
RGP: A Cross-Attention based Graph Transformer for
Relational Deep Learning

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

In domains such as healthcare, finance, and e-commerce, the temporal dynamics2

of relational data emerge from complex interactions—such as those between3

patients and providers or users and products across diverse categories. To be4

broadly useful, models operating on these data must integrate long-range spatial5

and temporal dependencies across diverse types of entities, while also supporting6

multiple predictive tasks. However, existing graph models for relational data7

primarily focus on spatial structure, treating temporal information merely as a8

constraint rather than a modeling signal, and are typically designed for single-task9

prediction.10

To address these gaps, we introduce the Relational Graph Perceiver (RGP), a11

graph transformer architecture for relational deep learning. At its core, RGP12

employs a Perceiver-style latent bottleneck that integrates signals from different13

node and edge types into a common latent space, enabling the model to build14

global context across the entire relational system. It also incorporates a flexible15

cross-attention decoder that supports joint learning across tasks with disjoint16

label spaces within a single model. This architecture is complemented by a17

temporal subgraph sampler, which enhances global context by retrieving nodes18

beyond the immediate neighborhood. Experiments on RelBench, SALT, and19

CTU show that RGP delivers state-of-the-art performance, offering a general and20

scalable solution for relational deep learning with support for diverse predictive21

tasks.22

1 Introduction23

Relational data is central to many real-world systems in domains such as healthcare, finance, and24

e-commerce. These datasets capture interactions between entities such as patients and providers,25

customers and products, or suppliers and inventory, which unfold over time and span multiple data26

modalities [1]. The data is typically organized in multi-table relational databases and present a27

complex modelling challenge which involves both long-range structural dependencies through entity28

relationships and temporal dynamics through evolving interactions.29

Relational Deep Learning (RDL) provides a principled framework for learning from such data30

by converting relational databases into heterogeneous temporal graphs [2]. In this formulation,31

nodes correspond to entities (e.g., users, items, visits), and edges represent typed relationships32

(e.g., purchases, interactions, transactions). While traditional RDL models based on Graph Neural33

Networks (GNNs) have shown success in capturing local structure via message passing, they suffer34

from several limitations. In particular, GNNs have limited expressiveness [3–5] and struggle to35

capture long-range dependencies due to oversquashing [6, 7].36

Graph Transformers (GTs) offer a promising alternative by using attention mechanisms for global37

aggregation, allowing the model to reason across distant parts of the graph [8, 9]. However, most38

existing GTs are designed for static, homogeneous graphs and are ill-equipped to handle the structural39

and temporal heterogeneity found in relational databases [10]. Moreover, current relational graph40

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table: users

Table: sales

Table: items

user 1
user 2
user 3
user 4
user 5
...

items

sales

users

time

Cross
Attention

Cross
Attention

Query node

Self Attention
Transformer Decoder

user-churn

user-ltv

item 1
item 2
item 3
item 4
item 5
item 6
...

sale 1
sale 2
sale 3
sale 4

Temporal
Context

Neighborhood
Context

tqueryΔt

Query token

Query time

Figure 1: Overview of the RGP architecture. We convert relational databases into heterogeneous temporal
graphs, where nodes represent entities (e.g., users, items, or sales) and edges capture interactions between them.
Given a seed or query node (e.g., a user), the model applies two parallel cross-attention modules to encode
both structural and temporal context into a set of latent tokens. These latents are then processed by a stack of
self-attention transformer blocks to enable long-range reasoning. Finally, a lightweight and flexible decoder
maps the latent representation to predictions across multiple tasks, such as user churn or lifetime value (LTV).

models, whether GNN [11] or GT [10] based, primarily focus on spatial structure and often treat41

time as just a constraint rather than as a modeling signal. This limitation is reflected in how context42

is sampled around a prediction node, where temporal information is typically used to restrict the43

neighborhood [11] rather than to actively guide the sampling process.44

Our Approach. We introduce the Relational Graph Perceiver (RGP), a general-purpose trans-45

former architecture tailored for relational deep learning. RGP extends the Perceiver framework [12]46

to encode heterogeneous temporal graphs using a fixed-size latent bottleneck, enabling efficient47

and scalable reasoning across entity types and time. To move beyond local neighborhoods, RGP48

incorporates a novel temporal subgraph sampler that retrieves temporally relevant nodes, allowing49

the model to reason about nonlocal events that are structurally distant but contextually similar. Finally,50

RGP supports multi-task learning via a flexible decoder that conditions predictions on task-specific51

queries and compares them to text-encoded labels using a similarity-based objective.52

We evaluate RGP on three diverse benchmarks—RelBench[11], CTU[13], and SALT[14]—spanning53

binary classification, multi-class classification, and ranking-based tasks. RGP consistently achieves54

strong performance across all settings, while supporting computationally efficient multi-task learning55

without the need for training seprate models or linear layers for each task. These results demonstrate56

the effectiveness of RGP as a scalable, general-purpose architecture for learning from relational data.57

Our contributions are as follows:58

• We present the Relational Graph Perceiver (RGP), the first Perceiver-based graph transformer59

architecture tailored for heterogeneous temporal graphs. RGP enables efficient global reasoning60

across relational data.61

• We introduce a novel temporal subgraph sampler that selects nodes based on contextual62

timestamp proximity, allowing the model to incorporate nonlocal temporal context beyond63

structural neighborhoods.64

• We develop a flexible multi-task decoder that enables joint training across diverse tasks with65

disjoint label spaces. Our decoder uses task-conditioned queries and similarity-based supervision66

over text-encoded labels, eliminating the need for task-specific output heads.67

2 Method68

We now describe the architecture of the Relational Graph Perceiver (RGP), a general-purpose69

transformer-based model for learning on heterogeneous temporal relational graphs. As shown in70

