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ABSTRACT

Efficient communication is a key challenge in federated learning, where multi-
ple clients contribute to a shared model. To address this issue, reducing local
computation is an effective solution. This paper proposes an innovative federated
learning algorithm that utilizes Particle Swarm Optimization, a powerful evolu-
tionary algorithm, to minimize the computational demands on federated learning
clients. Our results show that this algorithm results in significant enhancements in
accuracy and faster convergence of loss compared to traditional federated learning
methods.

1 INTRODUCTION

In recent years, Federated Learning has emerged as a promising approach to privacy-preserving
machine learning. This method allows clients to train models locally while keeping their sensitive
data securely on their own devices, as opposed to traditional centralized learning where clients send
their data to a central server (Konečný et al., 2016). In federated learning, communication efficiency
is a critical consideration. To improve the communication bottleneck, reducing the computational
demands on clients is a crucial step. Evolutionary algorithms, with their ability to approximate
the minima of an objective function, present a potential solution (Vikhar, 2016). Compared to
deterministic gradient-based optimization algorithms, evolutionary algorithms are computationally
less demanding and do not guarantee convergence (Hamed et al., 2010).

Related Work: Previous works have explored different approaches to reduce the communication
cost in Federated Learning. For example, structured updates and sketched updates can reduce the
communication cost in FedAvg by two orders of magnitude (Konečný et al., 2016). Additionally,
lossy compression and Federated Dropout have been proposed to reduce communication costs in
FedAvg without degrading the quality of the final model (Wen et al., 2021).

Moreover, compression objectives such as gradient compression, model broadcast compression, and
local computation reduction have been studied in the literature (Kairouz et al., 2019). Most work
focuses on gradient compression because it takes more time to upload data than to receive data on
most edge devices. In contrast, our approach focuses on reducing local computation, which can be
combined with model broadcast compression and compression of model update compression.

Other studies have explored the use of evolutionary algorithms to optimize the federated learning
process. For example, the Ditto algorithm trains a different model on each client to ensure the
model performs well on every device (Li et al., 2020). Similarly, we focus on our algorithm’s
performance on client devices and pursue fairness by reducing the local computation required from
any client participating in each round of federated training. Lastly, FedGKT (He et al., 2020) posits
federated learning as a group knowledge transfer problem, where small CNNs on client devices
receive knowledge from a large CNN stored on the server. In FedGKT, knowledge transfer reduces
the local computation required from any client participating in a round of federated training.

In this paper, we propose the use of Particle Swarm Optimization (PSO), a powerful and efficient
evolutionary algorithm, to enhance federated learning. PSO is well-known for its low memory and
computational requirements (Poli et al., 1995). By integrating PSO into federated learning, clients
can train their models with fewer computational resources, leading to improved communication
efficiency and faster convergence of the shared model.
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2 EXPERIMENTAL SETUP

Centralized Training In this experiment, we adopted a knowledge transfer approach to reduce the
computational load on client devices. We utilized a pre-trained MobileNetV2 model, freezing its first
five layers and transferring the weights to a new architecture implemented in Keras (He et al., 2020).
To the transferred model, we added several layers, including a Flatten layer, a Dense layer, a ReLU
activation function, a Dropout layer, and a final Dense layer with ten units and a softmax activation.
The model was trained using the Adam optimizer and a categorical cross-entropy loss function, with
the accuracy evaluated at each location in the hyperparameter search space. Our dataset consisted
of 60,000 MNIST training examples and 10,000 test examples, and the experiments were run on an
Intel Iris Plus Graphics 1536 MB GPU.

Federated Setting In this setup, we simulated federated learning in a client-server architecture
using TensorFlow Federated and Flower as our training frameworks (Bonawitz et al., 2020; Beutel
et al., 2020). We trained on the EMNIST and FEMNIST datasets (Cohen et al., 2017; Caldas et al.,
2018) and aggregated the weights on the server side using stochastic weight averaging (Izmailov
et al., 2018).

3 RESULTS

Figure 1: Comparison of model accuracy and loss over time between training (blue) and validation
sets (orange) for particle swarm optimization, Fig. 1 (a) & (c), and random search, Fig. 1 (b) & (d).

As shown in Fig. 1, an early decline in the loss curve for particle swarm optimization is observed
as compared to gradient descent. Furthermore, as observed in Table 1, particle swarm optimization
performed better than gradient descent when it comes to accuracy, although taking a longer time for
the same number of epochs.

Optimization Time Accuracy
Particle swarm 86.1671 sec. 0.9624
Gradient descent 52.6553 sec. 0.6814
Random search 44.4513 sec. 0.9501

Table 1: Comparison of optimization time and accuracy for different approaches.

4 DISCUSSION

The results of our study demonstrate the potential of particle swarm optimization to reduce lo-
cal computation in federated learning, thus improving communication efficiency and reducing the
rounds of communication needed to train a shared model. The reduced local computation achieved
through particle swarm optimization has the potential to make the training process faster and more
efficient, as fewer communication rounds are needed to train the shared model. In addition, by
reducing the computation load on client devices, this approach can help to overcome some of the
challenges posed by resource-constrained clients. There are several areas of future work that can
build on the results of this study. Firstly, we plan to replicate the experiments through client-server
simulations to validate the results. Additionally, our proposed method can be further improved by
incorporating techniques such as accelerated particle swarm optimization (Gandomi et al., 2013).
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