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ABSTRACT

The conventional offline bandit policy learning literature aims to find a policy that
performs well in terms of the average policy effect (APE) on the population, i.e. the
social welfare. However, in many settings, including healthcare and public policies,
the decision-maker also concerns about the risk of implementing certain policy.
The optimal policy that maximizes social welfare could have a risk of negative
effect on some percentage of the worst-affected population, hence not the ideal
policy. In this paper, we investigate risk sensitive offline policy learning and its
sample complexity, with conditional value at risk (CVaR) of covariate-conditional
average policy effect (CAPE) as the risk measure. To this end, we first provide a
doubly-robust estimator for the CVaR of CAPE, and show that the this estimator
enjoys asymptotic normality even if the nuisance parameters suffer a slower-than-
n~2 estimation rate (n being the sample size). We then propose a risk sensitive
learning algorithm that finds the policy maximizing the weighted sum of APE and
CVaR of CAPE, within a given policy class II. We show that the sample complexity

of the proposed algorithm is of the order O(K(H)TL_%), where x(IT) is the entropy
integral of 1I under the Hamming distance. The proposed methods are evaluated
empirically, demonstrating that by sacrificing not much of the social welfare, our
methodology improves the outcome of the worst-affected minority population.

1 INTRODUCTION

In a variety of fields, more and more decision-makers are learning to target products, services, and
information provision based on the user characteristics observed through user-specific historical data
(Bertsimas & Kallus,, 2020; Bastani & Bayati, [2020; [Farias & Li, [2019). For instance, precision
medicine learns the optimal personalized treatment from health care records (Kim et al., [2011; Chan
et al., 2012} |Ozanne et al.| 2014); personalized education selects which lessons and learning tools
to offer a student on the basis of characteristics and past performance (Tetzlaff et al., [2021); public
policies decides personal treatment, e.g. college financial-aid package distribution, re-employment
service, etc.(Atheyl [2017)). These practical needs drive a line of offline policy learning literature that is
devoted to developing efficient treatment assignment (policy) learning algorithms using historical data
(Dudik et al.; 2011} [Zhang et al.||2012; Swaminathan & Joachims}, 2015ajbic; [Kitagawa & Tetenov,
2018; |Athey & Wager, 2021} Zhou et al., 2023} |[Zhan et al.| 2023)). The optimization objective of
most of these works is to maximize the average policy effect (APE) on the population, i.e., the social
welfare, a key metric in offline policy learning (Rubin, (1974} Zhou et al., [2023).

However, it is widely recognized that policy effects can vary widely between individuals with
different characteristics (or covariates in offline policy learning literature), which is a common theme
underlying offline policy learning, known as heterogeneity (Crump et al.l 2008 [Heckman et al.|
1997). Therefore, even if the APE on the population is positive, there is a risk that many individuals
are harmed by the policy employment. Consequently, only considering the population APE does
not capture this risk. In many settings discussed previously, besides social welfare, decision-makers
concern about the policy effect on the worst-affected population. For example, late stage cancer
treatment concentrates on the average treatment effect on the population as well as the worst-possible
outcome; education plan considers its impact on the worst-performing students; and government
formulating policies would care for negative experience of the worst-affected population. If the risks
associated with the policy outweigh the social welfare it generates, deployment of such a policy is not
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justifiable to a rational decision-maker who considers equity beyond social welfare, even if the policy
is optimal in maximizing social welfare. This calls for a risk sensitive policy learning methodology
that would improve the outcome of the worst-affected population, and ideally not comprising too
much in terms of social welfare.

One appealing resolution is to focus on the distribution of the individual policy effect (IPE), instead
of the APE (i.e. the average of IPE over the population) as in the conventional offline policy learning
literature. Specifically, the risk sensitive learning object seeks to reduce the policy effect on the
worst-affected population, which is the tail of the IPE distribution. A suitable measure for describing
this risk is the conditional value at risk (CVaR) of the IPE distribution (Rockafellar et al., [2000)),
which is the average effects among, say, a% of the worst-affected population (o € [0,1)). Hence the
risk of the policy performance on the worst-affected a% of the population can be described by the
CVaR of IPE, and risk sensitive policy learning aims to maximize the CVaR of IPE.

One challenge is that the counterfactual IPE of any given policy cannot be directly observed from the
observational data. In consequence, it is difficult to learn the distribution of the IPE. However, given
rich and continuous covariate spaces, there are well-developed machine learning methods which can
be used to estimate covariate-conditional average policy effect (CAPE), which is the expected policy
effect conditioned on the individual covariate and would predict IPE well (Kiinzel et al.,[2019; Nie &
Wager, 2021; [Wager & Atheyl 2018)). A detailed discussion on CVaR of IPE and CAPE is given in
Section 211

Adopting CVaR of CAPE as a policy risk measure, this work aims to fill in the gap between the
current offline policy learning literature and the practical needs of risk sensitive policy learning. We
present a risk sensitive policy learning algorithm that finds the policy that maximizes the weighted
sum of the APE and the CVaR of CAPE, within a given policy class, taking both risk and social
welfare into consideration.

1.1 OUR CONTRIBUTIONS

Policy CVaR Inference Given a policy, we describe the risk of it through CVaR and investigate
the relation between the CVaR of IPE and that of CAPE. We provide a doubly robust estimator
for CVaR of CAPE, which achieves asymptotic normality even if the nuisance parameters suffer a
slower-than-n "2 estimation rate.

CVaR based Risk Sensitive Policy Learning We propose a risk sensitive policy learning scheme
that maximizes the weighted sum of APE and CVaR of CAPE over a given policy class II. We
provide a sample complexity analysis, and show that our algorithm has a suboptimality gap of the
order O(r(IT)n "2 ), where «(II) is a measure quantifying the policy class complexity and n is the
number of samples. This result agrees with the sample complexity of other offline policy learning
algorithms that maximize social welfare in literature.

Empirics We provide efficient implementation of our risk sensitive learning algorithm, and compare
its empirical performance with existing benchmark of CAIPWL (Zhou et al.,[2023)), which aims to
maximize the APE. The results present empirical evidence that our risk sensitive policy improves the
outcome of the worst-affected population with little compromise in social welfare.

1.2 RELATED WORKS

Risk and CVaR CVaR is a very popular choice of risk measure, particularly in the finance literature.
Various methodologies for the modeling risks through CVaR can be found in [Duffie & Pan| (1997);
Jorion| (1996)); [Pritsker| (1997)); IMorgan| (1995); Simons| (1996); |Beder| (1995); |[Stambaugh| (1996));
Artzner| (1997); |Artzner et al.| (1999). We refer the readers to [Mausser| (1998)); Embrechts et al.
(1999); Pflug (2000) for detailed discussions on CVaR and its properties. |[Embrechts et al.| (1997)
provides case studies of CVaR as a risk measure in insurance industry; while Bucay & Rosenl (1999);
Andersson et al.|(2001) used CVaR for credit risk evaluations. Later, [Kallus| (20235 2022) used CVaR
as a risk measure of treatment effect and discussed inference method of treatment effect CVaR.

CVaR in Reinforcement Learning The reinforcement learning (RL) literature has pioneered method-
ologies of risk sensitive learning under a CVaR objective, in the framework of Markov decision
process (MDP) (Metelli et al., 2021} |Sakhi et al., 2024} Behnamnia et al.), where the algorithm learns
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while acts (Chow et al.,2015)). These works usually assume that propensity score (the probability of
choosing an action conditioned on the covariates) is known and Monte Carlo estimation is feasible.
In contrast, our setting relies solely on an offline observational data with unknown propensity score,
rendering sampling-based methods inapplicable.

More closely related to our work is the literature on risk-sensitive online and offline policy learning.
Popular multi-armed bandit (MAB) algorithms, such as upper confidence bound and Thompson
sampling, have been studied extensively in the context of CVaR based risk sensitive MAB (Galichet,
20155 |Galichet et al., 20135 |Cassel et al., {2018} [Tamkin et al.;, 2019; |Baudry et al., 2021} Tan & Weng,
2023). However, nearly all of these works disregard individual covariates, and thus the resulting
algorithms cannot minimize risk at the population level. |Qi et al.| (2023) studied a similar CVaR
based risk minimizing offline policy learning, under the assumption of known behavior policy in the
two-action setting, but proved a suboptimal regret bound of O(n~ Z=+1 ) where w € (0, 1].

Offline policy learning There is a long list of works devoted to offline policy learning (Dudik et al.,
2011} Zhang et al., 2012} Swaminathan & Joachims| |2015abic} [Kitagawa & Tetenov, 2018; |Athey &
Wager, 2021; Zhou et al., 2023 [Zhan et al., 2023 Jin et al., 2021; 2022} [Ben-Michael et al., 2024).
In particular, Swaminathan & Joachims|(2015a) proposed the classical inverse-propensity weight
learning (IPWL) that optimizes policy to maximize the APE with known propensity score. [Zhou et al.
(2023) later introduced the cross-fitted augmented inverse propensity weighted learning (CAIPWL)
for learning with unknown propensity score. Policy learning under biased samples and distributional
shifts also found to be closely related to CVaR (Sahoo et al., [2022; [Lei et al., 2023} Mo et al., [2021)).