Figure 1, RGP is built around three key components: (i) a Perceiver-style encoder that uses cross-71

attention to compress arbitrarily-sized relational graphs into a fixed-length latent representation72

(Section 2.2); (ii) a novel temporal sampler that retrieves temporally relevant nodes beyond the73

immediate neighborhood of the seed/query node (Section 2.3); and (iii) a lightweight, flexible multi-74

task head that enables training across multiple classification tasks with diverse label spaces, without75

the need for task-specific linear layers (Section 2.4).76

2

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Before encoding, we first transform relational databases into sequences of entity tokens using a77

standard heterogeneous tokenization scheme, described in Section 2.1. We then sample task-relevant78

subgraphs for each target entity and compress them into a latent representation using the Perceiver79

encoder. The overall pipeline is illustrated in Figure 1, and each component is described in the80

following sections.81

2.1 Tokenizing Heterogeneous Temporal Graphs82

To process relational data with transformer-based models, we first convert relational databases into83

graph-structured inputs (Figure 1), enabling end-to-end learning without the need for manual feature84

engineering. Following prior work in relational deep learning [10, 11], we represent relational85

databases as relational entity graphs (REGs), modeled as heterogeneous temporal graphs.86

Relational Graph: A relational database can be formally described as a tuple (T ,R), where87

T = T1, . . . , Tn is a collection of entity tables, andR ⊆ T × T is a set of inter-table relationships.88

Each relation (Tfkey, Tpkey) ∈ R denotes a foreign-key reference from one table to the primary key of89

another. Each table Ti contains a set of entities (rows), where each entity is typically defined by (1) a90

unique identifier, (2) foreign-key references, (3) entity-specific attributes (e.g., numeric, categorical),91

and (4) timestamp metadata.92

We transform this database into a heterogeneous temporal graph: G = (V, E , ϕ, ψ, τ) where V is the93

set of nodes (entities), E ⊆ V × V is the set of edges representing primary-foreign key relationships,94

ϕ : V → TV maps each node to its source table (entity type), ψ : E → TE assigns relation types to95

edges, and τ : E∪V → R associates timestamps with both nodes and edges. This graph representation96

captures both the schema structure and temporal dynamics of the database.97

Token Construction. Each node vi ∈ V is mapped to a token embedding xi ∈ Rd by applying a98

multi-modal encoder to its raw attributes, followed by the addition of a positional encoding:99

xi = MultiModalEncoder(ui) + PE(vi),

where ui denotes the raw attributes of the node (e.g., tabular, categorical, or multi-modal features),100

MultiModalEncoder is the modality-aware encoder taken from [15]. This encoder applies separate101

encoders for each modality (e.g., numerical, categorical, or text) and aggregates their outputs into a102

unified embedding using a ResNet (see Appendix A.1.1 for more details). PE(vi) captures structural103

and temporal context such as node centrality, hop distances, or timestamp embeddings. Each input104

graph is mapped to a full input sequence formed by these node-level tokens.105

Positional Encodings. To represent the position of each node in a heterogeneous and temporal106

relational graph, we combine multiple structure and time-aware signals into a unified encoding.107

Specifically, for each node vi, we compute:108

• Node type embedding etype(vi): a learned embedding based on the node type ϕ(vi).109

• Centrality embedding ecent(vi): a linear projection of centrality scores (e.g., degree, PageRank).110

• Hop distance embedding ehop(vi): a learned embedding of the hop distance from a designated111

entity node (e.g., the seed node or query node in the task).112

• Relative time encoding etime(vi): a projection of τ(vi)− τseed to capture temporal alignment.113

We concatenate these components and project them into the final positional encoding:114

PE(vi) =WPE · [etype(vi)∥ecent(vi)∥ehop(vi)∥etime(vi)] ,

where WPE ∈ Rd′×d is a learned projection matrix and ∥ denotes concatenation.115

Remarks. This multi-element positional encoding allows the model to incorporate fine-grained116

structural, temporal, and schema-level context across highly diverse relational graphs. While the117

individual components of this encoding are adapted from established techniques [9, 10], their118

integration provides a unified representation that is suitable for heterogeneous graph modeling.119

Once tokenized, we construct an input subgraph around each target entity using a combination of120

structural sampling [11] and temporal context sampling (Section 2.3). The resulting node sequence is121

then passed to our Perceiver-based encoder, which compresses it into a fixed-size latent representation122

via cross-attention (Section 2.2).123

3

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

2.2 Compression via Cross Attention124

Graph transformers often suffer from over-globalization when applying full self-attention across all125

node pairs, leading to performance degradation [16]. In this regime, information from distant and126

potentially irrelevant nodes is overly mixed into each node’s representation. To address this, prior127

work introduces handcrafted attention masks or distance-based biases that restrict the attention scope128

and enforce locality [17]. More recently, virtual nodes have emerged as a strong inductive bias for129

enabling global reasoning in graph models [18, 19], while also reducing computational cost. This is130

