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ABSTRACT

Vector quantized variational autoencoder (VQ-VAE) has recently emerged as a
powerful generative model for learning discrete representations. Like other vec-
tor quantization methods, one key challenge of training VQ-VAE comes from the
codebook collapse, i.e. only a fraction of codes are used, limiting its reconstruction
qualities. To this end, VQ-VAE often leverages some carefully designed heuris-
tics during the training to use more codes. In this paper, we propose a simple yet
effective approach to overcome this issue through optimal transport, which regu-
larizes the quantization by explicitly assigning equal number of samples to each
code. The proposed approach, named OT-VAE, enforces the full utilization of the
codebook while not requiring any heuristics such as stop-gradient, exponential
moving average, and codebook reset. We empirically validate our approach on
three different data modalities: images, speech and 3D human motions. For all
the modalities, OT-VAE shows better reconstruction with higher perplexity than
other VQ-VAE variants on several datasets. In particular, OT-VAE achieves state-
of-the-art results on the AIST++ dataset for 3D dance generation. Our code will
be released upon publication.

1 INTRODUCTION

Unsupervised generative modeling aims at generating samples following the same distribution as
the observed data. Recent deep generative models have shown impressive performance in generat-
ing various data modalities such as image, text and audio, owing to the use of a huge number of
parameters in their models. The well known examples include VQ-GAN (Esser et al., 2021) for
high-resolution image synthesis, DALLE (Ramesh et al., 2021) for realistic image generation from
a description in natural language, and Jukebox (Dhariwal et al., 2020) for music generation. Sur-
prisingly, all these models are based, at least partly, on Vector Quantized Variational Autoencoders
(VQ-VAE) (Van Den Oord et al., 2017). The success of VQ-VAE should be mostly attributed to
its ability of learning discrete, rather than continuous, latent representations and its decoupling of
learning the discrete representation and the prior. The quality of the discrete representation is essen-
tial to the quality of the generation and our work improves upon the discrete representation learning
for arbitrary data modality.

VQ-VAE is a variant of VAEs (Kingma & Welling, 2014) that first encodes the input data to a dis-
crete variable in a latent space, and then decodes the latent variable to a sample of the input space.
The discrete representation of the latent variable is enabled by vector quantization, generally through
a nearest neighbor look up in a learnable codebook. A new sample is then generated by decoding a
discrete latent variable sampled from an approximate prior, which is learned on the space of the en-
coded discrete latent variables in a decoupled fashion using any autoregressive model (Van Den Oord
et al., 2017). Despite its promising results in many tasks of generating complex data modalities, the
naive training scheme of VQ-VAE used in (Van Den Oord et al., 2017) often suffers from code-
book collapse (Takida et al., 2022), i.e. only a fraction of codes are effectively used, which largely
limits the quality of the discrete latent representations. To this end, many techniques and variants
have been proposed, such as stop-gradient along with the commitment and embedding loss (Van
Den Oord et al., 2017), exponential moving average (EMA) for codebook update (Van Den Oord
et al., 2017), codebook reset (Williams et al., 2020) and a stochastic variant (SQ-VAE) (Takida et al.,
2022).
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Interestingly, the idea of vector quantization has also been explored in the related field of self-
supervised learning, though it generally relies on unsupervised discriminative modeling by only ob-
taining data features that can be easily generalized to downstream tasks. The seminal work by Caron
et al. (2018) used an encoder and a clustering algorithm to learn discriminative representations of
the data. The clusering algorithm used in Caron et al. (2018), namely K-means, could be interpreted
as an offline version of the vector quantization used in VQ-VAE. Similar to the codebook collapse,
some clusters were observed to have a single element, known as cluster collapse. To address this
problem, Asano et al. (2020) have proposed an optimal transport (OT) based clustering method to
explicitly enforce the equipartition of the clusters. Caron et al. (2020) have later proposed an online
version of their algorithm for dealing with large-scale datasets.

Figure 1: Optimal transport (OT) explicitly en-
force the equipartition of the clusters.

In this work, we reformulate VQ-VAE under
the framework of Wasserstein Autoencoders
(WAE) (Tolstikhin et al., 2018), providing a
natural connection between distribution match-
ing in the latent space of VQ-VAE and the clus-
tering used in self-supervised learning. Based
on this reformulation, we propose to use an on-
line clustering method to address the codebook
collapse issue of training VQ-VAE, by adding
the equipartition constraint from Asano et al.
(2020) and Caron et al. (2020). The online clus-

tering method, inspired by the OT techniques used in Caron et al. (2020), assigns to each cluster
(represented by a code in the codebook) the same number of samples (see Figure 1). Then, we use
a Gumbel-softmax trick Jang et al. (2017) to sample from the discrete categorical distribution while
easily assessing its gradient. The resulting approach, named OT-VAE, enforces the full utilization
of the codebook while not using any heuristics, namely stop-gradient, EMA, and codebook reset.
Unlike SQ-VAE that uses a stochastic quantization and dequantization process, our approach explic-
itly enforces the equipartition constraint for quantization in a deterministic way while only using a
stochastic decoding. To the best of our knowledge, our approach shows the first time that such an
equipartition condition, arised in the field of self-supervised learning, is also useful for generative
tasks. We empirically validate our approach on three different data modalities: images, speech and
3D human motions. For all the modalities, OT-VAE shows better reconstruction with higher perplex-
ity than other VQ-VAE variants on several datasets. In particular, OT-VAE achieves state-of-the-art
results on the AIST++ (Li et al., 2021) dataset for 3D dance generation. Overall, our contribution
can be summarized below:

• We reformulate VQ-VAE as an instance of WAEs, which provides a connection between
distribution matching in the latent space of VQ-VAE and the clustering methods used in
self-supervised learning.

• We propose OT-VAE, a novel unsupervised generative model explicitly using the equipar-
tition constraint with OT to address the codebook collapse issue in VQ-VAE.

• In our experiments, without using classic heuristics (such as stop-gradient, EMA, codebook
reset etc.), we show that OT-VAE achieves better reconstruction and perplexity than other
variants of VQ-VAE for three data modalities: image, speech and 3D human motion.

• Using OT-VAE instead of VQ-VAE in the Bailando model (Li et al., 2022), we obtain state-
of-the-art results for 3D Dance generation. Precisely, we improve FIDk from 28.75 to 26.74
and FIDg from 11.82 to 9.81 on the AIST++ dataset.