2 PRELIMINARIES

Let A be the set of M actions A := {1,--- , M}, and let ¥ C R be a compact set of covariates.
Given some action a € A, the reward distribution Y (a) € ), C R denotes the potential reward
obtained from taking the action a. We consider a training dataset D = {(X;, A;,Y;)}ic[n) con-
sisting of n i.i.d. draws of (X, A,Y") generated as followsﬂ The covariate and potential rewards
(X,Y(1),---,Y(M)) are drawn from the underlying environment P. [| Some unknown behavior
policy g selects an action given the covariate: A ~ my(X ), where the propensity score mo(a | X)
is the probability of A = a given the covariate X. In the data set D, only the factual reward
corresponding to the chosen action Y = Y (A) is observed. We assume the following for g and P.

Assumption 2.1 (Regularity). The behavior policy g and the environment P satisfy the following: 1.
Consistency: Y = Y (A); 2. Unconfoundedness: (Y'(1),---,Y(M))_ A|X, 3. Overlap: for some
e>0,mo(a|xz) >e¢ forall (a,z) € Ax X; 4. Bounded Reward: 0 < Y'(a) < g fora € A.

Assumption [2.1] is standard in offline policy learning literature (see e.g., [Athey & Wager, 2021}
Zhou et al.,|2023)). The unconfoundedness assumption guarantees identifiability; whiles the overlap
assumption ensures sufficient exploration when collecting the data set D via a positive lower bound
on the propensity score. The third assumption of bounded reward support is largely technical to
make later analysis tractable. In fact, our methodology can be extended to sub-Gaussian rewards
straightforwardly , which we show empirically in Section 5]

Our task is to learn a risk sensitive policy m in a given policy class II from the training dataset D.

2.1 PoLicy CONDITIONAL VALUE AT RISK

The policy risk measure of interest is the Conditional Value at Risk (CVaR), which is defined below.

Definition 2.2 (CVaR). E]With respect to a specified probability level o € [0, 1], the a-level Value at
Risk (VaR) of a random variable R € R is the lowest amount (3 such that, with probability o, R will
not exceed 3. The a-level Conditional Value at Risk (CVaR) is

CVaR,(R) := stgp (ﬁ + éE[(R — 5)*]) €))

'We will later use the shorthand Z := (X, A,Y).
>Throughout the paper, the expectation E and probability P are taken over P unless stated otherwise.
3CVaR is sometimes defined for the right tail of R, corresponding to —CVaR(—R) in our definition.
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Remark 2.3. The sup is attained by j3 being the a-quantile: F,' (o) = inf{8 : Fg(3) > a}, where
Fr(r) =P(R < r). Here (3 is the a-level VaR of R. If R is continuous, then CVaR,(R) = E[R |
R < Fp'()]; otherwise CVaR,(R) € [E[R | R < F'(a),E[R| R < Fi'()]].

According to Definition[2.2} given a policy 7, the a-level CVaR of the IPE CVaR,, (Y (7(X))) is the
average policy effect among the (100 x «)%-worst affected population. Let p1.(X) := E[Y (7(X)) |
X denote the CAPE. The next corollary following (Kallus, 2023} Theorem 3.1) gives an upper bound
of CVaR of IPE by that of CAPE CVaR,, (11 (X)).

Corollary 2.4. For any o € [0, 1] and a policy w1, CVaR, (Y (7(X))) < CVaRy (pr (X)).

Since CAPE represents our best guess for IPE, it is reasonable to impute the random and unknown
IPE Y (7(X)) with CAPE p,(X). Consequently, CVaR (., (X)) can be seen as a substitute for
CVaR(Y (X)), and a reasonable measure of policy risk.

Formally, our goal is to learn a risk sensitive policy with a high CVaR,, (u, (X)) from D, with a given
target a-level. Our challenge is two-fold: (i) inference of CVaR,, (1, (X)) of a given policy 7 under
slow parameter estimation rates of the nuisance parameters; (ii) risk sensitive policy learning whose
a-level CVaR,, (1 (X)) is high. Specially, we focus on deriving fast rate policy CVaR estimation
and subsequently provide parametric rate sample complexity for policy learning.

3 PoLicy CVAR INFERENCE

In this section, we concentrate on the first task of policy CVaR inference. We define the policy CVaR
1 _
Vo () :=CVaRa (1 (X)) = sup {ﬂ + ~E[(ur(X) = 8) ] } @

and denote S as the optimizer 3 := argsupg{ + E[(p-(X) — 8) |} in equation which is
the a-level VaR of pi,(X).

Since the CAPE p,. is not directly observed, the first step is fitting it. Let /i, be the estimator of ji
and let W, (X;) := 1{A; = w(X;)}Y;. The causal inference literature provides that /i, can be fitted
via off-the-shelf estimation algorithms using {W(X;) : i € D} (Hastie et al.,[2017}; |Zhou et al.,
2023), e.g., logistic regression, random forests (Ho et al.||1995), kernel regression (Nadarayal |1964;
Watson, [1964), local polynomial regression (Cleveland, |1979;|Cleveland & Devlin, |1988).

Given an estimator ji,, an naive policy CVaR estimator is the plug-in estimator

V() = Sup(8 3 (e (X0) — ).

nao 4
~plug-i o . S
However, the performance of V5"®™ depends on the estimation of /i, which is prone to slow
convergence rates and potential bias in regression estimation.

We circumvent the issue via a debiasing approach (Kallus, [2023)) that is insensitive to the estimation
of 1, and thus achieving satisfying policy CVaR estimation rate even in face of the slow convergence
rate of /ir. Algorithm [I]summaries the inference procedure, which computes the sample average of

.. A . 1 .. o 1{A=n(X)} . 5
Z; m Pr) ‘= Pr -1 ‘n'XSrr 7TX AiY*ﬂX*ﬂ-
O, 7o i, ) 1= B Wi (X) < B} (1 () + =P (Y = e (X)) = )
Here the propensity estimator 7 is the estimated propensity score and the estimated policy VaR is
B =it {8 > (1 (X:) < B} — ) > 0}, 3)
i€D

We also adopt the cross-fitting technique (Schick, [1986; Zheng & van der Laan, |2011) over K folds
so that the nuisance estimators (fi, 7o, B,r) are independent of the data points used for the overall
sample average of ¢. We split the dataset D randomly into K fold and denote each fold as D¥) for
k € [K]. Atevery k € [K] fold, we use the off fold dataset D*) := {D() : i # k mod K} to

estimate the propensity score 4. Denote D) := {(X;, A;, ;) : i € D®), A; = n(X;)}. We fit
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Algorithm 1 Policy CVaR Inference

Input: Data D, policy m, CVaR threshold «, regression algorithm R for estimating p,. and
propensity score 7.

Randomly split D into K equally-sized folds;

fork=1,--- /K do

Estimate 7% ~ R({(X;, 4;) :i € D®}) and 4 ~ R{(X;, W (X;)) : i € D))
Find A% with 4 and D® as in equation
Compute the kth-fold Vi*)(m) ¢ oty Sicpnr o(m, Zis ity i, 55):

end for )
Output: Va( )_ KZk 1 ( )

i) by the off fold {W,(X;) : i € DY}. The kth fold policy VaR A% is found via equation

Finally, the kth fold CVaR estimator is the sample average of ¢(m Zl, 7 () , /l,(rk), B,(Tk)) on the kth

fold D(*), and the policy CVaR estimator is the sample average of {Va (7)Y kel k-

Remark 3.1. If o = 1, then CVaR, (1 (X)) = E[pr(X)] = E[Y (n(X))], and V,, is reduced to the
Cross-fitted Augmented Inverse Propensity Weighted (CAIPW) estimator|Zhou et al.|(2023)) for the
inference of APE E[Y (7 (X))], with unknown propensity scores.

3.1 CONSISTENT PoLIiCcY CVAR ESTIMATOR

In this section, we look at the asymptotic behavior of the proposed policy CVaR estimator. We first
make some standard assumptions on the estimation rates (Zhou et al., 2023} Kallus| [2023)).

Assumption 3.2 (Asymptotic estimation rate). Suppose that for each fold k € K| and any policy
m € II, we assume that ||7i'(()k) — 70l La(p) = 0p(1), H/L(Tk) — pirl|Lo(Py = 0p(1). Furthermore, we

~(k ~(k _1 ~(k _1
assume that |75 — || 1 (py - 1AL — pixl|La(py = 0p(n7 %), |3 = pallr. = 0p(n ).