especially important since standard self-attention has a quadratic complexity of O(n2) with respect131

to the number of input nodes, making it infeasible for large graphs.132

To address this, we adopt a Perceiver-inspired encoder [20, 21], which avoids imposing fixed attention133

constraints or relying on heuristic-based virtual nodes. The core idea of the Perceiver architecture is to134

introduce a fixed-size set of learnable latent tokens—or “virtual nodes”—that serve as an information135

bottleneck.136

Given the tokenized graph structure described in Section 2.1 and the sampled subgraph around each137

target entity (using both structural and temporal samplers; see Section 2.3), we obtain a sequence138

of input node embeddings Xg = [x1, . . . ,xNg] for each subgraph. These embeddings are then139

passed to the Perceiver encoder, which compresses them into a fixed-size latent representation via140

cross-attention.141

We maintain a shared sequence of K learned latent tokens Z0 = [z0,1, . . . , z0,K], where each142

z0,i ∈ RD andK is considerably smaller than the number of input nodes. This reduces computational143

and memory costs by decoupling the number of attention operations from the input size. The node144

embeddings of each input subsampled graph sequence are compressed into these latent tokens via a145

cross-attention operation:146

Z(1)
g ← Cross-Attn(Qg,Kg,Vg) = Z(0) + softmax

(
QK⊤

g√
dk

)
Vg, (1)

where Q = WqZ0 are linear projections of the latent tokens, and Kg = WkXg, Vg = WvXg147

are projections of the input node embeddings. Through this mechanism, the latent tokens integrate148

information from the entire graph without requiring dense pairwise interactions among all nodes.149

We apply this cross-attention operation in two parallel branches: one operating on nodes sampled via150

structural neighborhood sampling, and the other on nodes retrieved via the temporal context sampler.151

Each branch uses an independent cross-attention layer with its own key and value projections. The152

resulting latent representations from the two branches are summed elementwise to produce a unified153

latent embedding.154

Following this compression step, we process the latents with a stack of L self-attention blocks155

operating purely in the latent space, yielding the final set of compressed latent tokens Zout
g . We use156

standard Transformer blocks with pre-layer normalization and feed-forward layers [22].157

The total complexity of this encoder is:158

O(KNg + LK2)≪ O(N2
g),K ≪ Ng, (2)

resulting in substantial savings in both compute and memory while still allowing the model to159

integrate information from all nodes in the input graph.160

2.3 Temporal Sampler161

As described in Section 2.2, the Perceiver encoder operates on a sampled input graph centered around162

a target entity. In this section, we describe in more detail how this input subgraph is constructed.163

In this work, we incorporate two complementary sampling strategies for constructing the input164

sequence from heterogeneous temporal graphs. Standard neighborhood sampling methods apply165

time-restricted sampling around a target node to prevent temporal leakage [10, 11] (Figure 1). These166

methods focus on preserving local graph structure while enforcing temporal constraints, treating time167

primarily as a boundary condition on graph-based neighborhood sampling.168

In contrast, we introduce a second sampling mechanism—the Time-Context Sampler, which explicitly169

leverages temporal proximity as a signal, independent of graph connectivity. This sampler selects170

4

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

edges (and their associated nodes) based on their closeness in time to a reference timestamp, regardless171

of whether they are direct neighbors of the target node. This enables the model to incorporate172

temporally co-occurring events that may reflect broader contextual information—such as concurrent173

user activity, market trends, or environmental conditions—that can be critical for accurate prediction.174

Formally, given a graph G = (V,E), node timestamps Tv : V → R, and a seed time tseed, we assign175

timestamps to edges based on the node timestamps and select a subgraph using either a fixed time176

window ∆t or the k closest edges in time. The full algorithm is provided in Appendix A.1.2.177

The nodes selected by the temporal sampler are then processed by the model in parallel with the178

structurally sampled neighborhood nodes, as described in the previous section.179

2.4 Multi-Task Decoder180

Figure 2: Overview of Flexible multi-task de-
coder: The decoder receives a query node repre-
sentation (combined with a task description embed-
ding) and attends to the latents from the perceiver
encoder via cross attention.

After the Perceiver encoder compresses the input sub-181

graph into a fixed-length latent representation, this182

representation must be mapped to task-specific pre-183

dictions. To support diverse prediction objectives184

across multiple tasks, we adopt a flexible multi-task185

decoder that combines cross-attention with similarity-186

based label supervision. Instead of maintaining a187

separate output head for each task, we use a shared188

decoding mechanism that conditions predictions on189

both the task description and the target node repre-190

sentation. This design enables efficient parameter191

sharing across tasks while allowing task-specific be-192

havior to emerge through the attention mechanism193

and label embeddings. Given a task-specific query194

embedding qtask ∈ Rd and the tokenized representation of the target node xi ∈ Rd (from Section 2.1),195

we compute a task-aware query via element-wise summation:196

qi = xi + qtask.

This query is used to attend to the encoder’s latent Zout ∈ RK×d using a cross-attention mechanism:197

zi = CrossAttn(qi,Z
out
g),

where zi ∈ Rd is the task-conditioned representation of the node.198

To enable generalization across tasks without task-specific output layers, we represent each candidate199

label as a text string and encode them using a frozen or pretrained text encoder:200

L = {ℓ1, ℓ2, . . . , ℓm}, Elabel = TextEncoder(L) ∈ Rm×d,

where ℓj is the j-th label and m is the number of possible labels for the current task.201

We compute the logits by taking the dot product between the output node embedding zi and each202

label embedding:203

si = Elabelzi ∈ Rm.

