SAMPLE COMPLEXITY OF CVAR BASED RISK SENSITIVE POLICY LEARNING

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

016

017

018

019

021

025

026

027

028

031

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

The conventional offline bandit policy learning literature aims to find a policy that performs well in terms of the average policy effect (APE) on the population, i.e. the social welfare. However, in many settings, including healthcare and public policies, the decision-maker also concerns about the risk of implementing certain policy. The optimal policy that maximizes social welfare could have a risk of negative effect on some percentage of the worst-affected population, hence not the ideal policy. In this paper, we investigate risk sensitive offline policy learning and its sample complexity, with conditional value at risk (CVaR) of covariate-conditional average policy effect (CAPE) as the risk measure. To this end, we first provide a doubly-robust estimator for the CVaR of CAPE, and show that the this estimator enjoys asymptotic normality even if the nuisance parameters suffer a slower-than $n^{-\frac{1}{2}}$ estimation rate (n being the sample size). We then propose a risk sensitive learning algorithm that finds the policy maximizing the weighted sum of APE and CVaR of CAPE, within a given policy class Π . We show that the sample complexity of the proposed algorithm is of the order $O(\kappa(\Pi)n^{-\frac{1}{2}})$, where $\kappa(\Pi)$ is the entropy integral of Π under the Hamming distance. The proposed methods are evaluated empirically, demonstrating that by sacrificing not much of the social welfare, our methodology improves the outcome of the worst-affected population.

1 Introduction

In a variety of fields, more and more decision-makers are learning to target products, services, and information provision based on the user characteristics observed through user-specific historical data (Bertsimas & Kallus, 2020; Bastani & Bayati, 2020; Farias & Li, 2019). For instance, precision medicine learns the optimal personalized treatment from health care records (Kim et al., 2011; Chan et al., 2012; Ozanne et al., 2014); personalized education selects which lessons and learning tools to offer a student on the basis of characteristics and past performance (Tetzlaff et al., 2021); public policies decides personal treatment, e.g. college financial-aid package distribution, re-employment service, etc.(Athey, 2017). These practical needs drive a line of offline policy learning literature that is devoted to developing efficient treatment assignment (policy) learning algorithms using historical data (Dudík et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c; Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023). The optimization objective of most of these works is to maximize the average policy effect (APE) on the population, i.e., the social welfare, a key metric in offline policy learning (Rubin, 1974; Zhou et al., 2023).

However, it is widely recognized that policy effects can vary widely between individuals with different characteristics (or covariates in offline policy learning literature), which is a common theme underlying offline policy learning, known as heterogeneity (Crump et al., 2008; Heckman et al., 1997). Therefore, even if the APE on the population is positive, there is a *risk* that many individuals are harmed by the policy employment. Consequently, only considering the population APE does not capture this risk. In many settings discussed previously, besides social welfare, decision-makers concern about the policy effect on the worst-affected population. For example, late stage cancer treatment concentrates on the average treatment effect on the population as well as the worst-possible outcome; education plan considers its impact on the worst-performing students; and government formulating policies would care for negative experience of the worst-affected population. If the risks associated with the policy outweigh the social welfare it generates, deployment of such a policy is not

justifiable to a rational decision-maker who considers equity beyond social welfare, even if the policy is optimal in maximizing social welfare. This calls for a *risk sensitive* policy learning methodology that would improve the outcome of the worst-affected population, and ideally not comprising too much in terms of social welfare.

One appealing resolution is to focus on the distribution of the individual policy effect (IPE), instead of the APE (i.e. the average of IPE over the population) as in the conventional offline policy learning literature. Specifically, the risk sensitive learning object seeks to reduce the policy effect on the worst-affected population, which is the tail of the IPE distribution. A suitable measure for describing this risk is the conditional value at risk (CVaR) of the IPE distribution (Rockafellar et al., 2000), which is the average effects among, say, $\alpha\%$ of the worst-affected population ($\alpha \in [0,1)$). Hence the risk of the policy performance on the worst-affected $\alpha\%$ of the population can be described by the CVaR of IPE, and risk sensitive policy learning aims to maximize the CVaR of IPE.

One challenge is that the counterfactual IPE of any given any policy cannot be directly observed from the observational data. In consequence, it is difficult to learn the distribution of the IPE. However, given rich and continuous covariate spaces, there are well-developed machine learning methods which can be used to estimate covariate-conditional average policy effect (CAPE), which is the expected policy effect conditioned on the individual covariate and would predict IPE well (Künzel et al., 2019; Nie & Wager, 2021; Wager & Athey, 2018). A detailed discussion on CVaR of IPE and CAPE is given in Section 2.1.

Adopting CVaR of CAPE as a policy risk measure, this work aims to fill in the gap between the current offline policy learning literature and the practical needs of risk sensitive policy learning. We present a risk sensitive policy learning algorithm that finds the policy that maximizes the weighted sum of the APE and the CVaR of CAPE, within a given policy class, taking both risk and social welfare into consideration.

1.1 OUR CONTRIBUTIONS

Our work establishes the *first* sample complexity result for CVaR-based risk-sensitive offline bandit policy learning and makes the following specific contributions.

Policy CVaR Inference Given a policy, we describe the risk of it through CVaR and investigate the relation between the CVaR of IPE and that of CAPE. We provide a doubly robust estimator for CVaR of CAPE, which achieves asymptotic normality even if the nuisance parameters suffer a slower-than- $n^{-\frac{1}{2}}$ estimation rate.

CVaR based Risk Sensitive Policy Learning We propose a risk sensitive policy learning scheme that maximizes the weighted sum of APE and CVaR of CAPE over a given policy class Π . We provide a sample complexity analysis, and show that our algorithm has a suboptimality gap of the order $O(\kappa(\Pi)n^{-\frac{1}{2}})$, where $\kappa(\Pi)$ is a measure quantifying the policy class complexity and n is the number of samples. This result agrees with the sample complexity of other offline policy learning algorithms that maximize social welfare in literature.

Empirics We provide efficient implementation of our risk sensitive learning algorithm, and compare its empirical performance with existing benchmark of CAIPWL (Zhou et al., 2023), which aims to maximize the APE. The results present empirical evidence that our risk sensitive policy improves the outcome of the worst-affected population with little compromise in social welfare.

1.2 RELATED WORKS

Risk and CVaR CVaR is a very popular choice of risk measure, particularly in the finance literature. Various methodologies for the modeling risks through CVaR can be found in Duffie & Pan (1997); Jorion (1996); Pritsker (1997); Morgan (1995); Simons (1996); Beder (1995); Stambaugh (1996); Artzner (1997); Artzner et al. (1999). We refer the readers to Mausser (1998); Embrechts et al. (1999); Pflug (2000) for detailed discussions on CVaR and its properties. Embrechts et al. (1997) provides case studies of CVaR as a risk measure in insurance industry; while Bucay & Rosen (1999); Andersson et al. (2001) used CVaR for credit risk evaluations. Later, Kallus (2023; 2022) used CVaR as a risk measure of treatment effect and discussed inference method of treatment effect CVaR.

CVaR in Reinforcement Learning The reinforcement learning (RL) literature has pioneered methodologies of risk sensitive learning under a CVaR objective, in the framework of Markov decision process (MDP) (Metelli et al., 2021; Sakhi et al., 2024; Behnamnia et al.), where the algorithm learns while acts (Chow et al., 2015). These works usually assume that propensity score (the probability of choosing an action conditioned on the covariates) is known and Monte Carlo estimation is feasible. In contrast, our setting relies solely on an offline observational data with unknown propensity score, rendering sampling-based methods inapplicable.

More closely related to our work is the literature on risk-sensitive *online policy learning*. Popular multi-armed bandit (MAB) algorithms, such as upper confidence bound and Thompson sampling, have been studied extensively in the context of CVaR based risk sensitive MAB (Galichet, 2015; Galichet et al., 2013; Cassel et al., 2018; Tamkin et al., 2019; Baudry et al., 2021; Tan & Weng, 2023). However, nearly all of these works disregard individual covariates, and thus the resulting algorithms cannot minimize risk at the population level.

Offline policy learning There is a long list of works devoted to offline policy learning (Dudík et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c; Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023; Jin et al., 2021; 2022). In particular, Swaminathan & Joachims (2015a) proposed the classical inverse-propensity weight learning (IPWL) that optimizes policy to maximize the APE with known propensity score. Zhou et al. (2023) later introduced the cross-fitted augmented inverse propensity weighted learning (CAIPWL) for learning with unknown propensity score. Policy learning under biased samples is also found to be closely related to CVaR (Sahoo et al., 2022; Lei et al., 2023).

2 Preliminaries

Let \mathcal{A} be the set of M actions $\mathcal{A} := \{1, \cdots, M\}$, and let $\mathcal{X} \subset \mathbb{R}^d$ be a compact set of covariates. Given some action $a \in \mathcal{A}$, the reward distribution $Y(a) \in \mathcal{Y}_a \subset \mathbb{R}$ denotes the potential reward obtained from taking the action a. We consider a training dataset $\mathcal{D} = \{(X_i, A_i, Y_i)\}_{i \in [n]}$ consisting of n i.i.d. draws of (X, A, Y) generated as follows. The covariate and potential rewards $(X, Y(1), \cdots, Y(M))$ are drawn from the underlying environment P. Some unknown behavior policy π_0 selects an action given the covariate: $A \sim \pi_0(X)$, where the propensity score $\pi_0(a \mid X)$ is the probability of A = a given the covariate X. In the data set \mathcal{D} , only the factual reward corresponding to the chosen action Y = Y(A) is observed. We assume the following for π_0 and P.

Assumption 2.1 (Regularity). The behavior policy π_0 and the environment P satisfy the following: I. Unconfoundedness: $(Y(1), \dots, Y(M)) \perp \!\!\! \perp A | X$; Z. Overlap: for some $\varepsilon > 0$, $\pi_0(a \mid x) \ge \varepsilon$, for all $(a, x) \in \mathcal{A} \times \mathcal{X}$; Z. Bounded Reward Support: $0 \le Y(a) \le \overline{y}$ for $a \in \mathcal{A}$.

Assumption 2.1 is standard in offline policy learning literature (see e.g., Athey & Wager, 2021; Zhou et al., 2023). The unconfoundedness assumption guarantees identifiability; whiles the overlap assumption ensures sufficient exploration when collecting the data set \mathcal{D} via a positive lower bound on the propensity score. The third assumption of bounded reward support is largely technical to make later analysis tractable. In fact, our methodology can be extended to sub-Gaussian rewards straightforwardly , which we show empirically in Section 5.

Our task is to learn a risk sensitive policy π in a given policy class Π from the training dataset \mathcal{D} .

2.1 POLICY CONDITIONAL VALUE AT RISK

The policy risk measure of interest is the Conditional Value at Risk (CVaR), which is defined below. **Definition 2.2** (CVaR). With respect to a specified probability level $\alpha \in [0, 1]$, the α -level Value at Risk (VaR) of a random variable $Z \in \mathbb{R}$ is the lowest amount β such that, with probability α , Z will not exceed β . The α -level Conditional Value at Risk (CVaR) is

$$CVaR_{\alpha}(Z) := \sup_{\beta} \left(\beta + \frac{1}{\alpha} \mathbb{E} \left[(Z - \beta)^{-} \right] \right). \tag{1}$$

¹We will later use the shorthand Z := (X, A, Y).

²Throughout the paper, the expectation \mathbb{E} and probability \mathbb{P} are taken over P unless stated otherwise.

 $^{^{3}}$ CVaR is sometimes defined for the right tail of Z, corresponding to -CVaR(-Z) in our definition.

Remark 2.3. The sup is attained by β being the α -quantile: $F_Z^{-1}(\alpha) = \inf\{\beta : F_Z(\beta) \geq \alpha\}$, where $F_Z(z) = \mathbb{P}(Z \leq z)$. Here β is the α -level VaR of Z. If Z is continuous, then $CVaR_{\alpha}(Z) = \mathbb{E}[Z \mid Z \leq F_Z^{-1}(\alpha)]$; otherwise $CVaR_{\alpha}(Z) \in [\mathbb{E}[Z \mid Z \leq F_Z^{-1}(\alpha)], \mathbb{E}[Z \mid Z \leq F_Z^{-1}(\alpha)]]$.

According to Definition 2.2, given a policy π , the α -level CVaR of the IPE CVaR $_{\alpha}(Y(\pi(X)))$ is the average policy effect among the $(100 \times \alpha)\%$ -worst affected population. Let $\mu_{\pi}(X) := \mathbb{E}[Y(\pi(X)) \mid X]$ denote the CAPE. The next corollary following (Kallus, 2023, Theorem 3.1) gives an upper bound of CVaR of IPE by that of CAPE CVaR $_{\alpha}(\mu_{\pi}(X))$.

Corollary 2.4. For any $\alpha \in [0,1]$ and a policy π , $CVaR_{\alpha}(Y(\pi(X))) \leq CVaR_{\alpha}(\mu_{\pi}(X))$.

Since CAPE represents our best guess for IPE, it is reasonable to impute the random and unknown IPE $Y(\pi(X))$ with CAPE $\mu_{\pi}(X)$. Consequently, $\text{CVaR}(\mu_{\pi}(X))$ can be seen as a substitute for CVaR(Y(X)), and a reasonable measure of policy risk.

Formally, our goal is to learn a risk sensitive policy with a high $\mathrm{CVaR}_{\alpha}(\mu_{\pi}(X))$ from \mathcal{D} , with a given target α -level. Our challenge is two-fold: (i) inference of $\mathrm{CVaR}_{\alpha}(\mu_{\pi}(X))$ of a given policy π under slow parameter estimation rates; (ii) risk sensitive policy learning whose α -level $\mathrm{CVaR}_{\alpha}(\mu_{\pi}(X))$ is high. Specially, we focus on deriving fast rate policy CVaR estimation and subsequently provide parametric rate sample complexity for policy learning.

3 POLICY CVAR INFERENCE

In this section, we concentrate on the first task of policy CVaR inference. We define the policy CVaR

$$\mathcal{V}_{\alpha}(\pi) := \text{CVaR}_{\alpha}(\mu_{\pi}(X)) = \sup_{\beta} \left\{ \beta + \frac{1}{\alpha} \mathbb{E}\left[\left(\mu_{\pi}(X) - \beta\right)^{-}\right] \right\},\tag{2}$$

and denote β_{π} as the optimizer $\beta_{\pi} := \arg \sup_{\beta} \{\beta + \frac{1}{\alpha} \mathbb{E} \left[\left(\mu_{\pi}(X) - \beta \right)^{-} \right] \}$ in equation 2, which is the α -level VaR of $\mu_{\pi}(X)$.

Since the CAPE μ_{π} is not directly observed, the first step is fitting it. Let $\hat{\mu}_{\pi}$ be the estimator of μ_{π} and let $W_{\pi}(X_i) := \mathbb{I}\{A_i = \pi(X_i)\}Y_i$. The causal inference literature provides that $\hat{\mu}_{\pi}$ can be fitted via off-the-shelf estimation algorithms using $\{W_{\pi}(X_i) : i \in \mathcal{D}\}$ (Hastie et al., 2017; Zhou et al., 2023), e.g., logistic regression, random forests (Ho et al., 1995), kernel regression (Nadaraya, 1964; Watson, 1964), local polynomial regression (Cleveland, 1979; Cleveland & Devlin, 1988).

Given an estimator $\hat{\mu}_{\pi}$, an naïve policy CVaR estimator is the plug-in estimator

$$\hat{\mathcal{V}}_{\alpha}^{\text{plug-in}}(\pi) = \sup_{\beta} (\beta + \frac{1}{n\alpha} \sum_{i \in \mathcal{D}} (\hat{\mu}_{\pi}(X_i) - \beta)^{-}).$$

However, the performance of $\hat{\mathcal{V}}_{\alpha}^{\text{plug-in}}$ depends on the estimation of $\hat{\mu}_{\pi}$, which is prone to slow convergence rates and potential bias in regression estimation.

We circumvent the issue via a *debiasing* approach (Kallus, 2023) that is insensitive to the estimation of μ_{π} , and thus achieving satisfying policy CVaR estimation rate even in face of the slow convergence rate of $\hat{\mu}_{\pi}$. Algorithm 1 summaries the inference procedure, which computes the sample average of

$$\phi(\pi, Z; \hat{\pi}_0, \hat{\mu}_{\pi}, \hat{\beta}_{\pi}) := \hat{\beta}_{\pi} + \frac{1}{\alpha} \mathbb{1} \{ \hat{\mu}_{\pi}(X) \leq \hat{\beta}_{\pi} \} \Big(\hat{\mu}_{\pi}(X) + \frac{\mathbb{1} \{ A = \pi(X) \}}{\hat{\pi}_0(A \mid X)} (Y - \hat{\mu}_{\pi}(X)) - \hat{\beta}_{\pi} \Big).$$

Here the propensity estimator $\hat{\pi}_0$ is the estimated propensity score and the estimated policy VaR is

$$\hat{\beta}_{\pi} = \inf \left\{ \beta : \sum_{i \in \mathcal{D}} (\mathbb{1}\{\hat{\mu}_{\pi}(X_i) \le \beta\} - \alpha) \ge 0 \right\}.$$
(3)

We also adopt the *cross-fitting* technique (Schick, 1986; Zheng & van der Laan, 2011) over K folds so that the nuisance estimators $(\hat{\mu}_{\pi}, \hat{\pi}_{0}, \hat{\beta}_{\pi})$ are independent of the data points used for the overall sample average of ϕ . We split the dataset \mathcal{D} randomly into K fold and denote each fold as $\mathcal{D}^{(k)}$ for $k \in [K]$. At every $k \in [K]$ fold, we use the off fold dataset $\bar{\mathcal{D}}^{(k)} := \{\mathcal{D}^{(i)} : i \not\equiv k \mod K\}$ to estimate the propensity score $\hat{\pi}_{0}^{(k)}$. Denote $\bar{\mathcal{D}}_{\pi}^{(k)} := \{(X_{i}, A_{i}, Y_{i}) : i \in \bar{\mathcal{D}}^{(k)}, A_{i} = \pi(X_{i})\}$. We fit

Algorithm 1 Policy CVaR Inference

Input: Data \mathcal{D} , policy π , CVaR threshold α , regression algorithm \mathcal{R} for estimating μ_{π} and propensity score π_0 .