2 RELATED WORK

VQ-VAE VQ-VAE framework was first introduced in Van Den Oord et al. (2017), as a variant
of VAE (Kingma & Welling, 2014) with a discrete prior. VQ-VAE shows good performance on
various generation tasks, which includes: image synthesis (Williams et al., 2020; Esser et al., 2021),
text to image generation (Ramesh et al., 2021), motion generation (Li et al., 2022), music genera-
tion (Dieleman et al., 2018; Dhariwal et al., 2020) etc. However, a naive training of VQ-VAE suffers
from the codebook collapse. To alleviate the problem, a number of techniques are commonly used
during the training, including stop-gradient along with some losses (Van Den Oord et al., 2017),
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EMA for codebook update (Van Den Oord et al., 2017), codebook reset (Williams et al., 2020),
etc. Our work is highly related to SQ-VAE (Takida et al., 2022), which also aimed at improving
codebook utilization without using those heuristics. SQ-VAE proposed to perform stochastic quan-
tization and dequantization at the early stage of the training and gradually anneal the process toward
a deterministic one. However, a proper prior distribution needs to be carefully chosen for different
tasks. In contrast, our work uses the same prior throughout different tasks and data modalities.

Wasserstein autoencoders WAEs (Tolstikhin et al., 2018) consist of a class of generative models
based on the reconstruction from an autoencoder and a regularizer in the latent space that encourages
the training distribution to match the prior. The regularizer is defined through a divergence between
probability distributions. In the previous research, various divergence functions have been proposed,
such as MMD (Tolstikhin et al., 2018), GAN (Makhzani et al., 2016), Sliced Wasserstein (Kolouri
et al., 2018), Sinkhorn (Patrini et al., 2020), and so on. While all of the WAE variants use a con-
tinuous prior, our work shows that VQ-VAE could be interpreted as an instance of WAEs with a
discrete prior. By using the Sinkhorn divergence proposed in Patrini et al. (2020), our work suggests
a natural connection between VQ-VAE and clustering-based self-supervised learning methods.

Clustering-based self-supervised learning The matching problem between the posterior distri-
bution and the discrete prior distribution is related the clustering-based methods for self-supervised
learning (Li et al., 2020b; Alwassel et al., 2020). The seminal work by Caron et al. (2018) shows
that the assignments obtained by K-means can be used as pseudo-labels to learn discriminative rep-
resentations for images. However, their method could suffer from the cluster collapse issue caused
by K-means, where some clusters are collapse to a single entity during training. To address this
issue, Asano et al. (2020) propose to incorporate an equipartition constraint and cast it as an OT
problem. Then, Caron et al. (2020) propose a Sinkhorn-Knopp (Cuturi, 2013) based online algo-
rithm, making it scalable to very large datasets. Our work shows the connection between VQ-VAE
and these clustering-based self-supervised learning methods and demonstrate the first time that these
clustering techniques are also useful for generative tasks.

3 BACKGROUND ON VQ-VAE

VQ-VAE (Van Den Oord et al., 2017) consists of deterministic autoencoders that allow learning
a discrete representation of the data. The main building blocks of VQ-VAE are similar to any
autoencoders with an additional codebook. The codebook C is defined as a set of K trainable
vectors c1, . . . , cK in Rdh . We denote by Cdz ⊂ Rdz×dh a dz-tuple related to the codebook C
with dz describing the number of components in the latent space. For a latent variable Z ∈ Cdz ,
we denote by zi ∈ C its i-th entry. The deterministic encoder first maps an observation X ∈ X
to the same space as Z using a neural network hϕ : X → Rdz×dh with trainable parameters ϕ,
followed by a quantization step projecting hϕ(X) onto Cdz . The quantization process is modelled as
a deterministic categorical posterior distribution such that Ẑi(X) := argminck∈C ∥hϕ(X)i − ck∥22.
Then the objective of VQ-VAE is defined as

LVQ-VAE := − log pθ(X|Ẑ(X)) + ∥sg(hϕ(X))− Ẑ(X)∥2 + β∥hϕ(X)− sg(Ẑ(X))∥2, (1)

where pθ is a decoder with parameters θ, sg denotes the stop gradient operator, and β is a hyperpa-
rameter. The hard assignment in the quantization process makes the training of VQ-VAE sensitive
to the initialization and prone to local minima. To improve the utilization of the codebook, various
strategies have been adopted in previous work, often involving a huge amount of work for hyperpa-
rameter tuning.

4 METHOD

In this section, we reformulate VQ-VAE as an instance of WAEs. The new formulation offers a
natural choice of the prior distribution and the objective function. This yields a simple yet effective
autoencoder framework that can learn discrete representations of the data.
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Figure 2: Overview of OT-VAE: the encoder maps a sample X to the soft cluster assignment vari-
ables Ẑ(X) given by an OT based clustering algorithm. Then, Ẑ(X) is fed to a stochastic decoder,
consisting of a Gumbel-softmax sampler and a deterministic decoder, to reconstruct the data sample.

4.1 VQ-VAE AS AN INSTANCE OF WASSERSTEIN AUTOENCODERS

Consider an observation X with the true data distribution PX on the input space X . Let us denote by
PZ a fixed prior distribution on a latent space Z . A sample from the prior distribution Z is mapped
to the input space X with a transformation parametrized by a neural network G : Z → X . If we
denote by PG the induced marginal distribution, then the OT cost between PX and PG has been
shown by Tolstikhin et al. (2018) to take a simpler form:

Wc(PX , PG) := inf
Γ∈Π(PX ,PG)

E(X,Y )∼Γ[c(X,Y )] = inf
Q:QZ=PZ

EX∼PX
EZ∼Q(Z|X)[c(X,G(Z))],

(2)
where c is a cost function such as the L2 cost, Π(PX , PG) denotes the admissible couplings be-
tween PX and PZ , and we consider a conditional distribution (the encoder) Q(Z|X) such that its Z
marginal QZ := EX∼PX

[Q(Z|X)] is identical to the prior distribution PZ . Tolstikhin et al. (2018)
showed that learning the generative model G amounts to solving the following objective:

min
G

min
Q(Z|X)

EX∼PX
EẐ∼Q(Z|X)[c(X,G(Ẑ))] + λD(QZ , PZ), (3)

where λ > 0 is a Lagrangian multiplier and D is an arbitrary divergence between probability distri-
butions on Z that controls the discrepancy between the prior and the learned conditional distribution.
The resulting objective and models are called Wasserstein autoencoders (WAE).

