© ® N o o A~ W N

23

24
25
26
27
28
29

30
31
32
33
34
35
36

37
38
39
40

RGP: A Cross-Attention based Graph Transformer for
Relational Deep Learning

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract

In domains such as healthcare, finance, and e-commerce, the temporal dynamics
of relational data emerge from complex interactions—such as those between
patients and providers or users and products across diverse categories. To be
broadly useful, models operating on these data must integrate long-range spatial
and temporal dependencies across diverse types of entities, while also supporting
multiple predictive tasks. However, existing graph models for relational data
primarily focus on spatial structure, treating temporal information merely as a
constraint rather than a modeling signal, and are typically designed for single-task
prediction.

To address these gaps, we introduce the Relational Graph Perceiver (RGP), a
graph transformer architecture for relational deep learning. At its core, RGP
employs a Perceiver-style latent bottleneck that integrates signals from different
node and edge types into a common latent space, enabling the model to build
global context across the entire relational system. It also incorporates a flexible
cross-attention decoder that supports joint learning across tasks with disjoint
label spaces within a single model. This architecture is complemented by a
temporal subgraph sampler, which enhances global context by retrieving nodes
beyond the immediate neighborhood. Experiments on RelBench, SALT, and
CTU show that RGP delivers state-of-the-art performance, offering a general and
scalable solution for relational deep learning with support for diverse predictive
tasks.

1 Introduction

Relational data is central to many real-world systems in domains such as healthcare, finance, and
e-commerce. These datasets capture interactions between entities such as patients and providers,
customers and products, or suppliers and inventory, which unfold over time and span multiple data
modalities [1]. The data is typically organized in multi-table relational databases and present a
complex modelling challenge which involves both long-range structural dependencies through entity
relationships and temporal dynamics through evolving interactions.

Relational Deep Learning (RDL) provides a principled framework for learning from such data
by converting relational databases into heterogeneous temporal graphs [2]. In this formulation,
nodes correspond to entities (e.g., users, items, visits), and edges represent typed relationships
(e.g., purchases, interactions, transactions). While traditional RDL models based on Graph Neural
Networks (GNNs) have shown success in capturing local structure via message passing, they suffer
from several limitations. In particular, GNNs have limited expressiveness [3—5] and struggle to
capture long-range dependencies due to oversquashing [6, 7].

Graph Transformers (GTs) offer a promising alternative by using attention mechanisms for global
aggregation, allowing the model to reason across distant parts of the graph [8, 9]. However, most
existing GTs are designed for static, homogeneous graphs and are ill-equipped to handle the structural
and temporal heterogeneity found in relational databases [10]. Moreover, current relational graph

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

41
42
43
44

45
46
47
48
49
50
51
52

53
54
55
56
57

58

59
60
61

62
63
64

65
66
67

68

69
70
71
72
73
74
75
76

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table: items

items

Cross
Attention

Neighborhood
Context

Table: users user-churn

user 1
user 2

Self Attention
Transformer

Decoder

user 3 sales

user 4
user 5

user-ltv

Table: sales Cross

Attention

Query token
sale 1

sale 2

sale 3 users

Querynode | Querytime

o> time
At lqucv

y

Figure 1: Overview of the RGP architecture. We convert relational databases into heterogeneous temporal
graphs, where nodes represent entities (e.g., users, items, or sales) and edges capture interactions between them.
Given a seed or query node (e.g., a user), the model applies two parallel cross-attention modules to encode
both structural and temporal context into a set of latent tokens. These latents are then processed by a stack of
self-attention transformer blocks to enable long-range reasoning. Finally, a lightweight and flexible decoder
maps the latent representation to predictions across multiple tasks, such as user churn or lifetime value (LTV).

models, whether GNN [11] or GT [10] based, primarily focus on spatial structure and often treat
time as just a constraint rather than as a modeling signal. This limitation is reflected in how context
is sampled around a prediction node, where temporal information is typically used to restrict the
neighborhood [11] rather than to actively guide the sampling process.

Our Approach. We introduce the Relational Graph Perceiver (RGP), a general-purpose trans-
former architecture tailored for relational deep learning. RGP extends the Perceiver framework [12]
to encode heterogeneous temporal graphs using a fixed-size latent bottleneck, enabling efficient
and scalable reasoning across entity types and time. To move beyond local neighborhoods, RGP
incorporates a novel temporal subgraph sampler that retrieves temporally relevant nodes, allowing
the model to reason about nonlocal events that are structurally distant but contextually similar. Finally,
RGP supports multi-task learning via a flexible decoder that conditions predictions on task-specific
queries and compares them to text-encoded labels using a similarity-based objective.

We evaluate RGP on three diverse benchmarks—RelBench[11], CTU[13], and SALT[14]—spanning
binary classification, multi-class classification, and ranking-based tasks. RGP consistently achieves
strong performance across all settings, while supporting computationally efficient multi-task learning
without the need for training seprate models or linear layers for each task. These results demonstrate
the effectiveness of RGP as a scalable, general-purpose architecture for learning from relational data.

Our contributions are as follows:

* We present the Relational Graph Perceiver (RGP), the first Perceiver-based graph transformer
architecture tailored for heterogeneous temporal graphs. RGP enables efficient global reasoning
across relational data.

* We introduce a novel temporal subgraph sampler that selects nodes based on contextual
timestamp proximity, allowing the model to incorporate nonlocal temporal context beyond
structural neighborhoods.

