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ABSTRACT

We demonstrate that a generic deep ensemble is emergently equivariant under data
augmentation in the large width limit. Specifically, the ensemble is equivariant at
any training step for any choice of architecture, provided that data augmentation is
used. This equivariance also holds off-manifold and is emergent in the sense that
predictions of individual ensemble members are not equivariant but their collective
prediction is. As such, the deep ensemble is indistinguishable from a manifestly
equivariant predictor. We prove this theoretically using neural tangent kernel the-
ory and verify our theoretical insights using detailed numerical experiments.

1 INTRODUCTION

Many machine learning tasks feature important symmetry constraints. As an example, predicting
the energy of a molecule should not depend on the global orientation and position used to repre-
sent the molecule. This motivates the development of equivariant machine learning models which
take the symmetry of the learning problem into account. In particular, manifestly equivariant deep
learning architectures have for several reasons received significant attention in recent years: first, the
inductive bias induced by manifest equivariance simplifies the learning problem (Bronstein et al.,
2021; Elesedy & Zaidi, 2021). Second, built-in equivariance often leads to more robust predictions
(Müller et al., 2021; Liu et al., 2022). Third, machine learning is increasingly deployed in the natural
sciences for which equivariance is a central ingredient (Atz et al., 2021; Unke et al., 2021; Cranmer
et al., 2023). A downside of manifestly equivariant models is however that they have a necessar-
ily restricted architecture which has to be specifically designed for the symmetry properties of the
problem at hand (Schütt et al., 2021; Batzner et al., 2022; Bacchio et al., 2023) and can be compu-
tationally costly (Cobb et al., 2021; Puny et al., 2021b). An alternative is to train a non-equivariant
model with data augmentation and thereby learn the symmetry properties instead of incorporating
them as a constraint into the architecture.

Similarly, deep ensembles (Lakshminarayanan et al., 2017), which average the predictions of several
models trained from different initializations, are an important part of the deep learning toolbox. They
have gained popularity as a method to estimate uncertainties of neural network predictions (Abdar
et al., 2021; Linander et al., 2022) and have furthermore been shown to be more robust and to lead
to an increase in performance compared to individual models (Ganaie et al., 2022).

In this paper, we show theoretically that deep ensembles are closely related to equivariant models.
Specifically, we show that upon full data augmentation, deep ensembles become equivariant at all
training steps in the large width limit. This statement even holds off-manifold and at initialization.
Intuitively this can be understood as follows: at initialization, the deep ensemble predicts the same
output for all inputs and is therefore in particular equivariant. Due to data augmentation, the deep
ensemble is then trained in such a way that it stays equivariant. It is important to emphasize that
this manifest equivariance is emergent: while the prediction of the ensemble is equivariant, the
predictions of its members are not. In particular, the ensemble members are not required to have an
equivariant architecture.

We rigorously derive this surprising emergent equivariance by using the duality between neural net-
works and kernel machines in the large width limit (Neal, 1996; Lee et al., 2018; Yang, 2020). The
neural tangent kernel (NTK) describes the evolution of deep neural networks during training (Ja-
cot et al., 2018). In the limit of infinite width, the neural tangent kernel is frozen, i.e., it does not
evolve during training and the training dynamics can be solved analytically. As a random variable
over initializations, the output of the neural network after arbitrary training time follows a Gaus-
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sian distribution whose mean and covariance are available as closed form expressions (Lee et al.,
2019). In this context, deep ensembles can be interpreted as a Monte-Carlo estimate of the corre-
sponding expected network output. This insight allows us to theoretically analyze the effect of data
augmentation throughout training and show that the deep ensemble is fully equivariant.

In practice, this emergent equivariance of deep ensemble cannot be expected to hold perfectly and
exact equivariance will be broken, since the real-world neural networks are not infinitely wide and
the expectation value over initalizations is estimated by Monte-Carlo. Furthermore, in the case of a
continuous symmetry group, data augmentation cannot cover the entire group orbit and is thus ap-
proximate. We analyze the resulting breaking of equivariance and demonstrate in detailed numerical
experiments that the deep ensembles nevertheless show a high degree of equivariance even with a
low number of ensemble members.

The main contributions of our work are:

• We prove that infinitely wide deep ensembles are equivariant at all stages of training if
trained with full data augmentation using the theory of neural tangent kernels.

• We carefully analyze the limitations of our theoretical analysis. Specifically, we derive
bounds for deviations from equivariance due to finite size as well as data augmentation for
a continuous group.

• We demonstrate the emergent equivariance in three different settings: the Ising model,
FashionMNIST, and a high-dimensional medical dataset of histological slices.

2 RELATED WORKS

Deep ensembles were introduced by Lakshminarayanan et al. (2017) for uncertainty estimation and
have been applied in many different contexts, a review is given in Ganaie et al. (2022).

There is a large body of literature on equivariant neural networks, reflecting the importance of the
topic in recent years. The first group equivariant convolution was introduced in Cohen & Welling
(2016), a more mathematically focused review is given in Gerken et al. (2023). That linear equiv-
ariant models benefit from equivariance was shown rigorously in Elesedy & Zaidi (2021), the uni-
versality of equivariant point-cloud networks was studied in Dym & Maron (2020). Ensembles of
networks with different symmetry properties were studied in Loh et al. (2023). The relation between
manifest equivariance and data augmentation with regards to model performance for invariant and
equivariant tasks was studied in Gerken et al. (2022) and with regards to training dynamics in Flinth
& Ohlsson (2023). Equivariance can also be achieved without constraining to a equivariant architec-
ture by transforming the input by symmetrization over (an appropriately chosen subset of) the group
orbit Puny et al. (2021a); Basu et al. (2023a;b) or a canonicalization network Kaba et al. (2023);
Mondal et al. (2023). This approach is orthogonal to ours: instead of an ensemble of models and
ensemble of inputs is considered. Note that the memory footprint of the symmetrization depends on
the size of the group orbit while, for deep ensembles, it depends on the number of ensemble mem-
bers. On the other hand, canonicalization and symmetrization leads to exact equivariance while deep
ensembles naturally allow for uncertainty estimation and increased robustness.

Wide neural networks have been studied for a long time. That Bayesian neural networks behave
as Gaussian processes was first discovered in Neal (1996), this result was extended to deep neural
networks in Lee et al. (2018). Neural tangent kernels (NTKs), which capture the evolution of wide
neural networks under gradient descent training, were introduced in Jacot et al. (2018). The literature
on this topic has since expanded considerably so that we can only cite some selected works, a review
on the topic is given in Golikov et al. (2022). The NTK for CNNs was computed in Arora et al.
(2019). Lee et al. (2019) used the NTK to show that wide neural networks trained with gradient
descent become Gaussian processes and Yang (2020) introduced a comprehensive framework to
study scaling limits of wide neural networks rigorously. This framework was used in Yang & Hu
(2022) to find a parametrization suitable for scaling networks to large width. NTKs were used to
study GANs Franceschi et al. (2022), PINNs Wang et al. (2022), backdoor attacks Hayase & Oh
(2022) as well as pruning Yang & Wang (2023), amongst other applications. Corrections to the
infinite-width limit in particular in connection to quantum field theory have been investigated as
well (Huang & Yau, 2020; Yaida, 2020; Halverson et al., 2021; Erbin et al., 2022).
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With Novak et al. (2020), a Python package is available which automatizes the computation and
evaluation of the NTK for many common network architectures.