VQ-VAE could also be interpreted as an instance of WAEs with a discrete prior distribution. Let
us denote by Cat(K, 1/K) the uniform categorical distribution such that P(x = j) = 1/K for
x ∼ Cat(K, 1/K) and j = 1, . . . ,K. As noticed by Van Den Oord et al. (2017), the prior distribution
PZ is assumed to be defined on the latent discrete space {1, . . . ,K}dz with dz i.i.d. random variables
following the uniform categorical distribution such that P(Zi = j) = 1/K for any Z ∼ PZ . Now let
us consider a deterministic encoder hϕ that encodes each input X ∈ X to hϕ(X) ∈ Rdz×dh . We
define the posterior distribution as Ẑi(X) = argmink∈{1,...,K} ∥hϕ(X)i − ck∥22 the nearest code
index. When Q(Z|X) takes the form of Ẑ(X) and D is the KL divergence, the second term in
Equation 3 is constant and we recover the objective of VQ-VAE after adding the hard assignment
constraint in the posterior. Despite its simplicity and deterministic formulation, the main limitation
of VQ-VAE is that it does not explicitly enforce the equal partition constraint introduced in the
prior. In order to fully match encoded training distribution to the prior, we propose to relax the hard
assignment and use an optimal transport based divergence.

4.2 OPTIMAL TRANSPORT QUANTIZED AUTOENCODERS

Without loss of generality, we assume dz = 1 in the following and one could generalize our analysis
for dz > 1 by assuming hϕ(X)i to be independent, which was also used in Van Den Oord et al.
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(2017). Instead of using the hard assignment for the posterior distribution, we propose to use a soft
assignment

Q(Z|X) = Ẑ(X) := softmaxk=1,...,K(−∥hϕ(X)− ck∥22) ∈ ∆K , (4)

where ∆K denotes the probability simplex of dimension K − 1. If we sample x1, . . . , xn i.i.d.
from PX , QZ could be considered as a discrete measure evenly distributed on ẑ1, . . . , ẑn where
ẑj := Ẑ(xj) ∈ ∆K . On the other hand, the prior distribution is also a discrete measure such that
Z =

∑
k
1/Kδuk

where uk ∈ ∆K denotes the binary vector with only its k-th entry equal to 1 using
the one-hot representations. Then, the discrete optimal transport cost between the corresponding
QZ and PZ is given by

OT(QZ , PZ) := min
Γ∈Π(1/n,1/K)

n∑
j=1

K∑
k=1

Γjkc(ẑj , uk) = min
Γ∈Π(1/n,1/K)

∑
j,k

−Γjk log ẑjk, (5)

where c is the KL divergence on ∆K such that c(p, q) =
∑

i pi log(
pi/qi) and Π is the transportation

polytope of the admissible couplings between QZ and PZ , commonly known in the literature on
optimal transport (Peyré et al., 2019)

Π(1/n, 1/K) :=

{
Γ ∈ Rn×K

+ : Γ1 =
1

n
,Γ⊤1 =

1

K

}
. (6)

Thus, we recover the self-labeling scheme with the equal partition constraint developed in the field
of self-supervised learning (Asano et al., 2020). In particular when we project both hϕ(X) and
prototypes ck onto the unit L2-sphere, we recover the formulation of Caron et al. (2020), which
amounts to solving an online OT problem for samples within a minibatch as detailed in Section 4.2.1.
The only difference is that we perform clustering on the set of small components of the data, such
as patches for images, while Caron et al. (2020) clustered the features of the entire images. After
the clustering process, a latent variable can be sampled from the categorical distribution given by pj
using the Gumbel-softmax relaxation, which will be detailed in Section 4.2.2.

Another way to derive the OT regularization in Equation 5 is to consider a parametrized prior distri-
bution instead of the fixed categorical distribution. Specifically, we consider a mixture of K Dirac
measures with equal mixing masses ZC :=

∑K
k=1

1/Kδck . Now, we consider ẐC(X) := hϕ(X) as
the posterior distribution Q(Z|X). Then, the Wasserstein distance between QZ and PZ is equal to

W 2
2 (QZ , PZ) := min

Γ∈Π(1/n,1/K)

∑
j,k

Γjk∥hϕ(xj)− ck∥2, (7)

which admits the same solution as Equation 5 since the denominator of ẑjk does not depend on k.
This formulation suggests that C could be regarded as the Wasserstein Barycenter of Q(Z|X) (Cu-
turi & Doucet, 2014). The resulting autoencoder could thus be simply interpreted as a Sinkhorn
Autoencoder (Patrini et al., 2020) when using the entropic regularization to the OT problem.

Based on the above observations, the final objective of the Optimal Transport Quantized Autoen-
coders (OT-VAE) can be written as

LOT-VAE := min
G

min
Q(Z|X)

EX∼PX
EẐ∼Q(Z|X)[c(X,G(Ẑ))]︸ ︷︷ ︸

Lre

+λOT(QZ , PZ)︸ ︷︷ ︸
Lot

, (8)

where the first term corresponds to the reconstruction loss Lre and the second term Lot amounts
to clustering the components of the data in the latent space under the equipartition constraint. An
overview of OT-VAE is illustrated in Figure 2.

4.2.1 ONLINE CLUSTERING WITH EQUIPARTITION CONSTRAINT

Here, we provide details about how to compute the OT loss between QZ and PZ in an online fashion
following the techniques in Caron et al. (2020). In order to make the clustering algorithm online,
we compute the the cluster assignments Γ using the features of data components (e.g. image patch
features) within a batch. We thus assume n to be the number of component features within a batch
and reuse the previous notations. We also assume ĥj := hϕ(xj) and ck to have unit L2-norms
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as in Yu et al. (2021) for generative modeling and Caron et al. (2020) for self-supervised learning.
Then, by adding an entropic regularization, the OT loss in Equation 7 is equivalent to solving Caron
et al. (2020)

min
Γ∈Π(1/n,1/K)

∑
j,k

ΓjkDjk − εH(Γ), (9)

where Djk = −ĥ⊤
j ck and H(Γ) = −

∑
jk Γjk(log Γjk − 1) is the entropic regularization with a

parameter ε > 0. This problem can be efficiently solved by an iterative matrix scaling algorithm
known as Sinkhorn-Knopp algorithm. More details can be found in Section A.1 of the Appendix.

Once a solution Γ⋆ to the above problem is found, we can inject it into the OT loss in Equation 5
and obtain:

OT(QZ , PZ) = −
n∑

j=1

K∑
k=1

Γ⋆
jk log ẑjk,τ , where ẑjk,τ :=

exp(1/τĥ⊤
j ck)∑K

k′=1 exp(
1/τĥ⊤

j ck′)
, (10)

where we added a temperature parameter τ to ẑj , similar to Caron et al. (2020). This loss function
is jointly minimized with the reconstruction loss in Equation 8 with respect to the autoencoder
parameters and the codebook C. In our experiments, τ is a learnable parameter with its initial value
as a hyperparameter.