* We develop a flexible multi-task decoder that enables joint training across diverse tasks with
disjoint label spaces. Our decoder uses task-conditioned queries and similarity-based supervision
over text-encoded labels, eliminating the need for task-specific output heads.

2 Method

We now describe the architecture of the Relational Graph Perceiver (RGP), a general-purpose
transformer-based model for learning on heterogeneous temporal relational graphs. As shown in
Figure 1, RGP is built around three key components: (i) a Perceiver-style encoder that uses cross-
attention to compress arbitrarily-sized relational graphs into a fixed-length latent representation
(Section 2.2); (ii) a novel temporal sampler that retrieves temporally relevant nodes beyond the
immediate neighborhood of the seed/query node (Section 2.3); and (iii) a lightweight, flexible multi-
task head that enables training across multiple classification tasks with diverse label spaces, without
the need for task-specific linear layers (Section 2.4).

77
78
79
80
81

82

83
84
85
86

87
88
89
90
91
92

93
94
95
96
97

98
99

109

110

111
112

113

114

115

116
117
118
119

120
121
122
123

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Before encoding, we first transform relational databases into sequences of entity tokens using a
standard heterogeneous tokenization scheme, described in Section 2.1. We then sample task-relevant
subgraphs for each target entity and compress them into a latent representation using the Perceiver
encoder. The overall pipeline is illustrated in Figure 1, and each component is described in the
following sections.

2.1 Tokenizing Heterogeneous Temporal Graphs

To process relational data with transformer-based models, we first convert relational databases into
graph-structured inputs (Figure 1), enabling end-to-end learning without the need for manual feature
engineering. Following prior work in relational deep learning [10, 11], we represent relational
databases as relational entity graphs (REGs), modeled as heterogeneous temporal graphs.

Relational Graph: A relational database can be formally described as a tuple (7, R), where
T =1Ti,...,T, is acollection of entity tables, and R C T x T is a set of inter-table relationships.
Each relation (Tiey, Tpkey) € R denotes a foreign-key reference from one table to the primary key of
another. Each table T; contains a set of entities (rows), where each entity is typically defined by (1) a
unique identifier, (2) foreign-key references, (3) entity-specific attributes (e.g., numeric, categorical),
and (4) timestamp metadata.

We transform this database into a heterogeneous temporal graph: G = (V, £, ¢, ¢, 7) where V is the
set of nodes (entities), £ C V x V is the set of edges representing primary-foreign key relationships,
¢ : V — Ty maps each node to its source table (entity type), ¢ : £ — T assigns relation types to
edges, and 7 : £UY — R associates timestamps with both nodes and edges. This graph representation
captures both the schema structure and temporal dynamics of the database.

Token Construction. Each node v; € V is mapped to a token embedding x; € R by applying a
multi-modal encoder to its raw attributes, followed by the addition of a positional encoding:

x; = MultiModalEncoder(u;) + PE(v;),

where u; denotes the raw attributes of the node (e.g., tabular, categorical, or multi-modal features),
MultiModalEncoder is the modality-aware encoder taken from [15]. This encoder applies separate
encoders for each modality (e.g., numerical, categorical, or text) and aggregates their outputs into a
unified embedding using a ResNet (see Appendix A.1.1 for more details). PE(v;) captures structural
and temporal context such as node centrality, hop distances, or timestamp embeddings. Each input
graph is mapped to a full input sequence formed by these node-level tokens.

Positional Encodings. To represent the position of each node in a heterogeneous and temporal
relational graph, we combine multiple structure and time-aware signals into a unified encoding.
Specifically, for each node v;, we compute:

* Node type embedding ey,.(v;): a learned embedding based on the node type ¢(v;).

* Centrality embedding e (v;): a linear projection of centrality scores (e.g., degree, PageRank).

* Hop distance embedding e, (v;): a learned embedding of the hop distance from a designated
entity node (e.g., the seed node or query node in the task).

* Relative time encoding e (v;): a projection of 7(v;) — Tyeeq to capture temporal alignment.

We concatenate these components and project them into the final positional encoding:
PE(v;) = Wee - [eype (v3) || €cent (Vi) || €nop (v3) || €time (v3)] ,

/
where Wpg € R? %9 is a learned projection matrix and || denotes concatenation.

Remarks. This multi-element positional encoding allows the model to incorporate fine-grained
structural, temporal, and schema-level context across highly diverse relational graphs. While the
individual components of this encoding are adapted from established techniques [9, 10], their
integration provides a unified representation that is suitable for heterogeneous graph modeling.

Once tokenized, we construct an input subgraph around each target entity using a combination of
structural sampling [11] and temporal context sampling (Section 2.3). The resulting node sequence is
then passed to our Perceiver-based encoder, which compresses it into a fixed-size latent representation
via cross-attention (Section 2.2).

124

125
126
127
128
129
130
131
132

133
134
135
136

137
138
139
140
141

142
143
144
145
146

147
148
149

150
151
152
153
154

155
156
157

158

159
160

161

162
163

164
165
166
167
168

169
170

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

2.2 Compression via Cross Attention

Graph transformers often suffer from over-globalization when applying full self-attention across all
node pairs, leading to performance degradation [16]. In this regime, information from distant and
potentially irrelevant nodes is overly mixed into each node’s representation. To address this, prior
work introduces handcrafted attention masks or distance-based biases that restrict the attention scope
and enforce locality [17]. More recently, virtual nodes have emerged as a strong inductive bias for
enabling global reasoning in graph models [18, 19], while also reducing computational cost. This is
especially important since standard self-attention has a quadratic complexity of O(n?) with respect
to the number of input nodes, making it infeasible for large graphs.