Assumption is nonrestrictive, as it suffices to have slow o, (n*i)-rates on both CAPE and
propensity score estimation or no rate on CAPE estimation if the propensity score is known. We
impose smoothness of i, on the rich covariate space X to ensure that the CAPE estimator attains the
op(n’ %) convergence rate in L.-norm (Stone, |1982). Recalling the definition of y,, the smoothness
of f1 is justified as long as the conditional expectation E[Y (a) | X] is well-behaved and smooth in X,
which is a common requirement in off-policy learning literature (Zhou et al.,2023)). Provided that 1,
is sufficiently smooth, many estimation methods discussed previously in the double-machine-learning
estimation literature(Chernozhukov et al.,[2018}; [Farrell, 2015)) can easily achieve Assumption@

We also need another assumption that prohibits degeneracy of the quantile.
Assumption 3.3 (Regularity of Quantile). For all m € 11, we assume that the CDF F,, (x) is
continuously differentiable at F ( X) («) for the given « € [0, 1].

Under well-behaved conditional outcome distributions Py ()| x , @ € A, we may safely assume the
above condition holds uniformly for all = € II. In particular, we require a locally smooth PDF of

1 (x) around F o). If i (X) is discrete, Assumptloncan be replaced by F - (X)( —€) =

E. 1(X) (o + €) for some € > 0 (Kallus| [2023). A sufficient condition is that the CDF Fy (a)x of
the conditional outcome Py (,)| x is smooth for a € A, and, by the bounded-reward assumption, its
corresponding PDF is bounded. Under the unconfoundedness assumption in Assumption [2.1] this
implies that the induced distribution of 1 (X) also has a well-behaved PDF. Consequently, we are
able to define the uniform bound Fo, := sup cp F), () (F); L(a)) over the policy class II.

Since B,r is derived by ﬂgr )in equation the following lemma translates the convergence rate of

( Vin Assumptlonto that of 3. Tts proof is in Appendlx

Lemma 3.4 (Convergence rate of @r) Under Asmmpnon n E and . forall k € [K], the
estimation error |ﬁ7r — Bel = Op(n2 v ||u — prllp 7“ Py VT € 1, ).
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We are now ready to show the the asymptotic normality of the CVaR policy estimator in Algorithm [T}
despite of the slow estimation rates in Assumption[3.2] The proof is deferred to Appendix [E.3]
Theorem 3.5 (Asymptotic Normahty) Under Assumption[2.1] 3.2 and[3.3) for any 7 € 11, we have
V(Yo (1) = Vo (1)) = N(0,02), where 02 = Var(¢(Z; 7o, i, Br ))-

4 CVAR BASED RISK SENSITIVE POLICY LEARNING
We now turn to the second goal and present our CVaR based risk sensitive policy learning (A-aRSL).

4.1 WEIGHTED PoOLICY VALUE

A straight forward candidate of risk sensitive policy in a policy class II is the one that maximizes
the policy CVaR,, (- (X)). In many applications, only considering the CVaR objective could be
too conservative, as it is also important to monitor the APE. We propose the learning objective that
maximizes the policy value U o (), which is the weighted sum of the APE and the policy CVaR
with weighting parameter A € [0, 1]:

Una(m) :=2Q(m) + (1 — AM)Vu(m), Vmell 4)

where Q(7) := E[Y (n(X))] = E[E[Y(n(X)) | X]]. Detailed discussions of the choice of A
empirically and theoretically are given in Section [5|and Appendix [B|respectively. Zhou et al.| (2023)
provided the well-known CAIPW Learning (CAIPWL) scheme for policy learning under the APE
maximization objective.

We define the optimal policy of a policy class II to be 7* = max e Uy o (7). Policy learning task
finds a near-optimal robust policy m € II whose policy value is close to the optimal policy. The
performance of a learnt policy 7 is measured by the sub-optimality gap (regret), defined as

Ry o() :=Ux o (%) — Un,o (7). 5)
4.2 RISK SENSITIVE POLICY LEARNING

To find the optimal policy 7* that maximize the policy value Uf) ., the major challenge is the
estimations of i, and ;. This is because both p, 3, are functions of 7, and it is infeasible to
estimate for every 7 within a policy class II containing an infinite number of policies.

To tackle the first issue of p, estimation, we can express u..(X) as a function of the policy action
m(X): pr(X) = 251\/1:1 1{m(X) = a}pa(X). To be more precise, we estimate p,(X ) by collecting
{Wa(Xi) = 1{A; = a}Y;,i € D}aeca. We can construct fir (X) = firx)(X) with {fi,,a € A},
for any policy m € II,. As before, we adopt the cross-fitting technique over K folds to avoid
dependence between ji, and the data points used for calculating the sample average.

Deriving the estimator /i, also benefits the learning of the APE Q(w). As discussed before, Q(m)
can be learnt via CAIPWL |Zhou et al.| (2023), which maximizes the CAIPW estimator Q(m)

o g oy . HA=T(X)} - (k) < (k)
d}( 7Z? 0 Hx ) ﬁ'ék)(ﬂ'(X)|X)(Y M (X))+Mﬂ (X)v

K
O (m) = 3w, Zis 7, i), Q) = Z ©)

[D®)]
ieD® K=

Given { ﬂSf) (X3) biepos equationﬁnds the policy VaR B for a specific policy 7 € II. Previously
() can be decoupled on the action level, thus transforming the infeasible task of computing a class
of infinite nuisance parameters {1, : = € II} to the feasible task of computing a finite one, however
this is not implementable for estimating 3., which imposes the second challenge. We tackle the issue
by jointly optimizing the nuisance parameter B, and policy 7 (by taking policy gradient updates)
in an alternating fashion. In particular, we start by initiating a random policy 7 and estimate its 3.
Then, we take gradient steps to maximize 7 € arg max, i U o(7) := AQ(7) + (1 — MV (7),
where Vo (1) = £ S0 S cp o(m, Zis 7 8 0 3% while updating (3 along the way. Such
process ends when the learnt policy converges. Detalls of A-aRSL is in Algorithm 2]
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Algorithm 2 \-aRisk-Sensitive Learning (A-aRSL)

Input: Data D, policy class II, CVaR threshold «, objective weighting parameter ), regression
algorithm R for estimating 11, (X) and propensity score .
Randomly split D into K equally-sized folds;
fork=1,--- /K do

Estimate 7% ~ R({(X;, 4;) : i € D®)});

fora € Ado

Estimate 15" ~ R({(X;, Wa(X;)) : i € D®);

end for
end for .
Initiate some 7 € IT and estimate {ﬁ;k)}ke[;q with {ﬂék)}ke[K]yaeA;
while 7 does not converge do

Update 7 by some gradient steps to maximize U o, (7);

Estimate {5 }eqx) with {5} ke (i) acas
end while
Output: 7.

Remark 4.1 (Convergence of \-aRSL). We note that the policy learning objective Z/A{)\,a () is
nonsmooth (due to the indicator functions) with weak concavity structure, which poses particular
computation challenges that are common in RL in general (Kaelbling et al.||1996). As the scope of
this work does not include developing optimization method for nonsmooth and nonconcave objectives,
we defer further discussions on the theoretical convergence of A\-aRSL to Appendix[C} The alternating

optimization scheme shown in Algorithm2|is an empirically proven heuristic optimization of Uy ()
that is easy to implement with a variety of optimization methods, including AdaGrad (Duchi et al.,
2011) and RMSProp (Hinton et al.| 2012} \Graves, 2013} Ziyin et al.| 2020). We shall see an efficient
implementation with a softmax policy class in Section

4.3 MAIN REGRET ANALYSIS

In this section, we present the regret analysis of A-aRSL. Before we embark on the regret result, we
need to introduce the Hamming entropy integral r(II), which measures the complexity of II.

Definition 4.2 (Hamming entropy integral). Given a policy class 11 and dataset {x1,...,x,} C X,
(1) the Hamming distance between w, ' € Il as Dy (m,7') == 23" 1{m(x;) # 7' (z:)}; (2)
the e-covering number of {x1, ...,z }, denoted as Ny (e,11; {x1, ..., 2, }), is the smallest number
N of policies {m1,...,nn} in I, such that ¥ m € II, 3w, such that Dy (7, 7)) < € (3) the

Hamming entropy integral of II is defined as x(II) := fol v/1og Ny (€2, 11) de, where Ny (e,11) :=
Suanl Suprl,...,zn NH(€7 Ha {xlv e 71’,7})

We now present the regret guarantee of the policy 7 learnt by A-aRSL. The proof is deferred to
Appendix [E.4] The main idea is to first decompose the regret

Ra () =Una(m7) = Una(7) = MQ(1") — Q7)) + (1 = A)(Va(7") = Va(@)). (D
Note that the first term can be translate to the supremum of the estimation error:

AMQ(m*) — Q%) + Q(7*) — O(#) + Q(7) — Q(#)) < 2A sup |Q(7) — Q(n)],

and bounded by the known results from|[Zhou et al.| (2023)). We concentrate on the second term, which
can be similarly upper bounded by

(1 - )‘> (Voz(ﬂ*) - Va(ﬁ—)) < 2(1 - )‘> sup |Va(7r) - ]}a(ﬂﬂ' (8)

mell
At a high level, we bound the right hand side of equation [§| by establishing uniform convergence
results for the policy CVaR estimators, through a careful chaining argument.