4.2.2 GUMBEL-SOFTMAX RELAXATION

Once the input xj is mapped to the soft assignment ẑj ∈ ∆K in Equation 4, we need to find a way
to sample from this categorical distribution with a gradient estimator of the parameters. A simple
approximation is the Gumbel-softmax relaxation (Jang et al., 2017; Maddison et al., 2017), which
has also been used in the training of VQ-VAE (Esser et al., 2021) or its variants (Takida et al., 2022).
Specifically, the Gumbel-softmax function is defined as a vector q ∈ ∆K such that

qk(ẑj) :=
exp(1/τ ′(log ẑjk + gk))∑K

k′=1 exp(
1/τ ′(log ẑjk′ + gk′))

=
exp(1/τ ′(ĥ⊤

j ck + gk))∑K
k′=1 exp(

1/τ ′(ĥ⊤
j ck′ + gk′))

for k = 1, . . . ,K,

(11)
providing a continuous differentiable approximation to a sample drawn from the categorical distribu-
tion with class probabilities ẑjk when the temperature parameter τ ′ approaching 0. Here, g1, . . . , gK
are i.i.d. samples drawn from Gumbel(0, 1). In practice, we adopt the annealing strategy for τ ′ as
in Jang et al. (2017), by starting with a high temperature and annealing to a small but non-zero value
temperature. In such a way, the gradients at ĥj can be easily back-propagated to the encoder using
any deep learning framework allowing automatic differentiation.

4.3 PRIOR LEARNING WITH AUTOREGRESSIVE MODELS

Once the discrete representations are learned with OT-VAE, one could use a deep autoregressive
model for generation tasks, which has shown state-of-the-art performances on different tasks (Diele-
man et al., 2018; Esser et al., 2021; Ramesh et al., 2021; Dhariwal et al., 2020). The principal idea
is to learn the probability of the encoded discrete representations through the chain rule of proba-
bility: p(Z) = p(Z1)

∏n
i=2 p(Zi|Z1:i−1). The conditional probability can be parameterized by a

Generative Pre-trained Transformer (GPT) (Vaswani et al., 2017; Radford et al., 2018).

5 EXPERIMENTS

In this section, we empirically validate OT-VAE on 3 different data modalities: images, speech and
3D human motions. For images, we use CelebA (Liu et al., 2015) and CelebAHQ-Mask (Liu et al.,
2015), which represent continuous and discrete data distributions respectively. For speech, we use
ZeroSpeech 2019 (Dunbar et al., 2019). Finally, we use AIST++ (Li et al., 2021) for 3D dance
motion generation.

5.1 IMAGES

Datasets CelebA is a face dataset proposed in Liu et al. (2015). Following SQ-VAE (Takida et al.,
2022), we apply OT-VAE on the aligned and cropped version of the dataset, which consists of
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Table 1: Evaluation on the test set of CelebA (Liu et al., 2015). We report MSE (×10−3). Follow-
ing SQ-VAE (Takida et al., 2022), the codebook contains 512 codes and each code is with dimension
64. Experiments of reconstruction are repeated three times.

Method MSE (×10−3) ↓ Perplexity ↑ Generation FID ↓
VAE 4.79 ± 0.01 - -
VQ-VAE + EMA 1.33 ± 0.41 - -
VQ-VAE + EMA + Code Reset 1.62 ± 0.36 - -
Gaussian SQ-VAE 0.96 ± 0.00 413.2 ± 4.9 20.8

OT-VAE (Ours) 0.94 ± 0.00 433.3 ± 5.1 20.0

Table 2: Evaluation on the test set of CelebAHQ-Mask (Liu et al., 2015). We report pixel error
(%), mIoU, and perplexity. Following SQ-VAE (Takida et al., 2022), the codebook contains 64
codes and each code is with dimension 64. Experiments are repeated three times.

Method Pixel error (%) ↓ mIoU ↑ Perplexity ↑
VAE 8.79 ± 0.01 55.8 ± 0.3 -
VQ-VAE + EMA 6.95 ± 0.14 59.7 ± 0.7 46.2 ± 2.0
NC SQ-VAE 6.63 ± 1.38 64.1 ± 5.4 12.6 ± 5.2
vMF SQ-VAE 3.51 ± 0.17 74.6 ± 0.0 52.4 ± 0.8

OT-VAE (Ours) 3.40 ± 0.08 75.5 ± 0.8 61.1 ± 1.0

202,599 images split into 162,770, 19,867 and 19,962 for train, validation and test. CelebAHQ-
Mask contains annotations of face attributes of CelebA, which is thus a categorical image dataset
with 19 categories. There are 24,183, 2,993 and 2,824 images respectively in the train, validation and
test set. For both datasets, we adopt the same pre-processing as SQ-VAE and report performances
on the test set with the model performing the best on the validation dataset.

Evaluation metric For continuous data representation, i.e. CelebA, we report Mean Squared Error
(MSE) to quantify the reconstruction quality. For discrete data representation as CelebAHQ-Mask,
the reconstruction quality is measured using the percentage of pixels that are incorrectly predicted
(Pixel error), and the mean of the class-wise intersection over union (mIoU). We also report the
perplexity on the test set, which can be considered as a measure of the codebook utilization. The
perplexity of a distribution p is given by the exponential of its entropy: PPL(p) =

∏
x p(x)

−p(x).

Implementation details We follow the evaluation protocol provided by SQ-VAE (Takida et al.,
2022) 1 and keep the same backbone architecture of OT-VAE as SQ-VAE. For both datasets, the
hyper-paramters of OT-VAE are set as λ=1e-3 (regularization weight in Equation 8) and log 1/τ = 1
(initial temperature in Equation 10). The ablation study of these hyper-parameters on CelebA (Liu
et al., 2015) are provided in Appendix C. We also provide more implementation details in Ap-
pendix D, which includes training schema, architectures, hyper-parameters etc.

Results The results are provided in Table 1 and 2 for CelebA (Liu et al., 2015) and CelebAHQ-
Mask (Liu et al., 2015) respectively. We repeat each experiment of reconstruction three times and
report the average and standard deviation for each metric. For generation on CelebA, we use a
standard GPT as the generative model. More details can be found in the Appendix D. For both
continuous and discrete data distributions, our OT-VAE achieves clearly better reconstruction quality
than other variants of VQ-VAE. In particular, the proposed OT-VAE obtains higher perplexity which
suggests a more efficient usage of the codebook capacity than SQ-VAE (Takida et al., 2022). Note
that SQ-VAE requires selecting proper priors for different tasks. Using either Naive categorical (NC
SQ-VAE) or von Mises–Fisher (vMF SQ-VAE) as the prior, the performance vary significantly on
CelebAHQ-Mask. In contrast, the proposed OT-VAE does not need any selection of priors and its
performances are obtained with the same hyper-parameters, demonstrating its superior robustness.
Our approach also results in better performance for generation, compared to SQ-VAE. Note that
computing the coupling matrix takes extra computation for training. Precisely, training OT-VAE
takes about 102s for one epoch on CelebA, while training a standard VQ-VAE only takes about 89s.
For inference, both methods take the same time as the OT coupling matrix is not needed.