Data augmentation has been studied in the context of kernel machines in some works. In particular,
Mroueh et al. (2015), Raj et al. (2017) and Mei et al. (2021) study properties of kernel machines
using group-averaged kernels but they do not consider wide neural networks. Dao et al. (2019) use
a Markov process to model random data augmentations and show that an optimal Bayes classifier
in this context becomes a kernel machine. This paper also shows that training on augmented data is
equivalent to using an augmented kernel. Li et al. (2019) introduce new forms of pooling to improve
kernel machines. As part of their analysis, they derive the analogous augmented kernel results as
Dao et al. (2019) for the NTK at infinite training time. In contrast, we focus on the symmetry prop-
erties of the resulting (deep) ensemble of infinitely wide neural networks. In particular, we analyze
the behavior of the ensemble at finite training time, show that their assumption of an “equivariant
kernel” is satisfied for any orthogonal representation (cf. Theorem 2), include equivariance on top of
invariance and derive a bound for the invariance error accrued by approximating a continuous group
with finitely many samples.

3 DEEP ENSEMBLES AND NEURAL TANGENT KERNELS

In this section, we give a brief overview over deep ensembles and their connection to NTKs.

Deep Ensemble: Let fw : X → R be a neural network with parameters w which are initialized by
sampling from the density p, i.e. w ∼ p. For notational simplicity, we consider only scalar-valued
networks in the main part of the paper unless stated otherwise. Our results however hold also for
vector-valued networks. The output of the deep ensemble f̄t of the network fw is then defined as
the expected value over initializations of the trained ensemble members

f̄t(x) = Ew∼p [fLtw(x)] , (1)

where the operator Lt maps the initial weight w to its corresponding value after t steps of gradient
descent. In practice, the deep ensemble is approximated by a Monte-Carlo estimate of the expecta-
tion value using a finite number M of initializations

f̄t(x) ≈ f̂t(x) =
1

M

M∑
i=1

fLtwi
(x) , where wi ∼ p . (2)

This amounts to performing M training runs with different initializations and averaging the outputs
of the resulting models. It is worthwhile to note that in the literature, the average f̂t as defined in
(2) is often referred to as the deep ensemble (Lakshminarayanan et al., 2017). In this work, we will
however use the term deep ensemble to refer to the expectation value f̄t of (1). Analogously, we
refer to f̂t as the MC estimate of the deep ensemble f̄t.

Relation to NTK: In the infinite width limit, a deep ensemble follows a Gaussian distribution
described by the neural tangent kernel (Jacot et al., 2018)

Θ(x, x′) =

L∑
l=1

Ew∼p

[(
∂fw(x)

∂w(l)

)⊤
∂fw(x

′)

∂w(l)

]
, (3)

where w(l) denotes the parameters of the lth layer and we have assumed that the network has a total
of L layers. In the following, we use the notation

Θij = Θ(xi, xj) (4)

for the Gram matrix, i.e. the kernel evaluated on two elements xi and xj of the training set

T = {(xi, yi) | i = 1, . . . , |T |} . (5)

Using the NTK, we can analytically calculate the distribution of ensemble members in the large
width limit for a given input x at any training time t for learning rate η: The trained networks follow
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a Gaussian process distribution with mean function µt and covariance function Σt which are given
in terms of the NTK by (Lee et al., 2019)

µt(x) = Θ(x, xi)
[
Θ−1 (I− exp(−ηΘt))

]
ij

yj , (6)

Σt(x, x
′) = K(x, x′) + Σ

(1)
t (x, x′)− (Σ

(2)
t (x, x′) + h.c.) , (7)

where all sums over the training set are implicit by the Einstein summation convention and we have
defined

Σ
(1)
t (x, x′) = Θ(x, xi)

[
Θ−1 (I− exp(−ηΘt)) K (I− exp(−ηΘt))Θ−1

]
ij

Θ(xj , x
′) , (8)

Σ
(2)
t (x, x′) = Θ(x, xi)

[
Θ−1 (I− exp(−ηΘt))

]
ij

K(xj , x
′) , (9)

with the NNGP kernel

K(x, x′) = Ew∼p [fw(x) fw(x
′)] . (10)

The Gram matrix of the NNGP is given by Kij = K(xi, xj).

Remark 1. This implies in particular that the ensemble output is given by f̄t(x) = µt(x) and
ensemble members have output variance Σt(x) := Σt(x, x) across initializations.

In practice, the cost of inverting the Gram matrix is prohibitive. Therefore, one typically estimates
the deep ensemble by (2) using M trained models with different random initalizations. Nevertheless,
the dual NTK description allows us to reason about the properties of the exact deep ensemble. In
the following, we will use this duality to theoretically investigate the effect of data augmentation on
the deep ensemble.

4 EQUIVARIANCE AND DATA AUGMENTATION

In this section, we summarize basics facts about representations of groups, equivariance, and data
augmentation and establish our notation.

Representations of Groups Groups abstractly describe symmetry transformations. In order to
describe how a group transforms a vector, we use group representations. A (linear) representation of
a group G is a map ρ : G → GL(V ) where V is a vector space and ρ is a group homomorphism, i.e.
ρ(g1)ρ(g2) = ρ(g1g2) for all g1, g2 ∈ G. Of particular importance are orthogonal representations
for which ρ(g−1) = ρ(g)⊤. In other words, representations that have orthogonal representation
matrices. We will focus on these representations in the following. Importantly, this is a mild restric-
tion which is satisfied for most important cases like rotations or permutations on finite-dimensional
vector spaces.

Equivariance For learning tasks in which data x and labels y transform under group represen-
tations, the map x 7→ y has to be compatible with the symmetry group; this property is called
equivariance. Formally, let f : X → Y denote a (possibly vector valued) model with input space X
and output space Y on which the group G acts with representations ρX and ρY , respectively. Then,
f is equivariant with respect to the representations ρX and ρY if it obeys

ρY (g)f(x) = f(ρX(g)x) ∀x ∈ X, g ∈ G . (11)

Similarly, a model f is invariant with respect to the representation ρX if it satisfies the above relation
with ρY being the trivial representation, i.e. ρY (g) = I for all g ∈ G. Considerable work has
been done to construct manifestly equivariant neural networks with respect to specific, practically
important special cases of (11). It has been shown both empirically (e.g. in Thomas et al. (2018),
Bekkers et al. (2018)) and theoretically (e.g. in Sannai et al. (2021), Elesedy & Zaidi (2021)) that
equivariance can lead to better sample efficiency, improved training speed and greater robustness. A
downside of equivariant architectures is that they need to be purpose-built for symmetry properties
of the problem at hand since standard well-established architectures are mostly not equivariant.

Data Augmentation An alternative approach to incorporate information about the symmetries of
the data into the model is data augmentation. Instead of using the original training set T , we use a
set which is augmented by all elements of the group orbit, i.e.

Taug = {(ρX(g)x, ρY (g)y)|g ∈ G, (x, y) ∈ T } . (12)
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In stochastic gradient descent, we randomly draw a minibatch from this augmented training set to
estimate the gradient of the loss. If the group has finite order, data augmentation has the immediate
consequence that the action of any group element g ∈ G on a training sample can be written as a
permutation πg of the indices of the augmented training set Taug, i.e.

ρX(g)xi = xπg(i) and ρY (g)yi = yπg(i) , (13)

where i ∈ {1, . . . , |Taug|}. Data augmentation has the advantage that it does not impose any restric-
tions on the architecture and is hence straightforward to implement. However, the symmetry is only
learned and it can thus be expected that the model is only (approximately) equivariant towards the
end of training and on the data manifold. Furthermore, the model cannot benefit from the restricted
function space which the symmetry constraint specifies.

5 EMERGENT EQUIVARIANCE FOR LARGE-WIDTH DEEP ENSEMBLES

In this section, we prove that any large-width deep ensemble is emergently equivariant when data
augmentation is used. We refer to Appendix A for complete proofs. After stating our assumptions,
the sketch the proof in three steps.

Assumptions We consider networks fw with parameters w. Crucially, we do not assume any
equivariance properties of these networks. Furthermore, we require that the networks fw depend
on their input x only through expressions of the form w(k)x with w(k) a trainable matrix with
components initialized from a centered Gaussian distribution. We emphasize that this condition
is very mild and is satisfied for almost all common network architectures such as MLPs, CNNs,
ResNets or transformers. It would be violated only in exotic scenarios such as a network with a skip
connection from the input directly to the output.

