNet 0.5 93.24 ± 0.17 70.03 ± 0.38 45.43 ± 0.55 0 / 5
FBNet 0.6 93.16 ± 0.29 69.69 ± 0.05 45.53 ± 0.87 1 / 5
FBNet 0.7 93.23 ± 0.16 69.94 ± 0.34 45.71 ± 0.45 1 / 5
TAS 0.5 93.08 ± 0.20 (-0.34) 70.23 ± 0.16 (-0.63) 45.14 ± 0.31 (-0.79) 5 / 5
TAS 1.0 92.93 ± 0.19 (-0.49) 70.10 ± 0.32 (-0.76) 44.98 ± 0.59 (-0.95) 5 / 5
TAS 1.5 93.13 ± 0.19 (-0.29) 70.30 ± 0.19 (-0.56) 45.02 ± 0.32 (-0.91) 5 / 5
TF-NAS 0.5 92.92 ± 0.31 (-0.50) 69.94 ± 0.31 (-0.92) 44.73 ± 0.67 (-1.21) 5 / 5
TF-NAS 1.0 92.99 ± 0.10 (-0.43) 70.21 ± 0.16 (-0.65) 45.25 ± 0.27 (-0.69) 5 / 5
TF-NAS 1.5 93.02 ± 0.28 (-0.40) 70.13 ± 0.34 (-0.73) 45.02 ± 0.61 (-0.91) 5 / 5
HDX 0.5 89.43 ± 5.40 (-3.99) 60.85 ± 15.96 (-10.01) 34.23 ± 10.49 (-11.70) 5 / 5
HDX 1.0 91.59 ± 0.19 (-1.83) 68.03 ± 0.29 (-2.83) 38.41 ± 0.07 (-7.53) 5 / 5
HDX 1.5 91.41 ± 0.24 (-2.01) 68.09 ± 0.34 (-2.77) 38.47 ± 0.04 (-7.46) 5 / 5
css,flops : #FLOPs ≤ 344194M (16385 architectures satisfied)

ProxylessNAS 0.5 91.98 ± 0.00 (-0.99) 66.66 ± 0.00 (-3.82) 40.00 ± 0.00 (-4.37) 5 / 5
ProxylessNAS 1.0 91.59 ± 0.21 (-1.38) 65.68 ± 0.85 (-4.80) 37.84 ± 0.62 (-6.53) 5 / 5
ProxylessNAS 1.5 90.82 ± 0.12 (-2.15) 63.58 ± 0.91 (-6.90) 36.03 ± 0.59 (-8.33) 5 / 5
FBNet 0.5 92.92 ± 0.14 69.71 ± 0.52 44.52 ± 0.76 0 / 5
FBNet 0.6 92.87 ± 0.23 69.42 ± 0.60 44.23 ± 0.39 0 / 5
FBNet 0.7 92.92 ± 0.17 69.42 ± 0.59 44.20 ± 0.58 0 / 5
TAS 0.5 92.70 ± 0.18 69.10 ± 0.24 44.08 ± 0.18 0 / 5
TAS 1.0 92.57 ± 0.23 68.36 ± 0.68 42.71 ± 0.46 0 / 5
TAS 1.5 92.33 ± 0.00 67.66 ± 0.00 43.27 ± 0.00 0 / 5
TF-NAS 0.5 92.22 ± 0.07 (-0.75) 68.32 ± 0.55 (-2.16) 41.93 ± 0.40 (-2.44) 5 / 5
TF-NAS 1.0 92.19 ± 0.18 (-0.78) 67.81 ± 0.56 (-2.67) 41.69 ± 1.16 (-2.68) 5 / 5
TF-NAS 1.5 92.22 ± 0.18 (-0.75) 67.61 ± 0.24 (-2.87) 41.83 ± 1.19 (-2.53) 5 / 5
HDX 0.5 81.86 ± 2.83 (-11.11) 40.12 ± 10.70 (-30.36) 18.75 ± 4.40 (-25.62) 5 / 5
HDX 1.0 86.88 ± 0.00 (-6.09) 55.42 ± 0.00 (-15.06) 28.70 ± 0.00 (-15.67) 5 / 5
HDX 1.5 86.25 ± 0.00 (-6.72) 54.56 ± 0.00 (-15.92) 26.80 ± 0.00 (-17.57) 5 / 5
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css,comb : #parameters ≤ 261650 ∧ peak mem. ≤ 655kB∧
#FLOPs ≤ 344194M (13342 architectures satisfied)

