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ABSTRACT

Reinforcement learning research has achieved high acceleration in its progress
starting from the initial installation of deep neural networks as function approxi-
mators to learn policies that make sequential decisions in high-dimensional state
representation MDPs. While several consecutive barriers have been broken in deep
reinforcement learning research (i.e. learning from high-dimensional states, learn-
ing purely via self-play), several others still stand. On this line, in our paper we
focus on experience collection in high-dimensional complex MDPs and we propose
a unique technique based on experiences obtained through extremum actions. Our
method provides theoretical basis for efficient experience collection, and further
comes with zero additional computational cost while leading to significant sample
efficiency gains in deep reinforcement learning training. We conduct extensive
experiments in the Arcade Learning Environment with high-dimensional state
representation MDPs. We demonstrate that our technique improves the human nor-
malized median scores of Arcade Learning Environment by 248% in the low-data
regime.

1 INTRODUCTION

Utilization of deep neural networks as function approximators enabled learning functioning policies
in high-dimensional state representation MDPs (Mnih et al., 2015). Following this initial work, the
current line of work trains deep reinforcement learning policies to solve highly complex problems
from game solving (Hasselt et al., 2016; Schrittwieser et al., 2020) to self driving vehicles (Lan et al.,
2020). Yet there are still remaining unsolved problems restricting the current capabilities of deep
neural policies. One of the main intrinsic open problems in deep reinforcement learning research
is experience collection and sample complexity in high-dimensional state representation MDPs.
While prior work extensively studied the exploration problem in bandits and tabular reinforcement
learning, and proposed various algorithms and techniques optimal to the tabular form or the bandit
setting (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Karnin et al., 2013; Lu & Roy, 2019),
experience collection in deep reinforcement learning remains an open challenging problem while
practitioners repeatedly employ quite simple yet effective techniques (i.e. ε-greedy) (Flennerhag
et al., 2022; Hasselt et al., 2016; Wang et al., 2016; Hamrick et al., 2020).

Despite the provable optimality of these techniques in the tabular or bandit setting, they generally
rely strongly on the assumptions of tabular reinforcement learning, and in particular on the ability
to record tables of statistical estimates for every state-action pair which have size growing with
the number of states times the number of actions. Hence, these assumptions are far from what is
being faced in the deep reinforcement learning setting where states and actions can be parametrized
by high-dimensional representations. Thus, in high-dimensional complex MDPs, for which deep
neural networks are used as function approximators, the efficiency and the optimality of the methods
proposed for tabular settings do not transfer well to deep reinforcement learning experience collection.
Hence, in deep reinforcement learning research still, naive and standard techniques (e.g. ε-greedy) are
preferred over both the optimal tabular techniques and over the particular recent experience collection
techniques targeting only high scores for particular games (Mnih et al., 2015; Hasselt et al., 2016;
Wang et al., 2016; Anschel et al., 2017; Bellemare et al., 2017; Dabney et al., 2018; Lan et al., 2020;
Flennerhag et al., 2022).
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Sample efficiency in deep neural policies is still one of the main challenging problems restricting
research progress in reinforcement learning. The magnitude of the number of samples required to
learn and adapt continuously is one of the main limiting factors preventing current state-of-the-art
deep reinforcement learning algorithms from being deployed in many diverse settings, but most
importantly one of the main challenges that needs to be dealt with on the way to building neural
policies that can generalize and adapt continuously in non-stationary environments. In our paper we
aim to seek answers for the following questions:

• Can we collect experiences in a high-dimensional state representation MDP more efficiently
with zero additional computational cost?

• Is there a natural theoretical motivation that can be used to design a zero-cost exploration
strategy while achieving high sample efficiency?

To be able to answer these questions, in our paper we focus on environment interactions in deep
reinforcement learning and make the following contributions:

• We propose a novel experience collection technique based on minimizing the state-action
value function to increase the information gain from each particular experience acquired in
the MDP.

• We conduct an extensive study in the Arcade Learning Environment 100K benchmark
with the state-of-the-art algorithms and demonstrate that our temporal difference learning
algorithm improves performance by 248% across the entire benchmark compared to the
baseline algorithm.