These logits are passed through a softmax function to compute class probabilities, and the loss is204

computed using standard objectives such as cross-entropy for classification. This unified decoding205

framework eliminates the need for task-specific classifiers or training separate models for each task,206

enabling scalable and efficient multi-task learning.207

3 Results208

We evaluate the Relational Graph Perceiver (RGP) on a diverse suite of heterogeneous temporal209

graph datasets spanning multiple domains and benchmarks. Specifically, we consider three sources:210

5

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table 1: Results on Relbench: We report the Area Under the ROC Curve (AUC) as the evaluation
metric. Best values are shown in bold. Relative gains indicate the percentage improvement of RGP
over RelGT.

Dataset Task RDL HGT HGT+PE RelGT RGP
(ours)

% Rel Gain
vs. RelGT

rel-f1 driver-dnf 0.7262 0.7142 0.7109 0.7587 0.7844 +3.39
driver-top3 0.7554 0.6389 0.8340 0.8352 0.8789 +5.22

rel-avito user-clicks 0.6590 0.6584 0.6387 0.6830 0.6943 +1.66
user-visits 0.6620 0.6426 0.6507 0.6678 0.6662 -0.24

rel-event user-repeat 0.7689 0.6717 0.6590 0.7609 0.7894 +3.75
user-ignore 0.8162 0.8348 0.8161 0.8157 0.8439 +3.46

rel-trial study-outcome 0.6860 0.5679 0.5691 0.6861 0.7027 +2.42
rel-amazon user-churn 0.7042 0.6608 0.6589 0.7039 0.7089 +0.71

item-churn 0.8281 0.7824 0.7840 0.8255 0.8262 +0.08
rel-stack user-engagement 0.9021 0.8898 0.8818 0.9053 0.9045 -0.09

user-badge 0.8966 0.8652 0.8636 0.8624 0.8868 +2.83
rel-hm user-churn 0.6988 0.6773 0.6491 0.6927 0.7025 +1.41

Average Gain vs. RelGT (%) 2.20

RelBench [11], CTU [23], and SALT [14]. Our experiments focus on the node (or entity) classification211

task, where the goal is to predict categorical attributes associated with entities in relational graphs. As212

these benchmarks originate from distinct application areas and have only recently been introduced,213

they differ significantly in terms of available baselines and evaluation metrics. We provide a detailed214

discussion of the dataset-specific metrics and baseline comparisons in Section 3.2.215

3.1 Experimental Setup216

We implement RGP within the RDL pipeline [11] by replacing the original GNN component with our217

architecture, while preserving the underlying task logic, database loaders, and training infrastructure.218

RGP is trained using the AdamW optimizer [24] with a fixed learning rate of 10−3. Similar to219

previous work we only tune a few key architectural hyperparameters: total number of layers in the220

model L ∈ {2, 4, 6} and the number of latent tokens n ∈ {8, 16, 32} in cross attention block. All221

other settings such as batch size, dropout, and learning rate remain fixed across datasets. For a222

complete list of hyperparameters, see Section A.2.1 in the appendix.223

3.2 Results on Benchmarks224

We report benchmark results for RGP across three representative datasets—RelBench, CTU, and225

SALT, each reflecting a different application domain and evaluation metric. Due to the diversity of226

these benchmarks, we group results by benchmark and compare RGP against the publically available227

baselines for each setting. Across all benchmarks, we include comparisons to RDL [25], a widely228

adopted pipeline that combines RelGNN [26] with GraphSAGE aggregation, serving as a strong229

reference point for relational deep learning tasks.230

RelBench. [11] is a recently introduced benchmark for relational deep learning that includes seven231

datasets derived from structured domains such as e-commerce, social networks, and sports. All232

classification tasks in this benchmark are binary classification problems, with performance evaluated233

using the Area Under the ROC Curve (AUC-ROC). For RelBench, we report results from the234

Relational Graph Transformer (RelGT) [27], the current state-of-the-art method on this benchmark.235

The paper also compared against HGT [28] and a variation of HGT with laplacian positional encodings236

[8]. As shown in Table 1, RGP achieves state-of-the-art performance in RelBench, outperforming237

RelGT on 10 out of 12 tasks. Notably, RGP yields an average relative improvement of 2.2%238

over RelGT across all tasks, highlighting the benefit of our transformer-based approach. Gains are239

particularly pronounced on smaller datasets, where self-attention-based models like RelGT are more240

prone to overfitting. For example, on the driver-top3 task from the F1 dataset, RGP outperforms241

6

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table 3: Results on CTU benchmarks: We report F1 score as the evaluation metric. Best values are
in bold. Relative gains are percentage improvement over DBFormer.

Dataset Task LightGBM XGBoost TabResNet Linear SAGE
(RDL) DBFormer RGP

(ours)
Rel.

(%) Gain vs. DBF

accidents temp. 0.170 0.336 0.187 0.583 0.566 0.727 0.743 +2.20
dallas temp. 0.584 0.512 0.247 0.393 0.424 0.513 0.555 +8.19
legalacts temp. 0.851 0.220 0.220 0.721 0.698 0.703 0.736 +4.69

Figure 3: (A) Results from ablation study of RGP. We evaluate the impact of removing key components from
the full RGP model. Performance is reported relative to the base model. A decrease in performance indicates
that the removed component is important to overall model effectiveness. (B) Effect of number of latent tokens
on model performance across four representative tasks. For each task, we normalize results with respect to the
best-performing configuration to compute relative performance.