Randomly split \mathcal{D} into K equally-sized folds;

```
for k = 1, \cdots, K do
```

Estimate $\hat{\pi}_0^{(k)} \sim \mathcal{R}(\{(X_i,A_i): i\in \bar{\mathcal{D}}^{(k)}\})$ and $\hat{\mu}_\pi^{(k)} \sim \mathcal{R}(\{(X_i,W_\pi(X_i)): i\in \bar{\mathcal{D}}_\pi^{(k)});$ Find $\hat{\beta}_\pi^{(k)}$ with $\hat{\mu}_\pi^{(k)}$ and $\bar{\mathcal{D}}^{(k)}$ as in equation 3;

Compute the kth-fold $\hat{\mathcal{V}}_{\alpha}^{(k)}(\pi) \leftarrow \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)});$

216

217

218

219

220

221 222

223 224 225

226 227 228

229

230

231 232

233

235 236

237 238

239

240

241

242 243 244

245

246

247

248

249

250

251

252 253

254

255 256

257

258

259 260

261 262

263

264

265

266 267

268 269 Output: $\hat{\mathcal{V}}_{\alpha}(\pi) = \frac{1}{K} \sum_{k=1}^{K} \hat{\mathcal{V}}_{\alpha}^{(k)}(\pi)$

 $\hat{\mu}_{\pi}^{(k)}$ by the off fold $\{W_{\pi}(X_i): i \in \bar{\mathcal{D}}_{\pi}^{(k)}\}$. The kth fold policy VaR $\hat{\beta}_{\pi}^{(k)}$ is found via equation 3. Finally, the kth fold CVaR estimator is the sample average of $\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)})$ on the kth fold $\mathcal{D}^{(k)}$, and the policy CVaR estimator is the sample average of $\{\hat{\mathcal{V}}_{\alpha}^{(k)}(\pi)\}_{k\in[K]}$.

Remark 3.1. If $\alpha = 1$, then $CVaR_{\alpha}(\mu_{\pi}(X)) = \mathbb{E}[\mu_{\pi}(X)] = \mathbb{E}[Y(\pi(X))]$, and \hat{V}_{α} is reduced to the Cross-fitted Augmented Inverse Propensity Weighted (CAIPW) estimator Zhou et al. (2023) for the inference of APE $\mathbb{E}[Y(\pi(X))]$, with unknown propensity scores.

CONSISTENT POLICY CVAR ESTIMATOR

In this section, we look at the asymptotic behavior of the proposed policy CVaR estimator. We first make some assumptions on the estimation rates.

Assumption 3.2 (Asymptotic estimation rate). Suppose that for each fold $k \in [K]$ and any policy $\pi \in \Pi, \text{ we assume that } \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} = o_p(1), \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} = o_p(1). \text{ Furthermore, we assume that } \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \cdot \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} = o_p(n^{-\frac{1}{2}}), \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_\infty} = o_p(n^{-\frac{1}{4}}).$

Assumption 3.2 is nonrestrictive and standard in literature Zhou et al. (2023); Kallus (2023), and can be achieved by the estimation methods discussed before, which is discussed extensively in double-machine-learning estimation literatureChernozhukov et al. (2018); Farrell (2015). It suffices to have slow $o_n(n^{-\frac{1}{4}})$ -rates on both CAPE and propensity score estimation or no rate on CAPE estimation if the propensity score is known.

We also need another assumption that prohibits degeneracy of the quantile.

Assumption 3.3 (Regularity of Quantile). We assume that the CDF $F_{\mu_{\pi}(X)}$ is continuously differentiable at $F_{\mu_{\pi}(X)}^{-1}(\alpha)$ for the given $\alpha \in [0,1]$.

If $\mu_{\pi}(X)$ is discrete, Assumption 3.3 can be replaced by $F_{\mu_{\pi}(X)}^{-1}(\alpha - \epsilon) = F_{\mu_{\pi}(X)}^{-1}(\alpha + \epsilon)$ for some $\epsilon > 0$ (Kallus, 2023). Since the covariate space \mathcal{X} is rich, we focus on the continuous $\mu_{\pi}(X)$ case.

Since $\hat{\beta}_{\pi}^{(k)}$ is derived by $\hat{\mu}_{\pi}^{(k)}$ in equation 3, the following lemma translates the convergence rate of $\hat{\mu}_{\pi}^{(k)}$ in Assumption 3.2 to that of $\hat{\beta}_{\pi}^{(k)}$. Its proof is in Appendix E.2.

Lemma 3.4 (Convergence rate of $\hat{\beta}_{\pi}$). Under Assumption 2.1, 3.2 and 3.3, for all $k \in [K]$, the estimation error $|\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}| = O_p(n^{-\frac{1}{2}} \vee \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{r}(P)}^{\frac{r}{r+1}}), \forall r \in [1, \infty].$

The following theorem shows the asymptotic normality of the CVaR policy estimator in Algorithm 1, despite of the slow estimation rates in Assumption 3.2. The proof is deferred to Appendix E.3.

Theorem 3.5 (Asymptotic Normality). Under Assumption 2.1, 3.2 and 3.3, for any $\pi \in \Pi$, we have $\sqrt{n}(\hat{\mathcal{V}}_{\alpha}(\pi) - \mathcal{V}_{\alpha}(\pi)) \to \mathcal{N}(0, \sigma_{\pi}^2)$, where $\sigma_{\pi}^2 = Var(\phi(Z; \pi_0, \mu_{\pi}, \beta_{\pi}))$.

CVAR BASED RISK SENSITIVE POLICY LEARNING

We now turn to the second goal and present our CVaR based risk sensitive policy learning (λ -RSL).

4.1 WEIGHTED POLICY VALUE

A straight forward candidate of risk sensitive policy in a policy class Π is the one that maximizes the policy $\text{CVaR}_{\alpha}(\mu_{\pi}(X))$. In many applications, only considering the CVaR objective could be too conservative, as it is also important to monitor the APE. We propose the learning objective that maximizes the policy value $\mathcal{U}_{\lambda,\alpha}(\pi)$, which is the weighted sum of the APE and the policy CVaR with weighting parameter $\lambda \in [0,1]$:

$$\mathcal{U}_{\lambda,\alpha}(\pi) := \lambda \mathcal{Q}(\pi) + (1 - \lambda)\mathcal{V}_{\alpha}(\pi), \quad \forall \pi \in \Pi$$
(4)

where $\mathcal{Q}(\pi) := \mathbb{E}[Y(\pi(X))] = \mathbb{E}[\mathbb{E}[Y(\pi(X)) \mid X]]$. Detailed discussions of the choice of λ empirically and theoretically are given in Section 5 and Appendix B respectively. Zhou et al. (2023) provided the well-known CAIPW Learning (CAIPWL) scheme for policy learning under the APE maximization objective.

We define the optimal policy of a policy class Π to be $\pi^* = \max_{\pi \in \Pi} \mathcal{U}_{\lambda,\alpha}(\pi)$. Policy learning task finds a near-optimal robust policy $\pi \in \Pi$ whose policy value is close to the optimal policy. The performance of a learnt policy $\hat{\pi}$ is measured by the sub-optimality gap (regret), defined as

$$R_{\lambda,\alpha}(\hat{\pi}) := \mathcal{U}_{\lambda,\alpha}(\pi^*) - \mathcal{U}_{\lambda,\alpha}(\hat{\pi}). \tag{5}$$

4.2 RISK SENSITIVE POLICY LEARNING

To find the optimal policy π^* that maximize the policy value $\mathcal{U}_{\lambda,\alpha}$, the major challenge is the estimations of μ_{π} and β_{π} . This is because both μ_{π}, β_{π} are functions of π , and it is infeasible to estimate for every π within a policy class Π containing an infinite number of policies.

To tackle the first issue of μ_{π} estimation, we can express $\mu_{\pi}(X)$ as a function of the policy action $\pi(X)$: $\mu_{\pi}(X) = \sum_{a=1}^{M} \mathbbm{1}\{\pi(X) = a\}\mu_{a}(X)$. To be more precise, we estimate $\mu_{a}(X)$ by collecting $\{W_{a}(X_{i}) = \mathbbm{1}\{A_{i} = a\}Y_{i}, i \in \mathcal{D}\}_{a \in \mathcal{A}}$. We can construct $\hat{\mu}_{\pi}(X) = \hat{\mu}_{\pi(X)}(X)$ with $\{\hat{\mu}_{a}, a \in \mathcal{A}\}$, for any policy $\pi \in \Pi$,. As before, we adopt the cross-fitting technique over K folds to avoid dependence between $\hat{\mu}_{\pi}$ and the data points used for calculating the sample average.

Deriving the estimator $\hat{\mu}_{\pi}$ also benefits the learning of the APE $\mathcal{Q}(\pi)$. As discussed before, $\mathcal{Q}(\pi)$ can be learnt via CAIPWL Zhou et al. (2023), which maximizes the CAIPW estimator $\hat{\mathcal{Q}}(\pi)$

$$\psi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}) := \frac{\mathbb{1}\{A = \pi(X)\}}{\hat{\pi}_0^{(k)}(\pi(X) \mid X)} (Y - \hat{\mu}_{\pi}^{(k)}(X)) + \hat{\mu}_{\pi}^{(k)}(X),$$

$$\hat{\mathcal{Q}}^{(k)}(\pi) = \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}), \quad \hat{\mathcal{Q}}(\pi) = \frac{1}{K} \sum_{k=1}^K \hat{\mathcal{Q}}^{(k)}(\pi). \tag{6}$$

Given $\{\hat{\mu}_{\pi}^{(k)}(X_i)\}_{i\in\bar{\mathcal{D}}^{(k)}}$, equation 3 finds the policy VaR $\hat{\beta}_{\pi}^{(k)}$ for a specific policy $\pi\in\Pi$. Previously $\mu_{\pi}(\cdot)$ can be decoupled on the action level, thus transforming the infeasible task of computing a class of infinite nuisance parameters $\{\mu_{\pi}:\pi\in\Pi\}$ to the feasible task of computing a finite one, however this is not implementable for estimating β_{π} , which imposes the second challenge. We tackle the issue by jointly optimizing the nuisance parameter $\hat{\beta}_{\pi}$ and policy π (by taking policy gradient updates) in an alternating fashion. In particular, we start by initiating a random policy $\hat{\pi}$ and estimate its $\beta_{\hat{\pi}}$. Then, we take gradient steps to maximize $\hat{\pi} \in \arg\max_{\pi \in \Pi} \hat{\mathcal{U}}_{\lambda,\alpha}(\pi) := \lambda \hat{\mathcal{Q}}(\pi) + (1-\lambda)\hat{\mathcal{V}}_{\alpha}(\pi)$, where $\hat{\mathcal{V}}_{\alpha}(\pi) = \frac{1}{K} \sum_{k=1}^K \sum_{i\in\mathcal{D}^{(k)}} \phi(\pi,Z_i;\hat{\pi}_0^{(k)},\hat{\mu}_\pi^{(k)},\hat{\beta}_\pi^{(k)})$, while updating $\beta_{\hat{\pi}}$ along the way. Such process ends when the learnt policy converges. Details of λ -RSL is in Algorithm 2.

Remark 4.1 (Convergence of λ -RSL). We note that the policy learning objective $\mathcal{U}_{\lambda,\alpha}(\pi)$ is non-smooth (due to the indicator functions) with weak concavity structure, which poses particular computation challenges that are common in RL in general (Kaelbling et al., 1996). As the scope of this work does not include developing optimization method for nonsmooth and nonconcave objectives, we defer further discussions on the theoretical convergence of λ -RSL to Appendix C. Empirically, the policy gradient update scheme is easy to implement with a variety of optimization methods, including AdaGrad (Duchi et al., 2011) and RMSProp (Hinton et al., 2012; Graves, 2013; Ziyin et al., 2020). We shall see an efficient implementation with a softmax policy class in Section 5.

```
324
               Algorithm 2 \lambda-Risk-Sensitive Learning (\lambda-RSL)
325
                   Input: Data \mathcal{D}, policy class \Pi, CVaR threshold \alpha, objective weighting parameter \lambda, regression
326
                   algorithm \mathcal{R} for estimating \mu_a(X) and propensity score \pi_0.
327
                   Randomly split \mathcal{D} into K equally-sized folds;
                  for k=1,\cdots,K do Estimate \hat{\pi}_0^{(k)} \sim \mathcal{R}(\{(X_i,A_i): i\in \bar{\mathcal{D}}^{(k)}\}); for a\in\mathcal{A} do Estimate \hat{\mu}_a^{(k)} \sim \mathcal{R}(\{(X_i,W_a(X_i)): i\in \bar{\mathcal{D}}^{(k)}\});
328
330
331
332
                          end for
                   end for
333
                   Initiate some \hat{\pi} \in \Pi and estimate \{\hat{\beta}_{\hat{\pi}}^{(k)}\}_{k \in [K]} with \{\hat{\mu}_a^{(k)}\}_{k \in [K], a \in \mathcal{A}};
334
                    while \hat{\pi} does not converge do
335
                          Update \hat{\pi} by some gradient steps to maximize \hat{\mathcal{U}}_{\lambda,\alpha}(\pi);
336
                         Estimate \{\hat{\beta}_{\hat{\pi}}^{(k)}\}_{k \in [K]} with \{\hat{\mu}_{a}^{(k)}\}_{k \in [K], a \in \mathcal{A}};
337
338
                   end while
                   Output: \hat{\pi}.
339
```

4.3 MAIN REGRET ANALYSIS

In this section, we present the regret analysis of λ -RSL. Before we embark on the regret result, we need to introduce the *Hamming entropy integral* $\kappa(\Pi)$, which measures the complexity of Π .

Definition 4.2 (Hamming entropy integral). Given a policy class Π and dataset $\{x_1,\ldots,x_n\}\subseteq\mathcal{X}$, (1) the Hamming distance between $\pi,\pi'\in\Pi$ as $D_H(\pi,\pi'):=\frac{1}{n}\sum_{i=1}^n\mathbb{1}\{\pi(x_i)\neq\pi'(x_i)\}$; (2) the ϵ -covering number of $\{x_1,\ldots,x_n\}$, denoted as $N_H(\epsilon,\Pi;\{x_1,\ldots,x_n\})$, is the smallest number N of policies $\{\pi_1,\ldots,\pi_N\}$ in Π , such that \forall $\pi\in\Pi$, \exists π'_{ℓ} such that $D_H(\pi,\pi_{\ell})\leq\epsilon$; (3) the Hamming entropy integral of Π is defined as $\kappa(\Pi):=\int_0^1\sqrt{\log N_H(\epsilon^2,\Pi)}\,d\epsilon$, where $N_H(\epsilon,\Pi):=\sup_{n\geq 1}\sup_{x_1,\ldots,x_n}N_H(\epsilon,\Pi;\{x_1,\ldots,x_n\})$.

We now present the regret guarantee of the policy $\hat{\pi}$ learnt by λ -RSL. The proof is deferred to Appendix E.4. The main idea is to first decompose the regret

$$R_{\lambda,\alpha}(\hat{\pi}) = \mathcal{U}_{\lambda,\alpha}(\pi^*) - \mathcal{U}_{\lambda,\alpha}(\hat{\pi}) = \lambda(\mathcal{Q}(\pi^*) - \mathcal{Q}(\hat{\pi})) + (1 - \lambda)(\mathcal{V}_{\alpha}(\pi^*) - \mathcal{V}_{\alpha}(\hat{\pi})). \tag{7}$$

Note that the first term can be translate to the supremum of the estimation error:

$$\lambda \left(\mathcal{Q}(\pi^*) - \hat{\mathcal{Q}}(\pi^*) + \hat{\mathcal{Q}}(\pi^*) - \hat{\mathcal{Q}}(\hat{\pi}) + \hat{\mathcal{Q}}(\hat{\pi}) - \mathcal{Q}(\hat{\pi}) \right) \leq 2\lambda \sup_{\pi \in \Pi} |\mathcal{Q}(\pi) - \hat{\mathcal{Q}}(\pi)|,$$

and bounded by the known results from Zhou et al. (2023). We concentrate on the second term, which can be similarly upper bounded by

$$(1 - \lambda) \left(\mathcal{V}_{\alpha}(\pi^*) - \mathcal{V}_{\alpha}(\hat{\pi}) \right) \le 2(1 - \lambda) \sup_{\pi \in \Pi} |\mathcal{V}_{\alpha}(\pi) - \hat{\mathcal{V}}_{\alpha}(\pi)|. \tag{8}$$

At a high level, we bound the right hand side of equation 8 by establishing uniform convergence results for the policy CVaR estimators, through a careful chaining argument.

Theorem 4.3. Under Assumption 2.1, 3.2 and 3.3, there exists some $N \in \mathbb{Z}_+$ such that with $n \geq N$ and denoting $q := \sup_{\pi_1, \pi_2 \in \Pi} \mathbb{E}[(\psi(\pi_1, Z; \pi_0, \mu_a) - \psi(\pi_2, Z; \pi_0, \mu_a))^2]$, we have that with probability at least $1 - \Delta$, the regret of λ -RSL

$$R_{\lambda,\alpha}(\hat{\pi}) \leq \lambda \sqrt{\frac{q}{n}} \left(54.4\sqrt{2}\kappa(\Pi) + 435.2 + \sqrt{2\log(1/\Delta)} \right) + (1-\lambda) \frac{56\bar{y}}{\alpha\varepsilon\sqrt{n}} \left((8+\alpha\varepsilon)\kappa(\Pi) + (64+5\alpha\varepsilon) + \sqrt{\log(1/\Delta)} \right).$$

Theorem 4.3 shows that the dependence of $R_{\lambda,\alpha}(\hat{\pi})$ on the sample size n is of order $O(n^{-\frac{1}{2}})$, which agrees with the regret guarantee of CAIPWL Zhou et al. (2023). This implies that the CVaR based risk sensitive policy learning with λ -RSL attains the same order of sample complexity as other offline policy learning algorithms, especially CAIPWL which maximizes average policy effect, i.e. social welfare, with no consideration of risks.

5 EXPERIMENTS

We evaluated the performance of λ -RSL against the benchmark CAIPWL Zhou et al. (2023), with a simulated and a real-world dataset. The specific setups are given in Appendix D.

Simulated Dataset The simulated data generating process follows that of the linear boundary example in Si et al. (2023). We generate 50 training datasets of data tuple (X,A,Y), with a behavior policy π_0 ; and similarly generate 50 testing datasets, each of size 10,000. The covariate set $\mathcal{X} = \{x \in \mathbb{R}^5 : \|x\|_2 \leq 1\}$ is the closed unit ball of \mathbb{R}^5 and the action space is $\mathcal{A} = [3]$. The covariate are sampled independently $X \sim \text{Unif}(\mathcal{X})$; the action $A \sim \pi_0(X)$ and the rewards Y(a)'s are mutually independent conditioned on X with $Y(a) \mid X \sim \mathcal{N}(\beta_a^\top X, \sigma_a^2)$, for $\beta_a \in \mathbb{R}^5$, $\sigma_a \in \mathbb{R}$, $a \in \mathcal{A}$. Note that the reward distributions here are not of bounded supports.

Real-world Dataset We consider the dataset of a large-scale randomized experiment comparing assistance programs offered to French unemployed individuals provided in Behaghel et al. (2014). Behaghel et al. (2014) compares three treatments: (i) the "control" treatment individuals receive the standard services of the Public Employment Services; (ii) the "public" treatment individuals receive an intensive counseling program run by a public agency; and (iii) the "private" treatment individuals receive a similar program run by private agencies. We consider a scenario where the decision maker is trying to learn a personalized policy that decides whether to provide the public-run (A=0) or the private-run program (A=1). The binary reward Y indicates reemployment within six months.