• We demonstrate the efficacy of our proposed MaxMin TD Learning algorithm in terms of
sample-efficiency. Our method based on maximizing novel experiences via minimizing
the state-action value function reaches approximately to the same performance level as
model-based deep reinforcement learning algorithms, without building and learning any
model of the environment.

2 BACKGROUND AND PRELIMINARIES

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) M =
〈S,A, r, γ, ρ0,P〉 that contains a continous set of states s ∈ S, a set of discrete actions a ∈ A,
a probability transition function T (s, a, s′) on S × A × S, discount factor γ, a reward function
r(s, a) : S × A → R with initial state distribution ρ0. A policy π(s, a) : S → P(A) in an MDP
is a mapping function between states and actions assigning a probability distribution over actions
for each state s ∈ S. The main goal in reinforcement learning is to learn an optimal policy π that
maximizes the discounted expected cumulative rewards.

R = Eat∼π(st,·)
∑
t

γtr(st, at),

where at ∼ π(st, ·). InQ-learning the learned policy is parameterized by a state-action value function
Q : S × A → R, which represents the value of taking action a in state s. The optimal state-action
value function is learnt via iterative Bellman update

Q(st, at) = r(st, at) + γ
∑
st

T (st, at, st+1)V(st+1).

where V(st+1) = maxaQ(st+1, a). Let a∗ be the action maximizing the state-action value function,
a∗(s) = arg maxaQ(s, a), in state s. Once the Q-function is learnt the policy is determined via
taking action a∗(s) = arg maxaQ(s, a). In deep reinforcement learning, the state space or the action
space is large enough that it is not possible to learn and store the state-action values in a tabular form.
Thus, the Q-function is approximated via deep neural networks.
θt+1 = θt + α(r(st, at) + γQ(st+1, arg max

a
Q(st+1, a; θt); θt)−Q(st, at; θt))∇θtQ(st, at; θt)

In deep double-Q learning, two Q-networks are used to decouple the Q-network deciding which
action to take and the Q-network to evaluate the action taken.

θt+1 = θt + α(r(st, at) + γQ(st+1, arg max
a

Q(st+1, a; θt); θ̂t)−Q(st, at; θt))∇θtQ(st, at; θt)
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Current deep reinforcement learning algorithms use ε-greedy exploration during training (Wang et al.,
2016; Mnih et al., 2015; Hasselt et al., 2016; Hamrick et al., 2020; Flennerhag et al., 2022). In
particular, the ε-greedy algorithm takes an action ak ∼ U(A) with probability ε in a given state s, i.e.
π(s, ak) = ε

|A| , and takes an action a∗ = arg maxaQ(s, a) with probability 1− ε, i.e.

π(s, arg max
a

Q(s, a)) = 1− ε+
ε

|A|

While a family of algorithms have been proposed based on counting state visitations (i.e. the number
of times action a has been taken in state s by time step t) with provable optimal regret bounds using
the principal of optimism in the face of uncertainty in the tabular MDP setting, yet incorporating these
count-based methods in high-dimensional state representation MDPs requires substantial complexity
including training additional deep neural networks to estimate counts or other uncertainty metrics. As
a result, many state-of-the-art deep reinforcement learning algorithms still use simple, randomized
experience collection methods based on sampling a uniformly random action with probability ε (Mnih
et al., 2015; Hasselt et al., 2016; Wang et al., 2016; Hamrick et al., 2020; Flennerhag et al., 2022), or
the injection of random noise via noisy-networks (Hessel et al., 2018). Nonetheless, we still provide
comparison to count-based methods in Section 4 and Section 6.

3 BOOSTING TEMPORAL DIFFERENCE

In deep reinforcement learning the state-action value function is initialized with random weights
(Mnih et al., 2015; 2016; Hasselt et al., 2016; Wang et al., 2016; Schaul et al., 2016; Oh et al.,
2020; Schrittwieser et al., 2020; Hubert et al., 2021). Thus, in the early phase of the training the
Q-function will behave more like a random function rather than providing an accurate representation
of the optimal state-action values. In particular, early in training the Q-function, on average, will
assign approximately similar values to states that are similar, and will have little correlation with the
immediate rewards. We first formalize this intuition in the following definitions.