RelGT by 3.39%, and on the driver-dnf task, by 5.22%. Similarly, on the user-repeat task from242

rel-event, we observe a gain of 3.75%.243

CTU. [23] is a curated repository of heterogeneous graph datasets from domains such as insurance,244

law and retail. We evaluate on CTU because it includes multi-class classification tasks, enabling245

us to test RGP beyond binary settings. We compare against baselines reported in the ReDeLEx246

benchmark [29], which include traditional tabular models (e.g., LightGBM [30], XGBoost [31]),247

temporal MLPs (e.g., TabResNet [32]), and the GNN-based RDL [11] framework. Following standard248

practice in from ReDeLEx, we report F1 scores for all tasks. As shown in Table 3, RGP consistently249

outperforms the DBFormer baseline across all evaluated CTU datasets. Notably, on the dallas dataset,250

RGP achieves a relative gain of 8.19%.251

SALT. [23] is a real-world dataset derived from an Enterprise Resource Planning (ERP) sys-252

tem. It consists of ranking-based entity classification tasks that reflect practical industrial decision-253

making scenarios. Since these tasks involve ranking objectives, we report Mean Reciprocal Rank254

(MRR) as the evaluation metric. As graph-based models have not been previously applied to255

SALT, we compare RGP against standard baselines, including RDL and the Heterogeneous Graph256

Transformer (HGT) [28]. As shown in Table 2 RGP consistenty outperforms both the baselines.257

Table 2: Results on SALT: We report MRR score as the
evaluation metric. Best values are in bold. Relative gains are
percentage improvement over HGT.

Task RDL HGT RGP
(ours) % Rel Gain v.s HGT

item-incoterms 0.64 0.75 0.81 +8.00
sales-group 0.20 0.31 0.34 +9.68
sales-payterms 0.39 0.60 0.58 -3.33
sales-shipcond 0.59 0.76 0.81 +6.58

258
Summary: Across all three bench-259

marks, RGP demonstrates robust per-260

formance gains over strong baselines261

in diverse settings—binary classifi-262

cation (RelBench), multi-class clas-263

sification (CTU), and ranking-based264

tasks (SALT). These results collec-265

tively highlight RGP’s versatility and266

effectiveness as a general-purpose re-267

lational graph model.268

3.3 Ablation Studies269

To better understand the contributions of key architectural components in RGP, we perform a series270

of ablation studies. Specifically, we analyze the impact of (1) removing the temporal context sampler271

7

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

and (2) replacing the Perceiver-style cross-attention bottleneck with full self-attention. For both272

settings, we report the relative performance compared to the best full model in Figure 3A.273

Temporal sampler: The temporal sampler is designed to retrieve nodes based on temporal prox-274

imity, complementing the structural neighborhood sampler. As shown in Figure 3A, removing the275

temporal sampler leads to consistent performance drops, most notably on the rel-f1 dataset, where we276

observe a ∼3% decline. This dataset contains many cold-start cases, such as newly introduced driver277

nodes with limited or no structural history. In such cases, structural context alone is insufficient for278

reliable predictions.279

Perceiver encoder: We next evaluate the role of the latent Perceiver encoder by replacing it with280

a full self-attention (SA) mechanism applied over the input tokens. As shown in Figure 3A, this281

substitution yields marginal improvements on a few tasks but at the cost of significantly more compute282

requirements. Additionally, for smaller datasets such as rel-f1, full self-attention leads to overfitting283

and degraded performance, with a∼6.6% drop on the driver-top3 task. In contrast, the cross-attention284

bottleneck in RGP offers a more compute-efficient and regularized alternative, preserving competitive285

performance while maintaining scalability across tasks. On average, cross-attention is 2–6% more286

compute-efficient in comparison to self attention(see appendix A.2.2 for average run time)287

Effect of Latent Token Count: Finally we examine how the number of latent tokens affects288

performance. We sweep across n ∈ {4, 8, 16, 32} latent tokens on four representative tasks: study-289

outcome, driver-top3, user-churn, and user-ignore. For each task, we normalize results with respect290

to the best-performing configuration to compute relative performance. As shown in Figure 3B, RGP291

achieves strong performance even with a relatively small number of latent tokens. However, the292

optimal number of latents varies across tasks and datasets, and increasing the number does not always293

lead to better results. This is why we chose to keep it as a tunable hyperparameter. For example, the294

performance of driver-top3 peaks at 16 latents and declines at 32, suggesting potential overfitting.295

3.4 Multi Task Results296

Figure 4: Relative performance of multi-task vs.
single-task training across datasets: The Y-axis shows
the average multi-task performance normalized with re-
spect to the average single-task performance across all
tasks within each dataset