1SQ-VAE: https://github.com/sony/sqvae/tree/main/
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Table 3: Evaluation on the test set of ZeroSpeech2019 (Dunbar et al., 2019). We report MSE
(dB2), perplexity, FDSD and KDSD. Following SQ-VAE (Takida et al., 2022), the codebook con-
tains 512 codes of dimension 64. Experiments of reconstructions are repeated three times. ‘r’ and
‘g’ indicate resynthesis and generation respectively.

Method ZeroSpeech2019
MSE (dB2) ↓ Perplexity ↑ rFDSD ↓ rKDSD ↓ gFDSD ↓ gKDSD ↓

Natural speech - - 5.82 3.03 5.82 3.03

VQ-VAE + EMA 34.33 ± 1.57 - - - - -
Gaussian SQ-VAE 32.13 ± 1.78 440.0 ± 2.7 8.95 ± 1.11 14.55 ± 1.98 10.90 15.09

OT-VAE (Ours) 28.73 ± 0.29 446.2 ± 6.5 7.29 ± 0.44 11.61 ± 0.78 10.60 14.55

5.2 SPEECH

Datasets ZeroSpeech2019 (Dunbar et al., 2019) is a multi-speaker corpus sampled at 16000 Hz.
Following SQ-VAE (Takida et al., 2022), we use the subset train voice and train unit as the train
set (∼20.3 hours), and train parallel voice for the test set (∼10 mins). We randomly sample 200
samples from the train set as a validation set to select the best model. The number of total speakers
for both train and test is 102. We apply the same pre-processing as in SQ-VAE (Takida et al., 2022)
to extract 80-dimensional log-mel spectrogram features for all the speech data. We provide more
details in Appendix E.

Evaluation metric Following SQ-VAE (Takida et al., 2022), we report MSE in dB2 to measure the
reconstruction quality and the perplexity for codebook utilization.

Implementation details We follow the evaluation protocol provided by SQ-VAE (Takida et al.,
2022) and keep the backbone architecture of OT-VAE same as SQ-VAE. The hyper-paramters of
OT-VAE are set as λ=1e-3 (regularization weight in Equation 8) and log 1/τ = 5 (initial temperature
in Equation 10). The ablation study of these hyper-parameters on ZeroSpeech2019 (Dunbar et al.,
2019) is provided in Appendix C. More implementation details such as training schema, architec-
tures, and hyper-parameters are given in Appendix E.

Results We show the results in Table 3. Same as SQ-VAE (Takida et al., 2022), we repeat each ex-
periment on reconstruction three times and report the mean and standard deviation for each metric.
For generation, we use a standard GPT, more details can be found in the Appendix E. Our proposed
OT-VAE significantly outperforms SQ-VAE (Takida et al., 2022) both in terms of the reconstruc-
tion quality (lower value both on MSE, FDSD and KDSD), the codebook utilisation (6.2 higher in
perplexity), and generation quality (lower FDSD and lower KDSD).

5.3 3D HUMAN MOTIONS

Dataset In order to fully explore the capacity of OT-VAE, we also conduct experiments for a chal-
lenging task, namely 3D dance generation. We use AIST++ (Li et al., 2021), which is the largest
publicly available dataset for this task. The dataset contains 992 pieces paired music-motion se-
quences, where 952 are kept for training and 40 are used for evaluation. Motion sequences are
provided in the SMPL (Loper et al., 2015) format with 60 FPS. Following Li et al. (2022), we use
the 3D coordinates of 24 joints to represent motions. The task aims to generate motions conditioned
on music sequences. We compare our method to the state-of-the-art method (Li et al., 2022), based
on VQ-VAE. We provide more details about the baseline Li et al. (2022) in Appendix F.

Evaluation metric We measure the dance quality with Frechet Inception Distances (FID) (Heusel
et al., 2017) between the predicted motion and all motion sequences (including training and test
data) of the AIST++ dataset. Following Li et al. (2021; 2022), we consider two features: kinetic
features (Onuma et al., 2008) (denoted as ‘k’) and geometric features (Müller et al., 2005) (denoted
as ‘g’). We extract both features using fairmotion 2. Following Li et al. (2021; 2022), we also report
diversity, which is the average feature euclidean distance of generated motions. We additionally
include the perplexity to measure the codebook utilization.Implementation details We keep the same CNN and GPT architectures as in Li et al. (2022) for
discrete representation learning and generation respectively. We train the proposed OT-VAE using

2fairmotion: https://github.com/facebookresearch/fairmotion
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Figure 3: Two samples of dance motion are generated with the proposed OT-VAE, which are condi-
tioned on different pieces of music from the test set of AIST++ (Li et al., 2022).

Table 4: Evaluation on the test set of AIST++ (Li et al., 2021) for 3D dance generation. FIDk
and FIDg are used to evaluate generation quality. We also report DIVk and DIVg to quantify motion
diversity for completeness. Following Li et al. (2022), we train two codebooks for upper and lower
body respectively. Each codebook contains 512 codes with dimension 512.

Method Motion Quality Motion Diversity Perplexity ↑
FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑

Ground Truth 17.10 10.60 8.19 7.45 -
Motion Reconstruction

VQ-VAE + EMA + Code Reset (Li et al., 2022) 28.23 12.63 6.80 6.57 138.14
OT-VAE (Ours) 23.50 9.42 6.98 6.47 243.21

Motion Generation Approaches
Li et al. (Li et al., 2020a) 86.43 43.46 6.85 3.32 -
DanceNet (Zhuang et al., 2022) 69.18 25.49 2.86 2.85 -
DanceRevolution (Huang et al., 2021) 73.42 25.92 3.52 4.87 -
FACT (Li et al., 2021) 35.35 22.11 5.94 6.18 -

Motion Generation with GPT
VQ-VAE + EMA + Code Reset (Li et al., 2022) 28.75 11.82 6.41 6.13 166.84
OT-VAE (Ours) 26.74 9.81 6.52 5.89 334.53

the same reconstruction loss as in Li et al. (2022), measuring the reconstruction between the input
and reconstructed motion as well as their velocity and acceleration. The hyper-parameters are set as
λ=1e-3 (regularization weight in Equation 8) and log 1/τ = 1 (initial temperature in Equation 10).
Note that the VQ-VAE used in Li et al. (2022) is trained using the stop-gradient operator, EMA and
codebook reset. We provide more implementation details in Appendix F, which includes training
schema, architectures, hyper-parameters.

Results Metrics for both reconstruction and generation are shown in Table 4. For reconstruction, the
proposed OT-VAE achieves better performance than Li et al. (2022) which uses a standard VQ-VAE.
Note that numerous heuristics are used in Li et al. (2022), while non of these heuristics are employed
in OT-VAE and we achieve better reconstruction quality and higher perplexity.