To address this, we adopt a Perceiver-inspired encoder [20, 21], which avoids imposing fixed attention
constraints or relying on heuristic-based virtual nodes. The core idea of the Perceiver architecture is to
introduce a fixed-size set of learnable latent tokens—or “virtual nodes”—that serve as an information
bottleneck.

Given the tokenized graph structure described in Section 2.1 and the sampled subgraph around each
target entity (using both structural and temporal samplers; see Section 2.3), we obtain a sequence
of input node embeddings X, = [xi,...,Xxy,] for each subgraph. These embeddings are then
passed to the Perceiver encoder, which compresses them into a fixed-size latent representation via
cross-attention.

We maintain a shared sequence of K learned latent tokens Zo = [z¢.1,...,20 k], Where each
Z0,; € RP and K is considerably smaller than the number of input nodes. This reduces computational
and memory costs by decoupling the number of attention operations from the input size. The node
embeddings of each input subsampled graph sequence are compressed into these latent tokens via a
cross-attention operation:

Vdy

where Q = W ,Z are linear projections of the latent tokens, and K, = W;X,, V, = W, X,
are projections of the input node embeddings. Through this mechanism, the latent tokens integrate
information from the entire graph without requiring dense pairwise interactions among all nodes.

KT
Z'V) « Cross-Atin(Qy, Ky, V) = Z(¥) + softmax (Q 2) Vg, @

We apply this cross-attention operation in two parallel branches: one operating on nodes sampled via
structural neighborhood sampling, and the other on nodes retrieved via the temporal context sampler.
Each branch uses an independent cross-attention layer with its own key and value projections. The
resulting latent representations from the two branches are summed elementwise to produce a unified
latent embedding.

Following this compression step, we process the latents with a stack of L self-attention blocks
operating purely in the latent space, yielding the final set of compressed latent tokens Z‘;”‘. We use
standard Transformer blocks with pre-layer normalization and feed-forward layers [22].

The total complexity of this encoder is:
O(KNy + LK?) < O(N7), K < Ny,)

resulting in substantial savings in both compute and memory while still allowing the model to
integrate information from all nodes in the input graph.

2.3 Temporal Sampler

As described in Section 2.2, the Perceiver encoder operates on a sampled input graph centered around
a target entity. In this section, we describe in more detail how this input subgraph is constructed.

In this work, we incorporate two complementary sampling strategies for constructing the input
sequence from heterogeneous temporal graphs. Standard neighborhood sampling methods apply
time-restricted sampling around a target node to prevent temporal leakage [10, 11] (Figure 1). These
methods focus on preserving local graph structure while enforcing temporal constraints, treating time
primarily as a boundary condition on graph-based neighborhood sampling.

In contrast, we introduce a second sampling mechanism—the Time-Context Sampler, which explicitly
leverages temporal proximity as a signal, independent of graph connectivity. This sampler selects

171
172
173
174

175
176
177

178
179

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197

198

199
200

201

202

204
205
206
207

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

edges (and their associated nodes) based on their closeness in time to a reference timestamp, regardless
of whether they are direct neighbors of the target node. This enables the model to incorporate
temporally co-occurring events that may reflect broader contextual information—such as concurrent
user activity, market trends, or environmental conditions—that can be critical for accurate prediction.

Formally, given a graph G = (V, E), node timestamps 7, : V' — R, and a seed time tgeeq, We assign
timestamps to edges based on the node timestamps and select a subgraph using either a fixed time
window At or the k closest edges in time. The full algorithm is provided in Appendix A.1.2.

The nodes selected by the temporal sampler are then processed by the model in parallel with the
structurally sampled neighborhood nodes, as described in the previous section.

2.4 Multi-Task Decoder

After the Perceiver encoder compresses the input sub-
graph into a fixed-length latent representation, this
representation must be mapped to task-specific pre-
dictions. To support diverse prediction objectives
across multiple tasks, we adopt a flexible multi-task
decoder that combines cross-attention with similarity-
based label supervision. Instead of maintaining a
separate output head for each task, we use a shared

Query Node ()
Representation

£, ={ TextEnc.

Task Description

Label Descriptions

decoding mechanism that conditions predictions on
both the task description and the target node repre-
sentation. This design enables efficient parameter
sharing across tasks while allowing task-specific be-

Figure 2: Overview of Flexible multi-task de-
coder: The decoder receives a query node repre-
sentation (combined with a task description embed-
ding) and attends to the latents from the perceiver

havior to emerge through the attention mechanism encoder via cross attention.

and label embeddings. Given a task-specific query
embedding g, € R¢ and the tokenized representation of the target node x; € R? (from Section 2.1),
we compute a task-aware query via element-wise summation:

q; = X; + Qrask-

This query is used to attend to the encoder’s latent Z°"* € R¥*? using a cross-attention mechanism:

z; = CrossAttn(q;, Z3"),

where z; € R is the task-conditioned representation of the node.

To enable generalization across tasks without task-specific output layers, we represent each candidate
label as a text string and encode them using a frozen or pretrained text encoder:

L= {El,EQ, Ce 7£m}7 Ejabel = TextEncoder(L') S Rde,

where ¢; is the j-th label and m is the number of possible labels for the current task.