We consider a finite group G with orthogonal representations ρX and ρY as well as data augmen-
tation with respect to these representations, as discussed above. The case of continuous groups will
be discussed subsequently.

Step 1: The representation ρX acting on the input space X induces a canonical transformation of
the NTK and NNGP kernel:

Θ(x, x′) → Θ(ρX(g)x, ρX(g)x′) . (14)

K(x, x′) → K(ρX(g)x, ρX(g)x′) . (15)

For any orthogonal representation ρX acting on the input space X , this canonical transformation
leaves the kernels invariant:
Theorem 2 (Kernel invariance under orthogonal representations). Let G be a group and ρX an
orthogonal representation of G acting on the input space X . Under the representation ρX , the
neural tangent kernel Θ as defined in (3) as well as the NNGP kernel K as defined in (10) of a
neural network satisfying the assumptions above are invariant:

Θ(x, x′) = Θ(ρX(g)x, ρX(g)x′) , (16)

K(x, x′) = K(ρX(g)x, ρX(g)x′) . (17)

for all g ∈ G and x, x′ ∈ X .

Proof. See Appendix A.

While this kernel invariance is shared by many standard kernels, such as RBF or linear kernels,
this property is non-trivial for NTK and NNGP since they are not simply functions of the norm
of the difference or inner product of the two input values x and x′. Furthermore, this result holds
irrespective of whether a group is of finite or infinite order.

Step 2: Data augmentation allows to rewrite the group action as a permutation, see (13). Combin-
ing this with the invariance of the kernels under orthogonal representations, we can shift a permuta-
tion from the first to the second index of the Gram matrix, i.e.,

Θπg(i),j = Θi,π−1
g (j) . (18)
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This statement can be easily shown as follows:
Θ(xπg(i), xj) = Θ(ρX(g)xi, xj) = Θ(xi, ρX(g)−1xj) = Θ(xi, xπ−1

g (j)) , (19)

where we have used the Theorem 2 derived in the last step for the second equality. Equation 18 then
follows by the definition of the Gram matrix Θij = Θ(xi, xj). Along similar lines, the following
result can be derived:
Lemma 3 (Shift of permutation). Data augmentation implies that one can shift the permutation
group action from the first index to the second index for any matrix-valued analytical function F
involving the Gram matrices of the NNGP and NTK as well as their inverses:

F (Θ,Θ−1,K,K−1)πg(i),j = F (Θ,Θ−1,K,K−1)i,π−1
g (j) . (20)

where πg denotes the group action in terms of training set permutations, see (13).

Step 3: Using Lemma 3, it can be shown that the deep ensemble is equivariant in the infinite width
limit. Before stating the general theorem, we first illustrate the underlying reasoning by showing
one particular consequence, i.e., that the mean is invariant if the output space Y is equipped with
the trivial representation ρY (g) = I. By (6), the output of the deep ensemble for transformed input
x → ρX(g)x is given by

f̄t(ρX(g)x) = µt(ρX(g)x) = Θ(ρX(g)x, xi)
[
Θ−1 (I− exp(−ηΘt))

]
ij

yj (21)

Using Theorem 2, we can rewrite this as
f̄t(ρX(g)x) = Θ(x, ρX(g)−1 xi)

[
Θ−1 (I− exp(−ηΘt))

]
ij

yj (22)

= Θ(x, xπ−1
g (i))

[
Θ−1 (I− exp(−ηΘt))

]
ij

yj (23)

= Θ(x, xi)
[
Θ−1 (I− exp(−ηΘt))

]
πg(i)j

yj , (24)

where we have changed the summation index i → πg(i) in the last step. Using Lemma 3 and an
analogous change in summation index, we can shift the permutation on the labels y:

f̄t(ρX(g)x) = Θ(x, xi)
[
Θ−1 (I− exp(−ηΘt))

]
ij

yπg(j) (25)

Since the output representation ρY is trivial by assumption, the outputs are invariant yπg(k) = yk. It
then immediately follows that the ensemble is invariant as well:

f̄t(ρX(g)x) = f̄t(x) . (26)
Using analogous reasoning, the following more general result can be derived:
Theorem 4 (Emergent Equivariance of Deep Ensembles). The distribution of (possibly vector-
valued) large-width ensemble members fw : X → Y is equivariant with respect to the orthogo-
nal representations ρX and ρY of the group G if data augmentation is applied. In particular, the
ensemble is equivariant,

f̄t(ρX(g)x) = ρY (g) f̄t(x) (27)
for all g ∈ G. This result holds

1. at any training time t,

2. for any element of the input space x ∈ X .

We stress that this results holds even off the data manifold, i.e., for out-of-distribution data, and in
the early stages of training as well as at initialization. As a result, it is not a trivial consequence of the
training. Furthermore, we do not need to make any restrictions on the architectures of the ensemble
members. In particular, the individual members will generically not be equivariant. However, their
averaged prediction will be (at least in the large width limit). In this sense, the equivariance is
emergent.

6 LIMITATIONS: APPROXIMATE EQUIVARIANCE

In the following, we discuss the breaking of equivariance due to i) statistical fluctuations of the
estimator due to the finite number of ensemble members, ii) continuous symmetry groups which do
not allow for complete data augmentation, and iii) finite width corrections in NTK theory.
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Finite Number of Ensemble Members We derive the following bound for estimates of deep
ensembles in the infinite width limit:
Lemma 5 (Bound for finite ensemble members). The deep ensemble f̄t and its estimate f̂t do not
differ by more than threshold δ,

|f̄t(x)− f̂t(x)| < δ , (28)

with probability 1− ϵ for ensemble sizes M that obey

M > −2Σt(x)

δ2
ln

(√
πϵ

)
. (29)

We stress that the covariance Σ is known in closed form, see (7). As such, the right-hand-side can
be calculated exactly. We note that we also derive a somewhat tighter bound in Appendix A which
however necessitates to numerically solve for M .

Continuous Groups For a continuous group G, consider a finite subgroup A ⊂ G which is used
for data augmentation. We quantify the discretization error of using A instead of G by

ϵ = max
g∈G

min
g′∈A

||ρX(g)− ρX(g′)|| . (30)

Then, the invariance error of the mean (6) is bounded by ϵ:
Lemma 6 (Bound for continuous groups). Consider a deep ensemble of neural networks with Lip-
schitz continuous derivatives with respect to the parameters. For an approximation A ⊂ G of a
continuous symmetry group G with discretization error ϵ, the prediction of the ensemble trained on
A deviates from invariance by

|f̄t(x)− f̄t(ρX(g)x)| ≤ ϵC(x) , ∀g ∈ G ,

where C is independent of g.
Finite Width Convergence of the ensemble output to a Gaussian distribution only holds in the
infinite width limit. There has been substantial work on finite-width corrections to the NTK
limit (Huang & Yau, 2020; Yaida, 2020; Halverson et al., 2021; Erbin et al., 2022) which could
in principle be used to quantify the resulting violations of exact equivariance. This is however of
significant technical difficulty and therefore beyond the scope of this work. In the experimental sec-
tion, we nevertheless demonstrate that even finite-width ensembles show emergent equivariance to
good approximation.

7 EXPERIMENTS

In this section, we empirically study the emergent equivariance of finite width deep ensembles for
several architectures (fully connected and convolutional), tasks (regression and classification), and
application domains (computer vision and physics).
Ising Model We validate our analytical computations with experiments on a problem for which
we can compute the NTK exactly: the two-dimensional Ising model on a 5x5 lattice with energy
function E = −J

∑
⟨i,j⟩ sisj , with the spins si ∈ {+1,−1}, J a coupling constant and the sum

runs over all adjacent spins. The energy of the Ising model is invariant under the cyclic group C4 of
rotations of the lattice by 90◦. We train ensembles of five different sizes with 100 to 10k members of
fully-connected networks with hidden-layer widths 512, 1024 and 2048 to approximate the energy
function using all rotations in C4 as data augmentation. In this setting, we can compute the NTK
exactly on the given training data using the JAX package neural-tangents (Novak et al., 2020).
We verify that the ensembles converge to the NTK for large widths, see Appendix B.1.