Implementation with Softmax Policies We implement λ -RSL and the benchmark CAIPWL on a softmax policy class Π . Given a covariate $x \in \mathcal{X}$, each policy $\pi \in \Pi$ chooses its action $a \in \mathcal{A}$ with probability $\pi(a \mid x) \propto \exp(x^{\top} \gamma_{\pi}^{a})$ with some policy weights $\{\gamma_{\pi}^{a}\}_{a \in \mathcal{A}}$. We consider the neural network softmax policies with a hidden layer of 32 neurons and ReLU activation.

In our implementation, the learning parameters are set to be the same for both λ -RSL and CAIPWL. The number of data splits is taken to be K=2. We use the Random Forest regressor from the scikit-learn Python library to estimate π_0 and $\{\mu_a\}_{a\in\mathcal{A}}$. For the policy gradient step, we implement λ -RSL by maximizing the objective in equation 4 using RMSProp with a learning rate of 0.01. For CAIPWL, we similarly use RMSProp to maximize its objective equation 6. Since the objective equation 4 and equation 6 are non-convex in the policy weights, following Dudík et al. (2011); Kallus et al. (2022), every policy update is repeated 10 times with perturbed starting weights and the best weights based on the chosen policy learning objective. The policy convergence criteria is whenever the difference between the previous and the updated policy value to be less then 1e-6.

Performance Metrics We compare the performance of the learnt policy $\hat{\pi}$ by λ -RSL and the benchmark CAIPWL with the following two metrics: (i) empirical CVaR of CAPE (empirical policy CVaR); and (ii) empirical APE, on the testing dataset. The two metrics are defined formally as

$$\widetilde{\mathrm{CVaR}}_{\alpha}(\mu_{\hat{\pi}}(X)) := \hat{\mathbb{E}}_{\mathcal{D}_{\mathrm{test}}} \big[\mu_{\hat{\pi}}(X) \mid \mu_{\hat{\pi}}(X) \leq \hat{F}_{\mu_{\hat{\pi}}(X)}^{-1}(\alpha) \big], \quad \hat{\mathbb{E}}[Y(\hat{\pi}(X))] := \hat{\mathbb{E}}_{\mathcal{D}_{\mathrm{test}}}[Y(\hat{\pi}(X))].$$

Here we use \hat{F}_Z to denote the empirical CDF of a random variable Z. For every experiment environment, we test weighting parameters $\lambda \in \{0, 0.2, 0.5, 0.7\}$ and CAIPWL. Note that when

Table 1: $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}}(X))$ under α -level 0.01, 0.05 and 0.1, over 50 seeds. We denote $\hat{\pi}_{\lambda}$ as the policy learnt by λ -RSL with different λ 's. The "Increase" column shows the percentage increase of $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}_{0,0}}(X))$ compared to the benchmark $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}_{\text{CAIPWL}}}(X))$, when n=20,000.

α	λ	n =5,000	n = 10,000	n = 15,000	n = 20,000	Increase
0.01	0.0 0.5 CAIPWL	-7.155e-2±1e-2 -7.227e-2±1e-2 -7.278e-2±1e-2	-3.942e-2±8e-3 -3.948e-2±8e-3 -4.012e-2±8e-3	-2.731e-2±6e-3 -2.755e-2±7e-3 -2.914e-2±6e-3	-2.209e-2±7e-3 -2.250e-2±7e-3 -2.444e-2±7e-3	~10%
0.05	0.0 0.5 CAIPWL	8.10e-3±7e-3 7.88e-3±7e-3 7.85e-3±7e-3	3.128e-2±5e-3 3.022e-2±5e-3 2.998e-2±5e-3	4.012e-2±4e-3 3.944e-2±4e-3 3.913e-2±4e-3	4.378e-2±4e-3 4.302e-2±4e-3 4.182e-2±4e-3	~5%
0.1	0.0 0.5 CAIPWL	5.553e-2±5e-3 5.528e-2±5e-3 5.515e-2±6e-3	7.345e-2±4e-3 7.273e-2±4e-3 7.241e-2±4e-3	8.102e-2±3e-3 8.018e-2±3e-3 8.001e-2±3e-3	8.370e-2±2e-3 8.312e-2±3e-3 8.211e-2±3e-3	~2%

Table 2: $\tilde{\mathbb{E}}[Y(\hat{\pi}(X))]$ under α -level 0.1, 0.05 and 0.01, over 50 seeds. We denote $\hat{\pi}_{\lambda}$ as the policy learnt by λ -RSL with different λ 's. The "Decrease" column shows the percentage decrease of $\tilde{\mathbb{E}}[Y(\hat{\pi}_{0.0}(X))]$ compared to the benchmark $\tilde{\mathbb{E}}[Y(\hat{\pi}_{CAIPWL}(X))]$, when n=20,000.

4	36
4	37
4	38
4	39
4	40

α	$ \lambda $	n = 5,000	n = 10,000	n = 15,000	n = 20,000	Decrease
0.01	0.0 0.5	3.9492e-1±1e-3 3.9510e-1±1e-3	3.9903e-1±9e-4 3.9898e-1±9e-4	4.0062e-1±7e-4 4.0039e-1±7e-4	4.0145e-1±7e-4 4.0149e-1±8e-4	~0.05%
0.05	0.0 0.5	3.9502e-1±1e-3 3.9508e-1±1e-3	3.9889e-1±1e-3 3.9894e-1±9e-4	4.0058e-1±7e-4 4.0039e-1±7e-4	4.0141e-1±7e-4 4.0144e-1±7e-4	~0.06%
0.1	0.0 0.5	3.9511e-1±1e-3 3.9520e-1±1e-3	3.9884e-1±1e-3 3.9896e-1±9e-4	4.0067e-1±8e-4 4.0052e-1±7e-4	4.0142e-1±7e-4 4.0143e-1±8e-4	~0.06%
	CAIPWL	3.9554e-1±1e-3	3.9923e-1±1e-3	4.0067e-1±7e-4	4.0166e-1±7e-4	

 $\lambda=0$, the training objective equation 4 reduces to policy CVaR maximization objective equation 2; when $\lambda=1, \lambda$ -RSL reduced to the benchmark CAIPWL.

Results and Discussion Table 1 and Table 2 reports the empirical policy CVaR and APE of the learnt policies on the simulated dataset, respectively. Figure 5 shows the empirical policy CVaR of the learnt policies on the real-world dataset. Appendix D provides detailed results of the algorithm performance on the real-world dataset in Table 4 and Table 5.

In both the simulated and real-world settings, our proposed λ -RSL outperforms the benchmark CAIPWL in terms of empirical policy CVaRs; on the other hand, CAIPWL receives higher empirical APE across all trials. As α increases, the advantage of applying λ -RSL to improve policy CVaR gradually diminishes. Theoretically, in the extreme case of $\alpha=1$, λ -RSL reduces to CAIPWL.

This reflects that the optimal policy that maximizes the overall social welfare would overlook the negative impact on the worst-affected population. In the case of $\alpha=0.01$ and given large sample size ($\sim\!20,\!000$), $\lambda\text{-RSL}$ (setting $\lambda=0$) shows a $\sim10\%$ and $\sim16\%$ increase in the policy CVaR compared to CAIPWL, on the simulated and real-world dataset respectively. This increase only costs a corresponding $\sim0.05\%$ and $\sim1.2\%$ decrease in the empirical APE. This shows that $\lambda\text{-RSL}$ produces a risk sensitive policy which improves the outcome of the worst-affected population, with little reduction in the social welfare.

The trade-off between risk and social welfare is controlled by the weighting parameter λ . As we see in Figure 5, larger λ results in smaller improvements in policy CVaR, however it would achieve better APE (especially with large sample size). We also would like to note that even when λ is set to be 0, which means λ -RSL is only maximizing policy CVaR, Table 2 shows that its loss in APE is relatively minor, compared to the improvements it gains in policy CVaR.

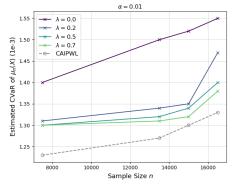


Figure 1: $\text{CVaR}_{\alpha}(\mu_{\hat{\pi}}(X))$ under α -level 0.01, on the real-world dataset, over 50 seeds. Confidence intervals are given in Table 4, Appendix D.

In conclusion, the empirics show that λ -RSL improves the outcome of the worst-affected population by sacrificing little social welfare.

REFERENCES

- Fredrik Andersson, Helmut Mausser, Dan Rosen, and Stanislav Uryasev. Credit risk optimization with conditional value-at-risk criterion. *Mathematical programming*, 89:273–291, 2001.
 - Philippe Artzner. Thinking coherently. *Risk*, 10:68–71, 1997.
- Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
 Mathematical finance, 9(3):203–228, 1999.
- Susan Athey. Beyond prediction: Using big data for policy problems. *Science*, 355(6324):483–485, 2017.
 - Susan Athey and Stefan Wager. Policy learning with observational data. *Econometrica*, 89(1): 133–161, 2021.
 - Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional covariates. *Operations Research*, 68(1):276–294, 2020.
 - Dorian Baudry, Romain Gautron, Emilie Kaufmann, and Odalric Maillard. Optimal thompson sampling strategies for support-aware evar bandits. In *International Conference on Machine Learning*, pp. 716–726. PMLR, 2021.
 - Tanya Styblo Beder. Var: Seductive but dangerous. Financial Analysts Journal, 51(5):12-24, 1995.
 - Luc Behaghel, Bruno Crépon, and Marc Gurgand. Private and public provision of counseling to job seekers: Evidence from a large controlled experiment. *American economic journal: applied economics*, 6(4):142–174, 2014.
 - Armin Behnamnia, Gholamali Aminian, Alireza Aghaei, Chengchun Shi, Vincent YF Tan, and Hamid R Rabiee. Batch learning via log-sum-exponential estimator from logged bandit feedback. In *ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and Theorists*.
 - Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. *Management Science*, 66(3):1025–1044, 2020.
 - Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
 - Nisso Bucay and Dan Rosen. Credit risk of an international bond portfolio: A case study. *ALGO Research Quarterly*, 2(1):9–29, 1999.
 - Asaf Cassel, Shie Mannor, and Assaf Zeevi. A general approach to multi-armed bandits under risk criteria. In *Conference on learning theory*, pp. 1295–1306. PMLR, 2018.
 - Carri W Chan, Vivek F Farias, Nicholas Bambos, and Gabriel J Escobar. Optimizing intensive care unit discharge decisions with patient readmissions. *Operations research*, 60(6):1323–1341, 2012.
 - Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters, 2018.
 - Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-making: a cvar optimization approach. *Advances in neural information processing systems*, 28, 2015.
 - William S Cleveland. Robust locally weighted regression and smoothing scatterplots. *Journal of the American statistical association*, 74(368):829–836, 1979.
 - William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression analysis by local fitting. *Journal of the American statistical association*, 83(403):596–610, 1988.
 - Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Nonparametric tests for treatment effect heterogeneity. *The Review of Economics and Statistics*, 90(3):389–405, 2008.
 - John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

- Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. *arXiv* preprint arXiv:1103.4601, 2011.
- Darrell Duffie and Jun Pan. An overview of value at risk. *Journal of derivatives*, 4(3):7–49, 1997.
- Paul Embrechts, S Kluppelberg, and Thomas Mikosch. Extremal events in finance and insurance.

 Berling: Springer Verlag, 1997.
 - Paul Embrechts, Sidney I Resnick, and Gennady Samorodnitsky. Extreme value theory as a risk management tool. *North American Actuarial Journal*, 3(2):30–41, 1999.
 - Vivek F Farias and Andrew A Li. Learning preferences with side information. *Management Science*, 65(7):3131–3149, 2019.
 - Max H Farrell. Robust inference on average treatment effects with possibly more covariates than observations. *Journal of Econometrics*, 189(1):1–23, 2015.
 - Nicolas Galichet. Contributions to multi-armed bandits: Risk-awareness and sub-sampling for linear contextual bandits. PhD thesis, Université Paris Sud-Paris XI, 2015.
 - Nicolas Galichet, Michele Sebag, and Olivier Teytaud. Exploration vs exploitation vs safety: Riskaware multi-armed bandits. In *Asian conference on machine learning*, pp. 245–260. PMLR, 2013.
 - Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM journal on optimization*, 23(4):2341–2368, 2013.
 - Alex Graves. Generating sequences with recurrent neural networks. *arXiv preprint arXiv:1308.0850*, 2013.
 - Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction, 2017.
 - James J Heckman, Jeffrey Smith, and Nancy Clements. Making the most out of programme evaluations and social experiments: Accounting for heterogeneity in programme impacts. *The Review of Economic Studies*, 64(4):487–535, 1997.
 - Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Overview of mini-batch gradient descent. *Neural Networks for Machine Learning*, 575(8), 2012.
 - Tin Kam Ho et al. Proceedings of 3rd international conference on document analysis and recognition. In *Proceedings of 3rd international conference on document analysis and recognition*, 1995.
 - Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In *International Conference on Machine Learning*, pp. 5084–5096. PMLR, 2021.
 - Ying Jin, Zhimei Ren, Zhuoran Yang, and Zhaoran Wang. Policy learning" without "overlap: Pessimism and generalized empirical bernstein's inequality. *arXiv preprint arXiv:2212.09900*, 2022.
 - Philippe Jorion. Value at risk: a new benchmark for measuring derivatives risk. *Irwin Professional Pub*, 1996.
 - Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. *Journal of artificial intelligence research*, 4:237–285, 1996.
 - Nathan Kallus. What's the harm? sharp bounds on the fraction negatively affected by treatment. *Advances in Neural Information Processing Systems*, 35:15996–16009, 2022.
 - Nathan Kallus. Treatment effect risk: Bounds and inference. *Management Science*, 69(8):4579–4590, 2023.
 - Nathan Kallus, Xiaojie Mao, Kaiwen Wang, and Zhengyuan Zhou. Doubly robust distributionally robust off-policy evaluation and learning. In *International Conference on Machine Learning*, pp. 10598–10632. PMLR, 2022.

- Edward S Kim, Roy S Herbst, Ignacio I Wistuba, J Jack Lee, George R Blumenschein Jr, Anne Tsao, David J Stewart, Marshall E Hicks, Jeremy Erasmus Jr, Sanjay Gupta, et al. The battle trial: personalizing therapy for lung cancer. *Cancer discovery*, 1(1):44–53, 2011.
 - Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization methods for treatment choice. *Econometrica*, 86(2):591–616, 2018.
 - Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the national academy of sciences*, 116(10):4156–4165, 2019.
 - Lihua Lei, Roshni Sahoo, and Stefan Wager. Policy learning under biased sample selection. *arXiv* preprint arXiv:2304.11735, 2023.
 - Helmut Mausser. Beyond var: From measuring risk to managing risk. *ALGO research quarterly*, 1 (2):5–20, 1998.
 - Alberto Maria Metelli, Alessio Russo, and Marcello Restelli. Subgaussian and differentiable importance sampling for off-policy evaluation and learning. *Advances in neural information processing systems*, 34:8119–8132, 2021.
 - JP Morgan. Riskmetrics technical manual. New York: JP Morgan, 1995.
 - Elizbar A Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1): 141–142, 1964.
 - Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*, 108(2):299–319, 2021.
 - Elissa M Ozanne, Rebecca Howe, Zehra Omer, and Laura J Esserman. Development of a personalized decision aid for breast cancer risk reduction and management. *BMC medical informatics and decision making*, 14:1–8, 2014.
 - Georg Ch Pflug. Some remarks on the value-at-risk and the conditional value-at-risk. *Probabilistic constrained optimization: Methodology and applications*, pp. 272–281, 2000.
 - Matthew Pritsker. Evaluating value at risk methodologies: accuracy versus computational time. *Journal of Financial Services Research*, 12(2):201–242, 1997.
 - R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. *Journal of risk*, 2:21–42, 2000.
 - Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology*, 66(5):688, 1974.
 - Roshni Sahoo, Lihua Lei, and Stefan Wager. Learning from a biased sample. arXiv preprint arXiv:2209.01754, 2022.
 - Otmane Sakhi, Imad Aouali, Pierre Alquier, and Nicolas Chopin. Logarithmic smoothing for pessimistic off-policy evaluation, selection and learning. *arXiv preprint arXiv:2405.14335*, 2024.
 - Anton Schick. On asymptotically efficient estimation in semiparametric models. *The Annals of Statistics*, pp. 1139–1151, 1986.
 - Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust batch contextual bandits. *Management Science*, 2023.
- Katerina Simons. Value at risk-new approaches to risk management. *New England Economic Review*, pp. 3–14, 1996.
 - Fred Stambaugh. Risk and value at risk. European Management Journal, 14(6):612–621, 1996.
 - Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In *International conference on machine learning*, pp. 1139–1147. PMLR, 2013.

- Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through counterfactual risk minimization. *The Journal of Machine Learning Research*, 16(1):1731–1755, 2015a.
 - Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged bandit feedback. In *International Conference on Machine Learning*, pp. 814–823. PMLR, 2015b.
 - Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learning. *advances in neural information processing systems*, 28, 2015c.
 - Alex Tamkin, Ramtin Keramati, Christoph Dann, and Emma Brunskill. Distributionally-aware exploration for cvar bandits. In *NeurIPS 2019 Workshop on Safety and Robustness on Decision Making*, 2019.
 - Chenmien Tan and Paul Weng. Cvar-regret bounds for multi-armed bandits. In *Asian Conference on Machine Learning*, pp. 974–989. PMLR, 2023.
 - Leonard Tetzlaff, Florian Schmiedek, and Garvin Brod. Developing personalized education: A dynamic framework. *Educational Psychology Review*, 33:863–882, 2021.
 - Kai Tu, Zhi Chen, and Man-Chung Yue. A max-min-max algorithm for large-scale robust optimization. arXiv preprint arXiv:2404.05377, 2024.
 - Stanislav Uryasev. Conditional value-at-risk: Optimization algorithms and applications. In *proceedings of the IEEE/IAFE/INFORMS 2000 conference on computational intelligence for financial engineering (CIFEr)(Cat. No. 00TH8520)*, pp. 49–57. IEEE, 2000.
 - Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge university press, 2019.
- Geoffrey S Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A*, pp. 359–372, 1964.
- Ruohan Zhan, Zhimei Ren, Susan Athey, and Zhengyuan Zhou. Policy learning with adaptively collected data. *Management Science*, 2023.
- Ruohan Zhan, Zhimei Ren, Susan Athey, and Zhengyuan Zhou. Policy learning with adaptively collected data. *Management Science*, 70(8):5270–5297, 2024.
- Baqun Zhang, Anastasios A Tsiatis, Marie Davidian, Min Zhang, and Eric Laber. Estimating optimal treatment regimes from a classification perspective. *Stat*, 1(1):103–114, 2012.
- Wenjing Zheng and Mark J van der Laan. Cross-validated targeted minimum-loss-based estimation. In *Targeted learning: causal inference for observational and experimental data*, pp. 459–474. Springer, 2011.
- Zhengyuan Zhou, Susan Athey, and Stefan Wager. Offline multi-action policy learning: Generalization and optimization. *Operations Research*, 71(1):148–183, 2023.
- Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: Separating momentum and adaptivity in adam. *arXiv preprint arXiv:2002.04839*, 2020.