ProxylessNAS 0.5 90.66 ± 0.11 (-1.87) 63.04 ± 0.34 (-5.88) 35.59 ± 0.19 (-6.44) 5 / 5
ProxylessNAS 1.0 87.76 ± 0.59 (-4.77) 56.22 ± 1.18 (-12.70) 26.39 ± 0.37 (-15.64) 5 / 5
ProxylessNAS 1.5 83.99 ± 0.00 (-8.54) 48.64 ± 0.00 (-20.28) 22.50 ± 0.00 (-19.53) 5 / 5
FBNet 0.5 92.87 ± 0.12 68.90 ± 0.31 44.00 ± 0.09 0 / 5
FBNet 0.6 92.88 ± 0.19 68.83 ± 0.34 43.88 ± 0.42 0 / 5
FBNet 0.7 92.63 ± 0.19 68.64 ± 0.74 42.95 ± 1.10 0 / 5
TAS 0.5 92.53 ± 0.14 67.69 ± 0.63 42.78 ± 0.57 0 / 5
TAS 1.0 92.26 ± 0.01 67.47 ± 0.42 41.97 ± 0.35 0 / 5
TAS 1.5 92.26 ± 0.00 67.58 ± 0.00 42.03 ± 0.00 0 / 5
TF-NAS 0.5 91.84 ± 0.07 (-0.69) 66.89 ± 0.39 (-2.03) 39.31 ± 0.53 (-2.72) 5 / 5
TF-NAS 1.0 91.76 ± 0.00 (-0.77) 66.46 ± 0.00 (-2.46) 38.73 ± 0.00 (-3.30) 5 / 5
TF-NAS 1.5 91.85 ± 0.21 (-0.68) 66.64 ± 0.16 (-2.28) 40.07 ± 0.91 (-1.97) 5 / 5
HDX 0.5 79.79 ± 0.00 (-12.74) 32.30 ± 0.00 (-36.62) 15.53 ± 0.00 (-26.50) 5 / 5
HDX 1.0 84.96 ± 0.00 (-7.57) 51.84 ± 0.00 (-17.08) 23.57 ± 0.00 (-18.47) 5 / 5
HDX 1.5 83.93 ± 2.31 (-8.60) 47.93 ± 8.74 (-20.99) 21.96 ± 3.59 (-20.07) 5 / 5
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E TRAINING DETAILS

To facilitate reproducibility, we provide additional experimental details in this appendix.2

E.1 NATS-BENCH

We adopt the same data augmentation techniques and training procedure as described in Dong et al.
(2021). The search process is performed in two stages.

In the first stage, a supernet is trained on 50% of the CIFAR-10 training set (25,000 images) for
150 epochs, using a batch size of 64. The operation weights are optimized via Nesterov momentum
Stochastic Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 5× 10−4. The
initial learning rate is set to 0.0025 and annealed to 0.001 over 100 epochs using a cosine schedule.
Architecture parameters are optimized using Adam with a learning rate of 0.001, weight decay of
1× 10−3, and β1 = 0.5, β2 = 0.999. The sampling temperature starts at 10 and is linearly annealed
to 0.1 over 100 epochs. The rescale factor R is kept constant throughout training (we use R = 1.2
for most experiments; an ablation study on the rescale factor is presented in Appendix B).

In the second stage, an architecture is selected based on the lowest cross-entropy loss, evaluated
on the remaining 50% of the training set, while satisfying the imposed hardware constraints. The
NATS-Bench performance lookup table is then used to retrieve the test accuracy of the sampled
architecture on CIFAR-10, CIFAR-100, and ImageNet16-120.

All experiments are repeated five times using fixed random seeds. The search is performed on a
single NVIDIA V100 GPU and took approximately 5 hours to complete.