To quantify the invariance of the ensembles, we measure the standard deviation of the predicted
energy across the group orbit averaged over all datapoints of i) training set, ii) test set, and iii) out-
of-distribution set. The latter is generated randomly drawing spins from a Gaussian distribution with
mean zero and variance 400. For better interpretability, we divide by the mean of E , so that for a
relative standard deviation (RSD) across orbits of one, the deviation from invariance is as large as a
typical ground truth energy. For an exactly equivariant model, we would obtain an RSD of zero.

Figure 1 shows that the deep ensemble indeed exhibit the expected emergent invariance. As ex-
pected, the NTK features very low RSD compatible with numerical error. The RSD of the mean
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Figure 1: Invariance of predicted energies with respect to lattice rotations by 90◦. Solid lines refer
to predictions of individual ensemble members and their standard deviation, dashed lines refer to
mean predictions of the ensemble. Zoom-ins in the second row show that the invariance of mean
predictions converges to NTK invariance for large ensembles and network widths.
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Figure 2: Emergent invariance for FashionMNIST Left: Number of out-of-distribution MNIST
samples with the same prediction across a symmetry orbit for group orders 4 (green), 8 (blue), and
16 (red) versus training epoch. The models were trained on augmented FashionMNIST. Solid lines
show the ensemble prediction. Shaded area is between the 25th and 75th quantile of the predictions of
individual members of the ensemble. Right: Out of distribution invariance in the same setup as on
the left-hand-side at group order 16. As the number of ensemble members increases, the prediction
becomes more invariant, as expected.

predictions of the ensembles are larger but still very small and converge to the NTK results for large
ensembles and network widths, cf. dashed lines in Figure 1. In contrast, the RSD computed for
individual ensemble members is much higher and varies considerably between ensemble members,
cf. solid lines in Figure 1. Even out of distribution, the ensemble means deviate from invariance only
by about 0.8% for large ensembles and network widths, compared to 82% for individual ensemble
members.
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Figure 3: Ensemble invariance on OOD data for ensembles trained on histological data. Number
of OOD samples with the same prediction across a symmetry orbit for group orders 4 (blue), 8
(orange), 12 (green) and 16 (red) versus training epoch. Even for ensemble size 5 (left), the ensemble
predictions (solid line) are more invariant than the ensemble members (shaded region corresponding
to 25th to 75th percentile of ensemble members). The effect is larger for ensemble size 20 (right).

Rotated FashionMNIST We train convolutional neural networks on the an rotated FashionM-
NIST dataset. Specifically, we augment the original dataset (Xiao et al., 2017) by all elements of the
group orbit of the cyclic group Ck, i.e., all rotations of the image by any multiple of 360/k degrees
with k = 4, 8, 16 and choose ensembles of size M = 5, 10, 100. We then evaluate the orbit same
prediction (OSP), i.e., how many of the images in a given group orbit have on average the same
classification result as the unrotated image. We evaluate the OSP metric both on the validation set of
FashionMNIST as well as on various out-of-distribution (OOD) datasets. Specifically, we choose the
validation sets of MNIST, grey-scaled CIFAR10 as well as images for which each pixel is drawn iid
from N (0, 1). Figure 2 shows the OSP metric for OOD data from MNIST. The ensemble prediction
becomes more invariant as the number of ensemble members increases. Furthermore, the ensemble
prediction is significantly more invariant as the individual ensemble members, i.e., the invariance is
emergent. As the group order k increases, more ensemble members are needed to achieve a high
degree of invariance. More details about the experiments as well as plots showing results for the
other OOD datasets can be found in Appendix B.2.

Histological Data A realistic task, where rotational invariance is of key importance, is the clas-
sification of histological slices. We trained ensembles of CNNs on the NCT-CRC-HE-100K
dataset (Kather et al., 2018) which comprises of stained histological images of human colorectal
cancer and normal tissue with a resolution of 224× 224 pixels in nine classes.

As for our experiments on FashionMNIST, we verify that the ensemble is more invariant as a func-
tion of its input than the ensemble members by evaluating the OSP on OOD data. In order to arrive at
a sample of OOD data on which the network makes non-constant predictions, we optimize the input
of the untrained ensemble to yield balanced predictions of high confidence. Using this specifically
generated dataset for each ensemble, we observe the same increase in invariance also outside of the
training domain as predicted by our theoretical considerations, cf. Figure 3. For further results on
validation data as well as examples of our OOD data see Appendix D

8 CONCLUSIONS

Equivariant neural networks are a central ingredient in many machine learning setups, in particular
in the natural sciences. However, constructing manifestly invariant models can be difficult. Deep
ensembles are an important tool which can straightforwardly boost the performance and estimate
uncertainty of existing models, explaining their widespread use in practice. In this work, using the
theory of neural tangent kernels, we proved that infinitely wide ensembles show emergent equivari-
ance when trained on augmented data. We furthermore discussed implications of finite width and
ensemble size as well as the effect of approximating a continuous symmetry group. Experiments on
several different datasets support our theoretical insights.

In future work, it would be interesting to incorporate the effects of finite width corrections and
include a more detailed model of data augmentation, for instance along the lines of Dao et al. (2019).
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A PROOFS

Theorem 2 (Kernel invariance under orthogonal representations). Let G be a group and ρX an orthogonal
representation of G acting on the input space X . Under the representation ρX , the neural tangent kernel Θ as
defined in (3) as well as the NNGP kernel K as defined in (10) of a neural network satisfying the assumptions
above are invariant:

Θ(x, x′) = Θ(ρX(g)x, ρX(g)x′) , (16)

K(x, x′) = K(ρX(g)x, ρX(g)x′) . (17)

for all g ∈ G and x, x′ ∈ X .

Proof. To simplify notation, we will use the shorthand notation

O = ρX(g) (31)

for the orthogonal representation matrix corresponding to the action of group element g on the input space X .
This orthogonal matrix can be absorbed by redefining the parameters which multiply the input. For notational
simplicity, we assume an MLP without biases in the following, but the proof immediately generalizes to the
case of dependency on linear transformations of the input as stated in the assumptions.

Redefining the parameters w(1) of the first layer of the neural network fw : X → Y yields

fw(Ox) = fw′(x) , (32)

where we have defined the new weights of layer l as

w′(l) =

{
w(1)O, if l = 1

w(l), otherwise .
(33)

We can use this result to rewrite the gradient of the network with respect to the parameters of the first layer

∂

∂w
(1)
ij

fw(Ox) =
∂

∂w
(1)
ij

fw′(x) =
∂w

′(1)
mn

∂w
(1)
ij

∂

∂w
′(1)
mn

fw′(x) = Ojn
∂

∂w
′(1)
in

fw′(x) , (34)

where here and in the following we use the Einstein summation convention. It is convenient to define

O(l) =

{
O, if l = 1

I, otherwise ,
(35)

such that the above gradient relation can be generalized to

∂fw(Ox)

∂w
(l)
ij

= O
(l)
jn

∂fw′(x)

∂w
′(l)
in

. (36)

Since the representation is orthogonal, it holds that for all l ∈ {1, . . . , L}

(O(l))⊤O(l) = I ⇐⇒ (O(l))jnO
(l)
jm = δnm , (37)

where δnm is the Kronecker symbol.