We compute the logits by taking the dot product between the output node embedding z; and each
label embedding:

Si = Ejape1z; € R™.

These logits are passed through a softmax function to compute class probabilities, and the loss is
computed using standard objectives such as cross-entropy for classification. This unified decoding
framework eliminates the need for task-specific classifiers or training separate models for each task,
enabling scalable and efficient multi-task learning.

3 Results

We evaluate the Relational Graph Perceiver (RGP) on a diverse suite of heterogeneous temporal
graph datasets spanning multiple domains and benchmarks. Specifically, we consider three sources:

211
212
213
214
215

216

217
218
219
220
221
222
223

224

225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table 1: Results on Relbench: We report the Area Under the ROC Curve (AUC) as the evaluation
metric. Best values are shown in bold. Relative gains indicate the percentage improvement of RGP
over RelGT.

RGP % Rel Gain

Dataset Task RDL HGT HGT+PE RelGT (ours) vs. RelGT
rel-f1 driver-dnf 0.7262 0.7142 0.7109 0.7587 0.7844 +3.39
driver-top3 0.7554 0.6389 0.8340 0.8352 0.8789 +5.22
rel-avito user-clicks 0.6590 0.6584 0.6387 0.6830 0.6943 +1.66
user-visits 0.6620 0.6426 0.6507 0.6678 0.6662 -0.24
rel-event user-repeat 0.7689 0.6717 0.6590 0.7609 0.7894 +3.75
user-ignore 0.8162 0.8348 0.8161 0.8157 0.8439 +3.46
rel-trial study-outcome 0.6860 0.5679 0.5691 0.6861 0.7027 +2.42
rel-amazon user-churn 0.7042 0.6608 0.6589 0.7039 0.7089 +0.71
item-churn 0.8281 0.7824 0.7840 0.8255 0.8262 +0.08
rel-stack user-engagement 0.9021 0.8898 0.8818 0.9053 0.9045 -0.09
user-badge 0.8966 0.8652 0.8636 0.8624 0.8868 +2.83
rel-hm user-churn 0.6988 0.6773 0.6491 0.6927 0.7025 +1.41

Average Gain vs. RelGT (%) 2.20

RelBench [11], CTU [23], and SALT [14]. Our experiments focus on the node (or entity) classification
task, where the goal is to predict categorical attributes associated with entities in relational graphs. As
these benchmarks originate from distinct application areas and have only recently been introduced,
they differ significantly in terms of available baselines and evaluation metrics. We provide a detailed
discussion of the dataset-specific metrics and baseline comparisons in Section 3.2.

3.1 Experimental Setup

We implement RGP within the RDL pipeline [11] by replacing the original GNN component with our
architecture, while preserving the underlying task logic, database loaders, and training infrastructure.
RGP is trained using the AdamW optimizer [24] with a fixed learning rate of 1073, Similar to
previous work we only tune a few key architectural hyperparameters: total number of layers in the
model L € {2,4,6} and the number of latent tokens n € {8, 16,32} in cross attention block. All
other settings such as batch size, dropout, and learning rate remain fixed across datasets. For a
complete list of hyperparameters, see Section A.2.1 in the appendix.

3.2 Results on Benchmarks

We report benchmark results for RGP across three representative datasets—RelBench, CTU, and
SALT, each reflecting a different application domain and evaluation metric. Due to the diversity of
these benchmarks, we group results by benchmark and compare RGP against the publically available
baselines for each setting. Across all benchmarks, we include comparisons to RDL [25], a widely
adopted pipeline that combines RelGNN [26] with GraphSAGE aggregation, serving as a strong
reference point for relational deep learning tasks.

RelBench. [11]is a recently introduced benchmark for relational deep learning that includes seven
datasets derived from structured domains such as e-commerce, social networks, and sports. All
classification tasks in this benchmark are binary classification problems, with performance evaluated
using the Area Under the ROC Curve (AUC-ROC). For RelBench, we report results from the
Relational Graph Transformer (RelGT) [27], the current state-of-the-art method on this benchmark.
The paper also compared against HGT [28] and a variation of HGT with laplacian positional encodings
[8]. As shown in Table 1, RGP achieves state-of-the-art performance in RelBench, outperforming
RelGT on 10 out of 12 tasks. Notably, RGP yields an average relative improvement of 2.2%
over RelGT across all tasks, highlighting the benefit of our transformer-based approach. Gains are
particularly pronounced on smaller datasets, where self-attention-based models like RelGT are more
prone to overfitting. For example, on the driver-top3 task from the F1 dataset, RGP outperforms

242
243

244
245
246
247
248
249
250
251

252
253
254

256
257

258
259

260
261
262

264
265
266
267
268

269

270
271

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Table 3: Results on CTU benchmarks: We report F1 score as the evaluation metric. Best values are
in bold. Relative gains are percentage improvement over DBFormer.