A NOTATION

We use [n] to denote the discrete set $\{1,2,\cdots,n\}$ for any $n\in\mathbb{Z}$. We use argmin and argmax to denote the minimizers and maximizers; if the minimizer or the maximizer cannot be attained, we project it back to the feasible set. We denote $u^-:=u\wedge 0=\min\{u,0\}$ for $u\in\mathbb{R}$. We denote the usual p-norm as $\|\cdot\|_p$. For simplicity, we let $\|\cdot\|$ denote the 2-norm $\|\cdot\|_2$. Denote P to be any probability measure defined on the probability space $(\Omega,\sigma(\Omega),P)$. For any function f, we denote the $L_r(P)$ -norm of f conventionally as $\|f\|_{L_p(P)}=(\int |f(x)|^p\,dP(x))^{1/p}$ and $\|f\|_{L_\infty}=\sup_{x\in\mathcal{X}}|f(x)|$. We

also denote $x^- := x \wedge 0 = \min\{x,0\}$ for $x \in \mathbb{R}$. For any random variables X,Y, we use $X \perp\!\!\!\perp Y$ to denote that X is independent of Y. For a random variable/vector X, we use $\mathbb{E}_X[\cdot]$ to indicate the expectation taken over the distribution of X.

B WEIGHTING PARAMETER AND CONSTRAINED POLICY LEARNING

As discussed in Section 5, empirically, the weighting parameter λ controls how much Algorithm 2 would like to hedge against the policy CVaR. Higher λ results in a lower CVaR of CAPE and higher APE.

Theoretically, we can interpret λ as an Lagrangian variable of a risk-constrained policy learning problem. The maximization of the policy learning objective in equation 4 is equivalent to

$$\max_{\pi \in \Pi} \mathcal{Q}(\pi) + \frac{1 - \lambda}{\lambda} \mathcal{V}_{\alpha}(\pi) =: \max_{\pi \in \Pi} \mathcal{Q}(\pi) + \eta \mathcal{V}_{\alpha}(\pi), \tag{9}$$

where we set $\eta := \frac{1-\lambda}{\lambda}$. The above is equivalent to the Lagrangian form of the CVaR constrained policy learning problem:

$$\max_{\pi \in \Pi} \quad \mathbb{E}[Y(\pi(X))]$$
 s.t.
$$\operatorname{CVaR}(\mu_{\pi}(X)) \geq c,$$
 (10)

where c is some risk tolerance threshold determined by the decision maker, that satisfies the following assumption.

Assumption B.1. The feasible set $S_c = \{ \pi \in \Pi : CVaR_{\alpha}(\pi(X)) \geq c \}$ is not empty.

Let $\mu_a(x) = \mathbb{E}[Y(a) \mid X = x]$. Then, by the definition of π , we can write

$$\mathbb{E}[Y(\pi(X))] = \int_{x} \sum_{a \in \mathcal{A}} \pi(a \mid x) \mu_{a}(x) d\mathbb{P}_{X}.$$

Therefore, for any $\pi_1, \pi_2 \in \Pi$ and $t \in (0, 1)$,

$$\mathbb{E}[Y((t\pi_{1} + (1-t)\pi_{2})(X))]$$

$$= \int_{x} \sum_{a \in \mathcal{A}} (t\pi_{1}(a \mid x) + (1-t)\pi_{2}(a \mid x))\mu_{a}(x) d\mathbb{P}_{X}$$

$$= \int_{x} \sum_{a \in \mathcal{A}} t\pi_{1}(a \mid x)\mu_{a}(x) d\mathbb{P}_{X} + \int_{x} \sum_{a \in \mathcal{A}} (1-t)\pi_{2}(a \mid x)\mu_{a}(x) d\mathbb{P}_{X}$$

$$= t\mathbb{E}[Y(\pi_{1}(X))] + (1-t)\mathbb{E}[Y(\pi_{2}(X))].$$

Combining the above with Assumption B.1 and the concavity of $\text{CVaR}_{\alpha}(\pi(X))$ shown in Rockafellar et al. (2000), we conclude that the Slater's condition holds and strong duality holds for the below dual of Problem equation 10:

$$\min_{\eta>0} \max_{\pi\in\Pi} \mathbb{E}[Y(\pi(X))] + \eta \big(\mathrm{CVaR}_{\alpha}(\pi(X)) - c \big).$$

To solve the risk constrained policy learning problem equation 10 using the training dataset \mathcal{D} , solve

$$\min_{\eta \geq 0} \max_{\pi \in \Pi} \frac{1}{K} \sum_{k=1}^{K} \hat{\mathcal{Q}}^{(k)}(\pi) + \frac{\eta}{K} \sum_{k=1}^{K} \hat{\mathcal{V}}_{\alpha}^{(k)}(\pi)
\text{s.t.} \quad \hat{\beta}_{\pi}^{(k)} = \inf \left\{ \beta : \sum_{i \in \mathcal{D}^{(k)}} (\mathbb{1}\{\hat{\mu}_{\pi}^{(k)}(X_i) \leq \beta\} - \alpha) \geq 0 \right\}, \quad \forall k \in [K], \pi \in \Pi,$$

where $\{\hat{\mathcal{Q}}^{(k)}(\pi), \hat{\mathcal{V}}_{\alpha}^{(k)}(\pi)\}_{k \in [K], \pi \in \Pi}$ are as defined before. Recent literature has provided efficient algorithms to find min-max-min problems as the above. One could apply a first-order method ProM3 in Tu et al. (2024) to solve the risk constrained policy learning problem.

C Convergence of λ -RSL

Recall that the policy learning task requires us to maximize the following deterministic objective

$$\hat{\mathcal{U}}_{\lambda,\alpha}(\pi) = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\lambda \cdot \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}) + (1 - \lambda) \cdot \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_{\pi}^{(k)}\}_{k \in [K]})) \right),$$

$$=: f(\pi, \{\hat{\beta}_{\pi}^{(k)}\})$$

with a bilevel structure

$$\begin{aligned} & \max_{\pi \in \Pi} \quad f(\pi, \{\hat{\beta}_{\pi}^{(k)}\}) \\ & \text{s.t.} \quad \hat{\beta}_{\pi}^{(k)} = \inf\bigg\{\beta: \sum_{i \in \mathcal{D}^{(k)}} (\mathbbm{1}\{\hat{\mu}_{\pi}^{(k)}(X_i) \leq \beta\} - \alpha) \geq 0\bigg\}, \quad \forall k \in [K]. \end{aligned}$$

The inner-level optimization problem has a closed form solution $\{\hat{\beta}_{\pi}^{(k)}\}$, which is the empirical $\mathrm{VaR}_{\alpha}(\hat{\mu}_{\pi}^{(k)}(X_i))$, i.e., the $\alpha|\mathcal{D}^{(k)}|$ -th ordered statistics of $\{\mu_{\pi}^{(k)}(X_i)\}_{i\in\mathcal{D}^{(k)}}$.

On the other hand, the upper-level objective function f is neither smooth nor convex, which poses particular computational challenges. To overcome this issue, consider the smoothed version \tilde{f} for f, which adopts the sigmoid approximation for the indicator function in ϕ :

$$\tilde{f}(\pi, \{\hat{\beta}^{(k)}\}) := \frac{1}{K} \sum_{k=1}^{K} \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\lambda \cdot \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}) + (1 - \lambda) \cdot \tilde{\phi}(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_{\pi}^{(k)}\}_{k \in [K]}) \right),$$

with $\sigma(x) = \frac{1}{1 + e^{-x}}$, $\tau > 0$ a small constant, and

$$\begin{split} &\tilde{\phi}(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_\pi^{(k)}\}_{k \in [K]}) \\ = &\hat{\beta}_\pi^{(k)} + \frac{1}{\alpha} \cdot \sigma \left(\frac{\hat{\beta}_\pi^{(k)} - \hat{\mu}_\pi^{(k)}(X_i)}{\tau} \right) \cdot \left(\hat{\mu}_\pi^{(k)}(X_i) + \frac{\pi(A_i \mid X_i)}{\hat{\pi}_0^{(k)}(A_i \mid X_i)} \left(Y_i - \hat{\mu}_\pi^{(k)}(X_i) \right) - \hat{\beta}_\pi^{(k)} \right). \end{split}$$

In this way, we can apply gradient ascent method under the smooth objective \tilde{f} . At each time t, we take $\pi_{t+1} = \pi_t + \eta \nabla_{\pi} \tilde{f}(\pi_t, \{\hat{\beta}_t^{(k)}\})$, where η is the step size and we denote $\{\hat{\beta}_t^{(k)}\} = \{\hat{\beta}_{\pi_t}^{(k)}\}$. We then update the correct $\{\hat{\beta}_{t+1}^{(k)}\}$.

It can be shown that under the assumptions on the outcome distribution and the propensity scores, the gradient $\nabla_{\pi}\tilde{f}$ is upper bounded, and thus \tilde{f} is Lipchitz continuous. Subsequently, our policy learning task reduces to a gradient ascent scheme for a Lipchitz continuous but nonconvex objective function. Following the optimization literature (Ghadimi & Lan, 2013), the solution π_T converges to a stationary point with a rate of $O(1/\sqrt{T})$, where T is the iteration number.

One limitation is that due to the weak concavity structure of the objective function, we cannot guarantee convergence to the global maximum. We can further improve this result by applying a convex upper bound of f, then following convex optimization literature (Boyd & Vandenberghe, 2004), we can guarantee convergence to the global maximum with a faster convergence rate.

In Table 3, we report the result of λ -RSL solving the smoothed objective \tilde{f} under different choices of τ 's. Juxtaposing Table 3 with Tables 4 and 5, we observe that λ -RSL performs comparably under both the nonsmooth objective $\hat{\mathcal{U}}_{\lambda,\alpha}$ and its smoothed counterpart \tilde{f} , with smaller values of τ yielding better performance. This outcome is expected, since as τ decreases, the sigmoid approximation function σ approaches the indicator function in $\hat{\mathcal{U}}_{\lambda,\alpha}$.

810 811 812

Table 3: Results of λ -RSL using the smoothed objective \tilde{f} in the real-world dataset with $\lambda = 0$ and α -level 0.01 over 50 seeds. Here we denote the policy learnt as $\hat{\pi}_{\tau}$.

n = 15,000

1.45e-3+5e-4

 $1.48e-3\pm 5e-4$

2.29e-1±7e-3

 $2.29e-1\pm7e-3$

n = 16,500

1.53e-4±5e-4

1.53e-4±5e-4

2.29e-1±7e-3

 $2.30e-1\pm7e-3$

81	3
81	4
81	5
01	c

Metric	au	n = 7,500	n = 13,500
$\widetilde{\mathrm{CVaR}}_{\alpha}(\mu_{\hat{\pi}_{\tau}}(X))$	0.001	1.36e-3±5e-4	1.44e-3±5e-4
	0.0001	1.37e-3±5e-4	1.45e-3±5e-4
$\tilde{\mathbb{E}}[Y(\hat{\pi}_{\tau}(X))]$	0.001	2.28e-1±7e-3	2.28e-1±7e-3
	0.0001	2.28e-1±7e-3	2.29e-1±7e-3

818 819 820

821 822

823

824

825

826 827

828 829 830

831 832

833

834

835

836 837 838

839 840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860 861

862

863

817

EXPERIMENT DETAILS AND MORE RESULTS

Simulated Dataset Generation Details We choose the action set A = [3]. Let $\sigma = {\sigma_a, a \in A} = {\sigma_b, a \in A}$ $\{0.2, 0.5, 0.8\}$ and let $\{\beta_a, a \in A\}$ to be

$$\{\beta_1 = (1,0,0,0,0), \beta_2 = (-1/2,\sqrt{3}/2,0,0,0), \beta_3 = (-1/2,-\sqrt{3}/2,0,0,0)\}.$$

The underlying policy π_0 chooses actions with covariate x according to the following rules:

$$(\pi_0(1\,|\,x),\pi_0(2\,|\,x),\pi_0(3\,|\,x)) = \begin{cases} (0.5,0.25,0.25), & \text{if } \arg\max_{i=1,2,3}\{\beta_i^\top x\} = 1, \\ (0.25,0.5,0.25), & \text{if } \arg\max_{i=1,2,3}\{\beta_i^\top x\} = 2, \\ (0.25,0.25,0.5), & \text{if } \arg\max_{i=1,2,3}\{\beta_i^\top x\} = 3. \end{cases}$$

We generate 50 training datasets of

$$\mathcal{D}_{\text{train}} = \left\{ (X_i, A_i = \pi_0(X_i), Y_i(\pi_0(X_i))) \right\}_{i=1}^n,$$

where X_i 's are sampled i.i.d. uniformly from the closed unit ball of \mathbb{R}^5 , $A_i \sim \pi_0(X_i)$, and $Y_i(A_i) \sim \mathcal{N}(\beta_{A_i}^{\top} X_i, \sigma_{A_i}^2)$. Similarly, we sample 50 testing datasets

$$\mathcal{D}_{\text{test}} = \left\{ \left(X_i, (Y_i(1), Y_i(2), Y_i(3)), (\mu_1(X_i), \mu_2(X_i), \mu_3(X_i)) \right) \right\}_{i=1}^{10,000},$$

where $\mu_a(X_i) = \beta_a^\top X_i$.

Implementation Details In our implementation, the learning parameters are set to be the same for both λ -RSL and CAIPWL. The number of data splits is taken to be K=2. We use the Random Forest regressor from the scikit-learn Python library to estimate π_0 and $\{\mu_a\}_{a\in\mathcal{A}}$. For the policy gradient step, we implement λ -RSL by maximizing the objective in equation 4 using RMSProp with a learning rate of 0.01. For the benchmark, we similarly use RMSProp to maximize the CAIPWL objective equation 6. Since the objective equation 4 and equation 6 are non-convex in the policy weights, following Dudík et al. (2011); Kallus et al. (2022), every policy update is repeated 10 times with perturbed starting weights and the best weights based on the chosen policy learning objective. The policy convergence criteria is whenever the difference between the previous and the updated policy value to be less then 1e-6.

Computation Details The experiments were run on the following cloud servers: (i) an Intel Xeon Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum 8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59 GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4 @ 2.59 GHz with 384GB RAM and 64 CPU x 2.59 GHz.

The following Figure 3 shows the MSE of the estimated policy CVaR by Algorithm 1, with α -level $\{0.1, 0.05, 0.01\}$. A variant of Algorithm 1 with known propensity score is also tested. As the sample size increases, the estimation becomes more accurate and stable.

More Results We now provide detailed algorithm performances on the real-world dataset. Table 4 shows detailed values of learnt policies' CVaR of CAPE as well as confidence intervals. Table 5 shows the APE of the learnt policies.

On the simulated dataset, we also compare the performance of the learnt policy $\hat{\pi}$ by λ -RSL and the benchmark CAIPWL with the empirical CVaR of IPE:

$$\widetilde{\mathrm{CVaR}}_{\alpha}(Y(\hat{\pi}(X)) := \hat{\mathbb{E}}_{\mathcal{D}_{\mathrm{test}}}\big[Y(\hat{\pi}(X)) \mid Y(\hat{\pi}(X)) \leq \hat{F}_{Y(\hat{\pi}(X))}^{-1}(\alpha)\big].$$

Table 4: $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}}(X))$ under α -level 0.01, on the real-world dataset, over 50 seeds. We denote $\hat{\pi}_{\lambda}$ as the policy learnt by λ -RSL with different λ 's. The "Increase" column shows the percentage increase of $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}_{\lambda}}(X))$ compared to the benchmark $\widetilde{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}_{\text{CAIPWL}}}(X))$, when n=20,000.

λ	n =7,500	n = 13,500	n = 15,000	n = 16,500	Increase
0.0	1.40e-3±5e-4	1.50e-3±5e-4	$1.52e-3\pm 5e-4$	$1.55e-3\pm 5e-4$	$\sim 16\%$
0.2	$1.31e-3\pm 5e-4$	$1.34e-3\pm 5e-4$	$1.35e-3\pm 5e-4$	$1.47e-3\pm 5e-4$	$\sim 10\%$
0.5	1.30e-3±5e-4	$1.32e-3\pm 5e-4$	$1.34e-3\pm 5e-4$	$1.40e-3\pm 5e-4$	$\sim 5\%$
0.7	1.30e-3±5e-4	$1.31e-3\pm 5e-4$	$1.32e-3\pm 5e-4$	$1.38e-3\pm 5e-4$	$\sim 4\%$
CAIPWL	1.23e-3±5e-4	$1.27e-3\pm 5e-4$	$1.30e-3\pm 5e-4$	$1.33e-3\pm 5e-4$	

Table 5: $\tilde{\mathbb{E}}[Y(\hat{\pi}(X)]]$ under α -level 0.01, on the real-world dataset, over 50 seeds. We denote $\hat{\pi}_{\lambda}$ as the policy learnt by λ -RSL with different λ 's. The "Decrease" column shows the percentage increase of $\tilde{\mathbb{E}}[Y(\hat{\pi}_{\lambda}(X)]]$ compared to the benchmark $\tilde{\mathbb{E}}[Y(\hat{\pi}_{\text{CAIPWL}}(X)]]$, when n=20,000.

λ	n = 7,500	n = 13,500	n = 15,000	n = 16,500	Decrease
0.0	2.27e-1±7e-3	2.28e-1±7e-3	2.29e-1±7e-3	2.29e-1±7e-3	$\sim 1.2\%$
0.2	2.28e-1±7e-3	$2.28e-1\pm7e-4$	$2.29e-1\pm7e-3$	$2.29e-1\pm7e-3$	$\sim 1.2\%$
0.5	2.28e-1±57-3	$2.28e-1\pm7e-3$	$2.29e-1\pm 6e-3$	$2.29e-1\pm 6e-3$	$\sim 1.2\%$
0.7	2.28e-1±7e-3	$2.29e-1\pm7e-3$	$2.29e-1\pm7e-3$	$2.30e-1\pm7e-3$	$\sim 0.9\%$
CAIPWL	1.29e-1±7e-3	$2.30e-1\pm7e-3$	$2.30e-1\pm7e-3$	$2.32e-1\pm7e-3$	

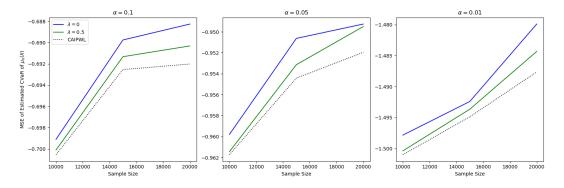


Figure 2: $\text{CVaR}_{\alpha}(Y(\hat{\pi}(X)))$ under α -level 0.1, 0.05 and 0.01, over 50 seeds.