The neural tangent kernel (3) involves a sum over all layers and can thus be rewritten as

Θ(Ox,Oy) =

L∑
l=1

Ew∼p

[
∂fw(Ox)

∂w
(l)
ij

∂fw(Oy)

∂w
(l)
ij

]
(38)

=

L∑
l=1

Ew∼p

[
∂fw(Ox)

∂w
(l)
ij

∂fw(Oy)

∂w
(l)
ij

]
(39)

=

L∑
l=1

Ew∼p

[
∂fw′(x)

∂w
′(l)
in

∂fw′(y)

∂w
′(l)
im

(O(l))jnO
(l)
jm

]
(40)

=

L∑
l=1

Ew∼p

[
∂fw′(x)

∂w
′(l)
in

∂fw′(y)

∂w
′(l)
in

]
, (41)
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where we have used the relation between the original and redefined gradient (36) for the third equality and the
unitarity of the representation (37) for the last, respectively.

The expectation value is over all weights and corresponds to the integral

Ew∼p =

L∏
k=1

∫
dw(k) p(w(k)) . (42)

We now use the fact that a orthogonal transformation leaves the measure invariant

dw(l)p(w(l)) =

∣∣∣∣det ∂w(l)

∂w′l

∣∣∣∣ dw′(l) p(w′(l)) = |detO⊤| dw′(l) p(w′(l)) = dw′(l)p(w′(l)) . (43)

Since a orthogonal matrix preserves the norm, i.e. ||w(l)|| = ||O(l)w(l)|| = ||w′(l)||, the initialization density

is invariant p(w(l)) = 1
Z
exp(− ||w(l)||2

2σ2
l

) = p(w′(l)). Using these results, we immediately conclude that

Θ(Ox,Oy) =

L∑
l=1

(
L∏

k=1

∫
dw(k) p(w(k))

)
∂fw′(x)

∂w
′(l)
in

∂fw′(y)

∂w
′(l)
in

(44)

=

L∑
l=1

(
L∏

k=1

∫
dw′(k) p(w′(k))

)
∂fw′(x)

∂w
′(l)
in

∂fw′(y)

∂w
′(l)
in

(45)

=

L∑
l=1

Ew′∼p

[
∂fw′(x)

∂w
′(l)
ij

∂fw′(y)

∂w
′(l)
ij

]
(46)

= Θ(x, y) (47)
This shows that the neural tangent kernel is invariant with respect to the orthogonal representation ρX .

The proof for the NNGP kernel is then completely analogous:
K(Ox,Oy) = Ew∼p [fw(Ox)fw(Oy)] = Ew′∼p [fw′(x)fw′(y)] = K(x, y) . (48)

We stress that this proof critically relies on the structure of the neural tangent- and NNGP kernels.

Lemma 7. Data augmentation implies that

(a) Θπg(i), j = Θ
i, π−1

g (j)
,

(b) Θ−1
πg(i), j

= Θ−1

i, π−1
g (j)

,

(c) Kπg(i),j = K
i, π−1

g (j)
,

(d) K−1
πg(i), j

= K−1

i, π−1
g (j)

,

and analogous results hold for any power of Θ, Θ−1, K and K−1, respectively.

Proof. (a): By data augmentation, it follows that
Θπg(i), j = Θ(xπg(i), xj)

= Θ(ρX(g)xi, xj)

= Θ(xi, ρX(g)−1xj)

= Θ(xi, xπ−1
g (j)

)

= Θ
i, π−1

g (j)
. (49)

For any power N ∈ N of the kernel, it holds therefore that[
ΘN
]
πg(i), j

= Θπg(i), l

[
ΘN−1

]
lj

= Θ
i, π−1

g (l)

[
ΘN−1

]
lj

l 7→πg(l)
= Θil

[
ΘN−1

]
πg(l)j

= . . . =
[
ΘN−1

]
il
Θ

l,π−1
g (j)

=
[
ΘN
]
i, π−1

g (j)
.
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(b): We start from the equality

Θ(X, ρX(g)X)il [Θ(X, ρX(g)X)]−1
lj = δij , (50)

where we have used the following notation for the Gram matrix Θ(X,X)ij := Θij and G acts sample-wise
on the dataset, (ρX(g)X)i = ρX(g)xi. By data augmentation, this can be rewritten as

Θ(X,X)i, πg(l) [Θ(X, ρX(g)X)]−1
lj = δij . (51)

We now relabel the summation variable l → π−1
g (l) and obtain

Θ(X,X)il [Θ(X, ρX(g)X)]−1

π−1
g (l), j

= δij . (52)

By uniqueness of the inverse matrix, it thus follows that

Θ(X,X)−1
lj = [Θ(X, ρX(g)X)]−1

π−1
g (l), j

⇐⇒ Θ(X,X)−1
πg(l), j

= [Θ(X, ρX(g)X)]−1
lj . (53)

Similarly, we can start from the expression[
Θ(ρX(g)−1X,X)

]−1

il
Θ(ρ−1

X (g)X,X)lj = δij . (54)

By data augmentation, this can be rewritten as[
Θ(ρX(g)−1X,X)

]−1

il
Θ(X,X)

π−1
g (l), j

= δij . (55)

Relabeling the summation variable l → π−1
g (l), we obtain[

Θ(ρ−1
X (g)X,X)

]−1

i,πg(l)
Θ(X,X)lj = δij . (56)

By uniqueness of the inverse matrix, it follows again that

Θ(X,X)−1
il =

[
Θ(ρ−1

X (g)X,X)
]−1

i,πg(l)
⇐⇒ Θ(X,X)−1

i,π−1
g (l)

=
[
Θ(ρ−1

X (g)X,X)
]−1

il
. (57)

Combining the results (53) and (57), the statement of the theorem follows immediately:

Θ−1
πg(i),j

= [Θ(X,X)]−1
πg(i),j

(53)
= [Θ(X, ρX(g)X)]−1

ij

=
[
Θ(ρ−1

X (g)X,X)
]−1

ij

(57)
= Θ(X,X)−1

i,π−1
g (j)

= Θ−1

i,π−1
g (j)

. (58)

The proof for any power (Θ−1)N of the inverse Gram matrix follows in complete analogy to the proof of the
same result for the Gram matrix Θ.

(c): The proof for the NNGP follows in close analogy to the one for the NTK, see (a):

Kπg(i),j = K(xπg(i), xj) = K(ρX(g)xi, xj) = K(xi, ρ
−1
X (g)xj) = K(xi, xπ−1

g (j)
) = K

i, π−1
g (j)

. (59)

The proof for any power of the NNGP again follows in complete analogy to (a).

(d): Since the transformation properties of Θ and K under G are completely identical, the proof follows the
steps of (b) verbatim with the replacement Θ → K. Similarly for any power of K.

Using this result, we can then show the following lemma as stated in the main part:
Lemma 3 (Shift of permutation). Data augmentation implies that one can shift the permutation group action
from the first index to the second index for any matrix-valued analytical function F involving the Gram matrices
of the NNGP and NTK as well as their inverses:

F (Θ,Θ−1,K,K−1)πg(i),j = F (Θ,Θ−1,K,K−1)
i,π−1

g (j)
. (20)

where πg denotes the group action in terms of training set permutations, see (13).

Proof. As the matrix-valued function F is analytic, it has the following series expansion

F (Θ,Θ−1,K,K−1)ij =
∞∑

n=1

∑
Pn

cPn Pn(Θ,Θ−1,K,K−1)ij , (60)

where the inner sum is over all order n polynomials involving Θ and K as well as their inverses and cPn are
coefficients.

By Lemma 7, for any such polynomial Pn it holds that

Pn(Θ,Θ−1,K,K−1)πg(i)j = Pn(Θ,Θ−1,K,K−1)
iπ−1

g (j)
. (61)

Applying this result to the series expansion above immediately implies the claim of the lemma.
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Theorem 4 (Emergent Equivariance of Deep Ensembles). The distribution of (possibly vector-valued) large-
width ensemble members fw : X → Y is equivariant with respect to the orthogonal representations ρX and
ρY of the group G if data augmentation is applied. In particular, the ensemble is equivariant,

f̄t(ρX(g)x) = ρY (g) f̄t(x) (27)

for all g ∈ G. This result holds

1. at any training time t,

2. for any element of the input space x ∈ X .