. . SAGE RGP Rel.
Dataset Task LightGBM XGBoost TabResNet Linear (RDL) DBFormer (ours) (%) Gain vs. DBF
accidents temp. 0.170 0.336 0.187 0.583 0.566 0.727 0.743 +2.20
dallas temp. 0.584 0.512 0.247 0.393 0.424 0.513 0.555 +8.19
legalacts temp. 0.851 0.220 0.220 0.721 0.698 0.703 0.736 +4.69
A RGP Ablation Study B Relative Performance with respect to

(Relative to Base Model) best performance vs. number of latents
1.01 1.00
1.00
g 099
5
g oss
s
£ 097
&
% 096
>
5095
)
< 094 Base Model
No Temporal Sampler 16
No Cross-Attention (Full SA) 32
0.92 0.60

rel-f1 rel-event rel-trial rel-amazon rel-hm trial fl hm
driver-top3 study-outcome user-churn user-chumn study-outcome driver-top3 user-churn

0.93

event

user-ignore user-ignore

Figure 3: (A) Results from ablation study of RGP. We evaluate the impact of removing key components from
the full RGP model. Performance is reported relative to the base model. A decrease in performance indicates
that the removed component is important to overall model effectiveness. (B) Effect of number of latent tokens
on model performance across four representative tasks. For each task, we normalize results with respect to the
best-performing configuration to compute relative performance.

RelGT by 3.39%, and on the driver-dnf task, by 5.22%. Similarly, on the user-repeat task from
rel-event, we observe a gain of 3.75%.

CTU. [23]is a curated repository of heterogeneous graph datasets from domains such as insurance,
law and retail. We evaluate on CTU because it includes multi-class classification tasks, enabling
us to test RGP beyond binary settings. We compare against baselines reported in the ReDeLEx
benchmark [29], which include traditional tabular models (e.g., LightGBM [30], XGBoost [31]),
temporal MLPs (e.g., TabResNet [32]), and the GNN-based RDL [11] framework. Following standard
practice in from ReDeLEx, we report F1 scores for all tasks. As shown in Table 3, RGP consistently
outperforms the DBFormer baseline across all evaluated CTU datasets. Notably, on the dallas dataset,
RGP achieves a relative gain of 8.19%.

SALT. [23] is a real-world dataset derived from an Enterprise Resource Planning (ERP) sys-
tem. It consists of ranking-based entity classification tasks that reflect practical industrial decision-
making scenarios. Since these tasks involve ranking objectives, we report Mean Reciprocal Rank
(MRR) as the evaluation metric. As graph-based models have not been previously applied to
SALT, we compare RGP against standard baselines, including RDL and the Heterogeneous Graph
Transformer (HGT) [28]. As shown in Table 2 RGP consistenty outperforms both the baselines.

Summary: Across all three bench- Table 2: Results on SALT: We report MRR score as the
marks, RGP demonstrates robust per- evaluation metric. Best values are in bold. Relative gains are

formance gains over strong baselines percentage improvement over HGT.
in diverse settings—binary classifi-

cation (RelBench), multl—glass clas- Task RDL HGT (l::l::‘l:) % Rel Gain v.s HGT
sification (CTU), and ranking-based

tasks (SALT) These results COHCC- item-incoterms 0.64 0.75 0.81 +8.00

. 1 o sales-grou| 020 031 034 +9.68
tively highlight RGP’s versatility and sales-group

£ y. ghtig 1 Y sales-payterms 0.39 0.60 0.58 -3.33
etiectiveness as a general-purpose re- sales-shipcond 0.59 076 0.81 +6.58

lational graph model.

3.3 Ablation Studies

To better understand the contributions of key architectural components in RGP, we perform a series
of ablation studies. Specifically, we analyze the impact of (1) removing the temporal context sampler

272
273

274
275
276
277
278
279

280
281
282
283
284
285
286
287

288
289
290
291
292

294
295

296

297
298

300
301
302
303
304

305
306
307
308
309
310

311
312
313
314

315
316
317
318
319
320
321

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

and (2) replacing the Perceiver-style cross-attention bottleneck with full self-attention. For both
settings, we report the relative performance compared to the best full model in Figure 3A.

Temporal sampler: The temporal sampler is designed to retrieve nodes based on temporal prox-
imity, complementing the structural neighborhood sampler. As shown in Figure 3A, removing the
temporal sampler leads to consistent performance drops, most notably on the rel-fI dataset, where we
observe a ~3% decline. This dataset contains many cold-start cases, such as newly introduced driver
nodes with limited or no structural history. In such cases, structural context alone is insufficient for
reliable predictions.

Perceiver encoder: We next evaluate the role of the latent Perceiver encoder by replacing it with
a full self-attention (SA) mechanism applied over the input tokens. As shown in Figure 3A, this
substitution yields marginal improvements on a few tasks but at the cost of significantly more compute
requirements. Additionally, for smaller datasets such as rel-f1, full self-attention leads to overfitting
and degraded performance, with a ~6.6% drop on the driver-top3 task. In contrast, the cross-attention
bottleneck in RGP offers a more compute-efficient and regularized alternative, preserving competitive
performance while maintaining scalability across tasks. On average, cross-attention is 2—6% more
compute-efficient in comparison to self attention(see appendix A.2.2 for average run time)

Effect of Latent Token Count: Finally we examine how the number of latent tokens affects
performance. We sweep across n € {4, 8,16, 32} latent tokens on four representative tasks: study-
outcome, driver-top3, user-churn, and user-ignore. For each task, we normalize results with respect
to the best-performing configuration to compute relative performance. As shown in Figure 3B, RGP
achieves strong performance even with a relatively small number of latent tokens. However, the
optimal number of latents varies across tasks and datasets, and increasing the number does not always
lead to better results. This is why we chose to keep it as a tunable hyperparameter. For example, the
performance of driver-top3 peaks at 16 latents and declines at 32, suggesting potential overfitting.