Definition 3.1 (η-uninformed Q). Let η > 0. A Q-function parameterized by weights θ ∼ Θ is
η-uninformed if for any state s ∈ S with amin = arg minaQθ(s, a) we have

|Eθ∼Θ[r(st, a
min)]− Ea∼U(A)[r(st, a)]| < η.

Definition 3.2 (δ-smooth Q). Let δ > 0. A Q-function parameterized by weights θ ∼ Θ is δ-smooth
if for any state s ∈ S and action â = â(s, θ) with s′ ∼ T (s, â, ·) we have

|Es′∼T (s,â,·),θ∼Θ[max
a

Qθ(s, a)]− Es′∼T (s,â,·),θ∼Θ[max
a

Qθ(s
′, a)]| < δ

where the expectation is over both the random initialization of the Q-function weights, and the
random transition to state s′ ∼ T (s, â, ·).

Definition 3.3 (Disadvantage Gap). For a state-action value function Qθ the disadvantage gap in a
state s ∈ S is given by

D(s) = Ea∼U(A),θ∼Θ[Qθ(s, a)−Qθ(s, amin)]

where amin = arg minaQθ(s, a).

The following proposition captures the intuition that when the Q-function on average assigns similar
maximum values to consecutive states, choosing the action minimizing the state-action value function
will achieve an above-average temporal difference.

Proposition 3.4. Let η, δ > 0 and suppose that Qθ(s, a) is η-uninformed and δ-smooth. Let
st ∈ S be a state, and let amin be the action minimizing the state-action value in a given state
st, amin = arg minaQθ(st, a). Let smin

t+1 ∼ T (st, a
min, ·). Then for an action at ∼ U(A) with

st+1 ∼ T (st, at, ·) we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[r(st, a

min) + γmax
a

Qθ(s
min
t+1, a)−Qθ(st, amin)]

> Eat∼U,(A)st+1∼T (st,at,·),θ∼Θ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)]

+D(s)− 2δ − η
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Proof. Since Qθ(s, a) is δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[γmax

a
Qθ(s

min
t+1, a)−Qθ(st, amin)]

> γEθ∼Θ[max
a

Qθ(st, a)]− δ − Eθ∼Θ[Qθ(st, amin)]

> γEst+1∼T (st,at,·),θ∼Θ[max
a

Qθ(st+1, a)]− 2δ − Eθ∼Θ[Qθ(st, amin)]

≥ Eat∼U(A),st+1∼T (st,at,·),θ∼Θ[γmax
a

Qθ(st+1, a)−Qθ(st, at)]

+D(s)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ(s, a) is η-uninformed,

Eθ∼Θ[r(st, a
min)] > Eat∼U(A)[r(st, at)]− η.

Combining with the previous inequality completes the proof.

In words, the proposition shows that the temporal difference achieved by the minimum-value action
is above-average by an amount approximately equal to the disadvantage gap. The above argument
can be extended to the case where action selection and evaluation in the temporal difference are
computed with two different sets of weights θ and θ̂ as in double Q-learning.
Definition 3.5 (δ-smoothness for Double-Q). Let δ > 0. A pair of Q-functions parameterized by
weights θ ∼ Θ and θ̂ ∼ Θ are δ-smooth if for any state s ∈ S and action â = â(s, θ) ∈ A with
s′ ∼ T (s, â, ·) we have∣∣∣∣∣Es′∼T (s,â,·),θ∼Θ,θ̂∼Θ

[
Qθ̂(s, arg max

a
Qθ(s, a))

]

− Es′∼T (s,â,·),θ∼Θ,θ̂∼Θ

[
Qθ̂(s

′, arg max
a

Qθ(s
′, a))

] ∣∣∣∣∣ < δ

where the expectation is over both the random initialization of the Q-function weights θ and θ̂, and
the random transition to state s′ ∼ T (s, â, ·).