Theorem 4.3. Under Assumption and there exists some N € Z. such that with
n > N and denoting q := sup,, ., E[((m1, Z; 70, pta) — ¥(72, Z; 70, f1a))?], we have that with
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probability at least 1 — A, the regret of \-aRSL

Ry.a(7) gA\/g(54.4\/§m(H) 4 435.2 4 /2 log(l/A))

56

ae\/n

Theorem ¥4.3[shows that the dependence of Ry () on the sample size n is of order O(n~z), which
agrees with the regret guarantee of CAIPWL Zhou et al.|(2023). This implies that the CVaR based
risk sensitive policy learning with A-aRSL attains the same order of sample complexity as other
offline policy learning algorithms, especially CAIPWL which maximizes average policy effect, i.e.
social welfare, with no consideration of risks.

F (1) ((8 + ae)w(Il) + Fo /3 + (64 + 5ag) + log(l/A)).

5 EXPERIMENTS

We evaluated the performance of \-aRSL against the benchmark CAIPWL Zhou et al.[(2023).

a=0.01 a=0.05
3
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Figure 1: The estimated %a(uﬁ()()) under a-level 0.01, 0.05 and 0.1, of learnt policies 7 €
{CAIPWL, A\-aRS, A = 0,0.2,0.5,0.7} on n =1000 training data points, over 50 seeds.

Data Generating Process The data generating process follows that of the classical linear boundary
example in |Si et al.| (2023). We generate 50 training datasets of data tuple (X, A,Y), with a
behavior policy m; and similarly generate 50 testing datasets, each of size 10,000. The covariate set
X = {x € R®: ||z||2 < 1} is the closed unit ball of R and the action space is A = [3]. The covariate
are sampled independently X ~Unif(X'); the action A ~ 7y(X) and the rewards Y (a)’s are mutually
independent conditioned on X with Y (a) | X ~ N(3/) X, 02), for 8, € R?,0, € R,a € A. Note
that the reward distributions here are not of bounded supports.

Implementation with Softmax Policies We implement A-aRSL and the benchmark CAIPWL on
a softmax policy class II. Given a covariate z € X, each policy 7 € II chooses its action a € A
with probability 7(a | ) o< exp(z " v%) with some policy weights {v%},c.4. We consider the neural
network softmax policies with a hidden layer of 32 neurons and ReL.U activation.

In our implementation, the learning parameters are set to be the same for both A-aRSL and CAIPWL.
The number of data splits is taken to be K = 2. We use the Random Forest regressor from the
scikit—learn Python library to estimate 7y and {4 }aeca. For the policy gradient step, we
implement A\-aRSL by maximizing the objective in equation ] using AdaGrad with a learning
rate of 0.01. For CAIPWL, we use RMSProp to maximize its objective equation [6] Since the
objective equation 4] and equation [6] are non-convex in the policy weights, following Dudik et al.
(2011); Kallus et al.[(2022), every policy update is repeated 10 times with perturbed starting weights
and the best weights based on the chosen policy learning objective. The policy convergence criteria is
whenever the difference between the previous and the updated policy value to be less then 1e-5.

Performance Metrics We compare the performance of the learnt policy 7 by A\-aRSL and the
benchmark CAIPWL with the following two metrics: (i) empirical CVaR of CAPE (empirical policy
CVaR); and (ii) empirical APE, on the testing dataset. The two metrics are defined formally as

CVaR o (p5(X)) 1= Bop,, [12(X) | ua(X) < B (@)], BY(#(X))] 1= B, [Y ((X))].
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Table 1: The estimated E[Y (7(X))Junder a-level 0.01, 0.05 and 0.1, of learnt policies & €
{CAIPWL, A\-aRS, A = 0,0.2,0.5,0.7} on n =1000 training data points, over 50 seeds.
F | E[Y (#(X))]
A-oRS | a=0.01 a = 0.05 a=0.1
A=0.0 | 0.370+1e-2 0.365+1e-2 0.365+1e-2
A=0.2 | 0370+1le-2 0.365+1e-2 0.368+1e-2
A=0.5 | 0.372+1e-2 0.368+1e-2 0.371+1e-2
A=0.7 | 0.370+1e-2 0.368+1e-2 0.373+1e-2
CAIPWL ‘ 0.376£1e-2

Here we use £, to denote the empirical CDF of a random variable Z. For every experiment
environment, we test weighting parameters A\ € {0,0.2,0.5,0.7} and CAIPWL. Note that when
A = 0, the training objective equation @] reduces to policy CVaR maximization objective equation
when A = 1, A-aRSL reduced to the benchmark CAIPWL.

Results and Discussion Figure [T] and Table [T| respectively report the empirical policy CVaR and
APE of the learnt policies on training datasets of size n = 1000, under «a-levels 0.01, 0.05 and 0.1.
Appendix D] provides detailed results of the performances on different samples sizes in Figure 3} and
presents the empirical policy CVaRs under large o-levels (a = 0.2, 0.5, 0.9) in Figure 3]

Our proposed A\-aRSL outperforms the benchmark CAIPWL in terms of empirical policy CVaR,
particularly in the small « regime (o = 0.01,0.05, 0.1). On the other hand, CAIPWL attains a higher
average empirical APE, whereas A-aRSL exhibits a modest, yet statistically insignificant, reduction
in average empirical APE. For a larger value of o = 0.2, although the improvement in policy CVaR
provided by A-aRS diminishes, the quantile of the policy CVaR becomes tighter. This indicates that
A-aRS offers more stable performance with respect to the CVaR criterion. As the value of «v increases
(particularly when o > 0.5), the performance of A\-aRS becomes increasingly similar to that of
CAIPWL. This occurs because A\-aRS places greater emphasis on the majority of the population
as o grows, effectively reducing its objective to that of CAIPWL. Consequently, when « is large,
practitioners are primarily optimizing outcomes for the majority group, which is aligned with the
goal of CAIPWL, and therefore CAIPWL is recommended in such settings. This also demonstrates
that A-aRSL performs best when the goal is to target and improve the risk, i.e., the worst outcomes
experienced by minority groups in the population.

The heatmap of Figure [3 further visualizes this trade-off between risk and social welfare through
the weighting parameter A and a-level. Large A under small a-level results in a much greater
improvements in policy CVaR (~0.12), compared to its loss in APE (~0.008). This improvement
diminishes as « increases. Conversely, a large A helps prevent reductions in social welfare. As A, a
both increases, the performance of A\-aRSL is similar to that of CAIPWL.

Increase in Estimated a-level CVaR of u,;A(Xi Decrease in Estimated APE of fl)\
- 012
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Figure 2: The average EVé/Ra( p#(X)) increase (right) and the average E[Y (#(X))] decrease (left)
compared to CAIPWL under different a-levels and A for 7 = A-aRSL, over 50 seeds.

In conclusion, the empirics show that A-aRSL improves the outcome of the worst-affected minority
population by sacrificing little social welfare.
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A NOTATION

We use [n] to denote the discrete set {1,2,--- ,n} for any n € Z. We use argmin and argmax to
denote the minimizers and maximizers; if the minimzer or the maximizer cannot be attained, we
project it back to the feasible set. We denote v~ := uA0 = min{u, 0} for u € R. We denote the usual
p-norm as || - || . For simplicity, we let || - || denote the 2-norm || - ||2. Denote P to be any probability
measure defined on the probability space (2, 0(2), P). For any function f, we denote the L,.(P)-
norm of f conventionally as || f||z,py = ([ | f(x)[P dP(z))"/? and || f|| .. = supex |f(x)]. We
also denote = := 2 A 0 = min{z, 0} for € R. For any random variables X, Y, we use X 1l Y to
denote that X is independent of Y. For a random variable/vector X, we use Ex[] to indicate the
expectation taken over the distribution of X.

B  WEIGHTING PARAMETER AND CONSTRAINED POLICY LEARNING

As discussed in Section[5} empirically, the weighting parameter A controls how much Algorithm 2]
would like to hedge against the policy CVaR. Higher A results in a lower CVaR of CAPE and higher
APE.