E.2 CONDITION MONITORING USE CASE

For the condition monitoring use case, a dataset is created from Desenfans et al. (2025), representing
readings from a voltage meter, a current sensor and an encoder.3 The complete dataset contains
31,920 time series instances, split into 25,530 train for training and 6,390 for testing. Each instance
consists of 256 time steps with 8 features: 3-phase current, 3-phase voltage, motor speed, and rotor
angle. The instances are labeled as either no fault, static eccentricity fault, dynamic eccentricity
fault, or mixed eccentricity fault. A Fast Fourier Transform (FFT) is applied to the 3-phase current
and voltage signals, and all 8 features are normalized to the range [0, 1]. The search process is again
performed in two stages.

In the first stage, a supernet is trained on 80% of the training set (20424 instances) for 150 epochs,
using a batch size of 128. The operation weights are optimized via Nesterov momentum Stochastic
Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 5×10−4. The initial learn-
ing rate is set to 0.0025 and annealed to 0.001 over 100 epochs using a cosine schedule. Architecture
parameters are optimized using Adam with a learning rate of 0.001, weight decay of 1× 10−3, and
β1 = 0.5, β2 = 0.999. The sampling temperature starts at 10 and is linearly annealed to 0.1 over
100 epochs. The rescale factor R is kept constant at 1.2.

In the second stage, an architecture is selected based on the lowest cross-entropy loss, evaluated
on the remaining 20% of the training set, while satisfying the imposed hardware constraints. The
selected architectures are trained using 5-fold cross-validation, where each fold uses 80% of the
training data for training over 250 epochs with a batch size of 16. Optimization is performed using
SGD with a momentum of 0.9 and a weight decay of 1 × 10−4. The initial learning rate is set to
0.0025 and annealed to 0.0001 using a cosine scheduler.

All experiments are repeated five times using fixed random seeds. The search is performed on a
single NVIDIA P100 GPU and took approximately 7 hours to complete.

2The code required to run all experiments will be made publicly available upon publication of the paper.
3The dataset will be made publicly available upon publication of the paper.
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F CONDITION MONITORING SEARCH SPACE

The search space for the condition monitoring use case is defined as a supernet composed of eight
consecutive edges. Each edge can select from the following candidate operations:

• A 1D convolution followed by a batch normalization and a ReLU activation
• A 1D depthwise separable convolution, where each convolution is followed by a batch

normalization and a ReLU activation
• An identity operation (available only on even-numbered edges)

The classification head consists of a global average pooling layer followed by a fully connected
layer.

For each convolution, the number of output channels can be chosen from {16, 32, 64, 256, 512}.
Additionally, a stride of 2 is applied to convolutions on odd-numbered edges. Convolutional filters
are shared across operations, as proposed in Wan et al. (2020), to reduce the number of trainable
parameters and improve memory and computational efficiency.
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G CONDITION MONITORING HAND-CRAFTED BASELINES

To ensure coverage of diverse hardware constraints, we sampled six hand-crafted architectures from
the proposed search space. These include the smallest (Conv1D-x-Min) and largest (Conv1D-x-
Max) models in terms of latency and energy consumption, for both regular and depthwise-separable
convolutions (Chollet, 2017). Additionally, Conv1D-Reg and Conv1D-DS follow common design
principles where channel width increases as spatial dimensions decrease.

Table 11: Overview of hand-crafted architectures used for comparison. Each convolutional block consists
of a convolutional operation regular or depthwise separable, a batch normalization, and a ReLU activation.

Name Number of Kernel Channels Strides Convolution
blocks type

Conv1D-Reg 4 3 [16, 32, 64, 128] [2, 2, 2, 2] Regular
Conv1D-DS 4 3 [16, 32, 64, 128] [2, 2, 2, 2] Depthwise Separable

Conv1D-Reg-Max 8 3 [512, 512, 512, 512, [2, 1, 2, 1, Regular
512, 512, 512, 512] 2, 1, 2, 1]

Conv1D-DS-Max 8 3 [512, 512, 512, 512, [2, 1, 2, 1, Depthwise Separable
512, 512, 512, 512] 2, 1, 2, 1]

Conv1D-Reg-Min 4 3 [8, 8, 8, 8] [2, 2, 2, 2] Regular
Conv1D-DS-Min 4 3 [8, 8, 8, 8] [2, 2, 2, 2] Depthwise Separable
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H DISCLOSURE ON THE USE OF GENERATIVE ARTIFICIAL INTELLIGENCE

We used a large language model (LLM) as a writing aid. Ideation, scientific content, experimental
design, and analysis were conducted entirely by the authors without any contribution of an LLM.
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