Proof. In the case of vector-valued networks, the definition (3) has to be extended to

Θαβ(x, x′) =

L∑
l=1

Ew∼p

[(
∂fα(x)

∂w(l)

)⊤
∂fβ

w(x
′)

∂w(l)

]
, (62)

where α, β are component indices for the output vector. It can be shown (Lee et al., 2019) that in the infinite
width limit, the NTK is proportional to the unit matrix with respect to the output indices

Θαβ(x, x′) = δαβΘ(x, x′) with Θ(x, x′) =

L∑
l=1

Ew∼p

[(
∂fγ

w(x)

∂w(l)

)⊤
∂fγ

w(x
′)

∂w(l)

]
, (63)

where δ is the Kronecker symbol and Θ(x, x′) does not depend on the index γ in the expectation value. For
the vector-valued case, the mean prediction of the ensemble is given by

µα
t (x) = Θαβ(x, xi)

[
Θ−1 (I− exp(−ηΘt))

]βγ
ij

yγ
j (64)

= Θ(x, xi)
[
Θ−1 (I− exp(−ηΘt))

]
ij

yα
j , (65)

where we use the Einstein summation convention to sum over output-component indices as well. To show that
µα
t (x) is equivariant, we consider the mean at a transformed test sample ρX(g)x

µα
t (ρX(g)x) = Θ(ρX(g)x, xi)Θ

−1
ij (I− exp(−ηΘt))jk y

α
k (66)

= Θ(x, ρ−1
X (g)xi)Θ

−1
ij (I− exp(−ηΘt))jk y

α
k (67)

= Θ(x, x
π−1
g (i)

)Θ−1
ij (I− exp(−ηΘt))jk y

α
k , (68)

where we have used that Theorem 2 implies that Θ(ρX(g)x, xi) = Θ(ρ−1
X (g)ρX(g)x, ρ−1

X (g)xi) =

Θ(x, ρ−1
X (g)xi) for the second equality and used data augmentation in the last step. We now redefine the

summation variable i → πg(i) and thus obtain

µα
t (ρX(g)x) = Θ(x, xi)Θ

−1
πg(i)j

(I− exp(−ηΘt))jk y
α
k , (69)

By Lemma 3, we can rewrite this as

µα
t (ρX(g)x) = Θ(x, xi)Θ

−1
ij (I− exp(−ηΘt))

j,π−1
g (k)

yα
k , (70)

We now again redefine the summation variable k → πg(k) and use the data augmentation property (13) of the
labels y, i.e. yπg(k) = ρY (g)yk, to obtain

µα
t (ρX(g)x) = Θ(x, xi)Θ

−1
ij (I− exp(−ηΘt))j,k y

α
πg(k) (71)

= Θ(x, xi)Θ
−1
ij (I− exp(−ηΘt))j,k ρ

αβ
Y (g)yβ

k (72)

= (ρY (g)µt(x))
α . (73)

This establishes that the mean (and therefore the ensemble) is equivariant.

The proof for the variance follows very similar argument. In particular, as the NTK, the NNGP becomes
diagonal in the infinite width limit as well (Lee et al., 2019)

Kαβ(x, x′) = Ew∼p

[
fα
w(x) f

β
w(x

′)
]
= δαβEw∼p

[
fγ
w(x) f

γ
w(x

′)
]
= δαβK(x, x′) . (74)

Consequently, also the covariance Σ is proportional to the unit matrix with respect to the output indices

Σαβ(x, x′) = δαβΣ(x, x′) , (75)
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with

Σt(x, x
′) = K(x, x′) + Σ

(1)
t (x, x′)− (Σ

(2)
t (x, x′) + h.c.) . (76)

We will now show that Σ(x, x′) is invariant under G by considering each summand individually. For the first
summand, invariance K(ρX(g)x, ρX(g)x′) = K(x, x′) is an immediate consequence of Lemma 2. Invariance
of the second summand follows by

Σ
(1)
t (ρX(g)x, ρX(g)x′) = Θ(ρX(g)x, xi)Θ

−1
ij (I−e−ηΘt)jk Kkl (I−e−ηΘt)ls Θ

−1
sh Θ(xh, ρX(g)x′) (77)

= Θ(x, ρ−1
X (g)xi)Θ

−1
ij (I−e−ηΘt)jk Kkl (I−e−ηΘt)ls Θ

−1
sh Θ(xh, ρX(g)x′) (78)

= Θ(x, x
π−1
g (i)

)Θ−1
ij (I− e−ηΘt)jk Kkl (I− e−ηΘt)ls Θ

−1
sh Θ(xh, ρX(g)x′) (79)

= Θ(x, xi)Θ
−1
πg(i), j

(I− e−ηΘt)jk Kkl (I− e−ηΘt)ls Θ
−1
sh Θ(xh, ρX(g)x′) (80)

= Θ(x, xi)Θ
−1
ij (I− e−ηΘt)jk Kkl (I− e−ηΘt)ls Θ

−1
sh Θ(xπg(h), ρX(g)x′) (81)

= Θ(x, xi)Θ
−1
ij (I−e−ηΘt)jk Kkl (I−e−ηΘt)ls Θ

−1
sh Θ(ρX(g)xh, ρX(g)x′) (82)

= Θ(x, xi)Θ
−1
ij (I− e−ηΘt)jk Kkl (I− e−ηΘt)ls Θ

−1
sh Θ(xh, x

′) (83)

= Σ
(1)
t (x, x′) . (84)

The invariance Σ
(2)
t (ρX(g)x, ρX(g)x′) = Σ

(2)
t (x, x′) follows completely analogously.

Since ensemble members follow a Gaussian process with mean function µt(x) and covariance function
Σt(x, x

′) which is proportional to the unit matrix with respect to output indices, the equivariance of µt(x)
and invariance of Σt(x, x

′) together imply that the distribution of the ensemble members is equivariant.

A.1 FINITE NUMBER OF ENSEMBLE MEMBERS

Lemma 8. The probability that the deep ensemble f̄t and its estimate f̂t differ by more than a given threshold
δ is bounded by

P
[
|f̂t(x)− f̄t(x)| > δ

]
≤
√

2

π

σx

δ
exp

(
− δ2

2σ2
x

)
, (85)

where we have defined

σ2
x := Var(f̂t)(x) =

Σt(x)

M
(86)

with the output variance Σt(x) = Σt(x, x) defined in (7).

Proof. The probability of such deviations is given by

P
[
|f̂t(x)− f̄t(x)| > δ

]
=

2√
2πσx

∫ ∞

δ

exp

(
− t2

2σ2
x

)
dt (87)

We now change the integration variable to τ = t

σx
√
2

and obtain

P
[
|f̂t(x)− f̄(tx)| > δ

]
=

2√
π

∫ ∞

δ√
2σx

exp(−τ2)dτ ≤ 1√
π

√
2σx

δ

∫ ∞

δ√
2σx

(2τ) exp(−τ2)dτ , (88)

where we have used that 1 ≤ 2τ
2min(τ)

for τ ≥ min(τ) to obtain the last inequality. The integral can be
straightforwardly evaluated by rewriting the integrand as a total derivative and we thus obtain

P
[
|f̂t(x)− f̄t(x)| > δ

]
≤
√

2

π

σx

δ
exp

(
− δ2

2σ2
x

)
. (89)

We stress that this result holds for any Monte-Carlo estimator and we therefore suspect that it could be well-
known. For most MC estimators, it is however of relatively little use as the variance Σ is not known in closed
form — in stark contrast to the deep ensemble, see (7), considered in this paper. This could explain why we
were not able to locate this result in the literature.
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For the deep ensemble, we can therefore exactly determine the necessary number of ensemble size to stay
within a certain threshold δ with a given probability 1 − ϵ. For this, one has to set the right-hand-side of the
derived expression to this confidence ϵ and solve for the necessary ensemble size M . However, this equation
appears to have no closed-from solution and needs to be solved numerically. We advise the reader to do so if
need for a tight bound arises. For the presentation in the main part, we however wanted to derive a closed-form
solution for M and thus had to rely on a looser bound which implies the following statement:

Lemma 5 (Bound for finite ensemble members). The deep ensemble f̄t and its estimate f̂t do not differ by
more than threshold δ,

|f̄t(x)− f̂t(x)| < δ , (28)

with probability 1− ϵ for ensemble sizes M that obey

M > −2Σt(x)

δ2
ln
(√

πϵ
)
. (29)

Proof.