Theoretically, we can interpret A as an Lagrangian variable of a risk-constrained policy learning
problem. The maximization of the policy learning objective in equation []is equivalent to

1-A
max Q(m) + TVQ (m) =: max Q(m) + nVu (), )

where we set ) := % The above is equivalent to the Lagrangian form of the CVaR constrained
policy learning problem:

ma E[Y (7(X))] (10)

s.t. CVaR(u,(X)) > ¢,

where c is some risk tolerance threshold determined by the decision maker, that satisfies the following
assumption.

Assumption B.1. The feasible set S. = {m € II : CVaR, (7 (X)) > c} is not empty.
Let p4(x) = E[Y (a) | X = z]. Then, by the definition of 7, we can write

BY (r(X))] = [ 3 wla | oha(o) .
T acA
Therefore, for any 71,72 € IIand ¢ € (0, 1),

E[Y ((tm + (1 —t)m2)(X))]
:/ S (tm(a | 2) + (1 - )ma(a | 2))a(z) dPx

TacA

:/ Z tm(a | 2)pe(z) dPx —|—/ Z(l —t)me(a | ) pq(z) dPx
TacA TacA

=tE[Y (m1(X))] + (1 = ) E[Y (m2(X))].

Combining the above with Assumption[B.1]and the concavity of CVaR,, (7 (X)) shown inRockafellar]
et al. (2000), we conclude that the Slater’s condition holds and strong duality holds for the below
dual of Problem equation [T0f

minmax E[Y (7(X))] 4+ n(CVaR, (7 (X)) — ¢).

n>0 well

To solve the risk constrained policy learning problem equation [I0|using the training dataset D, solve

K K
1 & )
- = (k) n (k)
o0 e K];Q (W)+K§VO‘ ()

s.t. Bfﬁzinf{ﬁ: > (ﬂ{ﬂa’”(xi)sﬁ}—a)zo}, Vk € [K], 7 €I,

ieDK)
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where { Q) (), p k) (7) }we[K),~en are as defined before. Recent literature has provided efficient
algorithms to find min-max-min problems as the above. One could apply a first-order method ProM3
in|Tu et al.| (2024) to solve the risk constrained policy learning problem.

C CONVERGENCE OF A-aRSL

Recall that the policy learning task requires us to maximize the following deterministic objective

Uso (T ZID““ Z ()\ (m, Zi g7, i M Yaer)

1ED(’€)
+ (1= N) - 0, Zis 78, {1 Yaeran, 1B brerx))),
(r. {B0})

with a bilevel structure

max  f(m, {5}
i B§k>:inf{6: ) um;’“(mgm—a)zo}, vk € K],

ieDk)
The inner-level optimization problem has a closed form solution {Bfrk)} which is the empirical
VaR,, (1% (X;)), i.e., the o/ D®)|-th ordered statistics of {15 (X:)}iepto .

On the other hand, the upper-level objective function f is neither smooth nor convex, which poses
particular computational challenges. To overcome this issue, consider the smoothed version f for f,
which adopts the sigmoid approximation for the indicator function in ¢:

Fm (5 KZmn S (v wtm Za a8 o)

ieDF)
(1= ) B, Zis 78, (i Yaetan, 1 b)),

with o(x) = ﬁ, 7 > 0 a small constant, and

¢( Zuﬂ-o {Ma }ae [M]» {B }kE[K)
(k) _ ~(k)
5 1 T T Mw Xz ~ A1 Xz ~ A
o0 1 L (P B XY (¢ AR (v ) - ).
T 7o (Ai | Xi)
In this way, we can apply gradient ascent method under the smooth objective f . At each time ¢, we
take Ty 1 = 7w + NV f (70, {Bt(k)}), where 1) is the step size and we denote {/S’t(k)} {B(k)} We
then update the correct { Bt(_]i)l}

It can be shown that under the assumptions on the outcome distribution and the propensity scores,

the gradient V fis upper bounded, and thus fis Lipchitz continuous. Subsequently, our policy
learning task reduces to a gradient ascent scheme for a Lipchitz continuous but nonconvex objective
function. Following the optimization literature (Ghadimi & Lan, [2013)), the solution 77 converges to

a stationary point with a rate of O(1/+/T)), where T is the iteration number.

One limitation is that due to the weak concavity structure of the objective function, we cannot
guarantee convergence to the global maximum. We can reformulate the above bilevel optimization
problem as a joint optimization problem

max  f(m, {5}),

rell {8}

where the optimal 57(71@) is achieved at

B£k>:inf{/3: >, (11{@&’“)(Xi>sﬁ}—a>20}7 vk € [K].

i€Dk)
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Under this formulation, the alternating scheme used in A\-aRSL (Algorithm [2)) serves as an imple-
mentable heuristic for solving the joint problem. Although we have provided empirical evidence of
its effectiveness, the convergence properties of this alternating scheme remain an open question and
lie beyond the scope of this paper.

D EXPERIMENT DETAILS AND MORE RESULTS

Simulated Dataset Generation Details We choose the action set A = [3]. Let 0 = {0,,a € A} =
{0.2,0.5,0.8} and let {/3,,a € A} to be

{ﬁl = (]-7 07 07 07 0)7 /82 = (_1/27 \/§/2a 07 07 0)7 63 = (_1/27 _\/§/2a 07 07 0)}
The underlying policy 7y chooses actions with covariate « according to the following rules:

(0.5,0.25,0.25), if argmax;_; 5 3{3; 2} =1,
(mo(L|2),m0(2| ), (3| x)) = < (0.25,0.5,0.25), if argmax,_; 5 3{B #} =2,
(0.25,0.25,0.5), if argmax;_; 5 3{8; #} = 3.

We generate 50 training datasets of

Dtrain - {(Xqu = 7T-O(*Xvi)a}/1’(7-‘-0()(1')))}

i=1
where X;’s are sampled i.i.d. uniformly from the closed unit ball of R®, A; ~ 7my(X;), and
Yi(As) ~ N(B4, Xi,0%,). Similarly, we sample 50 testing datasets

10,000
Dy = {(XZ-, (Yi(1), Yi(2), Y:(3), <u1<Xi>,u2<Xz—>7u3<Xi>>)} ,

i=1
where j1,(X;) = 57 X,.

Implementation Details In our implementation, the learning parameters are set to be the same
for both A-aRSL and CAIPWL. The number of data splits is taken to be K = 2. We use the
Random Forest regressor from the scikit—learn Python library to estimate m and {pq }aca.
For the policy gradient step, we implement A\-aRSL by maximizing the objective in equation 4 using
RMSProp with a learning rate of 0.01. For the benchmark, we similarly use RMSProp to maximize
the CAIPWL objective equation[6] Since the objective equation dand equation [6] are non-convex in
the policy weights, following |Dudik et al.|(2011)); Kallus et al.[(2022), every policy update is repeated
10 times with perturbed starting weights and the best weights based on the chosen policy learning
objective. The policy convergence criteria is whenever the difference between the previous and the
updated policy value to be less then le-6.

Computation Details The experiments were run on the following cloud servers: (i) an Intel Xeon
Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum
8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59
GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4 @ 2.59
GHz with 384GB RAM and 64 CPU x 2.59 GHz.

More Results We now provide detailed results of the policies’ performances on different samples
sizes in Figure[3| and the empirical policy CVaRs under large a-levels (o = 0.2,0.5,0.9) in Figure
For a value of a = 0.2, although the improvement in policy CVaR provided by A\-aRS diminishes,
the quantile of the policy CVaR becomes tighter. When @ > 0.5, there is no significant statistical
evidence that the performance of A-aRSL is different from that of CAIPWL.

We also test the policy CVaR inference task. We implement Algorithm [T on the training dataset
and estimate the policy CVaR of a fixed policy 7, which is different from the behavior policy 7.
The performance of Algorithm [1|is evaluated by the mean squared error (MSE) of the estimated
policy CVaR. Figure [5|shows the MSE of the estimated policy CVaR by Algorithm[I] with a-level
{0.1,0.05,0.01}. A variant of Algorithm [1| with known propensity score is also tested. As the
sample size increases, the estimation becomes more accurate and stable. With large sample size,
the estimation with unknown propensity score is comparable to the one with known propensity
score, which highlights the double-robustness of our estimator. We also observe that with larger «,
Algorithm[I|needs more samples to achieve small MSE.
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Figure 3: The estimated E_V\éﬁa(ufr (X)) under a-level 0.01, 0.05 and 0.1, over 50 seeds, of learnt
policies 7 € {CAIPWL, A-aRS, A = 0,0.2,0.5,0.7} on n = 1000, 3000, 5000 training data points.
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Figure 4: The estimated aa_lﬁa (117 (X)) under a-level 0.2, 0.5 and 0.9, over 50 seeds, of learnt
policies 7 € {CAIPWL, A-aRS, A = 0,0.2,0.5,0.7} on n =1000 training data points.
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Figure 5: Average MSE of estimated policy CVaR by Algorithm [I] with unknown and known
propensity score, over 25 seeds. a-level is chosen to be 0.01, 0.05 and 0.1.
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E DEFERRED PROOFS OF THE MAIN RESULTS

E.1 PROOF OF COROLLARY 2.4

Proof. We follow Theorem 3.1 in|Kallus|(2023). By Jensen’ inequality,
1 _
ViR, (¥ (X)) =sup (3 LE[E(Y () - 51 [ 1))

< sup (5 + LB - m-) _ CVaRa (11 (X)),
B e

E.2 PROOF OF LEMMA [3.4]

Proof. Denote the quantile Q (f) of any function f(x) as Q. (f) = inf{5 : E[1{f(X) < 8}—a] >
0}. We also denote the empirical quantile using the kth off fold data as

oW (1) —inf{ﬂ: Y Uf(X)<py—a)> 0}
i€Dk)
As in Algorithmm we have 57(7}6) = ng)(,:t; ), and the true 3 = F 1 ( ) = Qalkn).