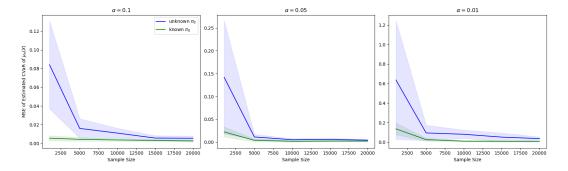


Figure 3: Average MSE of estimated policy CVaR by Algorithm 1 with unknown and known propensity score, over 25 seeds. α -level is chosen to be 0.1, 0.05 and 0.01.

Table 1 in Section 5 and Figure 2 report $\widehat{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}}(X))$ and $\widehat{\text{CVaR}}_{\alpha}(Y(\hat{\pi}(X)))$ of the tested algorithms. We observe that $\widehat{\text{CVaR}}_{\alpha}(\mu_{\hat{\pi}}(X)) > \widehat{\text{CVaR}}_{\alpha}(Y(\hat{\pi}(X)))$ in all settings for any learnt policy $\hat{\pi}$, which agrees with Corollary 2.4.

We also test the policy CVaR inference task. We implement Algorithm 1 on the simulated dataset and estimate the policy CVaR of a fixed policy π , which is different from the behavior policy π_0 . The performance of Algorithm 1 is evaluated by the mean squared error (MSE) of the estimated policy CVaR. Figure 3 shows the MSE of the estimated policy CVaR by Algorithm 1, with α -level $\{0.1, 0.05, 0.01\}$. A variant of Algorithm 1 with known propensity score is also tested. As the sample size increases, the estimation becomes more accurate and stable. With large sample size, the estimation with unknown propensity score is comparable to the one with known propensity score, which highlights the double-robustness of our estimator. We also observe that with larger α , Algorithm 1 needs more samples to achieve small MSE.

E DEFERRED PROOFS OF THE MAIN RESULTS

E.1 Proof of Corollary 2.4

 Proof. We follow Theorem 3.1 in Kallus (2023). By Jensen' inequality,

$$\begin{split} \operatorname{CVaR}_{\alpha}(Y(\pi(X))) &= \sup_{\beta} \left(\beta + \frac{1}{\alpha} \mathbb{E} \big[\mathbb{E}[(Y(\pi(X)) - \beta)^{-} \mid X] \big] \right) \\ &\leq \sup_{\beta} \left(\beta + \frac{1}{\alpha} \mathbb{E}(\mu_{\pi}(X) - \beta)^{-} \right) = \operatorname{CVaR}_{\alpha}(\mu_{\pi}(X)). \end{split}$$

E.2 PROOF OF LEMMA 3.4

Proof. Denote the quantile $Q_{\alpha}(f)$ of any function f(x) as $Q_{\alpha}(f) = \inf\{\beta : \mathbb{E}[\mathbb{1}\{f(X) \leq \beta\} - \alpha] \geq 0\}$. We also denote the empirical quantile using the kth off fold data as

$$\hat{Q}_{\alpha}^{(k)}(f) = \inf \left\{ \beta : \sum_{i \in \mathcal{D}^{(k)}} (\mathbb{1}\{f(X_i) \le \beta\} - \alpha) \ge 0 \right\}.$$

As in Algorithm 1, we have $\hat{\beta}_{\pi}^{(k)} = \hat{Q}_{\alpha}^{(k)}(\hat{\mu}_{\pi}^{(k)})$, and the true $\beta_{\pi} = F_{\mu_{\pi}(X)}^{-1}(\alpha) = Q_{\alpha}(\mu_{\pi})$.

We will show the equality by proving that the RHS is the upper bound and the lower bound of the LHS. We first prove the upper bound of case where $r=\infty$. By definition of $\hat{Q}_{\alpha}^{(k)}$, we have that

$$|\hat{Q}_{\alpha}^{(k)}(\hat{\mu}_{\pi}^{(k)}) - Q_{\alpha}(\mu_{\pi})| \leq \sup_{i \in \bar{\mathcal{D}}^{(k)}} |\hat{\mu}_{\pi}^{(k)}(X_i) - \mu_{\pi}(X_i)| = O_p(\|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{\infty}}).$$

Now we consider the case where $r < \infty$. Let $\delta = \|\mu_{\pi} - \hat{\mu}_{\pi}^{(k)}\|_{L_{r}(P)}^{\frac{r}{r+1}}$. By a union bound with respect to the empirical distribution,

$$\hat{Q}_{\alpha}^{(k)}(\hat{\mu}^{(k)}) \le \hat{Q}_{\alpha+\delta}^{(k)}(\mu_{\pi}) + \hat{Q}_{1-\delta}^{(k)}(\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}).$$

By continuous differentiability in Assumption 3.3, the first term on the RHS can be bounded by

$$\hat{Q}_{\alpha+\delta}^{(k)}(\mu_{\pi}) = \hat{Q}_{\alpha+\delta}^{(k)}(\mu_{\pi}) - Q_{\alpha+\delta}(\mu_{\pi}) + Q_{\alpha+\delta}(\mu_{\pi})
\leq \hat{Q}_{\alpha+\delta}^{(k)}(\mu_{\pi}) - Q_{\alpha+\delta}(\mu_{\pi}) + Q_{\alpha}(\mu_{\pi}) + O_{p}(\delta).$$

Furthermore, using the delta method, we have that $\hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) - Q_{\alpha+\delta}(\mu_\pi) = O_P(n^{-\frac{1}{2}})$ and,

$$\hat{Q}_{\alpha+\delta}^{(k)}(\mu_{\pi}) \le O_p(n^{-\frac{1}{2}}) + Q_{\alpha}(\mu_{\pi}) + O_p(\delta).$$

To upper bound the second term, we apply Markov's inequality with respect to the empirical distribution:

$$\begin{split} &\hat{Q}_{1-\delta}^{(k)}(\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}) \\ &= \inf \left\{ \beta : \sum_{i \in \bar{\mathcal{D}}^{(k)}} (\mathbb{1}\{\hat{\mu}_{\pi}^{(k)}(X_i) - \mu_{\pi}(X_i) \leq \beta\} - (1 - \|\mu_{\pi} - \hat{\mu}_{\pi}^{(k)}\|_{r}^{\frac{r}{r+1}})) \geq 0 \right\} \\ &\leq \frac{(\frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} |\hat{\mu}_{\pi}^{(k)}(X_i) - \mu_{\pi}(X_i)|^r)^{\frac{1}{r}}}{\delta^{-\frac{1}{r}}} = O_p(\delta^{\frac{1}{r}} \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_r(P)}) = O_p(\delta). \end{split}$$

Combining the two results, we have

$$\begin{split} \hat{Q}_{\alpha}^{(k)}(\hat{\mu}^{(k)}) &\leq O_p(n^{-\frac{1}{2}}) + Q_{\alpha}(\mu_{\pi}) + O_p(\delta) \\ \Rightarrow & \hat{Q}_{\alpha}^{(k)}(\hat{\mu}^{(k)}) - Q_{\alpha}(\mu_{\pi}) \leq O_p(n^{-\frac{1}{2}}) + O_p(\|\mu_{\pi} - \hat{\mu}_{\pi}^{(k)}\|_{L_r(P)}^{\frac{r}{r+1}}). \end{split}$$

To derive a lower bound, we can make a symmetric argument by similarly writing:

$$\hat{Q}_{\alpha}^{(k)}(\hat{\mu}^{(k)}) \ge \hat{Q}_{\alpha-\delta}^{(k)}(\mu_{\pi}) + \hat{Q}_{1+\delta}^{(k)}(\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}).$$

The upper bound and lower bound gives the desired result when $r < \infty$.

E.3 PROOF OF THEOREM 3.5

Proof. We first state the following helper lemma, the proof of which can be found in Appendix F.1.

Lemma E.1. Suppose that Assumption 2.1, 3.2, and 3.3 hold. Then there exists some constant $c_1 > 0$ such that $\|\mu_{\pi} - \hat{\mu}\|_{L_{\infty}} \le c_1$ and $|\beta_{\pi} - \hat{\beta}| \le c_1$, and for any $\alpha \in (0, 1]$, we have

$$\begin{split} &|\mathbb{E}[\phi(\pi,Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(\pi,Z;\pi_{0},\mu_{\pi},\beta_{\pi})]| \\ \leq & \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_{0} - \pi_{0}\|_{L_{2}(P)} \|\hat{\mu} - \mu_{\pi}\|_{L_{2}(P)} \\ &+ \frac{1}{\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (\|\hat{\mu}_{\pi} - \mu_{\pi}\|_{L_{\infty}} + |\beta_{\pi} - \hat{\beta}|)^{2} \\ &+ \frac{1}{2\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) |\hat{\beta} - \beta_{\pi}|^{2} \\ &\|\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})\|_{L_{2}(P)} \\ \leq & \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_{0} - \pi_{0}\|_{L_{2}(P)} + \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{2}(P)} \\ &+ \frac{16\bar{y}}{\alpha\varepsilon} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (|\hat{\beta} - \beta_{\pi}| + \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}). \end{split}$$

Fixing a sample $i \in \mathcal{D}^{(k)}$, we also have

$$|\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \mu_{\pi}, \beta_{\pi})| \leq \frac{2\bar{y}}{\alpha \varepsilon^{3/2}} |\hat{\pi}_0(\pi(X_i) \mid X_i) - \pi_0(\pi(X_i) \mid X_i)| + \frac{1}{\alpha} |\hat{\beta} - \beta_{\pi}| + \frac{1}{\alpha \varepsilon} |\hat{\mu}(X_i) - \mu_{\pi}(X_i)| + \frac{7\bar{y}}{\alpha \varepsilon}.$$

In the following sequel, we shall show that $\hat{\mathcal{V}}_{\alpha}^{(k)} = \mathcal{V}_{\alpha}(\pi) + o_p(n^{-\frac{1}{2}})$, for all data fold $k \in [K]$.

We can decompose
$$\hat{\varphi}(k)$$

1027
$$\hat{\mathcal{V}}_{\alpha}^{(k)} - \mathcal{V}_{\alpha}(\pi)$$
1029
$$= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi})$$
1031
$$= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi})$$
1034
$$+ \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) | \bar{\mathcal{D}}^{(k)}] + \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) | \bar{\mathcal{D}}^{(k)}]$$
1036
$$= \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) | \bar{\mathcal{D}}^{(k)}]$$
1037
$$+ \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) | \bar{\mathcal{D}}^{(k)}] \right)$$
1039
$$- \left(\mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) | \bar{\mathcal{D}}^{(k)}] \right) =: (I) + (II).$$

We will show that Term (I), (II) are both $o_p(n^{-\frac{1}{2}})$.

By Lemma E.1 and Lemma 3.4, Term (I) is

$$\begin{split} (I) \leq & \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_{0} - \pi_{0}\|_{L_{2}(P)} \|\hat{\mu} - \mu_{\pi}\|_{L_{2}(P)} + \frac{1}{\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (\|\hat{\mu}_{\pi} - \mu_{\pi}\|_{L_{\infty}} + |\beta_{\pi} - \hat{\beta}|)^{2} \\ & + \frac{1}{2\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) |\hat{\beta} - \beta_{\pi}|^{2} \\ = & O_{p} (\|\hat{\pi}_{0}^{(k)} - \pi_{0}\|_{L_{2}(P)} \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{2}(P)} + \|\hat{\mu}_{\pi} - \mu_{\pi}\|_{L_{\infty}}^{2} + \|\hat{\mu}_{\pi} - \mu_{\pi}\|_{L_{\infty}} |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}| + |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}|^{2}) \\ = & O_{p} (\|\hat{\pi}_{0}^{(k)} - \pi_{0}\|_{L_{2}(P)} \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{2}(P)} + \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{\infty}}^{2}). \end{split}$$

By Assumption 3.2, we have that Term $(I) = o_p(n^{-\frac{1}{2}})$.

Conditioned on the off-fold data $\bar{\mathcal{D}}^{(k)}$, we apply Chebyshev's inequality to Term (II). For any t>0, we have that

$$\begin{split} \mathbb{P}\big(|II| \geq t \mid \bar{\mathcal{D}}^{(k)}\big) \leq & \frac{\mathrm{Var}\big(\|\phi(Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(Z; \pi_0, \mu_{\pi}, \beta_{\pi})\|\big)}{|\mathcal{D}^{(k)}|t^2} \\ \leq & \frac{1}{|\mathcal{D}^{(k)}|t^2} \bigg(\frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} + |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}| \\ & + \frac{16\bar{y}}{\alpha\varepsilon} \big(F'_{\mu_{\pi}(X)}(F_{\mu_{\pi}(X)}^{-1}(\alpha)) + 1\big) \big(|\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}| + \|\hat{\mu}_{\pi}^{(k)}(X) - \mu_{\pi}(X)\|_{L_{\infty}}\big)\bigg), \end{split}$$

where the last step is due to Lemma E.1. Consequently,

$$(II) = O_p \left(\frac{\|\phi(Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(Z; \pi_0, \mu_{\pi}, \beta_{\pi})\|_{L_2(P)}}{|\mathcal{D}^{(k)}|^{\frac{1}{2}}} \right).$$

By Lemma 3.4, and Assumption 3.2, we further have

$$(II) = O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}}(\|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \|\hat{\mu} - \mu_\pi\|_{L_2(P)} + |\beta_\pi - \hat{\beta}|))$$

$$= O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}}(\|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \|\hat{\mu} - \mu_\pi\|_{L_2(P)} + n^{-\frac{1}{2}} \vee \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)}^{\frac{2}{3}}))$$

$$= O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}}o_p(1)) = o_p(n^{-\frac{1}{2}}).$$

We conclude that $\hat{\mathcal{V}}_{\alpha}^{(k)} = \mathcal{V}_{\alpha}(\pi) + o_p(n^{-\frac{1}{2}})$, for all data fold $k \in [K]$. Thus

$$\sqrt{n}(\hat{\mathcal{V}}_{\alpha} - \mathcal{V}_{\alpha}(\pi)) = \frac{1}{\sqrt{n}} \sum_{i \in \mathcal{D}} \left(\phi(Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) - \mathcal{V}_{\alpha}(\pi) \right) + o_p(1),$$

and it converges in distribution $\mathcal{N}(0,\sigma_\pi^2)$ by the central limit theorem and Slutsky's theorem. The asymptotic variance is

$$\sigma_{\pi}^2 = \operatorname{Var}(\phi(Z; \pi_0, \mu_{\pi}, \beta_{\pi})).$$

E.4 PROOF OF THEOREM 4.3

We first write the second term of equation 7, without the $(1 - \lambda)$ scale, as

$$\mathcal{V}_{\alpha}(\pi^{*}) - \mathcal{V}_{\alpha}(\hat{\pi}) = \mathcal{V}_{\alpha}(\pi^{*}) - \hat{\mathcal{V}}_{\alpha}(\pi^{*}) + \hat{\mathcal{V}}_{\alpha}(\pi^{*}) - \hat{\mathcal{V}}_{\alpha}(\hat{\pi}) + \hat{\mathcal{V}}_{\alpha}(\hat{\pi}) - \mathcal{V}_{\alpha}(\hat{\pi})$$

$$\leq 2 \sup_{\pi \in \Pi} |\mathcal{V}_{\alpha}(\pi) - \hat{\mathcal{V}}_{\alpha}(\pi)| = 2 \sup_{\pi \in \Pi} |\mathcal{V}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi) + \tilde{\mathcal{V}}_{\alpha}(\pi) - \hat{\mathcal{V}}_{\alpha}(\pi)|$$

$$\leq \sup_{\pi \in \Pi} 2|\mathcal{V}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi)| + \sup_{\pi \in \Pi} 2|\tilde{\mathcal{V}}_{\alpha}(\pi) - \hat{\mathcal{V}}_{\alpha}(\pi)|.$$
(11)

We will show the upper bound of both terms separately.

As an important intermediate step, we first establish a regret bound a regret bound for the policy when the algorithm has access to the quantities $\pi_0(x), \mu_a(x)$. Note that when the true $\pi_0, \{\mu_a\}_{a \in \{0,1\}}$ are known, the oracle policy learning CVaR estimator does not rely on cross-fold fitting as it is designed for deriving independent $\hat{\pi}_0, \{\hat{\mu}_a\}_{a \in \{0,1\}}$ estimators. Also note that if we are given $\{\mu_a\}_{a \in \{0,1\}}$, then for every $\pi \in \Pi$, we can find the oracle policy VaR

$$\beta_{\pi} = \underset{\beta}{\operatorname{arg sup}} \left\{ \beta + \frac{1}{\alpha} \mathbb{E} \left[\left(\mu_{\pi}(X) - \beta \right)^{-} \right] \right\}. \tag{12}$$

We also denote the oracle α -level policy CVaR as

$$\tilde{\mathcal{V}}_{\alpha} = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}).$$

The following lemma provides the oracle regret of Term (1) in equation 11, and the proof of which can be found in Appendix F.2.

Lemma E.2. Under Assumption 2.1, 3.2 and 3.3, with probability at least $1 - \Delta$,

$$\sup_{\pi \in \Pi} |\mathcal{V}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi)| \leq \frac{16\bar{y}}{\sqrt{n}} (\kappa(\Pi) + 7) + \frac{(12 + \sqrt{2})\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

The proof of Theorem 4.3 also utilized the following result, which upper bounds Term (2) in equation 11, and the proof is deferred to Appendix F.3.