P
[
|f̂t(x)− f̄t(x)| > δ

]
<

1√
π

1

z
exp

(
−z2

)
≤ 1√

π
exp

(
−z2

) !
< ϵ (90)

with z = δ√
2σx

and where we assume that M is chosen sufficiently large such that z ≥ 1. This implies that

z2 > − ln(
√
πϵ) ⇔ M > −2Σt(x)

δ2
ln(

√
πϵ) . (91)

A.2 CONTINUOUS GROUPS

Lemma 6 (Bound for continuous groups). Consider a deep ensemble of neural networks with Lipschitz con-
tinuous derivatives with respect to the parameters. For an approximation A ⊂ G of a continuous symmetry
group G with discretization error ϵ, the prediction of the ensemble trained on A deviates from invariance by

|f̄t(x)− f̄t(ρX(g)x)| ≤ ϵC(x) , ∀g ∈ G ,

where C is independent of g.

Proof. As described in the main text, we consider a finite subgroup A ⊂ G which we use for data augmentation
(instead of using the continuous group G). The discretization error for the representation ρX is given by

ϵ = max
g∈G

min
g′∈A

||ρX(g)− ρX(g′)|| . (92)

This implies that for any g ∈ G, we can find a g′ ∈ A such that

||ρX(g)xi − xπg′ (i)
|| = ||ρX(g)xi − ρX(g′)xi|| ≤ ||ρX(g)− ρX(g′)|| ||xi|| < ϵ||xi|| , (93)

where we have used data augmentation (13) over A.

We can then calculate the difference of the prediction at any test point x and its transformation:

|f̄t(x)− f̄t(ρX(g)x)| = |µt(x)− µt(ρX(g)x)| (94)

= |(Θ(x, xi)−Θ(ρX(g)x, xi))Θ
−1
ij (I− exp(−ηΘt))jk yk| (95)

From the Lemma 3, it follows that

Θ(x, xi)Θ
−1
ij (I− exp(−ηΘt))jk yk = Θ(x, xi)Θ

−1
ij (I− exp(−ηΘt))jk yπg′ (k)

(96)

= Θ(x, x
π−1
g′ (i)

)Θ−1
ij (I− exp(−ηΘt))jk yk (97)

Thus the difference can be rewritten as follows

|f̄t(x)− f̄t(ρX(g)x)| = |(Θ(x, x
π−1
g′ (i)

)−Θ(ρX(g)x, xi))Θ
−1
ij (I− exp(−ηΘt))jk yk| (98)

= |(Θ(x, x
π−1
g′ (i)

)−Θ(x, ρ−1
X (g)xi))Θ

−1
ij (I− exp(−ηΘt))jk yk| (99)

It is convenient to define

∆Θ(x′, x, x̄) ≡ |Θ(x′, x)−Θ(x′, x̄)| (100)
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Figure 4: Difference in relative predicted total energy E between the ensembles and the NTK on the
training data, in-distribution test data and out of distribution.

which can be bounded as follows

∆Θ(x′, x, x̄) =

∣∣∣∣∣
L∑

l=1

Ew∼p

[(
∂fw(x

′)

∂w(l)

)⊤ (
∂fw(x)

∂w(l)
− ∂fw(x̄)

∂w(l)

)]∣∣∣∣∣ (101)

≤ ||x− x̄||
L∑

l=1

Ew∼p

[∣∣∣∣∣
(
∂fw(x

′)

∂w(l)

)⊤

· L(w(l))

∣∣∣∣∣
]

(102)

≡ ||x− x̄|| Ĉ(x) , (103)

where L(w(l)) is the Lipschitz constant of ∂w(l)fw and we emphasize that the norm is with respect to the input
space. Using this expression, we can bound the difference of the means (99) by using the triangle inequality

|f̄t(x)− f̄t(ρX(g)x)| ≤ Ĉ(x)

√∑
i

||x
π−1
g′ (i)

− ρX(g)−1xi||2
√∑

i

(
∑
j,k

Θ−1
ij (I− exp(−ηΘt))jk yk])2

≤ ϵ Ĉ(x)

√∑
i

||xi||2
√∑

i

(
∑
j,k

Θ−1
ij (I− exp(−ηΘt))jk yk])2 ≡ ϵC(x) .

Note that this result suggests that one should choose the discretization carefully to achieve as tight of a bound
as possible.

B EXPERIMENTS

In this section, we provide further details about our experiments.

B.1 ISING MODEL

Training details The energy function of the Ising model can be written as

E = − J

vol(L)

∑
i∈L

E(i) , (104)

where J is a coupling constant which we set to one for convenience and vol(L) denotes the number of lattice
sites. The local energy E(i) is given by1

E(i) =
∑

j∈N (i)

sisj , (105)

where N (i) denotes the neighbors of i along the lattice axes. The expectation value of E vanishes and its
standard deviation is 2 for uniform sampling of spins in {+1,−1}.

1Usually, one only sums over pairs of spins. Our prescription differs from that convention by an irrelevant
factor of two and makes the local energy exactly equivariant under rotations of the lattice by 90◦.
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The energy of the Ising model is invariant under rotations of the lattice by 90◦, since the local energy (105)
stays invariant if the neighborhood is rotated and the sum in (104) is just reshuffled. We train a fully-connected
network with one hidden layer and a ReLU activation on 128 samples augmented with full C4 orbits to 512
training samples. To obtain a sufficient training signal, we train the networks with a squared error loss on the
local energies (105). We train for 100k steps of full-batch gradient descent with learning rate 0.5 for network
widths 128, 512 and 1024 and learning rate 1.0 for network width 2048.

Ensemble-convergence to the NTK We verify that the ensembles converge to the NTK for large widths
by computing the difference in total energy E between the mean ensemble prediction and the predicted mean
of the NTK, cf. Figure 4. To make the numbers easily interpretable, we plot the relative difference, where we
divide by the standard deviation of the ground truth energy, 2, which gives a typical value for E . We perform the
comparisons on the training data, in-distribution test data and out of distribution data. As expected, agreement
is highest on the training data and lowest out of distribution, but in each case, ensembles with higher-width
hidden layer generate mean predictions closer to the NTK. Beyond ensemble size 1000, the estimate of the
expectation value over initializations in the NTK seems to be accurate enough that no further fluctuations can
be seen in the plots.

B.2 ROTATED FASHIONMNIST

Ensemble architecture As ensemble members, we use a simple convolutional neural network with two
convolutional layers of kernel size 3 and 6 as well as 16 channels respectively. Both convolutional layers are
followed by a relu non-linearity as well as 2× 2 max-pooling. This is then followed by layers fully-connected
of size (400, 120), (120, 84), and (84, 10) of which the first two are fed into relu non-linearities. We choose
ensembles of size M = 5, 10, 100.

OOD data We use the validation set of greyscaled and rescaled CIFAR10, the validation set of MNIST,
as well as a dataset generated by images with pixels drawn iid from N(0, 1) as OOD data. We also evaluate
the invariance on the validation set of FMNIST, i.e., on in-distribution data. Please refer to the corresponding
Figure 7, 8, and 9 contained in this appendix for the results.