With this definition we can then prove that choosing the minimum valued action will lead to a
temporal difference that is above-average by approximately D(s).
Proposition 3.6. Let η, δ > 0 and suppose that Qθ and Qθ̂ are η-uniformed and δ-smooth. Let
st ∈ S be a state, and let amin = arg minaQθ(st, a). Let smin

t+1 ∼ T (st, a
min, ·). Then for an action

at ∼ U(A) with st+1 ∼ T (st, at, ·) we have

Est+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, a
min) + γQθ̂(s

min
t+1, arg max

a
Qθ(s

min
t+1, a))−Qθ(st, amin)]

> Eat∼U(A),st+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, at) + γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, at)]

+D(s)− 2δ − η

Proof. Since Qθ and Qθ̂ are δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[γQθ̂(s

min
t+1, arg max

a
Qθ(s

min
t+1, a))−Qθ(st, amin)]

> Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[γQθ̂(st, arg max

a
Qθ(st, a))−Qθ(st, amin)]− δ

> Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, amin)]− 2δ

≥ Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, at)]

+D(s)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ and Qθ̂ are η-uniformed,

Eθ∼Θ,θ̂∼Θ[r(st, a
min)] > Eat∼U(A)[r(st, at)]− η.

Combining with the previous inequality completes the proof.
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At first, the results in Proposition 3.4 and 3.6 might appear counterintuitive. The fact that the Q-
function is δ-smooth and η-uninformed seem like properties of a random function. Thus, taking the
minimum Q-value action should be approximately equivalent to taking a uniform random action.
However, Proposition 3.4 and 3.6 show that the temporal difference achieved by taking the minimum
action is larger than that of a random action by an amount equal to the disadvantage gap D(s). In
order to reconcile these two statements it is useful at this point to look at the limiting case of the
Q function at initialization. In particular, the following proposition shows that, at initialization, the
distribution of the minimum value action in a given state is uniform by itself, but is constant once we
condition on the weights θ.

Proposition 3.7. Let θ be the random initial weights for the Q-function. For any state s ∈ S let
amin(s) = arg mina′∈AQθ(s, a

′). Then for any a ∈ A

Pθ∼Θ

[
arg min
a′∈A

Qθ(s, a
′) = a

]
=

1

|A|

i.e. the distribution Pθ∼Θ[amin(s)] is uniform. Simultaneously, the conditional distribution
Pθ∼Θ[amin(s) | θ] is constant.

Proof. Since Qθ(s, ·) is a random function (given the random choice of θ), each action a ∈ A is
equally likely to be assigned the minimum Q-value in state s. Thus,

Pθ∼Θ

[
arg min
a′∈A

Qθ(s, a) = a

]
=

1

|A|
.

However, given the value of θ, the value of amin(s) is uniquely determined because

amin(s) = arg min
a∈A

Qθ(s, a).

Therefore, the distribution of amin(s) conditional on θ is constant.

This implies that, in states whose Q-values have not changed drastically from initialization, taking
the minimum action is almost equivalent to taking a random action. However, while the action chosen
early on in training is almost uniformly random when only considering the current state, it is at the
same time completely determined by the current value of the weights θ. The temporal difference is
also determined by the weights θ. Thus while the marginal distribution on actions taken is uniform,
the temporal difference when taking the minimum action is quite different than from the case where
an independently random action is chosen. In particular, in expectation over the random initialization
θ ∼ Θ, the temporal difference is higher when taking the minimum value action than that of a
random action as demonstrated in Section 3. The main objective of our method is to increase the
information gained from each experience via taking the actions that minimize the state-action value
function. While minimization of the Q-function may initially be regarded as counterintuitive, Section
3 provides the exact theoretical justification on how taking actions that minimize the state-action
value function results in higher temporal difference for the corresponding state transitions. Algorithm
1 summarizes our proposed algorithm MaxMin TD Learning based on minimizing the state-action
value function as described in detail in Section 3. Note that populating the experience replay buffer
and learning are happening simultaneously with different rates.