Corollary E.3. Under Assumption 2.1, 3.2 and 3.3, there exists some $N \in \mathbb{Z}_+$ such that with $n \geq N$, we have that with probability at least $1 - \Delta$,

$$\sup_{\pi \in \Pi} |\hat{\mathcal{V}}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi)| \leq \frac{28\bar{y}}{\alpha \varepsilon \sqrt{n}} \left(8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)} \right) + \frac{2\bar{y} + 9}{\alpha \varepsilon \sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

Proof of Theorem 4.3. By the regret decomposition as in equation 11 and the results from Lemma E.2 and Corollary E.3, there exists some $N \in \mathbb{Z}_+$ such that with $n \geq N$, we have that with probability at least $1 - \Delta$,

$$\begin{split} \mathcal{V}_{\alpha}(\pi^*) - \mathcal{V}_{\alpha}(\hat{\pi}) &\leq \sup_{\pi \in \Pi} 2|\mathcal{V}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi)| + \sup_{\pi \in \Pi} 2|\tilde{\mathcal{V}}_{\alpha}(\pi) - \hat{\mathcal{V}}_{\alpha}(\pi)| \\ &\leq \frac{56\bar{y}}{\alpha\varepsilon\sqrt{n}} \big(\kappa(\Pi) + 64 + \sqrt{\log(1/\Delta)}\big) + \frac{56\bar{y}}{\sqrt{n}} \big(\kappa(\Pi) + 5\big). \end{split}$$

The proof concludes by (Zhou et al., 2023, Theorem 3), the above result and the regret decomposition equation 7. \Box

F PROOF OF TECHNICAL LEMMAS

F.1 PROOF OF LEMMA E.1

Proof. First, we can compute the expectation

$$\mathbb{E}[\phi(\pi, Z_{i}; \hat{\pi}_{0}, \hat{\mu}, \hat{\beta})] = \mathbb{E}\left[\mathbb{E}\left[\hat{\beta} + \frac{1}{\alpha}\mathbb{I}\{\hat{\mu}(X_{i}) \leq \hat{\beta}\}\left(\hat{\mu}(X_{i}) + \frac{\mathbb{I}\{A_{i} = \pi(X_{i})\}}{\hat{\pi}_{0}(\pi(X_{i}) \mid X_{i})}(Y_{i} - \hat{\mu}(X_{i})) - \hat{\beta}\right) \mid X_{i}\right]\right]$$

$$= \mathbb{E}\left[\hat{\beta} + \frac{1}{\alpha}\mathbb{I}\{\hat{\mu}(X_{i}) \leq \hat{\beta}\}\left(\hat{\mu}(X_{i}) + \frac{\pi_{0}(\pi(X_{i}) \mid X_{i})}{\hat{\pi}_{0}(\pi(X_{i}) \mid X_{i})}(\mu_{\pi}(X_{i}) - \hat{\mu}(X_{i})) - \hat{\beta}\right)\right]$$

$$= \hat{\beta} + \frac{1}{\alpha}\mathbb{E}\left[\mathbb{I}\{\hat{\mu}(X) \leq \hat{\beta}\}\left(\hat{\mu}(X) + \frac{\pi_{0}(\pi(X) \mid X)}{\hat{\pi}_{0}(\pi(X) \mid X)}(\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta}\right)\right].$$
(13)

 The first inequality in the statement can be decomposed into the following:

$$\begin{split} &|\mathbb{E}[\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})]| \\ &= &|\mathbb{E}[\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\hat{\mu},\hat{\beta})] + \mathbb{E}[\phi(Z;\pi_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\hat{\beta})] + \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\hat{\beta})] \\ &- \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})]| \\ &\leq &|\mathbb{E}[\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\hat{\mu},\hat{\beta})]| + |\mathbb{E}[\phi(Z;\pi_{0},\hat{\mu},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\hat{\beta})]| \\ &+ |\mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\hat{\beta})] - \mathbb{E}[\phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})]|. \end{split}$$

We will bound the three terms (I), (II), (III), (IV) individually. We first look at Term (I):

$$\begin{split} (I) = & \left| \hat{\beta} + \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) \mid X)}{\hat{\pi}_0(\pi(X) \mid X)} (\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \\ & - \hat{\beta} - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) \mid X)}{\pi_0(\pi(X) \mid X)} (\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\ = & \left| \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) \mid X)}{\hat{\pi}_0(\pi(X) \mid X)} (\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\ & - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\hat{\pi}_0(\pi(X) \mid X)}{\hat{\pi}_0(\pi(X) \mid X)} (\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\ \leq & \left| \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1} \{ \hat{\mu}(X) \leq \hat{\beta} \} \frac{|\pi_0(\pi(X) \mid X) - \hat{\pi}_0(\pi(X) \mid X)|}{\hat{\pi}_0(\pi(X) \mid X)} |\mu_{\pi}(X) - \hat{\mu}(X)| \right] \right| \\ \leq & \frac{2\bar{y}}{\alpha \varepsilon} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} \|\hat{\mu} - \mu\|_{L_2(P)}. \end{split}$$

By continuous density Assumption 3.3, there exists some $c_1>0$ such that $\mu_\pi(X)-\beta_\pi$ has a density on $(-3c_1,3c_1)$ bounded by $F'_{\mu_\pi(X)}(F^{-1}_{\mu_\pi(X)}(\alpha))+1$. Therefore, provided that $|\hat{\beta}-\beta_\pi|\leq c_1$ and

$$\begin{aligned} &\|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}} \leq c_{1}, \\ &\|190 \\ &1191 \\ &(II) = \left| \hat{\beta} + \frac{1}{\alpha} \mathbb{E} \left[\mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\pi_{0}(\pi(X) \mid X)}{\pi_{0}(\pi(X) \mid X)} (\mu_{\pi}(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \\ &- \hat{\beta} - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{I} \{ \mu_{\pi}(X) \leq \hat{\beta} \} \left(\mu_{\pi}(X) + \frac{\pi_{0}(\pi(X) \mid X)}{\pi_{0}(\pi(X) \mid X)} (\mu_{\pi}(X) - \mu_{\pi}(X)) - \hat{\beta} \right) \right] \right| \\ &= \left| \frac{1}{\alpha} \mathbb{E} \left[(\mu_{\pi}(X) - \hat{\beta}) (\mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} - \mathbb{I} \{ \mu_{\pi}(X) \leq \hat{\beta} \}) \right] \right| \\ &= \left| \frac{1}{\alpha} \mathbb{E} \left[(\mu_{\pi}(X) - \hat{\beta}) (\mathbb{I} \{ \mu_{\pi}(X) - \beta_{\pi} \leq \hat{\beta} - \beta_{\pi} + \mu_{\pi}(X) - \hat{\mu}(X) \} - \mathbb{I} \{ \mu_{\pi}(X) - \beta_{\pi} \leq \hat{\beta} - \beta_{\pi} \} \right) \right] \right| \\ &= \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{I} \{ |\mu_{\pi}(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + |\hat{\mu}(X) - \mu_{\pi}(X)| \} \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| \mathbb{E} \left[|\mu_{\pi}(X) - \beta_{\pi}| + |\mu_{\pi}(X) - \mu_{\pi}(X)| \right] \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| + |\mu_{\pi}(X) - \mu_{\pi}(X)| \right] \\ &\leq \frac{1}{\alpha} \mathbb{E} \left[|\mu_{\pi}(X) - \hat{\beta}| + |\mu_{\pi}(X) - \mu_{\pi}(X)| \right]$$

Finally we analyze Term (III). Define

$$f(\beta) = \mathbb{E}[\phi(Z; \pi_0, \mu_{\pi}, \beta)] = \beta + \frac{1}{\alpha} \mathbb{E}[(\mu_{\pi}(X) - \beta)^-]$$

By definition $f'(\beta_{\pi}) = 0$ and $|f''(\beta)| \leq \frac{1}{\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1)$ for $\beta \in (\beta_{\pi} - c_1, \beta_{\pi} + c_1)$. Therefore, provided with the assumption that $|\hat{\beta} - \beta_{\pi}| \leq c_1/3$, by Taylor's theorem, we can upper bound Term (III) by:

$$(III) \le \frac{1}{2\alpha} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) |\hat{\beta} - \beta_{\pi}|^2.$$

Now we turn to the second inequality. The difference in interest can be written as

$$\begin{split} &\|\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})\|_{L_{2}(P)} \\ = &\|\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\hat{\mu},\hat{\beta}) + \phi(Z;\pi_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\hat{\mu},\beta_{\pi}) + \phi(Z;\pi_{0},\hat{\mu},\beta_{\pi}) \\ &- \phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})\|_{L_{2}(P)} \\ \leq &\underbrace{\|\phi(Z;\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\hat{\mu},\hat{\beta})\|_{L_{2}(P)}}_{(1)} + \underbrace{\|\phi(Z;\pi_{0},\hat{\mu},\hat{\beta}) - \phi(Z;\pi_{0},\hat{\mu},\beta_{\pi})\|_{L_{2}(P)}}_{(2)} \\ &+ \underbrace{\|\phi(Z;\pi_{0},\hat{\mu},\beta_{\pi}) - \phi(Z;\pi_{0},\mu_{\pi},\beta_{\pi})\|_{L_{2}(P)}}_{(3)}. \end{split}$$

We will upper bound the three terms above individually. For Term (1), we compute that

$$(1) = \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\hat{\pi}_0(\pi(X) \mid X)} - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) \mid X)} \right) (Y - \hat{\mu}(X)) \right\|_{L_2(P)}$$

$$= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \mathbb{1}\{A = \pi(X)\} \left(\frac{1}{\hat{\pi}_0(\pi(X) \mid X)} - \frac{1}{\pi_0(\pi(X) \mid X)} \right) (Y - \hat{\mu}(X)) \right\|_{L_2(P)},$$

where the last equality uses the fact that $\hat{\pi}_0(0 \mid X) + \hat{\pi}_0(1 \mid X) = 1$ and that $\pi_0(0 \mid X) + \pi_0(1 \mid X) = 1$. By Assumption 2.1, we have that

$$\left\| \frac{1}{\hat{\pi}_0(\pi(X) \mid X)} - \frac{1}{\pi_0(\pi(X) \mid X)} \right\|_{L_2(P)} \le \varepsilon^{-3/2} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)}, \quad \|Y - \hat{\mu}(X)\|_{L_2(P)} \le 2\bar{y},$$

and thus $(1) \leq \frac{2\bar{y}}{\alpha \varepsilon^{3/2}} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)}$.

We also compute Term (2):

$$(2) = \left\| (\hat{\beta} - \beta_{\pi}) + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} \left(\hat{\mu}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \hat{\mu}(X)) - \hat{\beta} \right) \right.$$

$$\left. - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\hat{\mu}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \hat{\mu}(X)) - \beta_{\pi} \right) \right\|_{L_{2}(P)}$$

$$= \left\| (\hat{\beta} - \beta_{\pi}) - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} \hat{\beta} + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \beta_{\pi} + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} \beta_{\pi} - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} \beta_{\pi} \right.$$

$$\left. + \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} - \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \}) \left(\hat{\mu}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \hat{\mu}(X)) - \beta_{\pi} \right) \right\|_{L_{2}(P)}$$

$$= \left\| (\hat{\beta} - \beta_{\pi}) \left(1 - \frac{\mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \}}{\alpha} \right) + \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X) \leq \hat{\beta} \} - \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \}) \left(\hat{\mu}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \hat{\mu}(X)) - \beta_{\pi} \right) \right\|_{L_{2}(P)}.$$

By Assumption 2.1, we have that $|\beta_{\pi}| \leq \bar{y}$. Therefore, Term (2) is bounded by

$$(2) \le \frac{1}{\alpha} |\hat{\beta} - \beta_{\pi}| + \frac{4\bar{y}}{\alpha \varepsilon} || \mathbb{1} {\{\hat{\mu}(X) \le \hat{\beta}\}} - \mathbb{1} {\{\hat{\mu}(X) \le \beta_{\pi}\}} ||_{L_2(P)}.$$

Now, applying a similar trick as in the analysis of Term (II), we have that

$$\|\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X) \leq \beta_{\pi}\}\|_{L_{2}(P)} \leq \mathbb{P}(|\mu(X) - \beta_{\pi}| \leq |\hat{\beta} - \beta_{\pi}| + \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}})$$
$$\leq 2(F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1)(|\hat{\beta} - \beta_{\pi}| + \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}),$$

where the last inequality is due to the fact that $|\hat{\beta} - \beta_{\pi}| \le c/3$, and $\|\hat{\mu} - \mu_{\pi}\|_{L_{\infty}} \le c/3$. Finally, Term (2) is upper bounded by

$$(2) \le \frac{1}{\alpha} |\hat{\beta} - \beta_{\pi}| + \frac{8\bar{y}}{\alpha \varepsilon} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (|\hat{\beta} - \beta_{\pi}| + ||\hat{\mu}(X) - \mu_{\pi}(X)||_{L_{\infty}}).$$

Similarly, Term (3) can be written as

$$(3) = \left\| \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\hat{\mu}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \hat{\mu}(X)) - \beta_{\pi} \right) \right.$$

$$\left. - \frac{1}{\alpha} \mathbb{I} \{ \mu_{\pi}(X) \leq \beta_{\pi} \} \left(\mu_{\pi}(X) + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} (Y - \mu_{\pi}(X)) - \beta_{\pi} \right) \right\|_{L_{2}(P)}$$

$$= \left\| \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} - \mathbb{I} \{ \mu_{\pi}(X) \leq \beta_{\pi} \}) \left(\frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} Y - \beta_{\pi} \right) \right.$$

$$\left. + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \hat{\mu}(X) \right) \right.$$

$$\left. - \frac{1}{\alpha} \mathbb{I} \{ \mu_{\pi}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right) \right\|_{L_{2}(P)}$$

$$= \left\| \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} - \mathbb{I} \{ \mu_{\pi}(X) \leq \beta_{\pi} \}) \left(\frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \hat{\mu}(X) \right) \right.$$

$$\left. + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right) \right.$$

$$\left. + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right) \right.$$

$$\left. - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right) \right.$$

$$\left. - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X) \leq \beta_{\pi} \} \left(\left(1 + \frac{\mathbb{I} \{ A = \pi(X) \}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right) \right.$$

Rearrange, we have that

$$(3) \leq \underbrace{\left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_{0}(\pi(X) \mid X)} Y - \beta_{\pi} \right) \right\|_{L_{2}(P)}}_{(3)_{I}} + \underbrace{\left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_{\pi}\} \left(1 - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_{0}(\pi(X) \mid X)} \right) (\hat{\mu}(X) - \mu_{\pi}(X)) \right\|_{L_{2}(P)}}_{(3)_{II}} + \underbrace{\left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\}) \left(1 - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_{0}(\pi(X) \mid X)} \right) \mu_{\pi}(X) \right\|_{L_{2}(P)}}_{(3)_{III}}$$

By the result of Term (2), we have that

$$\|\mathbb{1}\{\hat{\mu}(X) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\}\|_{L_{2}(P)} \leq 2(F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1)\|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}.$$

Therefore, we can bound

$$(3)_{I} \leq \frac{4\bar{y}}{\alpha\varepsilon} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}$$

$$(3)_{II} \leq \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{2}(P)}$$

$$(3)_{III} \leq \frac{4\bar{y}}{\alpha\varepsilon} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}.$$

Putting everything together, we have that

$$\begin{split} &\|\phi(Z; \hat{\pi}_{0}, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_{0}, \mu_{\pi}, \beta_{\pi})\|_{L_{2}(P)} \\ \leq & \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_{0} - \pi_{0}\|_{L_{2}(P)} + \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{2}(P)} \\ &+ \frac{16\bar{y}}{\alpha\varepsilon} (F'_{\mu_{\pi}(X)}(F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (|\hat{\beta} - \beta_{\pi}| + \|\hat{\mu}(X) - \mu_{\pi}(X)\|_{L_{\infty}}). \end{split}$$

For the last inequality, we note that we can similarly decompose

$$\begin{aligned} &|\phi(Z_{i};\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z_{i};\pi_{0},\mu_{\pi},\beta_{\pi})| \\ &= &|\phi(Z_{i};\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z_{i};\pi_{0},\hat{\mu},\hat{\beta}) + \phi(Z_{i};\pi_{0},\hat{\mu},\hat{\beta}) - \phi(Z_{i};\pi_{0},\hat{\mu},\beta_{\pi}) \\ &+ \phi(Z_{i};\pi_{0},\hat{\mu},\beta_{\pi}) - \phi(Z_{i};\pi_{0},\mu_{\pi},\beta_{\pi})| \\ &\leq \underbrace{|\phi(Z_{i};\hat{\pi}_{0},\hat{\mu},\hat{\beta}) - \phi(Z_{i};\pi_{0},\hat{\mu},\hat{\beta})|}_{(1)} + \underbrace{|\phi(Z_{i};\pi_{0},\hat{\mu},\hat{\beta}) - \phi(Z_{i};\pi_{0},\hat{\mu},\beta_{\pi})|}_{(2)} \\ &+ \underbrace{|\phi(Z_{i};\pi_{0},\hat{\mu},\beta_{\pi}) - \phi(Z_{i};\pi_{0},\mu_{\pi},\beta_{\pi})|}_{(3)}. \end{aligned}$$

We will upper bound the three terms above individually. For Term (1), we compute that

$$\begin{split} (1) = & \left| \frac{1}{\alpha} \mathbb{1} \{ \hat{\mu}(X_i) \leq \hat{\beta} \} \left(\frac{\mathbb{1} \{ A_i = \pi(X_i) \}}{\hat{\pi}_0(\pi(X_i) \mid X_i)} - \frac{\mathbb{1} \{ A_i = \pi(X_i) \}}{\pi_0(\pi(X_i) \mid X_i)} \right) (Y_i - \hat{\mu}(X_i)) \right| \\ = & \left| \frac{1}{\alpha} \mathbb{1} \{ \hat{\mu}(X_i) \leq \hat{\beta} \} \mathbb{1} \{ A_i = \pi(X_i) \} \left(\frac{1}{\hat{\pi}_0(\pi(X_i) \mid X_i)} - \frac{1}{\pi_0(\pi(X_i) \mid X_i)} \right) (Y_i - \hat{\mu}(X_i)) \right|, \end{split}$$

where the last equality uses the fact that $\hat{\pi}_0(0 \mid X_i) + \hat{\pi}_0(1 \mid X_i) = 1$ and that $\pi_0(0 \mid X_i) + \pi_0(1 \mid X_i) = 1$. Since

$$\left| \frac{1}{\hat{\pi}_0(\pi(X_i) \mid X_i)} - \frac{1}{\pi_0(\pi(X_i) \mid X_i)} \right| \le \varepsilon^{-3/2} |\hat{\pi}_0(\pi(X_i) \mid X_i) - \pi_0(\pi(X_i) \mid X_i)|, \quad |Y_i - \hat{\mu}(X_i)| \le 2\bar{y},$$

we have that $(1) \leq \frac{2\bar{y}}{\alpha \epsilon^{3/2}} |\hat{\pi}_0(\pi(X_i) \mid X_i) - \pi_0(\pi(X_i) \mid X_i)|.$

We also compute Term (2):

$$\begin{split} (2) &= \left| (\hat{\beta} - \beta_{\pi}) + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} \left(\hat{\mu}(X_{i}) + \frac{\mathbb{I} \{ A_{i} = \pi(X_{i}) \}}{\pi_{0}(\pi(X_{i}) \mid X_{i})} (Y_{i} - \hat{\mu}(X_{i})) - \hat{\beta} \right) \right. \\ &- \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \beta_{\pi} \} \left(\hat{\mu}(X_{i}) + \frac{\mathbb{I} \{ A_{i} = \pi(X_{i}) \}}{\pi_{0}(\pi(X_{i}) \mid X_{i})} (Y_{i} - \hat{\mu}(X_{i})) - \beta_{\pi} \right) \right| \\ &= \left| (\hat{\beta} - \beta_{\pi}) - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} \hat{\beta} + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \beta_{\pi} \} \beta_{\pi} + \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} \beta_{\pi} - \frac{1}{\alpha} \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} \beta_{\pi} \right. \\ &+ \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} - \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \beta_{\pi} \}) \left(\hat{\mu}(X_{i}) + \frac{\mathbb{I} \{ A_{i} = \pi(X_{i}) \}}{\pi_{0}(\pi(X_{i}) \mid X_{i})} (Y_{i} - \hat{\mu}(X_{i})) - \beta_{\pi} \right) \right| \\ &= \left| (\hat{\beta} - \beta_{\pi}) \left(1 - \frac{\mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \}}{\alpha} \right) \right. \\ &+ \frac{1}{\alpha} (\mathbb{I} \{ \hat{\mu}(X_{i}) \leq \hat{\beta} \} - \mathbb{I} \{ \hat{\mu}(X_{i}) \leq \beta_{\pi} \}) \left(\hat{\mu}(X_{i}) + \frac{\mathbb{I} \{ A_{i} = \pi(X_{i}) \}}{\pi_{0}(\pi(X_{i}) \mid X_{i})} (Y_{i} - \hat{\mu}(X_{i})) - \beta_{\pi} \right) \right|. \end{split}$$