A key motivation behind the flexible decoder297

introduced in Section 2.4 is to enable scalable298

multi-task learning across diverse label spaces.299

Most existing approaches for relational graph300

learning adopt a task-specific training paradigm,301

where separate models are trained for each task,302

even when these tasks share the same underlying303

graph structure.304

In contrast, the decoder in RGP supports305

task-conditioned decoding by combining cross-306

attention with a similarity-based objective over307

text-encoded label embeddings. This unified308

framework allows a single model to learn mul-309

tiple tasks simultaneously.310

To evaluate the effectiveness of this design, we311

compare single-task training (one model per task) with multi-task training (a single model trained312

jointly on all tasks from the same dataset). In our multi-task setting, task supervision is provided via313

text-based task queries and label embeddings, as described in Section 2.4.314

As shown in Figure 4, RGP achieves comparable or improved results under multi-task training,315

while significantly reducing training cost. For the event dataset, multi-task training even led to slight316

improvements over single-task models. However, we observed a notable drop in performance on the317

f1 dataset under the multi-task setting. This can be attributed to the severe imbalance in the number318

of training samples across tasks: the driver-top3 task has only 1.5k samples, whereas driver-dnf has319

over 10k. Such imbalance likely causes the shared model to underfit the smaller task, leading to320

degraded performance on driver-top3.321

8

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Overall, these results highlight the generalization ability of our decoder and its parameter-efficient322

multi-task learning without any retraining or architectural modification, making it a strong candidate323

for large-scale foundation model training across relational datasets.324

4 Related Work325

Representing relational datasets as heterogeneous temporal graphs has enabled the use of graph326

learning methods for tasks like node classification and link prediction. The RelBench benchmark[11]327

formalizes this paradigm and provides a strong baseline using Heterogeneous GraphSAGE [33] with328

temporal neighbor sampling, surpassing classical tabular methods like LightGBM [30]. Several329

architectures have been proposed to better exploit relational structure: RelGNN [26] introduces330

composite message passing to preserve information across bridge and hub nodes, while ContextGNN331

[34] combines pair-wise and two-tower encoders for recommendation scenarios.332

Graph Transformers (GTs) adapt the self-attention paradigm [22] to graph-structured data, capturing333

long-range dependencies without iterative neighborhood aggregation [35]. Early GT variants focused334

on local attention with positional encodings like Laplacian eigenvectors [36], while later designs335

incorporated global attention mechanisms [9, 17, 37] and scaling strategies such as hierarchical336

pooling or sparse attention. Heterogeneous GTs such as HGT [28] and Hinormer [38] model multi-337

type graphs, but face quadratic cost and per-task training inefficiency. Most relevant to our work is338

the Relational Graph Transformer (RelGT) [10], which introduced a hybrid local/global attention,339

establishing strong performance on RelBench. Our approach differs by adopting a Perceiver-style340

latent bottleneck and temporal sampling, enabling greater scalability and multi-task capability.341

While GTs highlight the importance of global context, their computational footprint motivates342

exploring efficiency-focused alternatives. The Perceiver architecture [12] introduces a fixed-size343

latent array that attends to high-dimensional inputs via cross-attention, followed by latent self-344

attention, decoupling input size from computational complexity. Perceiver IO [20] extends this345

framework to handle diverse output domains from a shared latent representation. In graph learning,346

early Perceiver-inspired adaptations have been proposed for homogeneous graphs or static settings347

[39], but these typically omit temporal sampling and are not optimized for multi-task inference. Our348

encoder adapts this latent bottleneck principle specifically to heterogeneous temporal graphs.349

Existing RDL methods excel at modeling relational structure but face oversquashing and limited350

temporal reach. Graph Transformers capture long-range context but remain computationally heavy351

and often schema-restrictive. Perceiver-based models address scalability but have not been tailored352

to heterogeneous temporal graphs or multi-task learning in relational settings. This motivates353

architectures like ours that combine the latent efficiency of Perceivers with relational and temporal354

inductive biases, while enabling shared encoders across multiple tasks.355

5 Conclusion356

We introduced RGP, a transformer-based architecture for heterogeneous temporal graphs that inte-357

grates a Perceiver-style encoder for global reasoning via a cross-attention bottleneck, a temporal358

subgraph sampler that incorporates temporally relevant but structurally distant context, and a flexible359

multi-task decoder that enables prediction across diverse tasks and label spaces within a single model.360

Across multiple benchmarks, RGP consistently outperforms strong baselines, achieving state-of-the-361

art results on both binary and multi-class tasks while reducing computational overhead. Our ablation362

studies further validate the importance of each component, particularly the role of importance of363

temporally aligned but structurally distant context in improving predictive performance. Beyond364

accuracy gains, RGP supports flexible multi-task learning without requiring task-specific output365

heads, positioning it as a strong candidate for large-scale foundation models in relational domains.366

9

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

References367

[1] Edgar F Codd. A relational model of data for large shared data banks. Communications of the368

ACM, 13(6):377–387, 1970. 1369

[2] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,370

Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph repre-371

sentation learning on relational databases. In Forty-first International Conference on Machine372

Learning, 2024. 1373

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural374

networks? arXiv preprint arXiv:1810.00826, 2018. 1375

[4] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning376

with graph learning-convolutional networks. In Proceedings of the IEEE/CVF conference on377

computer vision and pattern recognition, pages 11313–11320, 2019.378

[5] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint379

arXiv:1907.03199, 2019. 1380

[6] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing381

in gnns through the lens of effective resistance. In International Conference on Machine382

Learning, pages 2528–2547. PMLR, 2023. 1383

[7] Shaima Qureshi et al. Limits of depth: Over-smoothing and over-squashing in gnns. Big Data384