4 MOTIVATING EXAMPLE

As a motivating example we consider the chain MDP which consists of a chain of n states s ∈ S =
{1, 2, · · ·n} each with four actions. Each state i has one action that transitions the agent up the chain
by one step to state i+ 1, one action that transitions the agent to state 2, one action that transitions
the agent to state 3, and one action which resets the agent to state 1 at the beginning of the chain. All
transitions have reward zero, except for the last transition returning the agent to the beginning from
the n-th state. Thus, when started from the first state in the chain, the agent must learn a policy that
takes n− 1 consecutive steps up the chain, and then one final step to reset and get the reward. For the
chain MDP, we compare standard approaches to exploration in tabular Q-learning with our method
MaxMin TD Learning based on minimization of the state-action values. In particular we compare
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Algorithm 1: MaxMin TD Learning
Input: In MDPM with γ ∈ (0, 1], s ∈ S, a ∈ A with Qθ(s, a) function parametrized by θ, B

experience replay buffer, ε exploration parameter, N is the training learning steps.
Populating Experience Replay Buffer:
for st in e do

Sample κ ∼ U(0, 1)
if κ < ε then
amin = arg minaQ(st, a)
B ← (r(st, a

min), st, s
min
t+1, a

min)
else
a∗ = arg maxaQ(st, a)
B ← (r(st, a

∗), st, st+1, a
∗)

end if
end for

Learning:
for n in N do

Update with probability ε:
T D = r(st, a

min)
+γmaxaQ(smin

t+1, a)−Q(st, a
min)

Update with probability 1− ε:
T D = r(st, a

∗)
+γmaxaQ(st+1, a)−Q(st, a

∗)
end for
∇L(T D)

Figure 1: Learning curves in the chain MDP with our proposed algorithm MaxMin TD Learning, the
canonical algorithm ε-greedy and the UCB algorithm with variations in ε.

our method MaxMin TD Learning with both the ε-greedy action selection method, and the upper
confidence bound (UCB) method. In more detail, in the UCB method the number of training steps t,
and the number of times Nt(s, a) that each action a has been taken in state s by step t are recorded.
Furthermore, the action a ∈ A selection is determined as follows:

aUCB = arg max
a∈A

Q(s, a) + 2

√
log t

Nt(s, a)
.

In a given state s if N(s, a) = 0 for any action a, then an action is sampled uniformly at random
from the set of actions a′ with N(s, a′) = 0. For the experiments reported in our paper the length of
the chain is set to n = 10. The Q-function is initialized by independently sampling each state-action
value from a normal distribution with µ = 0 and σ = 0.1. In each iteration we train the agent using
Q-learning for 100 steps, and then evaluate the reward obtained by the argmax policy using the
current Q-function for 100 steps. Note that the maximum achievable reward in 100 steps is 10. Figure
1 reports the learning curves for each method with varying ε ∈ [0.15, 0.25] with step size 0.025. The
results in Figure 1 demonstrate that our method converges more quickly to the optimal policy than
either of the standard approaches.

5 LARGE SCALE EXPERIMENTAL RESULTS

The experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
The Double-Q Network (Hasselt et al., 2016) initially proposed by (van Hasselt, 2010) is trained with
prioritized experience replay (Schaul et al., 2016) without the dueling architecture with its original
version (Hasselt et al., 2016). The experiments are conducted both in the 100K Arcade Learning
Environment benchmark (van Hasselt et al., 2019), and the canonical version with 200 million frame
training. Note that the 100K Arcade Learning Environment benchmark is an established baseline
proposed to measure sample efficiency in deep reinforcement learning research. The ALE 100K
benchmark contains 26 different Arcade Learning Environment games. The policies are evaluated
after 100000 environment interactions. All of the polices in the experiments are trained over 5 random
seeds. The hyperparameters and the architecture details are reported in the supplementary material.
All of the results in the paper are reported with the standard error of the mean. The human normalized
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Median 80th Percentile

Figure 2: Human normalized scores median and 80th percentile over all games in the Arcade
Learning Environment (ALE) 100K benchmark for MaxMin TD Learning algorithm and the canonical
exploration algorithm ε-greedy.