3.4 Multi Task Results

A key motivation behind the flexible decoder
introduced in Section 2.4 is to enable scalable Single vs Multi-task Training
multi-task learning across diverse label spaces.
Most existing approaches for relational graph
learning adopt a task-specific training paradigm,
where separate models are trained for each task,
even when these tasks share the same underlying
graph structure.

Single-task
Multi-task

relative performance
°© o o o &
> I ®» © o

o
i

In contrast, the decoder in RGP supports o
task-conditioned decoding by combining cross-
attention with a similarity-based objective over
text-encoded label embeddings. This unified
framework allows a single model to learn mul-
tiple tasks simultaneously.

amazon fl event

Figure 4: Relative performance of multi-task vs.
single-task training across datasets: The Y-axis shows
the average multi-task performance normalized with re-
spect to the average single-task performance across all
tasks within each dataset

To evaluate the effectiveness of this design, we

compare single-task training (one model per task) with multi-task training (a single model trained
jointly on all tasks from the same dataset). In our multi-task setting, task supervision is provided via
text-based task queries and label embeddings, as described in Section 2.4.

As shown in Figure 4, RGP achieves comparable or improved results under multi-task training,
while significantly reducing training cost. For the event dataset, multi-task training even led to slight
improvements over single-task models. However, we observed a notable drop in performance on the
f1 dataset under the multi-task setting. This can be attributed to the severe imbalance in the number
of training samples across tasks: the driver-top3 task has only 1.5k samples, whereas driver-dnf has
over 10k. Such imbalance likely causes the shared model to underfit the smaller task, leading to
degraded performance on driver-top3.

322
323
324

325

326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349

350
351
352
353
354
355

356

357
358
359
360
361
362
363
364
365
366

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Overall, these results highlight the generalization ability of our decoder and its parameter-efficient
multi-task learning without any retraining or architectural modification, making it a strong candidate
for large-scale foundation model training across relational datasets.

4 Related Work

Representing relational datasets as heterogeneous temporal graphs has enabled the use of graph
learning methods for tasks like node classification and link prediction. The RelBench benchmark[11]
formalizes this paradigm and provides a strong baseline using Heterogeneous GraphSAGE [33] with
temporal neighbor sampling, surpassing classical tabular methods like LightGBM [30]. Several
architectures have been proposed to better exploit relational structure: RelGNN [26] introduces
composite message passing to preserve information across bridge and hub nodes, while ContextGNN
[34] combines pair-wise and two-tower encoders for recommendation scenarios.

Graph Transformers (GTs) adapt the self-attention paradigm [22] to graph-structured data, capturing
long-range dependencies without iterative neighborhood aggregation [35]. Early GT variants focused
on local attention with positional encodings like Laplacian eigenvectors [36], while later designs
incorporated global attention mechanisms [9, 17, 37] and scaling strategies such as hierarchical
pooling or sparse attention. Heterogeneous GTs such as HGT [28] and Hinormer [38] model multi-
type graphs, but face quadratic cost and per-task training inefficiency. Most relevant to our work is
the Relational Graph Transformer (RelGT) [10], which introduced a hybrid local/global attention,
establishing strong performance on RelBench. Our approach differs by adopting a Perceiver-style
latent bottleneck and temporal sampling, enabling greater scalability and multi-task capability.

While GTs highlight the importance of global context, their computational footprint motivates
exploring efficiency-focused alternatives. The Perceiver architecture [12] introduces a fixed-size
latent array that attends to high-dimensional inputs via cross-attention, followed by latent self-
attention, decoupling input size from computational complexity. Perceiver IO [20] extends this
framework to handle diverse output domains from a shared latent representation. In graph learning,
early Perceiver-inspired adaptations have been proposed for homogeneous graphs or static settings
[39], but these typically omit temporal sampling and are not optimized for multi-task inference. Our
encoder adapts this latent bottleneck principle specifically to heterogeneous temporal graphs.

Existing RDL methods excel at modeling relational structure but face oversquashing and limited
temporal reach. Graph Transformers capture long-range context but remain computationally heavy
and often schema-restrictive. Perceiver-based models address scalability but have not been tailored
to heterogeneous temporal graphs or multi-task learning in relational settings. This motivates
architectures like ours that combine the latent efficiency of Perceivers with relational and temporal
inductive biases, while enabling shared encoders across multiple tasks.

5 Conclusion

We introduced RGP, a transformer-based architecture for heterogeneous temporal graphs that inte-
grates a Perceiver-style encoder for global reasoning via a cross-attention bottleneck, a temporal
subgraph sampler that incorporates temporally relevant but structurally distant context, and a flexible
multi-task decoder that enables prediction across diverse tasks and label spaces within a single model.
Across multiple benchmarks, RGP consistently outperforms strong baselines, achieving state-of-the-
art results on both binary and multi-class tasks while reducing computational overhead. Our ablation
studies further validate the importance of each component, particularly the role of importance of
temporally aligned but structurally distant context in improving predictive performance. Beyond
accuracy gains, RGP supports flexible multi-task learning without requiring task-specific output
heads, positioning it as a strong candidate for large-scale foundation models in relational domains.

367

368
369

370
371
372
373

374
375

376
377
378

379
380

381
382
383

384
385

386
387

388
389
390

391
392
393

394
395
396
397

398
399

401
402

403
404
405

407
408

409
410

411
412
413

414
415
416

417
418
419

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

References

[1] Edgar F Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377-387, 1970. 1

[2] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph repre-
sentation learning on relational databases. In Forty-first International Conference on Machine
Learning, 2024. 1

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 1

[4] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning
with graph learning-convolutional networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11313-11320, 2019.