Mining and Analytics, 7(1):205–216, 2023. 1385

[8] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.386

arXiv preprint arXiv:2012.09699, 2020. 1, 6387

[9] Ruiheng Ying, Zhuang Liu, Jiaxuan You, Yingbo Zhou, Chongxuan Li, Meng Jiang, and Jure388

Leskovec. Do transformers really perform badly for graph representation? In ICLR 2021, 2021.389

1, 3, 9390

[10] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I Kanatsoulis,391

Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer. arXiv preprint392

arXiv:2505.10960, 2025. 1, 2, 3, 4, 9393

[11] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,394

Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec.395

Relbench: A benchmark for deep learning on relational databases. In NeurIPS 2024 Datasets396

and Benchmarks Track, 2024. Poster; also available as arXiv:2407.20060. 2, 3, 4, 6, 7, 9, 12397

[12] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao398

Carreira. Perceiver: General perception with iterative attention. In International conference on399

machine learning, pages 4651–4664. PMLR, 2021. 2, 9400

[13] Jan Motl and Oliver Schulte. The ctu prague relational learning repository. arXiv preprint401

arXiv:1511.03086, 2015. 2402

[14] Tassilo Klein, Clemens Biehl, Margarida Costa, Andre Sres, Jonas Kolk, and Johannes Hoffart.403

Salt: Sales autocompletion linked business tables dataset. arXiv preprint arXiv:2501.03413,404

2025. 2, 6405

[15] Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jinu Sunil,406

Jure Leskovec, and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular407

learning. arXiv preprint arXiv:2404.00776, 2024. 3, 12408

[16] Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-409

globalizing problem in graph transformers. arXiv preprint arXiv:2405.01102, 2024. 4410

[17] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.411

Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-412

cessing Systems, 34:21618–21629, 2021. 4, 9413

[18] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal414

Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine415

Learning, pages 31613–31632. PMLR, 2023. 4416

[19] Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu.417

Gapformer: Graph transformer with graph pooling for node classification. In IJCAI, pages418

2196–2205, 2023. 4419

10

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

[20] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,420

David Ding, Skanda Koppula, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M.421

Botvinick, Andrew Zisserman, Oriol Vinyals, and João Carreira. Perceiver io: A general422

architecture for structured inputs & outputs. In ICLR 2022 (Spotlight), 2022. Also available as423

arXiv:2107.14795. 4, 9424

[21] Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework425

for multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024. 4426

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,427

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information428

processing systems, 30, 2017. 4, 9429

[23] Jan Motl and Oliver Schulte. The ctu prague relational learning repository, 2024. URL430

https://arxiv.org/abs/1511.03086. 6, 7431

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint432

arXiv:1711.05101, 2017. 6433

[25] Matthias Fey et al. Graph representation learning on relational databases. arXiv preprint, 2024.434

Introduces Relational Deep Learning (RDL) blueprint referenced by RelBench. 6435

[26] Chen *et al.*. Relgnn: Composite message passing for relational deep learning. In ICML 2025436

Poster Track, 2025. 6, 9437

[27] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I. Kanatsoulis,438

Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer, 2025. URL439

https://arxiv.org/abs/2505.10960. 6440

[28] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In441

Proceedings of the web conference 2020, pages 2704–2710, 2020. 6, 7, 9442

[29] Jakub Peleška and Gustav Šír. Redelex: A framework for relational deep learning exploration.443

arXiv preprint arXiv:2506.22199, 2025. 7444

[30] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and445

Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural446

information processing systems, 30, 2017. 7, 9447

[31] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of448

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages449

785–794, 2016. 7450

[32] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep451

learning models for tabular data. Advances in neural information processing systems, 34:452

18932–18943, 2021. 7453

[33] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on454

Large Graphs. In NIPS, pages 1024–1034, 2017. 9455

[34] Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan456

Shah, Shenyang Huang, Blaž Stojanovič, Alan Krumholz, et al. Contextgnn: Beyond two-tower457

recommendation systems. arXiv preprint arXiv:2411.19513, 2024. 9458

[35] Vijay Prakash Dwivedi and Michael M. Bronstein. A generalization of transformer networks to459

graphs. AAAI DLG Workshop, 2021. 9460

[36] Vijay Prakash Dwivedi et al. Graph neural networks with learnable structural and positional461

representations. ICLR 2022, 2022. 9462

[37] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph463

structure in transformers. arXiv preprint arXiv:2106.05667, 2021. 9464

[38] Mao *et al.*. Hinormer: Representation learning on heterogeneous information networks with465

graph transformer. In WWW 2023, 2023. 9466

[39] Bin Jiang and Ding Ma. Defining least community as a homogeneous group in complex467

networks. Physica A: Statistical Mechanics and its Applications, 428:154–160, 2015. 9468

11

https://arxiv.org/abs/1511.03086
https://arxiv.org/abs/2505.10960

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

A Appendix469

A.1 Model Details470

A.1.1 Multi Model Encoder471

In heterogeneous temporal relational graphs derived from relational databases, each node may contain472

a rich set of multi-modal attributes, such as numerical values, categorical fields, text descriptions,473

timestamps, and image features. To obtain expressive node-level representations suitable for down-474

stream tasks, we use a modality-aware feature encoder taken from prior work in relational deep475

learning [11, 15].476

Given a node v ∈ V , we denote its raw attributes as xv = {x(m)
v }m∈Mv

, whereMv ⊆ M is the477

subset of modalities present for node v. Each feature within each modality is independently encoded478

using a modality-specific function ϕm, yielding a set of intermediate embeddings:479

h(m)
v = ϕm

(
x(m)
v

)
, ϕm : X (m) → Rdm , (3)

where dm is the dimensionality assigned to modality m. Supported modalities include:480