The downstream generation task also benefits from the better reconstruction. Using the same GPT
architecture, our OT-VAE achieves state-of-the-art on this task and outperforms VQ-VAE in Li et al.
(2022) in terms of motion quality and achieves comparable diversity. We showcase and illustrate
two samples of generated motion in Figure 3, which demonstrates the high-quality motion generated
by our algorithm. In the supplementary material, we additionally provide videos containing dance
motion along with the input music.

6 CONCLUSION

We proposed OT-VAE, a WAE-based generative model with a discrete prior and a Sinkhorn di-
vergence to match the encoded training distribution and the prior. Our approach first shows the
clustering techniques developed in the field of self-supervised learning could be beneficial for gen-
erative tasks. With the rapid development of self-supervised learning in recent years, we believe that
more algorithms arising from self-supervised learning, such as contrastive strategies (Jaiswal et al.,
2020), knowledge distillation (Grill et al., 2020; Caron et al., 2021) or a direct use of large-scale
pre-trained models could be adaptable for generative modeling.

9
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. International Conference on Learning Representations (ICLR), 2018.
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Appendix

In the appendix, we provide the following content:

1. Additional background in Appendix A, including Sinkhorn-Knopp Algorithm.
2. Pytorch implementation of OT-VAE in Appendix B.
3. Analysis on λ and τ (regularization weight and initial temperature of LOT ) for OT-VAE

on the test set of CelebA (Liu et al., 2015) and ZeroSpeech2019 (Dunbar et al., 2019) in
Appendix C.

4. Details of experiments on images in Appendix D.
5. Details of experiments on speech data in Appendix E.
6. Details of experiments on 3D dance generation in Appendix F.

Additionally, in the supplementary material (the uploaded zip file, suppMat_OTVAE.zip), we
also provide the source code to reproduce experiments on images in the folder ./suppMat_
OTVAE/code.zip and videos of generated dance in ./suppMat_OTVAE/visual_videos.
zip.

A ADDITIONAL BACKGROUND

This section provides additional background including the details about the Sinkhorn-Knopp algo-
rithm.

A.1 SINKHORN-KNOPP ALGORITHM

The online clustering problem with the equipartition constraint is equivalent to the entropy-
regularized OT problem in Equation 9, given by

min
Γ∈Π(1/n,1/K)

⟨Γ, D⟩F − εH(Γ), (12)

where H(Γ) := −
∑

ij Γij(log Γij − 1) and Djk = −ĥ⊤
j ck is the cost matrix. This problem can be

efficiently solved by the Sinkhorn-Knopp algorithm, which is an iterative matrix scaling method to
approach the double stochastic matrix. Specifically, the ℓ-th iteration of the algorithm performs the
following updates:

u(ℓ) =
1/n

Sv(ℓ)
, v(ℓ+1) =

1/K

S⊤u(ℓ)
,

where S = e−D/ε. Then, the matrix diag(u(ℓ))Sdiag(v(ℓ)) converges to the solution of Equation 12
when ℓ tends to ∞. This algorithm converges faster with larger ε as strong regularization leads to
a more convex objective (Peyré et al., 2019). However when ε becomes too small, some of the
elements of the denominators become null and result in a division by 0. To overcome this stability
issue, it is preferable to do the computations in the log-scale (Peyré et al., 2019). This algorithm
can be easily adapted to a batch of encoded data features ĥ, leading to a scalable and GPU-friendly
computation. In our experiments, we also observed that only few iterations (5 or 10) are sufficient
to obtain good performance. A Pytorch implementation of this algorithm is provided in Section B.

B PYTORCH IMPLEMENTATION OF OT-VAE

1 # C : codebook
2 # Y : features from the encoder}
3 # Z : features after ot quantization}
4 # tau: learnable temperature parameter in OT

13

suppMat_OTVAE.zip
./suppMat_OTVAE/code.zip
./suppMat_OTVAE/code.zip
./suppMat_OTVAE/visual_videos.zip
./suppMat_OTVAE/visual_videos.zip
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5

6 import torch
7 import torch.nn.functional as F
8 import math
9

10 # ---> Sinkhorn-Knopp algorithm <---
11 def Log_Sinkhorn(K, eps = 0.5):
12 m, n = K.shape
13 v = K.new_zeros((m,))
14 a, b, K = 0, math.log(m / n), K / eps
15 for _ in range(10):}
16 u = -torch.logsumexp(v.view(m, 1) + K, dim=0) + b
17 v = -torch.logsumexp(u.view(1, n) + K, dim=1) + a
18 return torch.exp(K + u.view(1, n) + v.view(m, 1))
19

20

21 # ---> Gumbel-Softmax Sample algorithm <---
22 def Gumbel_Softmax_Sample(logit, gumbel_temperature) :
23 #Sampling U from a uniform distribution on [0, 1)
24 U = torch.rand(logit)
25 sample = logit - torch.log(-torch.log(U))
26 return F.softmax(sample / gumbel_temperature, dim=-1)
27

28 # ---> L2 Normalization <---
29 Y_norm = F.normalize(Y, p=2.0)
30 C_norm = F.normalize(C, p=2.0)
31

32 #---> Compute probability <---
33 logit = Y_norm.mm(C_norm.T) * tau.exp()
34 probs = torch.softmax(logit, dim=-1)
35 log_probs = torch.log_softmax(logit, dim=-1)
36

37 # ---> Optimal Transport <---
38 with torch.no_grad() :
39 q_ot = Log_Sinkhorn(logit)
40

41 # ---> Training <---
42 if is_training:
43 sampling = Gumbel_Softmax_Sample(logit, gumbel_temperature)
44 # ---> Evaluation <---
45 else:
46 sampling = torch.argmax(probs, dim=-1)
47

48 Z = torch.mm(sampling, C)
49

50 # ---> OT Loss <---
51 loss_ot = -torch.mean(q_ot, log_probs)

C ABLATION STUDY

In this section, we provide analysis on λ and τ (regularization weight and initial temperature of
LOT ) for OT-VAE on the test set of CelebA (Liu et al., 2015) and ZeroSpeech2019 (Dunbar et al.,
2019). Results are illustrated in Table 5. We report MSE (×10−3) for CelebA, MSE (dB2) for
ZeroSpeech2019 and perplexity (PPL) for both datasets. Two insights can be found from the table:
first, with larger λ, PPL importantly boosts which validates the fact that optimal transport explicitly
brings equipartition of the clusters; second, λ = 1e − 3 works decently across different modalities
while the temperature needs to tuned according to different tasks.