By Assumption 2.1, we have that $|\beta_{\pi}| \leq \bar{y}$. Therefore, Term (2) is bounded by

$$(2) \le \frac{1}{\alpha} |\hat{\beta} - \beta_{\pi}| + \frac{4\bar{y}}{\alpha \varepsilon}.$$

Similarly, Term (3) can be written as

$$\begin{aligned} & 1381 \\ & 1382 \\ & 1383 \\ & 1384 \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}(Y - \hat{\mu}(X_i)) - \beta_{\pi}\right) \\ & -\frac{1}{\alpha}\mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\} \left(\mu_{\pi}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}(Y_i - \mu_{\pi}(X_i)) - \beta_{\pi}\right) \Big| \\ & 1385 \\ & = \left|\frac{1}{\alpha}(\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}Y_i - \beta_{\pi}\right) \right| \\ & 1388 \\ & + \frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\hat{\mu}(X_i)\right) \right) \\ & - \frac{1}{\alpha}\mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X)\right) \Big| \\ & 1393 \\ & 1394 \\ & = \left|\frac{1}{\alpha}(\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}Y_i - \beta_{\pi}\right) \right. \\ & 1395 \\ & 1396 \\ & 1397 \\ & 1398 \\ & 1399 \\ & 1398 \\ & 1399 \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \\ & + \frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \\ & -\frac{1}{\alpha}\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)}\right)\mu_{\pi}(X_i)\right) \right|. \end{aligned}$$

Rearrange, we have that

$$(3) \leq \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)} Y_i - \beta_{\pi} \right) \right|$$

$$+ \left| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} \left(1 - \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)} \right) (\hat{\mu}(X_i) - \mu_{\pi}(X_i)) \right|$$

$$+ \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_{\pi}\} - \mathbb{1}\{\mu_{\pi}(X_i) \leq \beta_{\pi}\}) \left(1 - \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)} \right) \mu_{\pi}(X_i) \right|$$

$$\leq \frac{3\bar{y}}{\alpha\varepsilon} + \frac{1}{\alpha\varepsilon} |\hat{\mu}(X_i) - \mu_{\pi}(X_i)|.$$

Putting everything together, we have that

$$|\phi(Z_{i}; \hat{\pi}_{0}, \hat{\mu}, \hat{\beta}) - \phi(Z_{i}; \pi_{0}, \mu_{\pi}, \beta_{\pi})| \leq \frac{2\bar{y}}{\alpha \varepsilon^{3/2}} |\hat{\pi}_{0}(\pi(X_{i}) \mid X_{i}) - \pi_{0}(\pi(X_{i}) \mid X_{i})| + \frac{1}{\alpha} |\hat{\beta} - \beta_{\pi}| + \frac{1}{\alpha \varepsilon} |\hat{\mu}(X_{i}) - \mu_{\pi}(X_{i})| + \frac{7\bar{y}}{\alpha \varepsilon}.$$

F.2 PROOF OF LEMMA E.2

Before we embark on the proof that utilizes a chaining argument Zhou et al. (2023), we present the following definitions that will be needed throughout the analysis.

Definition F.1 (Rademacher complexity). Let γ_i 's be i.i.d. Rademacher random variables $\mathbb{P}(\gamma_i = 1) = \mathbb{P}(\gamma_i = -1) = \frac{1}{2}$.

1. The empirical Rademacher complexity $\mathcal{R}_n(\mathcal{F})$ of a function class \mathcal{F} with domain \mathcal{X} is defined as

$$\mathcal{R}_n(\mathcal{F} \mid \{X_i \in \mathcal{X}\}_{i=1}^n) = \mathbb{E}_{\gamma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \gamma_i f(X_i) \right| \mid \{X_i \in \mathcal{X}\}_{i=1}^n \right].$$

2. The Rademacher complexity $\mathcal{R}(\mathcal{F})$ of the function class \mathcal{F} is $\mathbb{E}_X[\mathcal{R}_n(\Pi \mid \{X_i \in \mathcal{X}\}_{i=1}^n)]$.

Before we introduce the chaining technique, we define the Hamming distance $H(\pi_1, \pi_2) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}\{\pi_1 \neq \pi_2\}$, and the Entropy integral $\nu(\Pi)$.

Definition F.2 (L_2 policy distance). Given a fixed policy class Π and a set of n covariate points $\{x_1, \dots, x_n\}$, we define the following.

1. For a function class $\mathcal{F}_{\Pi} = \{f(\cdot;\pi) \mid \pi \in \Pi\}$ such that f is a function on $(Z;\pi)$ such that $|f(Z;\pi)| \leq \bar{f}(Z)$, define L_2 distance $D_2(\pi_1,\pi_2;\{Z_1,\cdots,Z_n\})$ between two policies π_1,π_2 with respect to $\{Z_1,\cdots,Z_n\}$ is

$$D_2(\pi_1, \pi_2) = \sqrt{\frac{\sum_{i=1}^n |f(Z_i; \pi_1) - f(Z_i; \pi_2)|^2}{4\sum_{i=1}^n \bar{f}^2(Z_i)}}.$$

- 2. The ϵ - L_2 covering number of the set $\{x_1, \dots, x_n\}$ (denoted as $N_2(\epsilon, \Pi, \{x_1, \dots, x_n\})$) is the smallest number N of policies $\{\pi_1, \dots, \pi_N\}$ in Π such that $\forall \pi \in \Pi$, there exists π_i such that $D_2(\pi, \pi_i) \leq \epsilon$.
- 3. The ϵ - L_2 covering number of Π is $N_{\ell_2}(\epsilon,\Pi):=\sup\{N_2(\gamma,\Pi,\{x_1,\cdots,x_j\})|j\geq 1,x_1,\cdots,x_j\in\mathcal{X}\}.$

Policy Chaining. Conditioned on the data $\{X_1, \dots, X_n\}$, we define a sequence of refining approximation operators: A_0, A_1, \dots, A_J where $M = \lceil \log_2 n \rceil$ and each $A_i^{\pi} : \mathcal{X} \to \mathcal{A}$ is another policy.

Define $\underline{J} = \lfloor 1/2 \log_2 n \rfloor$. For each policy $\pi \in \Pi$, we can write it in terms of the approximation policies as

 $\pi(x) = A_0^{\pi} + \sum_{j=1}^{\underline{J}} (A_j^{\pi}(x) - A_{j-1}^{\pi}(x)) + (A_J^{\pi}(x) - A_{\underline{J}}^{\pi}(x)) + (\pi(x) - A_J^{\pi}(x)). \tag{14}$

We now give an explicit construction of the sequence of approximation operators. Set $\gamma_j = \frac{1}{2^j}$ and let S_0, S_1, \cdots, S_J be a sequence of policy classes (understood to be subclasses of Π) such that S_j could γ_j -cover Π under the inner product distance:

$$\forall \pi \in \Pi, \exists \pi' \in S_i, D_2(\pi, \pi') \leq \gamma_i$$

By Definition F.2, we can choose the m-th policy class S_m such that $|S_j|=N_2(2^{-j},\Pi,\{X_1,\cdots,X_n\})$. Note that in particular $|S_0|=1$, since any single policy is enough to 1-cover all policies in Π .

Next, we use the following backward selection scheme to define A_i 's. For each $\pi \in \Pi$, define

$$A_J^{\pi} = \arg\min_{\pi' \in S_J} D_2(\pi, \pi').$$

Further, for each $0 \le j < J$ and each $\pi \in \Pi$, inductively define

$$A_j^{\pi} = \arg\min_{\pi' \in S_j} D_2(A_{j+1}^{\pi}, \pi').$$

Appendix G presents a few helper results that would facilitate the following theorem, which is needed for the proof of Lemma E.2.

Theorem F.3. Suppose that $\mathcal{F}_{\Pi} := \{f(\cdot; \pi) \mid \pi \in \Pi\}$ is a function class of $f(\cdot; \pi)$ that takes Z as input. Given a set of dataset $\mathcal{D} = \{Z_i = (X_i, A_i, Y_i)\}_{i=1}^n$, suppose that $|f(Z_i; \pi(X_i))|_{\infty} \leq \bar{f}(Z_i)$. Then the Rademacher complexity

$$\mathcal{R}_n(\mathcal{F}_{\Pi}) \leq \frac{8\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} (\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} + o\left(\frac{1}{\sqrt{n}}\right).$$

Proof. We will investigate the Rademacher complexity of the function class $\mathcal{F}_{\Pi} := \{f(\cdot, \pi) \mid \pi \in \Pi\}$. Each policy $\pi \in \Pi$ can be written in terms of the approximation policies as in equation 14. Accordingly, we can expand the Rademacher complexity

$$\mathcal{R}_{n}(\mathcal{F}_{\Pi}) = \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; \pi) \right| \right] \\
= \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} \left(f(Z_{i}; A_{0}^{\pi}) + \sum_{j=1}^{J} \left(f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) + \left(f(Z_{i}; \pi) - f(Z_{i}; A_{J}^{\pi}) \right) \right) \right| \right] \\
\leq \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; A_{0}^{\pi}) \right| \right] + \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} \left(f(Z_{i}; \pi) - f(Z_{i}; A_{J}^{\pi}) \right) \right| \right] \\
+ \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} \left(\sum_{j=1}^{J} f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) \right| \right].$$

We first note that the first term

$$\mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; A_{0}^{\pi}) \right| \right] = \mathbb{E}_{\epsilon} \left[\frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; \bar{\pi}) \right| \right],$$

as A_0^{π} maps all $\pi \in \Pi$ to a singular policy $\bar{\pi}$. Since $|\epsilon_i f(Z_i; \bar{\pi})| \leq \bar{f}(Z_i)$, by Azuma-Hoeffding's lemma, we have that

$$\left| \mathbb{P}\left(\frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_i f(Z_i; \bar{\pi}) \right| \ge t \right) \le 2 \exp\left(-\frac{n^2 t^2}{2 \sum_{i=1}^{n} \bar{f}^2(Z_i)}\right).$$

Therefore, the expectation

$$\mathbb{E}_{\epsilon} \left[\frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; \bar{\pi}) \right| \right] = \int_{0}^{\infty} \mathbb{P}_{\epsilon} \left(\frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; \bar{\pi}) \right| \ge t \right) dt \le \int_{0}^{\infty} 2 \exp\left(-\frac{n^{2} t^{2}}{2 \sum_{i=1}^{n} \bar{f}^{2}(Z_{i})} \right) dt$$

$$= \frac{6\sqrt{\sum_{i=1}^{n} \bar{f}^{2}(Z_{i})}}{n}.$$

We will bound the other terms separately in the following steps.

The Negligible Regime. In this step, we establish two claims to show that $\pi - A_M(\pi)$ is in the negligible regimes. For any $\pi \in \Pi$, by the Cauchy-Schwarz inequality,

$$\sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} |f(Z_{i}; \pi) - f(Z_{i}; A_{J}^{\pi})| \right| \leq \frac{1}{n} \sqrt{n} \sum_{i=1}^{n} \left(f(Z_{i}; \pi) - f(Z_{i}; A_{J}^{\pi}) \right)^{2} \\
= \frac{2\sqrt{\sum_{i=1}^{n} \bar{f}^{2}(Z_{i})}}{\sqrt{n}} D_{2}(\pi, A_{J}^{\pi}; \{Z_{1}, \dots, Z_{n}\}) \\
\leq \frac{2\sqrt{\sum_{i=1}^{n} \bar{f}^{2}(Z_{i})}}{\sqrt{n}} 2^{-J} \leq \frac{2\sqrt{\sum_{i=1}^{n} \bar{f}^{2}(Z_{i})}}{n^{\frac{3}{2}}},$$

where the second-to-last step is due to the fact that the policy A_M^{π} is 2^{-M} -close to π and the last step is due to the definition of M. Therefore, we conclude that the term

$$\mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_i \left(f(Z_i; \pi) - f(Z_i; A_J^{\pi}) \right) \right| \right] \le \frac{2\sqrt{\sum_{i=1}^{n} \bar{f}^2(Z_i)}}{n^{\frac{3}{2}}},$$

and is in the negligible regime.

The Effective Regime. By the previous results, we have that

$$\mathcal{R}_{n}(\mathcal{F}_{\Pi}) = \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} f(Z_{i}; \pi) \right| \right]$$

$$\leq \mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_{i} \left(\sum_{j=1}^{J} f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) \right) \right| + o\left(\frac{1}{\sqrt{n}} \right).$$

From now on, for easier notation, we denote $\Lambda=2\sqrt{\sum_{i=1}^n\bar{f}^2(Z_i)}$. We will now concentrate on the expectation in the above inequality. Let P_m denote the projection of a policy to S_j , for $A_{j-1}^\pi=P_{j-1}(A_j^\pi)$ for all $j\in[J]$. Note that once A_j^π is determined, the policy A_{j-1}^π is also determined. For any t>0,

$$\mathbb{P}_{\epsilon} \left(\sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \left(f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) \right| \geq t \right) \\
\leq \sum_{\pi' \in S_{j}} \mathbb{P}_{\epsilon} \left(\left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \left(f(Z_{i}; \pi') - f(Z_{i}; P_{j-1}(\pi')) \right) \right| \geq t \right) \\
\leq \sum_{\pi' \in S_{j}} 2 \cdot \exp \left(- \frac{2n^{2}t^{2}}{\sum_{i=1}^{n} (f(Z_{i}; \pi') - f(Z_{i}; P_{j-1}(\pi')))^{2}} \right) \\
= \sum_{\pi' \in S_{j}} 2 \cdot \exp \left(- \frac{2nt^{2}}{\lambda^{2} D_{2}^{2}(\pi', P_{j-1}(\pi'); Z)} \right) \\
\leq 2N_{2}(2^{-j}, \Pi; \mathcal{D}) \cdot \exp \left(- \frac{n^{2}t^{2}}{\Lambda^{2} D_{2}(\pi', P_{j-1}(\pi'); Z)^{2}} \right).$$

For any $j=1,\cdots,J$ and $p\in\mathbb{N}$, let $t_{j,p}=\frac{\Lambda}{n2^{j-1/2}}\sqrt{\log(2^{p+1}j^2\cdot N_2(2^{-j},\Pi;\mathcal{D}))}$. Then for a fixed p, with a union bound over $j=1,\cdots,J$, we have that

$$\begin{split} & \mathbb{P}_{\epsilon} \bigg(\sup_{\pi \in \Pi} \bigg| \sum_{j=1}^{J} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi})) \bigg| \geq \sum_{j=1}^{J} t_{j,p} \bigg) \\ & \leq \sum_{j=1}^{J} \mathbb{P}_{\epsilon} \bigg(\sup_{\pi \in \Pi} \bigg| \sum_{j=1}^{J} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi})) \bigg| \geq t_{j,p} \bigg) \leq \sum_{j=1}^{J} \frac{1}{j^{2} 2^{p}} \leq \frac{1}{2^{p-1}}. \end{split}$$

Using helper Proposition G.1, for any $j \in \mathbb{N}$,

$$\begin{split} \sum_{j=1}^{J} t_{j,p} &= \sum_{j=1}^{J} \frac{\Lambda}{2^{j-1/2}n} \sqrt{\log(2^{p+1}j^2 \cdot N_2(2^{-j}, \Pi; \mathcal{D}))} \\ &\leq \sum_{j=1}^{J} \frac{\Lambda}{2^{j-1/2}n} \sqrt{\log(N_2(2^{-j}, \Pi; \mathcal{D})) + (p+1)\log 2 + 2\log j} \\ &\leq \frac{2\Lambda}{n} \sum_{j=1}^{J} 2^{-j} \left(\sqrt{\log(N_2(2^{-j}, \Pi; \mathcal{D}))} + \sqrt{(p+1)\log 2} + \sqrt{2\log j} \right) \\ &\leq \frac{4\Lambda}{n} (\kappa(\Pi) + \sqrt{p+1} + 1) =: t_p, \end{split}$$

where the first inequality is uses the fact that $\sqrt{a+b+c} \le \sqrt{a} + \sqrt{b} + \sqrt{c}$ for $a,b,c \ge 0$; and the last inequality is due to the definition of $\kappa(\Pi)$. Then

$$\mathbb{E}_{\epsilon} \left[\sup_{\pi \in \Pi} \frac{1}{n} \middle| \sum_{i=1}^{n} \epsilon_{i} \left(\sum_{j=1}^{J} f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) \right) \middle|$$

$$= \int_{0}^{\infty} \mathbb{P}_{\epsilon} \left(\sup_{\pi \in \Pi} \middle| \sum_{j=1}^{J} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \left(f(Z_{i}; A_{j}^{\pi}) - f(Z_{i}; A_{j-1}^{\pi}) \right) \middle| > t \right) dt$$

$$\leq t_{1} + \sum_{p=1}^{\infty} 2^{-p+1} (u_{p+1} - u_{p}) = \frac{4\Lambda}{n} \left(\kappa(\Pi) + \sqrt{2} + 1 + \sum_{p=1}^{\infty} 2^{-p+1} (\sqrt{p+2} - \sqrt{p+1}) \right)$$

$$\leq \frac{4\Lambda}{n} (\kappa(\Pi) + 7).$$

Putting everything together, we have that

$$\mathcal{R}_n(\mathcal{F}_{\Pi}) \leq \frac{8\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} (\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} + o\bigg(\frac{1}{\sqrt{n}}\bigg).$$

Define the oracle policy CVaR estimator with the true π_0 , $\{\mu_a, a \in A\}$, and the oracle policy VaR $\tilde{\beta}_{\pi}$ derived from equation 12:

$$\tilde{\mathcal{V}}_{\alpha}(\pi) := \frac{1}{n} \sum_{i \in \mathcal{D}} \phi(\pi, Z_i; \pi_0, \{\mu_a\}_{a \in \{0,1\}}, \tilde{\beta}_{\pi}) =: \frac{1}{n} \sum_{i \in \mathcal{D}} \tilde{\phi}(\pi, Z_i),$$

where $\mu_{\pi}(x) = \mu_{\pi(x)}(x)$ is constructed from $\{\mu_a, a \in \mathcal{A}\}$. Define $\tilde{\mathcal{F}}_{\Pi} := \{\tilde{\phi}(\cdot; \pi) \mid \pi \in \Pi\}$. The following corollary bounds the Rademacher complexity of $\tilde{\mathcal{F}}_{\Pi}$.