• Numerical features: encoded via linear layers or small MLPs.481

• Categorical features: embedded using learned lookup tables.482

• Text features: embedded via pretrained or fine-tuned language models (e.g., BERT).483

• Timestamps: embedded as scalar values or periodic functions (e.g., sinusoidal encodings).484

The resulting embeddings are concatenated:485

hconcat
v =

⊕
m∈Mv

h(m)
v ∈ R

∑
m∈Mv

dm , (4)

and passed through a table-specific (or node-type-specific) projection function—a ResNet in our486

case—to obtain the final node representation:487

h(0)
v = fτ(v)

(
hconcat
v

)
, fτ(v) : R

∑
dm → Rd, (5)

where τ(v) denotes the node type (i.e., source table) and d is the unified hidden dimension used488

across the model.489

A.1.2 Time-Context Sampling Algorithm490

Edge Timestamp Assignment. Each edge is assigned a timestamp equal to the maximum times-491

tamp of its two endpoint nodes:492

Te(u, v) = max (Tv(u), Tv(v)) .

Time-Context-Aware Sampling. Given a reference timestamp tseed, we sample a subgraph by493

selecting edges based on one of two strategies:494

• Time window: include all edges where |Te(u, v)− tseed| ≤ ∆t.495

• Top-k: select the k edges closest in time to tseed.496

The resulting subgraph contains all nodes incident to the selected edges.497

12

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Algorithm 1 Time-Context-Aware Edge Sampling

Require: Graph G = (V,E), timestamp function T : V → R, reference time tseed, sampling rule:
time window ∆t or edge count k

Ensure: Subgraph Gsub = (Vsub, Esub)
1: Initialize Escored ← ∅
2: for each edge (u, v) ∈ E do
3: te ← max(T (u), T (v))
4: score← |te − tseed|
5: Add (u, v, te, score) to Escored
6: end for
7: if time window ∆t is specified then
8: Eselected ← {(u, v) | (u, v, te, s) ∈ Escored, s ≤ ∆t}
9: else if edge count k is specified then

10: Sort Escored in ascending order by score
11: Eselected ← first k edges from sorted list
12: else
13: Eselected ← E
14: end if
15: Vsub ← nodes appearing in Eselected
16: return Gsub = (Vsub, Eselected)

A.2 Experiment details498

A.2.1 Hyperparameter499

We use a controlled hyperparameter setup to ensure consistent evaluation across diverse datasets500

without exhaustive tuning. Following prior work, we fix most settings and tune only two architectural501

hyperparameters: the number of Perceiver layers L ∈ {2, 4, 6} and the number of latent tokens502

n ∈ {8, 16, 32} in the cross-attention bottleneck. All other hyperparameters are kept fixed across503

datasets to reflect realistic training scenarios where compute budgets limit per-task tuning.504

Table 4 summarizes the fixed hyperparameter settings used in our experiments. All models are trained505

using the AdamW optimizer with a learning rate of 10−3 and a weight decay of 10−5. We use a506

cosine learning rate scheduler with 10 warmup steps, and all experiments are run for 200 epochs.507

Table 4: Summary of hyperparameter settings used in RGP experiments.

Component Value / Setting
Optimizer and Training Setup
Optimizer AdamW
Learning rate 10−3

Weight decay 10−5

Scheduler Cosine with 10 warmup steps
Epochs 200
Batch size 512

Model Architecture
Latent token count n {8, 16, 32} (tuned)
Transformer layers L {2, 4, 6} (tuned)
Dropout 0.2
hidden dim 128

Temporal Sampler
Edges per type 10
Temporal decay 0.1

13

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

A.2.2 Runtime Comparison: Cross-Attention vs Self-Attention508

To quantify the efficiency benefits of using a cross-attention (CA) bottleneck over full self-attention509

(SA), we measure the total training time across three representative tasks. As shown in Table 5, the510

Perceiver-based encoder with CA consistently achieves lower runtime compared to its SA counterpart.511

While SA sometimes offers marginal accuracy improvements on larger datasets, the increase in512

computational cost is substantial.513

Table 5: Average training time for Cross-Attention (CA) vs. Self-Attention (SA) models. Experi-
ments were run on a single B200 GPU.

Dataset Cross-Attention (CA) Self-Attention (SA)
rel-f1 2.7 min 7.5 min
rel-amazon 3.5 hrs 18.5 hrs
rel-event 4.5 min 22 min

14

	1 Introduction
	2 Method
	2.1 Tokenizing Heterogeneous Temporal Graphs
	2.2 Compression via Cross Attention
	2.3 Temporal Sampler
	2.4 Multi-Task Decoder

	3 Results
	3.1 Experimental Setup
	3.2 Results on Benchmarks
	3.3 Ablation Studies
	3.4 Multi Task Results

	4 Related Work
	5 Conclusion
	A Appendix
	A.1 Model Details
	A.1.1 Multi Model Encoder
	A.1.2 Time-Context Sampling Algorithm

	A.2 Experiment details
	A.2.1 Hyperparameter
	A.2.2 Runtime Comparison: Cross-Attention vs Self-Attention