D DETAILS OF EXPERIMENTS ON IMAGES

Pre-processing Following SQ-VAE (Takida et al., 2022), all the images in CelebA (Liu et al.,
2015) are center-cropped to 140 × 140 and resized to 64 × 64, which is a setting used in previous
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Table 5: Analysis of λ and τ (regularization weight and initial temperature of LOT ) for OT-
VAE on the test set of CelebA (Liu et al., 2015) and ZeroSpeech2019 (Dunbar et al., 2019). We
report MSE (×10−3) for CelebA, MSE (dB2) for ZeroSpeech2019 and perplexity (PPL) for both
datasets. The codebook contains 512 codes and each code is with dimension 64. All the experiments
are repeated three times.

λ log 1
τ

CelebA ZeroSpeech2019
MSE (×10−3) ↓ PPL ↑ MSE (dB2) ↓ PPL ↑

1e-4

0.1 0.96 ± 0.0 391.7 ± 4.9 32.62 ± 0.97 433.9 ± 8.8
0.5 0.98 ± 0.0 373.3 ± 2.7 31.22 ± 0.49 435.8 ± 4.6
1 0.98 ± 0.0 365.6 ± 16.4 32.65 ± 1.06 431.5 ± 20.0
5 1.01 ± 0.0 377.1 ± 22.4 28.80 ± 0.36 438.8 ± 3.6

10 0.99 ± 0.0 389.9 ± 11.6 31.37 ± 0.79 433.8 ± 15.5

1e-3

0.1 0.95 ± 0.0 425.4 ± 4.9 32.00 ± 0.28 448.2 ± 2.1
0.5 0.96 ± 0.0 418.3 ± 2.6 30.76 ± 0.41 450.2 ± 1.7
1 0.94 ± 0.0 433.3 ± 5.1 31.96 ± 0.35 452.9 ± 2.0
5 0.95 ± 0.0 426.6 ± 4.4 28.73 ± 0.29 446.2 ± 6.5

10 0.99 ± 0.0 424.3 ± 2.8 32.41 ± 0.66 443.5 ± 3.0

1e-2

0.1 0.96 ± 0.0 446.7 ± 16.0 32.15 ± 0.09 453.4 ± 2.3
0.5 0.96 ± 0.0 450.2 ± 3.7 32.32 ± 0.98 445.2 ± 4.1
1 0.96 ± 0.0 448.6 ± 0.6 30.79 ± 0.43 454.9 ± 5.5
5 1.00 ± 0.0 450.9 ± 3.2 29.07 ± 0.52 449.5 ± 1.7

10 1.00 ± 0.0 413.7 ± 2.2 30.61 ± 0.83 440.8 ± 2.0

work (Tolstikhin et al., 2018; Ghosh et al., 2020). For CelebAHQ-Mask (Liu et al., 2015), we center-
crop the the segmentation maps to 128 × 128 and resized to 64 × 64 with the nearest neighbor
interpolation.

Architectures for reconstruction We use the same architectures as SQ-VAE (Takida et al.,
2022), which is adopted from the GitHub repository of DeepMind Sonnet 3 and composed of a
ConvResNet-type encoder and decoder. These networks include convolutional layers, transpose
convolutional layers, and ResBlocks, the downsampling rate from the image resolution to quantized
layer is 4. Number of residual blocks are 6 for CelebA (Liu et al., 2015) and 2 for CelebAHQ-
Mask (Liu et al., 2015).

Model architectures for generation As SQ-VAE did not release their implementation for gen-
eration, we reimplemented SQ-VAE using the same model architecture as for OT-VAE for a fair
comparison. For both SQ-VAE (Takida et al., 2022) and OT-VAE, we train a standard GPT
model (Vaswani et al., 2017; Radford et al., 2018) to generate images in an auto-regressive fash-
ion. The GPT model has 12 layers, 12 heads, and feedforward dimension 768.

Training details Following SQ-VAE (Takida et al., 2022), the reconstruction loss Lre is the MSE
loss for both datasets. We adopt the same optimization schema as SQ-VAE (Takida et al., 2022).
we leverage Adam (Kingma & Ba, 2015) optimizer with inital learning rate 0.001, batch size 64,
β1 = 0.9 and β2 = 0.99. The learning rate will be halved every 3 epochs if the validation loss is not
improving. We train 200 epochs for CelebA and CelebAHQ-Mask. We validate on the same capacity
of codebooks as SQ-VAE (Takida et al., 2022): the codebook contains 512 codes for CelebA and
64 codes for CelebAHQ-Mask, each code is with dimension 64. The training takes ∼ 2 hours
for CelebA using a single GPU NVIDIA V100-32G. The gumbel softmax decay is 1e-5 in all the
datasets. The validation MSE and perplexity (PPL) on CelebA (Liu et al., 2015) during the training
are illustrated in Figure 4a and 4b respectively, which shows the superiority of the proposed OT-VAE
compared to SQ-VAE (Takida et al., 2022).

3Sonnet: https:sonnet/vqvae_example.ipynb
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(a) Validation MSE (b) Validation PPL

Figure 4: The validation MSE and perplexity (PPL) on CelebA (Liu et al., 2015) during the training.
The propose OT-VAE obtains better reconstruction with higher perplexity. Experiments are repeated
three times.

Figure 5: Generated images on CelebA (Liu et al., 2015) with the proposed OT-VAE.

For generation, an image is first encoded into a sequences of 256 tokens through the encoder of OT-
VAE and SQ-VAE. As a standard strategy, a SOS token is padded to the beginning of each sequence.
During training, we perform next token prediction with the teacher forcing. For generation. For
generation, we start with the SOS token and use a simple multinomial sampling with the predicted
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probability to generate the next token and repeat this step until the full length is reached. We train
300K iterations with AdamW (Loshchilov & Hutter, 2017) optimizer, and set the batch size to 16.
We generate 10K images and use torch-fidelity 4 to compute the FID. We provide visual results in
Figure 6.

E DETAILS OF EXPERIMENTS ON SPEECH DATA

Pre-processing Following SQ-VAE (Takida et al., 2022), we apply the same pre-processing as van
Niekerk et al. (2020) to extract 80-dimensional log-mel spectrogram features for all the speech data.
We firstly scale the maximum amplitude of each audio signal to 0.999 and pre-emphasize the scaled
audio signals with a first-order autoregressive filter (yt = xt − 0.97xt−1, where xt and yt indicate
the input and output of the filter at time t), then apply a 2048-point FFT with 25 ms Hann window,
10 ms frame shift, and frequency cutoffs in between 50 Hz and 8000 Hz. After that, we clip those
bins that are 80.0 dB lower than the maximum and re-scale the log-mel spectrogram by dividing it
by 80.