Data augmentation We augment the original dataset by all elements of the group orbit of the cyclic group
Ck, i.e., all rotations of the image by any multiple of 360/k degrees and ensure that each epoch contains all
element of the group orbit in each epoch to closely align the experiments with our theoretical analysis. However,
in exploratory analysis, we did not observe a notable difference when applying random group elements in each
training step. For the cyclic group Ck, we choose group orders k = 4, 8, 16.

Training details We use the ADAM optimizer with the standard learning rate of pytorch lightning, i.e.,
1e-3. We train for 10 epochs on the augmented dataset. We evaluate the metrics after each epoch on both
the in-distribution and the out-of-distribution data. The ensembles achieve a test accuracy on the augmented
datasets of between 88 to 91 percent depending on the chosen group order and ensemble size.

OSP metric: To obtain the orbit same prediction, we measure∑
g∈G

I(argmaxαf
α(ρX(g)x), argmaxαf

α(x)) , (106)

where I denotes the indicator function. This corresponds to the number of elements in the orbit that have the
same predicted class as the transformed data sample x. The orbit same prediction (OSP) of a dataset D is then
this number averaged over all elements in the dataset. Note that the OSP has minimal value 1 as the identity is
always part of the orbit.

Continuous rotations: We analyze the generalization properties to the full two-dimensional rotation group
SO(2) for deep ensembles trained with data augmentation using the finite cyclic group Ck. To this end, we
define the continuous orbit same prediction as:

1

Vol(SO(2))

∫
SO(2)

dg I(argmaxαf
α(ρX(g)x), argmaxαf

α(x)) , (107)

where dg denotes the Haar measure. This continuous orbit same prediction thus corresponds to the percentage
of elements in the orbit that are classified the same way as the untransformed element. We estimate this quantity
by Monte-Carlo. The results of our analysis are shown in Figure 5 and clearly establish that for sufficiently
high group order of the cyclic group used for data augmentation, the ensemble is approximately invariant with
respect to the continuous symmetry as well. In particular, it is signficantly more invariant as its ensemble
members. Interestingly, this is competitive with a model that is using canonicalization Kaba et al. (2023) with
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Figure 5: Mean orbit same prediction over SO(2) group orbits. Solid lines show the ensemble
prediction while dotted lines show the median of the ensemble members. Error band denotes the
75th and 25th percentile. As the group order k of the cyclic group Ck used for data augmentation
increases, the mean orbit same prediction over SO(2) increases. For k = 16, over 90 percent of the
orbit elements have the same prediction as the untransformed input establishing that the model is
approximately invariant under the continuous symmetry as well. The invariance of the ensemble is
again emergent in the sense that it is above the 75th percentile of the ensemble members.

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Or
bi

t M
ea

n 
Sa

m
e 

Pr
ed

ict
io

n

canonicalized with C_4
canonicalized with C_8
canonicalized with C_16

Figure 6: Mean orbit same prediction over SO(2) group orbits for a model canonicalized with
respect to Ck. As the group order k of the cyclic group Ck used for data augmentation increases,
the mean orbit same prediction over SO(2) increases.

respect to Ck and the same network architecture as its predictor network. This comes however with important
caveats: canonicalization can be performed with respect to the full SO(2) equivariance. Furthermore, we
compare a single canonicalized model to an ensemble. For this reason, we stress that we do not want to claim
any preference of deep ensembles over canonicalization. Rather, we believe that emergent equivariance should
be used in situations for which a deep ensemble is also required for other reasons, such as uncertainty prediction.

C CROSS PRODUCT

Training We train ensembles of two hidden-layer fully-connected networks to predict the cross-product
x× y in R3 given two vectors x and y. This task is equivariant with respect to rotations R ∈ SO(3),

Rx×Ry = R(x× y) . (108)

The training data consists of 100 vector pairs with components sampled from N (0, 1), the validation data
consists of 1000 such pairs. For out of distribution data, we sample from N (0, 100). We train using 10-fold
data augmentation, i.e. we sample 10 rotation matrices from SO(3) and rotate the training data with these
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Figure 7: Same as Figure 2 but for OOD images with pixels drawn iid from N(0, 1).
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Figure 8: Same as Figure 2 but for FMNIST, i.e., in-distribution data.
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Figure 9: Same as Figure 2 but for rescaled and greyscaled CIFAR10 OOD data.

matrices, resulting in 1000 training vector pairs. We train for 50 epochs using the Adam optimizer and reach
validation RMSEs of about 0.3 with exact performance depending on layer width and ensemble size.

Orbit MSE To evaluate how equivariant the ensembles trained with data augmentation are on a given
dataset, we sample 100 rotation matrices from SO(3) and augment each input vector pair with their 100 ro-
tated versions. Then, we predict the cross products on this enlarged dataset and rotate the predicted vectors
back using the inverse rotations. Finally, we measure the MSE across the 100 back-rotated predictions against
the unrotated prediction. The orbit MSE is averaged over the last five epochs.
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Figure 10: Emerging equivariance of ensembles predicting the cross-product. Plotted is the MSE
of predictions across a random 100-element subset of the symmetry orbit of SO(3) versus ensemble
size. Solid lines refer to the orbit MSE for individual ensemble members with shaded regions cor-
responding to ± one standard deviation, dashed lines refer to the ensemble prediction. Shown are
evaluations on the training- (left), test- (middle) and out of distribution data (right). The lower row
shows zoom-ins on the ensemble predictions.

The results of our experiments on the cross-product are shown in Figure 10. As above, we evaluate the orbit
MSE on each ensemble member individually (solid lines and shaded region corresponding to ± one standard
deviation) and for the ensemble output (dashed lines). This is true on training- test and out of distribution
data. Also in this equivariant task is the ensemble mean about an order of magnitude more equivariant than the
ensemble members. As expected from our theory, the ensemble becomes more equivariant for larger ensembles
and wider networks.

D HISTOLOGICAL SLICES

Training The NCT-CRC-HE-100K dataset Kather et al. (2018) comprises 100k stained histological images
in nine classes. In order to make the task more challenging, we only use 10k randomly selected samples,
train on 11/12th of this subset and validate on the remaining 1/12th. We trained ensembles of CNNs with six
convolutional layers of kernel size 3 and 6, 16, 26, 36, 46 and 56 output channels, followed by a kernel size 2,
stride 2 max pooling operation and three fully connected layers of 120, 84 and 9 output channels. The models
had 123k parameters each. We trained the ensembles with the Adam optimizer using a learning rate of 0.001
on batches of size 16. In our training setup, ensemble members reach a validation accuracy of about 96% after
20 epochs, cf. Figure 12.

Invariance on in-distribution data As for our experiments on FashionMNIST, we verify that the en-
semble is more invariant as a function of its input than the ensemble members. On training- and validation data
this is to be expected since the ensemble predictions have a higher accuracy than the predictions of individual
ensemble members. The invariance results on validation data are depicted in Figure 11.

OOD data In order to arrive at a sample of OOD data on which the network makes non-constant predic-
tions, we optimize the input of the untrained ensemble using the Adam optimizer to yield predictions of high
confidence (> 99%), starting from 100 random normalized images for each class. We optimize only the 5× 5
lowest frequencies in the Fourier domain to obtain samples which can be rotated without large interpolation
losses, yielding samples as depicted in Figure 13.
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Figure 11: Ensemble invariance on validation data for ensembles trained on histological data. Num-
ber of validation samples with the same prediction across a symmetry orbit for group orders 4 (blue),
8 (orange), 12 (green) and 16 (red) versus training epoch for ensemble sizes 5 (left) and 20 (right).
The ensemble predictions (solid line) are more invariant than the ensemble members (shaded region
corresponding to 25th to 75th percentile of ensemble members). The effect is larger for ensemble
size 20 (right).
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Figure 12: Validation accuracy versus training time for ensemble of size 5 (left) and 20 (right)
trained on histological data.

Figure 13: Three OOD data samples for the histology ensemble.
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