Figure 3: Temporal difference for our proposed algorithm MaxMin TD Learning and the canonical
ε-greedy algorithm in the Arcade Learning Environment 100K benchmark. Dashed lines report the
temporal difference for the ε-greedy algorithm and solid lines report the temporal difference for the
MaxMin TD Learning algorithm. Colors indicate games.

Table 1: Human normalized scores median and 20th percentile across all of the games in the Arcade
Learning Environment 100K benchmark for MaxMin TD Learning, ε-greedy and NoisyNetworks.

Method MaxMin TD Learning ε-greedy NoisyNetworks

Human Normalized Median 0.0927±0.0050 0.0377±0.0031 0.0457±0.0035
20th Percentile 0.0145±0.0003 0.0056±0.0017 0.0102±0.0018
80th Percentile 0.3762±0.0137 0.2942±0.0233 0.1913±0.0144

scores are computed as,

HN =
Scoreagent − Scorerandom

Scorehuman − Scorerandom
(1)

For completeness we also report several results with 200 million frame training (i.e. 50 million
environment interactions). In particular, Figure 4 demonstrates the learning curves for our proposed
algorithm MaxMin TD Learning and the original version of the DDQN algorithm with ε-greedy
training (Hasselt et al., 2016). In the large data regime we observe that while in some MDPs our
proposed method MaxMin TD Learning that focuses on experience collection with novel temporal
difference boosting via minimizing the state-action values converges faster, in other MDPs MaxMin
TD Learning simply converges to a better policy. More concretely, while the learning curves of
StarGunner, Bowling, JamesBond and BankHeist games in Figure 4 demonstrate the faster conver-
gence rate of our proposed algorithm MaxMin TD Learning, the learning curves of the JamesBond,
Amidar, BankHeist, Surround, Gravitar and Tennis games demonstrate that our experience collection
technique not only increases the sample efficiency in deep reinforcement learning, but also results in
learning a policy that is more close to optimal compared to learning a policy with the original method
used in the DDQN algorithm.

Additionally, we also compare our proposed MaxMin TD Learning algorithm with NoisyNetworks
as referred to in Section 2. Table 1 further demonstrates that the MaxMin TD Learning algorithm
achieves significantly better performance results compared to NoisyNetworks. Furthermore, note
that NoisyNetworks includes adding layers in the Q-network to increase exploration. However, this
increases the number of parameters that have been added in the training process; thus, introducing
additional cost to increase exploration. Table 1 reports results of human normalized median scores,
20th percentile, and 80th percentile for the Arcade Learning Environment 100K benchmark. Thus,
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JamesBond Gravitar Surround Amidar

Bowling BankHeist StarGunner Tennis

Figure 4: The learning curves of StarGunner, Bowling, Surround, BankHeist, JamesBond, Amidar,
Gravitar and Tennis with our proposed method MaxMin TD Learning and the ε-greedy algorithm in
the Arcade Learning Environment with 200 million frame training.

Table 1 demonstrates that our proposed MaxMin TD Learning algorithm improves on the performance
of the canonical algorithm ε-greedy by 248% and NoisyNetworks by 204%.

We further compare our proposed MaxMin TD Learning algorithm with another baseline algorithm
QRDQN. In particular, Figure 5 reports results of human normalized median scores and 80th percentile
over all of the games of the Arcade Learning Environment (ALE) in the low-data regime. These
results once more demonstrate that the performance obtained by the MaxMin TD Learning algorithm
is approximately double the performance achieved by the canonical experience collection techniques.
As the results reported demonstrate, the MaxMin TD Learning algorithm achieves substantial sample-
efficiency with zero-additional cost across many algorithms and different sample-complexity regions
over canonical baseline alternatives.