Architecture The architecture for speech data is the same as SQ-VAE (Takida et al., 2022), which
is with ConvResNet-type encoder/decoder, whereas the Conv2d for the image data is replaced by
Conv1d to accommodate the structure of speech data. The downsampling rate from the mel spectro-
gram to the quantized layer is 2.

Model architectures for generation Similar to image generation, we use the GPT architecture
with 12 layers, 12 heads and 768 feedforward dimension.

Training details Following SQ-VAE (Takida et al., 2022), we use Adam (Kingma & Ba, 2015)
optimizer with inital learning rate 0.0004, batch size 256, β1 = 0.9 and β2 = 0.99. We train 50K
iterations and pick the best model by validating our models on 200 samples, which are randomly
selected in advance from the training set. The learning rate will be decayed with γ = 0.5 on 30,000
and 40,000 iterations. We have 512 codes with dimension 64 in the codebook, which is also the same
as SQ-VAE (Takida et al., 2022). As suggested in Chorowski et al. (2019); Takida et al. (2022), we
add a time-jitter regularization with a replacement probability of 0.5 during training, which is also
used in SQ-VAE (Takida et al., 2022). The training takes ∼ 12 hours using a single GPU NVIDIA
V100-16G.

During training, we clip the waveform with a random start point to get a sequence of 100 tokens
after the encoder of OT-VAE or SQ-VAE. Then we also performed next token generation with a
SOS token concatenated at the beginning. We train 100k iterations with AdamW optimizer with the
learning rate of 2e−4, and the batch size of 32. For generation, we start with the SOS token and 15
warm-up tokens obtained from the encdoer, and autoregressively generated the next 85 tokens with
top-k (k = 5) multinomial sampling. Then the 100 tokens in total can be fed into the decoder of
OT/SQ-VAE to obtain the generated log-mel spectrograms.

To evaluate the quality of generated audio, we follow Bińkowski et al. (2019) to compute Frechet
distance and the Maximum Mean Discrepancy between the generated data and the real data, which
are also named FDSD and KDSD respectively in the reference paper. As suggested in Bińkowski
et al. (2019), we obtained the features by feeding audio clips of 2s-length into the pre-trained Deep-
Speech2 model (Amodei et al., 2016) from NVIDIA OpenSeq2Seq library (Kuchaiev et al., 2018)
and averaged along the temporal dimension. Since the pre-trained model takes the raw waveforms
as input, we also trained a HiFi-GAN model (Kong et al., 2020) on ZeroSpeech dataset to transform
the mel-spectrogram into raw waveform. Due to the time limit, we used the simple V3 configura-
tion, trained with batch size of 128 on 8 V-100 gpus and took the checkpoint at 180k to perform the
waveform generation.

Considering that in the test set (train parallel voice), there are 159 out of 190 audio sequences that
are longer than 2s, we cropped 63 chunks with random start point for each audio, which resulted in
a total of 10,017 audio clips for reasonable estimates.

4https://torch-fidelity.readthedocs.io/
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Figure 6: Generated audio spectrogram on ZeroSpeech2019 (Dunbar et al., 2019) with the proposed
OT-VAE.

Evaluation metrics Here we provide more details for the computation of Fréchet distance (i.e.
FDSD) and Maximum Mean Discrepancy (i.e. KDSD). Given features from the target data X ∈
Rm×d and the features from the natural data Y ∈ Rn×d, we have:

FDSD(X,Y ) = ||µX − µY ||22 + Tr
(
ΣX +ΣY − 2(ΣXΣY )1/2

)
(13)

KDSD(X,Y ) =
1

m(m− 1)

∑
1≤i,j≤m,i ̸=j

k(Xi,Xj) +
1

n(n− 1)

∑
1≤i,j≤n,i ̸=j

k(Yi,Yj)

+

m∑
i=1

n∑
j=1

k(Xi,Yj), (14)

where µX , µY and ΣX ,ΣY indicate the means and variances of X and Y respectively, whereas
k : Rd × Rd → R is a positive definite kernel function. Follow Bińkowski et al. (2019; 2018), we
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choose the polymial kernal:

k(x,y) =

(
1

d
xTy + 1

)3

. (15)

To evaluate the distribution of natural data, we split the test set in half and compute these two metrics
between the two subsets.

F DETAILS OF EXPERIMENTS ON 3D DANCE GENERATION

Our baseline (Li et al., 2022) Based on VQ-VAE, Li et al. (2022) is a two-stage framework for
music to dance generation. In the first stage, it trains two VQ-VAEs to reconstruct 3D dance motions
for upper and lower bodies separately. The training of VQ-VAE includes common heuristics such as:
the commitment and embedding loss with stop-gradient operator ( Equation 1), exponential moving
average (EMA) and codebook reset. In the second stage of training, a GPT is trained to generate 3D
motion conditional on music sequences.

Architecture We follow the official code of Li et al. (2022), which is released at https:
//github.com/lisiyao21/Bailando. The encoder-decoder architecture is composed of
dilated 1D convolutions with kernel 4 × 4 and residual blocks. Convolutions with stride 2 are used
in the encoder to reduce temporal resolution while transposed convolution with stride 2 are used
in the decoder to increase the temporal resolution. The temporal downsampling rate is 8. Both
codebooks for upper and lower bodies are with dimension 512 × 512. The GPT is composed a
transformer with 12 layers and 12 heads. The embedding size in GPT is 768.

Training details Denoted a dance motion as X ∈ RT×(J×3), where T is the temporal length and
J = 24 is the total number of joints in SMPL (Loper et al., 2015), we learn two codebooks for upper
and lower bodies separately. We use the same reconstruction loss as Li et al. (2022) consisting of the
reconstruction between the input and the reconstructed motion as well as their the velocity V(·) and
acceleration A(·), i.e. Lre = L1(X,G(Z)) + L1(V (X), V (G(Z))) + L1(A(X), A(G(Z))). We
follow similar training schema as Li et al. (2022): we first train the motion without the root transla-
tion for 200K iteration then freeze the encoder, codebook and decoder to train an extra decoder for
another 200K iteration to optimize the root velocity. We use Adam (Kingma & Ba, 2015) optimizer
with learning rate 2e-4, batch size 128, T = 64, β1 = 0.9, β2 = 0.99.

We further train a Generative Pre-trained Transformer (GPT) for music to dance generation. We use
music feature as Li et al. (2022). We encoder the motion into codebook index using our OT-VAE
and train the GPT to predict the codebook index in an auto-regressive manner with cross-entropy
loss. For inference, the motion is generated in an auto-regressive manner. The GPT is trained for
600K iteration with Adam (Kingma & Ba, 2015) optimizer. The learning rate is set to 2e-4 then
decrease to 1e-5 at 400K iterations. We use batch size 32, T = 256, β1 = 0.9, β2 = 0.99.
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