We will show the equality by proving that the RHS is the upper bound and the lower bound of the
LHS. We first prove the upper bound of case where » = co. By definition of Q(ak), we have that

1QP(AY) = Qalur)| < sup. 85 (X3) = pn (Xi) = Op (|2 = pirllzoc)-
i€

Now we consider the case where r < co. Let § = ||pur — )H T " (p)- By a union bound with respect
to the empirical distribution,

QWP (®) < Qs (hr) + Q154 — ).
By continuous differentiability in Assumption [3.3] the first term on the RHS can be bounded by
QEH—& (#tr) Qa+5 (tr) = Qars(pir) + Qats(fix)
Qa+5 (Nﬂ) Qats (Nfr) + Qa (:ufr) + Op(6)~

Furthermore, using the delta method, we have that Qa i 5(Mw) Qa+s(pix) = Op(n~7) and,

k 1
QU 5(01) < Op(n™3) + Qalhr) + 0, (6).
To upper bound the second term, we apply Markov’s inequality with respect to the empirical
distribution:

k
Qg )5(/15‘. ) — Hfr)
—inf {ﬂ DY (WX — e (X0) < BY — (1= |lpw — @7T)) > o}
i€D (k)
(|D(k)| ZzeD(k) |ﬂ7r ( ) - ,uTF(X’i)|T)%
5*7
Combining the two results, we have

Op (07| = pixll . () = Op(9).

1

QW (i ™*)) < 0p(n™%) + Qulpix) + 0(9)
= QU (AM) ~ Qu () < Op(n™#) + Oyt — AP 7T
To derive a lower bound, we can make a symmetric argument by similarly writing:
QP (™) > Q(ak)(s(ﬂvr) Q1+5(N5rk) = hir)-

The upper bound and lower bound gives the desired result when r < co. O
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E.3 PROOF OF THEOREM[3.3|

Proof. We first state the following helper lemma, the proof of which can be found in Appendix

Lemma E.1. Suppose that Assumption[2.1| B-2| and[3-3|hold. Then there exists some constant ¢ > 0
such that ||pr — i||L., < 1 and |Br — 5| < ¢1, and for any o € (0, 1], we have
|]E[¢(7T7 Za 7}07 [L7 B)] - E[(rb(ﬂa Z, 05 M s /BTF)”
2% )
S@HWO = 7ol Pyl = pr | 2o Py
1 _ . ~
2L o (B (@) Dl — sl + 185 — )

1 N
+ %(F/LW(X)(F; (X)( ) + 1|6 — B[
”(i)(Za’frOaﬂvﬂ) _¢(Z;7TOvﬂ7rvﬁ7r)”L2(P)

2y . 2 .
<L lo = mollace) + — 10X = (Ol agry

+ fy (Fp 0 Fprx0y (@) + D (18 = Bl + 1A(X) = (X)) 2.0

Fixing a sample i € DF), we also have

R 2y 1 -
6(Zi; 70, 1, B) — &(Zi mo, phrs Bre)| < 3/2 7o (m(X3) | Xi) — mo(m(Xa) | Xa)| + 5\5 — Bl

R 7y
+OTE|H(X0 por (X )|+075

In the following sequel, we shall show that V") =V, () + 0,(n~7), for all data fold k € [K].

We can decompose

Bl
|D(k)| Z ¢ U Zlaﬁ—(()k)aﬂgr )7ﬂ(k)) ¢(W5Zi;707u7r7ﬂ7r)
ieD(k)

|D(k)| S o(m, Zag? 4f®) B0 — Elo(r, Z; 6" g, B9) | DW) — p(m, Zis mo, i, )
ieDk)

+E[$(m, Z; 70, i, Br) | D®] + Elg(m, Z; 75", g, B | D®)] — Elg(r, Z; mo, pie, Br) | DP)
-

=E[¢(m, Z; 75", ), ®) | DW] — El(r, Z; 70, pir, B ) | DX

1
+W Z (d)(ﬂ-azlvﬂ-(() 7M(k) B(k)) ¢(7T7Zi;ﬂ-0a,u7'ﬁﬁ7r)
ieDk)

— (Blo(m, Z:78 ), 3 | D®)] — Elg(r ZWO,MW,/&HDWD): (1) + (11).

We will show that Term (I), (/1) are both op(n*%).
By Lemma and Lemma 3.4} Term (7) is

2y, . . 1 _ R .
(1) <= l#0 = mollLacp |t = pixll ey + = (F 0 (F ) (@) + D(lr = el + 18- = B1)?

1
+ %(FM(X)(FH:(X)( @) +1)|3 = B[

_Op(”ﬁo - 7r0||L2(P)H/l7r - :u’TF”Lz(P) + ||/17r - Mwll%w + ||ﬂﬂ - MW||Loo|ﬁ7(rk) - 57r‘ + |67(rk) -
(

=Op(1175” = molla(p) 1A = pexllaey + 1A = pal.).
By Assumption we have that Term (I) = o0,(n~ ).
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Conditioned on the off-fold data D(*), we apply Chebyshev’s inequality to Term (I1). For any ¢ > 0,
we have that

Var([|p(Z; 758, a8 B9 — ¢(Z; 70, s B) )
| D*)[£2

1 2% .
Sipwe (a53/2 178 = mollacry + 1B = Bl
16y

P([I1| >t | DW) <

Ry ey (Fyey(@0) + (189 — B+ 1 (X) ~ u,r<X>||Lm)),
where the last step is due to Lemma- Consequently,

~(k) ~(k k
(||¢< A ), ”>¢<Z;m,umﬂﬂ>w>>

|D(k)|2
By Lemma[3.4] and Assumption[3.2] we further have
(1) =0, (1P| 2 (IIt0 = ol La(py + it = pall Loy + 8= = B1))
1 . _1 . 2z
=0,(IDW |72 (||t — 7ol Lo(p) + 1t = pallLocpy + 1072 VA = pxll} p))
=0,(ID®| 20, (1)) = 0p(n"*).

(1) =

We conclude that VS =V, (m) + op(n_%) for all data fold k € [K]. Thus

\/?l(]}a — Vo( 71' \f Z szﬂ'Oa,umBﬂ) - (W)) + OP(1)7

i€D

and it converges in distribution A/(0, 2) by the central limit theorem and Slutsky’s theorem. The
asymptotic variance is

= Var(¢(Z; 7o, fir, Br))-

O
E.4 PROOF OF THEOREM[4.3]
We first write the second term of equation without the (1 — \) scale, as
Va ") = Vo #) =Va (1) = Va (1) + Va(7") = Va(7) + Va(#) = Va(#)
<2sup [Va(m) = Va(m)| = 25up [Va(7) = Va (1) + Va(r) = Va(m)]
mell mell
< sup 2|Va () = Va ()| + sup 2| Vs (1) — Vo (71)] . (11)

mell mell

(1) 2
We will show the upper bound of both terms separately.

As an important intermediate step, we first establish a regret bound a regret bound for the policy when
the algorithm has access to the quantities 7o (), p14 (). Note that when the true 7o, {ftq facgo,1} are
known, the oracle policy learning CVaR estimator does not rely on cross-fold fitting as it is designed
for deriving independent g, {/ia }ae{0,1} €stimators. Also note that if we are given {/ia }aecf0,1}5
then for every 7 € II, we can find the oracle policy VaR

1 -
pe = augsup {5+ 2E[(u-(0) - 9) ] . (12
We also denote the oracle a-level policy CVaR as

a |D‘ Z¢ Z177T07/f(‘77767r)

1€D

The following lemma provides the oracle regret of Term (1) in equation[TT} and the proof of which
can be found in Appendix
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Lemma E.2. Under Assumption[2.1) 3.2 and with probability at least 1 — A,

k(D) +7) + 12F V2D +0(1>.

sup [V () = Va ()] < ~2 o -

well f

The proof of Theorem &.3]also utilized the following result, which upper bounds Term (2) in equa-
tion[TT} and the proof is deferred to Appendix [F3]

Corollary E.3. Under Assumption@ @and @ there exists some N € Z, such that withn > N,
we have that with probability at least 1 — A,

TN 287 - 2 +9F, (1
sup [Va(m) — Va(m)| < aef( D) + 62 + /log(1/A)) + Toevn <x/ﬁ)

Proof of Theorem[.3] By the regret decomposition as in equation[TT]and the results from Lemmal[E.2]
and Corollary [E3] there exists some N € Z such that with n > NN, we have that with probability at
least 1 — A,

Vo (") = Va7 )<SHP2\V (m) = a(ﬂ)|+i1€1%2|l}a(ﬂ)—]>a(7r)|

well

< 569

n( k(ID) + Fo /3 + 64 + \/log(1/A)) + 56y( IT) +5).