6 INVESTIGATING THE TEMPORAL DIFFERENCE

The original justification for exploring with the minimum Q-value action, is that taking this action
tends to result in transitions with higher temporal difference. The theoretical analysis from Proposition
3.4 indicates that, when the Q function is δ-smooth and η-uninformed, taking the minimum value
action results in an increase in the temporal difference proportional to the disadvantage gap. In
particular, Proposition 3.4 states that the temporal difference achieved when taking the minimum
Q-value action in state s exceeds the average temporal difference over a uniform random action by
D(s)− 2δ− η. In order to evaluate how well the theoretical prediction matches reality, in this section
we provide empirical measurements of the temporal difference in our experiments. To measure the
change in the temporal difference when taking the minimum action versus the average action, we
compare the temporal difference obtained by MaxMin TD Learning exploration with that obtained
by ε-greedy exploration. In more detail, during training, for each batch Λ of transitions of the form
(st, at, st+1) we record, the temporal difference

T D = E(st,at,st+1)∼ΛT D(st, at, st+1)

= E(st,at,st+1)∼Λ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)].

The results reported in Figure 3 and Figure 6 further confirm the theoretical predictions made via
Definition 3.2 and Proposition 3.4. In addition to the results for individual games reported in Figure 3,
we compute a normalized measure of the gain in temporal difference achieved when using MaxMin
TD Learning exploration and plot the median across games. We define the normalized T D gain to be

Normalized T D Gain = 1 +
T Dmethod − T Dε-greedy

|T Dε-greedy|

where T Dmethod and T Dε-greedy are the temporal difference for any given exploration method and
ε-greedy respectively. The leftmost and middle plot of Figure 6 report the median across all games
of the normalized T D gain results for MaxMin TD Learning and NoisyNetworks in the Arcade
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Median 80th Percentile

Figure 5: Human normalized scores median and 80th percentile over all games in the Arcade
Learning Environment (ALE) 100K benchmark for MaxMin TD Learning algorithm and the canonical
exploration algorithm ε-greedy for QRDQN.

Figure 6: Left and Middle: Normalized temporal difference T D gain median across all games in
the Arcade Learning Environment 100K benchmark for MaxMin TD Learning and NoisyNetworks.
Right: Temporal difference T D when exploring chain MDP with Upper Confidence Bound (UCB)
method, ε-greedy and our proposed algorithm MaxMin TD Learning.

Learning Environment 100K benchmark. Note that, consistent with the predictions of Proposition
3.4, the median normalized temporal difference gain for MaxMin TD Learning is up to 25 percent
larger than that of ε-greedy. The results for NoisyNetworks demonstrate that alternate exploration
methods lack this positive bias relative to the uniform random action.

The fact that, as demonstrated in Table 1, MaxMin TD Learning significantly outperforms noisy
networks in the low-data regime is further evidence of the advantage the positive bias in temporal
difference confers. The rightmost plot of Figure 6 reports T D for the motivating example of the
chain MDP. As in the large-scale experiments, prior to convergence MaxMin TD Learning exhibits a
notably larger temporal difference relative to the canonical baseline methods.

7 CONCLUSION

In our study we focus on the following questions in deep reinforcement learning: (i) Is it possible to
increase sample efficiency in deep reinforcement learning in a computationally efficient way with
conceptually simple choices?, (ii) What is the theoretical motivation of our proposed perspective,
simply minimizing the state-action value function in early training, that results in one of the most
computationally efficient ways to explore in deep reinforcement learning? and, (iii) How would
the theoretically motivated simple idea transfer to large scale experiments in high-dimensional
state representation MDPs? To be able to answer these questions we propose a novel, theoretically
motivated method with zero additional computational cost based on following actions that minimize
the state-action value function to explore in deep reinforcement learning. We demonstrate theoretically
that our method MaxMin TD Learning based on minimization of the state-action value results in
higher temporal difference, and thus creates novel transitions in exploration with more unique
experience collection. Following the theoretical motivation we initially show in a toy example in
the chain MDP setup that our proposed method MaxMin TD Learning results in achieving higher
sample efficiency. Then, we expand this intuition and conduct large scale experiments in the Arcade
Learning Environment, and demonstrate that our proposed method MaxMin TD Learning increases
the performance on the Arcade Learning Environment 100K benchmark by 248%.
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