[5] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019. 1

[6] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In International Conference on Machine
Learning, pages 2528-2547. PMLR, 2023. 1

[7] Shaima Qureshi et al. Limits of depth: Over-smoothing and over-squashing in gnns. Big Data
Mining and Analytics, 7(1):205-216, 2023. 1

[8] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020. 1, 6

[9] Ruiheng Ying, Zhuang Liu, Jiaxuan You, Yingbo Zhou, Chongxuan Li, Meng Jiang, and Jure
Leskovec. Do transformers really perform badly for graph representation? In ICLR 2021, 2021.
1,3,9

[10] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico Lopez, Charilaos I Kanatsoulis,
Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer. arXiv preprint
arXiv:2505.10960, 2025. 1, 2,3,4,9

[11] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec.
Relbench: A benchmark for deep learning on relational databases. In NeurIPS 2024 Datasets
and Benchmarks Track, 2024. Poster; also available as arXiv:2407.20060. 2, 3,4, 6, 7,9, 12

[12] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao
Carreira. Perceiver: General perception with iterative attention. In International conference on
machine learning, pages 4651-4664. PMLR, 2021. 2,9

[13] Jan Motl and Oliver Schulte. The ctu prague relational learning repository. arXiv preprint
arXiv:1511.03086, 2015. 2

[14] Tassilo Klein, Clemens Biehl, Margarida Costa, Andre Sres, Jonas Kolk, and Johannes Hoffart.
Salt: Sales autocompletion linked business tables dataset. arXiv preprint arXiv:2501.03413,
2025. 2,6

[15] Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jinu Sunil,
Jure Leskovec, and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular
learning. arXiv preprint arXiv:2404.00776, 2024. 3, 12

[16] Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-
globalizing problem in graph transformers. arXiv preprint arXiv:2405.01102, 2024. 4

[17] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618-21629, 2021. 4,9

[18] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pages 31613-31632. PMLR, 2023. 4

[19] Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu.
Gapformer: Graph transformer with graph pooling for node classification. In IJCAI, pages
2196-2205, 2023. 4

10

420
421
422
423
424

425
426

427
428
429

431

432

434
435

436
437

438
439
440

441
442

443
444

445
446
447

448
449

451
452

454
455

456
457
458

459
460

461
462

463
464

466

467
468

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

[20] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
David Ding, Skanda Koppula, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M.
Botvinick, Andrew Zisserman, Oriol Vinyals, and Jodo Carreira. Perceiver io: A general
architecture for structured inputs & outputs. In /CLR 2022 (Spotlight), 2022. Also available as
arXiv:2107.14795. 4,9

[21] Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework
for multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024. 4

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 4,9

[23] Jan Motl and Oliver Schulte. The ctu prague relational learning repository, 2024. URL
https://arxiv.org/abs/1511.03086. 6, 7

[24] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017. 6

[25] Matthias Fey et al. Graph representation learning on relational databases. arXiv preprint, 2024.
Introduces Relational Deep Learning (RDL) blueprint referenced by RelBench. 6

[26] Chen *et al.*. Relgnn: Composite message passing for relational deep learning. In ICML 2025
Poster Track, 2025. 6,9

[27] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico Lépez, Charilaos 1. Kanatsoulis,
Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer, 2025. URL
https://arxiv.org/abs/2505.10960. 6

[28] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pages 2704-2710, 2020. 6, 7, 9

[29] Jakub Peleska and Gustav Sir. Redelex: A framework for relational deep learning exploration.
arXiv preprint arXiv:2506.22199, 2025. 7

[30] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017. 7,9

[31] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794, 2016. 7

[32] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in neural information processing systems, 34:
18932-18943, 2021. 7

[33] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS, pages 1024-1034, 2017. 9

[34] Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan
Shah, Shenyang Huang, BlaZz Stojanovi¢, Alan Krumholz, et al. Contextgnn: Beyond two-tower
recommendation systems. arXiv preprint arXiv:2411.19513,2024. 9

[35] Vijay Prakash Dwivedi and Michael M. Bronstein. A generalization of transformer networks to
graphs. AAAI DLG Workshop, 2021. 9

[36] Vijay Prakash Dwivedi et al. Graph neural networks with learnable structural and positional
representations. /CLR 2022, 2022. 9

[37] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021. 9

[38] Mao *et al.*. Hinormer: Representation learning on heterogeneous information networks with
graph transformer. In WWW 2023, 2023. 9

[39] Bin Jiang and Ding Ma. Defining least community as a homogeneous group in complex
networks. Physica A: Statistical Mechanics and its Applications, 428:154-160, 2015. 9

11

https://arxiv.org/abs/1511.03086
https://arxiv.org/abs/2505.10960

470

471

472
473
474
475
476

477
478
479

480

481

482

483

484

486
487

488
489

490

491
492

493
494

497

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

A Appendix

A.1 Model Details
A.1.1 Multi Model Encoder

In heterogeneous temporal relational graphs derived from relational databases, each node may contain
a rich set of multi-modal attributes, such as numerical values, categorical fields, text descriptions,
timestamps, and image features. To obtain expressive node-level representations suitable for down-
stream tasks, we use a modality-aware feature encoder taken from prior work in relational deep
learning [11, 15].