Corollary F.4. *Under Assumption 2.1 and 3.3*,

$$\mathcal{R}_n(\tilde{\mathcal{F}}_{\Pi}) \le \mathcal{R}_n(\mathcal{F}_{\Pi}) \le \frac{8\bar{y}}{\sqrt{n}}(\kappa(\Pi) + 7) + \frac{6\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

Proof. We apply Theorem F.3 with function class $\tilde{\mathcal{F}}_{\Pi}$, in which each function $\|\tilde{\phi}\|_{L_{\infty}} \leq \bar{y}$.

We are now ready to prove Lemma E.2.

Proof of Lemma E.2. We first note that for any $\pi \in \Pi$, the expectation of the oracle policy value $\tilde{\mathcal{V}}_{\alpha}(\pi)$,

$$\begin{split} &\mathbb{E}[\tilde{\mathcal{V}}_{\alpha}(\pi)] \\ &\mathbf{1631} \\ &\mathbf{1632} \\ &\mathbf{1633} \\ &\mathbf{1633} \\ &\mathbf{1634} \\ &\mathbf{1635} \\ &\mathbf{1635} \\ &\mathbf{1636} \\ &\mathbf{1636} \\ &\mathbf{1636} \\ &\mathbf{1636} \\ &\mathbf{1637} \\ &\mathbf{1638} \\ &\mathbf{1638} \\ &\mathbf{1638} \\ &\mathbf{1638} \\ &\mathbf{1639} \\ &\mathbf{1639} \\ &\mathbf{1640} \\ &\mathbf{1640} \\ &\mathbf{1640} \\ &\mathbf{1641} \\ &\mathbf{1642} \\ &\mathbf{1642} \\ &\mathbf{1641} \\ &\mathbf{1642} \\ &\mathbf{1642} \\ &\mathbf{1639} \\ &\mathbf{1640} \\ &\mathbf{1641} \\ &\mathbf{1642} \\ &\mathbf{1641} \\ &\mathbf{1642} \\ &\mathbf{1641} \\ &\mathbf{1642} \\ &\mathbf{1642} \\ &\mathbf{1642} \\ &\mathbf{1643} \\ &\mathbf{1643} \\ &\mathbf{1644} \\ &\mathbf{1644} \\ &\mathbf{1644} \\ &\mathbf{1644} \\ &\mathbf{1644} \\ &\mathbf{1645} \\ &\mathbf{1645} \\ &\mathbf{1646} \\ &\mathbf{16$$

To see the last equality, we note that, for the underlying true β_{π} of a policy $\pi \in \Pi$,

$$\beta_{\pi} + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\} (Y(\pi(X)) - \beta_{\pi})]$$

$$= \beta_{\pi} + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\} Y(\pi(X))] - \frac{1}{\alpha} \mathbb{P}(\mu_{\pi}(X) \leq \beta_{\pi}) \beta_{\pi}$$

$$= \beta_{\pi} + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\} Y(\pi(X))] - \frac{\alpha}{\alpha} \beta_{\pi}$$

$$= \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_{\pi}(X) \leq \beta_{\pi}\} Y(\pi(X))]$$

The policy value V_{α} is defined as the CVaR of policy π , and the dual formulation Rockafellar et al. (2000) of which is

$$\mathcal{V}_{\alpha}(\pi) = \inf_{0 \le V \le 1, \mathbb{E}[V] = 1} \frac{1}{\alpha} \mathbb{E}[VY(\pi(X))],$$

where we define $V := \mathbb{1}\{\mu(X) \leq \beta\}$ for some μ, β . The above infimum is achieved by the true μ_{π} and β_{π} .

Recall that $\|\phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi)\|_{L_\infty} \leq \bar{y}$. We apply Theorem 4.10 in Wainwright (2019) with results as Corollary F.4,

$$\begin{split} \sup_{\pi \in \Pi} |\mathcal{V}_{\alpha}(\pi) - \tilde{\mathcal{V}}_{\alpha}(\pi)| &= \sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) - \mathbb{E}[\phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi})] \right| \\ &\leq & 2R_n(\tilde{\mathcal{F}}_{\Pi}) + \bar{y} \sqrt{\frac{2}{n}} \\ &\leq & \frac{16\bar{y}}{\sqrt{n}} (\kappa(\Pi) + 7) + \frac{(12 + \sqrt{2})\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right), \end{split}$$

with probability at least $1 - \Delta$.

F.3 Proof of Corollary E.3

Proof. For any policy $\pi \in \Pi$ and any fold $k \in [K]$, we decompose:

$$\begin{split} \hat{\mathcal{V}}_{\alpha}^{(k)}(\pi) - \mathcal{V}_{\alpha}(\pi) &= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) \\ &= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) \\ &+ \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) \mid \bar{\mathcal{D}}^{(k)}] + \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) \mid \bar{\mathcal{D}}^{(k)}] \\ &= \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) \mid \bar{\mathcal{D}}^{(k)}] \\ &+ \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_{\pi}, \beta_{\pi}) \mid \bar{\mathcal{D}}^{(k)}] \right) \\ &- \left(\mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_{\pi}, \beta_{\pi}) \mid \bar{\mathcal{D}}^{(k)}] \right) \right) =: (I) + (II). \end{split}$$

We will bound the two terms separately, with fixed $\pi \in \Pi, k \in [K]$.

Let
$$d_1(\pi, Z_i) := \phi(Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_{\pi}^{(k)}, \hat{\beta}_{\pi}^{(k)}) - \phi(Z_i; \pi_0, \mu_{\pi}, \beta_{\pi})$$
. By Lemma E.1,

$$\begin{split} \sup_{\pi \in \Pi} |(I)| &= \sup_{\pi \in \Pi} |\mathbb{E}[d_1(\pi, Z) \mid \bar{\mathcal{D}}^{(k)}]| \\ &\leq \sup_{\pi \in \Pi} \left| \frac{2\bar{y}}{\alpha \varepsilon} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_2(P)} \\ &\quad + \frac{1}{\alpha} (F'_{\mu_{\pi}(X)} (F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) (\|\hat{\mu}_{\pi}^{(k)} - \mu_{\pi}\|_{L_{\infty}} + |\beta_{\pi} - \hat{\beta}_{\pi}^{(k)}|)^2 \\ &\quad + \frac{1}{2\alpha} (F'_{\mu_{\pi}(X)} (F^{-1}_{\mu_{\pi}(X)}(\alpha)) + 1) |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}|^2 \right| \\ &\leq \frac{2\bar{y}}{\alpha \varepsilon} \left(\max_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)}(a \mid X) - \pi_0(a \mid X)\|_{L_2(P)} \right) \left(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} \right) \\ &\quad + \frac{2}{\alpha} \left(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_{\infty}} + \max_{\pi \in \Pi} |\beta_{\pi} - \hat{\beta}_{\pi}^{(k)}| \right)^2 + \frac{1}{\alpha} \max_{\pi \in \Pi} |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}|^2. \end{split}$$

Applying Lemma 3.4, there exists some $N_{\beta} \in \mathbb{Z}_+$ such that when $n > n_1$, with probability at least $1 - \Lambda$

$$\max_{\pi \in \Pi} |\hat{\beta}_{\pi}^{(k)} - \beta_{\pi}| < \max_{a \in \mathcal{A}} ||\hat{\mu}_{a}^{(k)} - \mu_{a}||_{L_{\infty}}$$

which means

$$\sup_{\pi \in \Pi} |(I)| \leq \frac{2\bar{y}}{\alpha \varepsilon} \Big(\max_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)}(a \mid X) - \pi_0(a \mid X)\|_{L_2(P)} \Big) \Big(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} \Big) + \frac{8}{\alpha} \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty}^2 + \frac{1}{\alpha} \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty}^2.$$

On the event of Lemma 3.4, by Assumption 3.2, there exists some $n_1 \in \mathbb{Z}_+$ such that when $n \geq n_1$ with probability at least $1 - \Delta$,

$$\sup_{\pi \in \Pi} |(I)| \le \frac{2\bar{y} + 9}{\alpha \varepsilon \sqrt{n}}.$$

In summary, there exists some $N_1 = \max\{n_1, N_\beta\}$ such that when $n \ge N_1$, with probability at least $1 - 2K\Delta$, the above inequality holds.

We now turn to Term (II). Let $d_2(\pi, Z_i) := d_1(\pi, Z_i) - \mathbb{E}[d_1(\pi, Z) \mid \bar{\mathcal{D}}^{(k)}]$. Note that Term (II) is zero-mean:

$$\mathbb{E}[(II))] = \mathbb{E}\big[(\hat{\mathbb{E}}_k - \mathbb{E}_{|\bar{k}})[d(\pi, Z)]\big] = \mathbb{E}\bigg[\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i)\bigg] = \mathbb{E}[d_1(\pi, Z)] - \mathbb{E}[d_1(\pi, Z)] = 0.$$

1729 By Lemma E.1,

$$\begin{aligned} \left| d_{1}(\pi, Z_{i}) \right| &\leq \frac{4\bar{y}}{\alpha \varepsilon^{3/2}} \left| \hat{\pi}_{0}^{(k)}(\pi(X_{i}) \mid X_{i}) - \pi_{0}(\pi(X_{i}) \mid X_{i}) \right| + \frac{2}{\alpha \varepsilon} \left| \hat{\mu}_{\pi}^{(k)}(X_{i}) - \mu_{\pi}(X_{i}) \right| + \frac{1}{\alpha} \left| \hat{\beta}_{\pi}^{(k)} - \beta_{\pi} \right| + \frac{14\bar{y}}{\alpha \varepsilon} \\ &\leq \frac{4\bar{y}}{\alpha \varepsilon^{3/2}} \max_{a \in A} \left| \hat{\pi}_{0}^{(k)}(a \mid X_{i}) - \pi_{0}(a \mid X_{i}) \right| + \frac{2}{\alpha \varepsilon} \max_{a \in A} \left| \hat{\mu}_{a}^{(k)}(X_{i}) - \mu_{a}(X_{i}) \right| + \frac{1}{\alpha} \left| \hat{\beta}_{\pi}^{(k)} - \beta_{\pi} \right| + \frac{14\bar{y}}{\alpha \varepsilon}. \end{aligned}$$

Applying Lemma 3.4, there exists some $C_1 > 0$, $N_\beta \in \mathbb{Z}_+$ such that when $n > N_\beta$, with probability at least $1 - \Lambda$

$$\begin{aligned} \left| d_{1}(\pi, Z_{i}) \right| &\leq \frac{4\bar{y}}{\alpha \varepsilon^{3/2}} \max_{a \in \mathcal{A}} \left| \hat{\pi}_{0}^{(k)}(a \mid X_{i}) - \pi_{0}(a \mid X_{i}) \right| + \frac{2}{\alpha \varepsilon} \max_{a \in \mathcal{A}} \left| \hat{\mu}_{a}^{(k)}(X_{i}) - \mu_{a}(X_{i}) \right| \\ &+ \frac{1}{\alpha} \left(n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \left\| \hat{\mu}_{a}^{(k)}(X_{i}) - \mu_{a}(X_{i}) \right\|_{L_{2}(P)} + n^{-\frac{1}{4}} \right) + \frac{14\bar{y}}{\alpha \varepsilon} \\ &\leq \frac{14\bar{y}}{\alpha \varepsilon^{3/2}} \max_{a \in \mathcal{A}} \left(\left| \hat{\pi}_{0}^{(k)}(a \mid X_{i}) - \pi_{0}(a \mid X_{i}) \right| + \left| \hat{\mu}_{a}^{(k)}(X_{i}) - \mu_{a}(X_{i}) \right| + 1 \right) \\ &+ \frac{1}{\alpha} \left(n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \left\| \hat{\mu}_{a}^{(k)}(X_{i}) - \mu_{a}(X_{i}) \right\|_{L_{2}(P)} \right) =: \bar{d}_{1}(Z_{i}). \end{aligned}$$

Consequently,

$$|d_2(\pi, Z_i)| = |d_1(\pi, Z_i) - \mathbb{E}[d_1(\pi, Z_i)]| \le 2\bar{d}_1(X_i) := \bar{d}_2(X_i).$$

We now apply the bounded difference inequality in (Wainwright, 2019, Corollary 2.21) conditional on $X = \{X_i\}_{i \in [n]}$,

$$\begin{split} & \mathbb{P}\bigg(\sup_{\pi \in \Pi} \left| \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| - \mathbb{E}\bigg[\sup_{\pi \in \Pi} \left| \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| \mid X\bigg] \ge t \middle| X\bigg) \\ & \le \exp\bigg(- \frac{2|\mathcal{D}^{(k)}|^2 t^2}{\sum_{i \in \mathcal{D}^{(k)}} \overline{d_2^2}(Z_i)} \bigg). \end{split}$$

Setting $t = \frac{\sqrt{\sum_{i \in \mathcal{D}^{(k)}} \bar{d}_2^2(Z_i) \log(1/\Delta)}}{|\mathcal{D}^{(k)}|}$, then with probability at least $1 - \Delta$,

$$\sup_{\pi \in \Pi} \left| \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| \leq \mathbb{E} \left[\sup_{\pi \in \Pi} \left| \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| \mid X \right] + \frac{\sqrt{\sum_{i \in \mathcal{D}^{(k)}} \bar{d}_2^2(Z_i) \log(1/\Delta)}}{|\mathcal{D}^{(k)}|}.$$

Next, we turn to the expectation in the above inequality.

$$\mathbb{E}\left[\sup_{\pi\in\Pi}\left|\frac{1}{|\mathcal{D}^{(k)}|}\sum_{i\in\mathcal{D}^{(k)}}d_2(\pi,Z_i)\right|\mid X\right] \leq R_n(\mathcal{F}_{\Pi}(d_2)),$$

where we denote $\mathcal{F}_{\Pi}(d_2) = \{d_2(\pi,\cdot) \mid \pi \in \Pi\}$, in which $|d_2(\pi,Z_i)| \leq \bar{d}_2(Z_i)$. Applying Theorem F.3, we have that

$$\mathcal{R}_{n}(\mathcal{F}_{\Pi}(d_{2})) \leq \mathcal{R}_{n}(\mathcal{F}_{\Pi}) \leq \frac{8\sqrt{\sum_{i=1}^{n} \bar{d}_{2}^{2}(Z_{i})}}{n} (\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^{n} \bar{d}_{2}^{2}(Z_{i})}}{n} + o\left(\frac{1}{\sqrt{n}}\right).$$

Consequently, with probability $1 - \Delta$.

$$\sup_{\pi \in \Pi} \frac{1}{|\mathcal{D}^{(k)}|} \left| \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| \le \frac{\sqrt{\sum_{i=1}^n \bar{d}_2^2(Z_i)}}{|\mathcal{D}^{(k)}|} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}).$$

Now let $e(a,X_i):=(\hat{\pi_0}^{(k)}(a\mid X_i)-\pi_0(a\mid X_i))^2+(\hat{\mu}_a^{(k)}(X_i)-\mu_a(X_i))^2$. Since $e(a,X_i)\leq 1+4\bar{y}^2$, applying Hoeffding's inequality gives that

$$\mathbb{P}\left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \max_{a \in \mathcal{A}} e(a, X_i) - \sum_{a \in \mathcal{A}} \mathbb{E}[e(a, X)] \ge t\right) \\
\leq \mathbb{P}\left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \sum_{a \in \mathcal{A}} e(a, X_i) - \sum_{a \in \mathcal{A}} \mathbb{E}[e(a, X)] \ge t\right) \\
\leq \sum_{a \in \mathcal{A}} \mathbb{P}\left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} e(a, X_i) - \mathbb{E}[e(a, X)] \ge t\right) \le M(1 + 4\bar{y}^2) \exp\left(-2|\mathcal{D}^{(k)}|t^2\right),$$

recalling that |A| = M. Taking a union bound, with probability at least $1 - 2\Delta$, we have that

$$\begin{split} \sup_{\pi \in \Pi} |(II)| & \leq \frac{28\bar{y}}{\alpha \varepsilon \sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) \\ & \times \left(\sum_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} + \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} + 1 + \sqrt[4]{\frac{\log(M(1 + 4\bar{y}^2)/\Delta)}{2|\mathcal{D}^{(k)}|}} \right) \\ & + \frac{28\bar{y}}{\alpha \varepsilon \sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) \times \left(n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)\|_{L_2(P)} \right). \end{split}$$

By Assumption 3.2 $\sum_{a\in\mathcal{A}}\|\hat{\pi}_0^{(k)}-\pi_0\|_{L_2(P)}+\|\hat{\mu}_a^{(k)-\mu_a}\|_{L_2(P)}=o_p(1)$. Then there exists some $n_2\in\mathbb{Z}_+$ such that when $n\geq n_2$, with probability at least $1-4K\Delta$,

$$\sup_{\pi \in \Pi} |(II)| \leq \frac{28\bar{y}}{\alpha \varepsilon \sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) + o\bigg(\frac{1}{\sqrt{n}}\bigg).$$

Putting everything together, and setting $\Delta' = 6K\Delta$, with probability at least $1 - \Delta'$,

$$\sup_{\pi \in \Pi} |\hat{\mathcal{V}}_{\alpha}(\pi) - \mathcal{V}_{\alpha}(\pi)| \leq \frac{28\bar{y}}{\alpha\varepsilon\sqrt{n}}(8\kappa(\Pi) + 71 + \sqrt{\log(1/\Delta)}) + \frac{2\bar{y} + 9}{\alpha\varepsilon\sqrt{n}} + o\bigg(\frac{1}{\sqrt{n}}\bigg)$$

G HELPER RESULTS

Proposition G.1. For any sample size n, data set $\{x_1, \dots, x_n\}$ with size of n, and $\pi_1, \pi_2 \in \Pi$,

- 1. Triangle inequality holds for $D_2(\pi_1, \pi_2) \leq D_2(\pi_1, \pi_3) + D_2(\pi_3, \pi_2)$.
- 2. $N_2(\epsilon, \Pi, \{x_1, \dots, x_n\}) \leq N_H(\epsilon^2, \Pi)$.

Proof. Statement 1 is easy to show by triangle inequality. Statement 2 is proved similarly as in (Zhan et al., 2024, Lemma 1).

Proposition G.2. Conditioned on the data $\{X_1, \dots, X_n\}$, the sequence of refining approximation operators A_1, \dots, A_J as constructed above satisfies the following properties:

- 1. $\max_{\pi \in \Pi} D_2(\pi, A_I^{\pi}) \leq 2^{-J}$.
- 2. $|\{A_i^{\pi}|\pi\in\Pi\}| \leq N_2(2^{-j},\Pi,\{X_1,\cdots,X_n\}), \text{ for every } j=0,1,\cdots,J$
- 3. $\max_{\pi \in \Pi} D_2(A_i^{\pi}, A_{i+1}^{\pi}) \leq 2^{-(j-1)}$, for every $j = 0, 1, \dots, J-1$.
- 4. For any $J \geq j' \geq j \geq 0$,

$$|\{(A_j^{\pi}, A_{j'}(\pi))|\pi \in \Pi\}| \le N_2(2^{-j'}, \Pi, \{X_1, \cdots, X_n\}).$$

Proof. The proof can be found in (Zhou et al., 2023, Theorem 1, Step 1).