T ae

The proof concludes by (Zhou et al., 2023 Theorem 3), the above result and the regret decomposi-
tion equation O

F PROOF OF TECHNICAL LEMMAS

F.1 PRrROOF oF LEMMA[E.T]

Proof. First, we can compute the expectation

~ R . ]]_{AZ—TF( )} r A
Bio(r. Zi o, B) =B B[+ 21a(0X) < 8 (60 + Foen o - g - 5) 1 x|
(o D X
i+ 21000 < B0 + PEEE IS (%) - 2(x) - B)|
5+ 2|1 < 3 (400 + 2T 000 - () - )

The first inequality in the statement can be decomposed into the following:

=|E[¢(Z; 7o, 1, B)] — E[¢(Z; mo, f1, B)] + E[$(Z; w0, f1, B)] — E[(Z; 70, i, B)] + BS(Z; 70, i, B)]
— E[¢(Z 7T07/147r7ﬁ7r)}

< [E[¢(Z; 7o, i, B)] — Eld(Z; w0, i, B)]| + [Eld(Z; w0, f1, B)] — E[$(Z; 70, i, B)]]
(I) (I1)
+ [E[¢(Z; 70, tir, B)] — E[$(Z; 70, i, Br)]] -
(II11)

[E[¢(Z; 7o, i1, B)] — E[$(Z; mo, ttx, Br)|
[
|
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We will bound the three terms (I), (I1), (I1I),(IV) individually. We first look at Term (I):

(1) =5+ 2B [14300) < ) (303) + 2R e300 - 5
-5 28[11a00 < 4y (000 + 2EEHD 0,030 - o - 8|

—|-E -n{ﬂ(X) < B}(ﬂ(X) +
- ]E[]l{ﬂ(X) < B}(ﬂ(X) +

< elifax) < B

2y, . .
S@HWO = 7ol |2 — 1l Lo () -

By continuous density Assumption there exists some ¢; > 0 such that u, (X ) — B, has a density
on (—3cy, 3c1) bounded by F, (X)(F;l(X)(a)) + 1. Therefore, provided that |5 — 5| < ¢; and

i) ~ e (). < e
T o (X
(11) =[5+ 2 [14ax) < 5y (o) + ZIEHD

- 5= 2B |10 < 8 (1el3) +

= LBl (X) - BYALHX) < B) ~ 1un(X) < 3))

- éﬂz[(uﬂm = B)(Un(X) = B < 6= o4 10000) = OO} = 1 (0) = 51 < 5= 623))
E[|1x (X) = BI1{ 1t (X) = Bal < |8 = Bl + |(X) — e (X)]}]

E [t (X) — A1 {111 (X) = Bal < |8 — Bel + 1(X) — e (X2 }]

<= (F) 00 (Bl (@) + D(18 = Bl + 1(X) = p(X0)l2..)"

HQ\HQ\H

Finally we analyze Term (I11). Define
£(8) = EIg(Z; mo, s ] = 8 + ~E{(1x(X) — 5)"]

By definition /(3,) = 0 and |1 ()] < L(F)_(x)(Fy { (@) + 1) for B € (Bs — 1. By + ca).

Therefore, provided with the assumption that \,8 Br| < ¢1/3, by Taylor’s theorem, we can upper
bound Term (I11I) by:

1 .
(1) < %(F,i,,(X)(F; (@) + D)5 — B

Now we turn to the second inequality. The difference in interest can be written as

||¢(Z§7Afoaﬂ73) - ¢(Z§7T07/i7r757r)”L2(P)

=[6(Z: 70, i B) = S(Zs w0, i1, B) + 6(Z: o, . ) — $(Z; 70, fi, Br) + S(Z; w0, i, Br)
— ¢(Z; 0, fr, Br )l Lo (P)

<|6(Z: 0, 1. B) = S(Zy w0, 1. B) | o) + 10(Z: w0, i B) = 6(Z: 70, i ) o)

(1) (2)
+ |¢(Z; 7o, i, Br) — &(Z5 70, pims B )|l Lo (P) -
3)
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We will upper bound the three terms above individually. For Term (1), we compute that
H{HA=7(X)} I{A=n(X)}

! 1 3 ~
(1) Han{u(x) Sﬂ}<ﬁ0(ﬂ<x) ) " me(n(X) |X))(Yu(X))

| 31600 < 31104 =200 (0~ e ) O

La(P)

)

L2>(P)

where the last equality uses the fact that 7¢(0 | X) + #g(1 | X) = 1 and that mo(0 | X) + 7o(1 |
X)=1.By Assumption we have that

1 _ 1 — / ~ _ _ ~ _
R T a0 ) gy, = 10 7ol = 00l <20
and thus (1) < %Hﬁo — 7r0HL2(p).
We also compute Term (2):
N 1 N 1{A=n(X R
@ =6 - 82 + 21000 < ) (00 + T -y - 5)

- 210 < .00 + B2 EE D - o) - 5, )

Ly (P)

= (3= ) = TUA(X) < BYB+ T {AX) < Bebe + ~U{A(X) < BYr — 1{A(X) < F}6

1{A = r(X)}

ro @) [X) 0 )= 5”)

+ 200 < 5) - 100 < 52 ((X) +
RICSELY

L2>(P)

S (CRall )
1A = ~(X))

() [x) D) = ﬂ”)

e <8 - 1A < g (ﬂ(X) ¥

Lz(P)'
By Assumption[2.1} we have that | 3| < §. Therefore, Term (2) is bounded by
LA Ay s A N
(@) < =18 = el + LI L{A(X) < B = L{(X) < Bl Lo
Now, applying a similar trick as in the analysis of Term (1), we have that

I2{A(X) < BY — LX) < B Hlzagry SPURX) = Bel < 1B = Bal + [A(X) — pn (X)]]1)
<AF,_ ey (F (@) + D) (18 = Bel + 1(0) = px (X2 ).

where the last inequality is due to the fact that |3 — 3| < ¢/3, and ||ji — pir||z.. < ¢/3. Finally,
Term (2) is upper bounded by

(2) < 13— Bl + L (L ) (Fyhy (@) + V(18 = Bal + 14(X) = pr(Xl.)
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Similarly, Term (3) can be written as
) =| 310000 < ) (00 + TEZEC,
(

1 A = (X}
— ~1{un(X) < ﬁﬂ}(uﬂ(X) o (m(X) | X)

h<

— (X)) - ﬁw)

(¥ = (X)) — m)

La(P)

|00 < 82 - 1) < pep (B Dy )

+;]1{ﬂ(X)SBn}<<1 HA X)D“ )
}

_;ﬂ{uw(x)sﬁﬂ}« +1I£A_X7; - )“’“ ) La(P)

X)
| 000 < 82 - 1ex) < pep (B Dy )

07T(X |X

)
+;]1{ﬂ(X)SBn}<<1 MA X)D“ )

_ éﬂ{uﬂ(x) < @;}((1 + W)MW(X))
F LI < m}((l + m%m)
_ éﬂ{g(x) < ﬁ,r}<(1 + m>uw()f)>

Rearrange, we have that

3) < H;(l{ﬂ(X) < B} — e (X) < Br}) (my _ @T)

LQ(P).