Given a node v € V, we denote its raw attributes as x,, = {xq(}m)}me M, » where M,, C M is the
subset of modalities present for node v. Each feature within each modality is independently encoded
using a modality-specific function ¢,,, yielding a set of intermediate embeddings:

h(™ = ¢, (x,gm>) s X R 3)

where d,,, is the dimensionality assigned to modality m. Supported modalities include:
* Numerical features: encoded via linear layers or small MLPs.
» Categorical features: embedded using learned lookup tables.
» Text features: embedded via pretrained or fine-tuned language models (e.g., BERT).
* Timestamps: embedded as scalar values or periodic functions (e.g., sinusoidal encodings).

The resulting embeddings are concatenated:

hf}oncal — @ hq(,m) c RZmeMv dm’)
meM,

and passed through a table-specific (or node-type-specific) projection function—a ResNet in our
case—to obtain the final node representation:

hq()O) = fT(v) (hf)oncat)) fT(U) : RZ i —]Rdv (5)

where 7(v) denotes the node type (i.e., source table) and d is the unified hidden dimension used
across the model.

A.1.2 Time-Context Sampling Algorithm

Edge Timestamp Assignment. Each edge is assigned a timestamp equal to the maximum times-
tamp of its two endpoint nodes:

Te(u,v) = max (T, (u), T, (v)) .

Time-Context-Aware Sampling. Given a reference timestamp tg.eq, We sample a subgraph by
selecting edges based on one of two strategies:
* Time window: include all edges where |T¢(u, v) — tgeed| < At.

» Top-k: select the k edges closest in time to tgeeqd-

The resulting subgraph contains all nodes incident to the selected edges.

12

498

499

500
501
502
503
504

505
506
507

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

Algorithm 1 Time-Context-Aware Edge Sampling

Require: Graph G = (V, E), timestamp function T : V' — R, reference time g, sampling rule:

time window At or edge count k

Ensure: Subgraph Gen = (Viub, Fsub)

— e b b e e

PRINAERD 2

Initialize Fy oreq
for each edge (u,v) € E'do
te + max(T(u), T(v))
score <— |te — tseed|
Add (u, v, te, score) to Egored
end for
if time window At is specified then
Egelected < {(Uav) | (u, U, te, S) € Egcored; 8 < At}
else if edge count £ is specified then
Sort Fgored in ascending order by score
Eelecteq < first k edges from sorted list

: else

E, selected < E

: end if
: Vi < nodes appearing in Fiejected
: return Gy, = (Viub, Eselected)

A.2 Experiment details

A.2.1 Hyperparameter

We use a controlled hyperparameter setup to ensure consistent evaluation across diverse datasets
without exhaustive tuning. Following prior work, we fix most settings and tune only two architectural
hyperparameters: the number of Perceiver layers L € {2,4,6} and the number of latent tokens
n € {8, 16,32} in the cross-attention bottleneck. All other hyperparameters are kept fixed across
datasets to reflect realistic training scenarios where compute budgets limit per-task tuning.

Table 4 summarizes the fixed hyperparameter settings used in our experiments. All models are trained
using the AdamW optimizer with a learning rate of 10~2 and a weight decay of 10~°. We use a
cosine learning rate scheduler with 10 warmup steps, and all experiments are run for 200 epochs.

Table 4: Summary of hyperparameter settings used in RGP experiments.

Component Value / Setting

Optimizer and Training Setup

Optimizer AdamW

Learning rate 1073

Weight decay 107°

Scheduler Cosine with 10 warmup steps
Epochs 200

Batch size 512

Model Architecture

Latent token count n
Transformer layers L

{8, 16, 32} (tuned)
{2,4, 6} (tuned)

Dropout 0.2
hidden dim 128
Temporal Sampler

Edges per type 10
Temporal decay 0.1

13

508

509
510
511
512
513

RGP: A Cross-Attention based Graph Transformer for Relational Deep Learning

A.2.2 Runtime Comparison: Cross-Attention vs Self-Attention

To quantify the efficiency benefits of using a cross-attention (CA) bottleneck over full self-attention
(SA), we measure the total training time across three representative tasks. As shown in Table 5, the
Perceiver-based encoder with CA consistently achieves lower runtime compared to its SA counterpart.
While SA sometimes offers marginal accuracy improvements on larger datasets, the increase in
computational cost is substantial.

Table 5: Average training time for Cross-Attention (CA) vs. Self-Attention (SA) models. Experi-
ments were run on a single B200 GPU.

Dataset Cross-Attention (CA) Self-Attention (SA)

rel-fI 2.7 min 7.5 min
rel-amazon 3.5 hrs 18.5 hrs
rel-event 4.5 min 22 min

14

	1 Introduction
	2 Method
	2.1 Tokenizing Heterogeneous Temporal Graphs
	2.2 Compression via Cross Attention
	2.3 Temporal Sampler
	2.4 Multi-Task Decoder

	3 Results
	3.1 Experimental Setup
	3.2 Results on Benchmarks
	3.3 Ablation Studies
	3.4 Multi Task Results

	4 Related Work
	5 Conclusion
	A Appendix
	A.1 Model Details
	A.1.1 Multi Model Encoder
	A.1.2 Time-Context Sampling Algorithm

	A.2 Experiment details
	A.2.1 Hyperparameter
	A.2.2 Runtime Comparison: Cross-Attention vs Self-Attention