L2 (P)

(31
1{A=7n(X)}
mo(m(X) | X)

(3)rr

#2000 < 82 - 100000 < 8.1 (1

+ H;]l{ﬂ(X) gﬂﬂ}(l— )(ﬂ(X)—uw(XD

La(P)

1{4 = 7(X))
T () [ X) )“”(X )

La(P)

3)rrr
By the result of Term (2), we have that

IT{A(X) < Br} = Hpn(X) < Brdllracry < 20F, (x)(Fyixy (@) + DIAX) = o (X)) .-

Therefore, we can bound

(1 <L (Fy ) (Fhey (@) + DA = pn(X)
(11 < I(X) ~ 1 (Ollacr
()11 <%<F;ﬂ< JF (@) + D) — (X

Putting everything together, we have that
”d)(Za 7AT0; ,["7 ﬂ) - ¢(Zv 0 Mo BW)HLQ(P)

2y . 2.
_73/2”70 —7ollz,py + @”H(X) — px (X)) 2o (P

W E oo by (@) + D18 = el + 1) = e (0.,
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For the last inequality, we note that we can similarly decompose

[6(Zis 7o, £, B) = $(Zis w0, i, B )|
=|¢(Zs; 70, f1, B) — ¢(Zi; w0, 1, B) + ¢(Zis mo, i B) — (Zis mo, i, Bre)
+ ¢(Zi; w0, ft, Br) — ¢(Zi3 o, firs Bre)|
< |6(Zi; 70, f1. B) — ¢(Zi; w0, 1. B)| + |¢(Zis mo, f1, B) — &(Zis o, i, Br )|
(1) 2)
+[0(Zis mo, i, Br) — &(Zi; 70, pors Bre)| -
(3)

We will upper bound the three terms above individually. For Term (1), we compute that

! [ 3 ~
0 =310 < 5) (R - RS - cxo)
Ly(axn < 5 = (X, 1 3 1 R
210000 < 00 =700 (== - mey ) - A

where the last equality uses the fact that 7¢(0 | X;) + #o(1 | X;) = 1 and that 7o(0 | X;) + 7o (1 |
X;) = 1. Since

1 1

wo(m(Xi) | Xi)  mo(m(Xy) | Xi)

< el (n(X0) | Xi) — mo(w(Xa) | Xa)l, Vi — A(X0)| < 27,

we have that (].) S %rfm@’t’()ﬁ) | Xz) — ’/T()(’]T(XZ') | Xz)‘
We also compute Term (2):
@) =3 - 50) + 110060 < ) () + D2 2B - ) - 6)

- él{ﬂ(Xi) < ﬂﬂ}(ﬂ(Xi) + m(m — i(X;)) — /3ﬂ>

=B B2) — TACK) < BB+ T HA(XD) < )8 + - L{A(X) < BYBr — T LX) < B)6s

1{A; = 7(X;)}

(AR ) =106 < 3 (3060 + L C S

:’(5_&)(1 LX) < /9})

«

(Vi — (X)) - ﬂﬂ)

F L0 < 8) - 10 < 8.0) (a0 + 2Ty - ) - )|

By Assumption[2.1] we have that |3 | < §. Therefore, Term (2) is bounded by
1. 45
(2) < =B =B+ —.
a ae
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Similarly, Term (3) can be written as

(3):*1{;1( )<ﬂﬂ}(( )JFM

mo(m(X3) | Xi)
1{A; = n(X)} _
et R~ () m)

mo(m(X
=<Mm><mywma><mn“?(ﬁ;ﬁ'm>

o

+2agaex) < o0 1+ E?(ﬁ}ﬂmxﬁ

(memﬁQ

- *ﬂ{ﬂw(xi) < ﬁw}(“ﬂ(Xi) +

)
itz (o )
<Mm><mwwwa><mnﬁf(ﬂ§}fﬂg
a1+ B8 )
—ﬁmw (1+ 222 ))<&0

o))
pr (X i)> ’
Rearrange, we have that

(3) < é(n{ﬂ(xi) < Be} — L{pa(X:) < gﬂ})G{A()}y @r)

(%) [ X))

WA =m(X)} ) ooy _

mwxnxﬂw&)Mwm
)

(MMWS&%JMAWSA}O—E&&ﬁzw%up

- S HAKX

<&< X,)
sy 2500
(-

1

+

L) < 8.3 (1 -

= Q|

+

Q|

< X ~ pe(X)]

Putting everything together, we have that

R 2 1 -
|9(Zi; 70, i1, B) — ¢(Zi; o, s Br)| _73/2|7To( m(Xi) | Xi) — mo(m(Xa) | Xi)| + a\ﬁ — Brl

7y
— (X)) = e (X0)| + 2.
A — (X))

F.2 PROOF OoF LEMMAI[E.2]

Before we embark on the proof that utilizes a chaining argument|Zhou et al.|(2023), we present the
following definitions that will be needed throughout the analysis.

Definition F.1 (Rademacher complexity). Let v;’s be i.i.d. Rademacher random variables P(~y; =

=Pln=-1)=3
1. The empirical Rademacher complexity R, (F) of a function class F with domain X is
defined as
Ru(F | {(X: € XYL, w%w Z% ).
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2. The Rademacher complexity R(F) of the function class F is Ex[R, (Il | {X; € X} )]

Before we introduce the chaining technique, we define the Hamming distance H(m,m2) =
1 Z?:l 1{m # ma}, and the Entropy integral v (II).

Definition F.2 (L, policy distance). Given a fixed policy class 11 and a set of n covariate points
{z1, - ,zn}, we define the following.

1. For a function class Fi1 = {f(-;m) | m € 11} such that f is a function on (Z; ) such
that |f(Z; )| < f(Z), define Lg dlstance Dy(m1,72;{Z1, - , Zn}) between two policies
T, To wzth respectto {Z1,--+ ,Z

) \/z”f Ziimi) — f(Zimo)?

4 Zz 1 f2( )
2. The e-Ly covering number of the set {21, -+ , 2, } (denoted as No(e, 11, {x1, -+ ,x,}) is
the smallest number N of policies {71, -+ ,nn} in II such that Vr € 11, there exists ;

such that Dy (7, m;) < €.
3. The e-Ly covering number of I is Ny, (e,1I) = sup{Nao(y,II,{z1,--- ,z;})[j
Lay,-- .z € X},

Policy Chaining. Conditioned on the data { X7, --- , X, }, we define a sequence of refining approxi-
mation operators: Ag, A, -+, A; where M = [log, n| and each AT : X — A is another policy.

Define J = |1/2log, n]. For each policy m € II, we can write it in terms of the approximation
policies as

J
= AT+ S (AT (@) — AT, () + (AT (@) — A5(2)) + (x(2) — A3(2)).  (14)

Jj=1

We now give an explicit construction of the sequence of approximation operators. Set «y; = 2% and
let Sp, S1,- -+, 57 be a sequence of policy classes (understood to be subclasses of II) such that S
could ~y;-cover II under the inner product distance:

Vi € H,HW/ S Sj,DQ(’IT,’]T/) < Yj-
By Definition we can choose the m-th policy class S, such that |S;| =

No(277,10,{X1, -+, X,}). Note that in particular |Sy| = 1, since any single policy is enough
to 1-cover all policies in II.

Next, we use the following backward selection scheme to define A;’s. For each 7 € 11, define
AG = in D .
7 = arg min Da(r, )
Further, for each 0 < j < J and each 7 € II, inductively define
AT = arg Trr/neiélj Dy(AT 7).

Appendix [G]presents a few helper results that would facilitate the following theorem, which is needed
for the proof of Lemmal[E.2]

Theorem F.3. Suppose that Fr1 := {f(-; ) | m € I} is a function class of f(-; ) that takes Z as
input. Given a set of dataset D = {Z; = (X;, A;, Y)Yy, suppose that | f (Z;; 7r( Xi))loo < f(Zy).
Then the Rademacher complexity

Proof. We will investigate the Rademacher complexity of the function class Fy := {f(-,7) | 7 €
IT}. Each policy m € II can be written in terms of the approximation policies as in equation
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Accordingly, we can expand the Rademacher complexity

R (Fu) =E. :lelgi ;eif(Zi;ﬂ) }

- n J

=E. sgg% D e ( (Z5; A) + Y (£(23; AT) f(Zi§A;‘r1))+(f(Zi;7T)_f(Zi§A§))>H
L7 i=1 j=1
[ 1 . 1< .

<E. _:“;2% ;eif(Zi;Ao) ] +1E6Lsrlégn ;Q(]C(ZUW)_JI'(ZZ';A.]))H

1 n J _ o
e E O

‘We first note that the first term

1
E. [ sup —

remn n

n

> ef(Zis AF) > af(Zisn)

1
:| ‘ |: :| ,
: n|-
i=1 =1

as AT maps all 7 € II to a singular policy 7. Since |e; f(Z;;7)| < f(Z;), by Azuma-Hoeffding’s

lemma, we have that
t> <2e p< 7712152 )
<2exp| — - = .
2>, [A(Z)

p(l
n
oo n2t2
t) = / 20D (‘ 2>, fQ(Zi)> i

n

n

Zeif(zi;ﬁ) >

=1

n

Therefore, the expectation
> eif(Zim)| >

E. le i:&f(zi?ﬁ)} :/OOO Pe(i i=1

i=1
n

We will bound the other terms separately in the following steps.

The Negligible Regime. In this step, we establish two claims to show that 7 — A/ (7) is in the
negligible regimes. For any 7 € II, by the Cauchy-Schwarz inequality,

n n

sup l261|f(Z“77)_f(Z“A7T ‘< nz Zz,’/T Zl,Ag))Q

mell [T i—1
2\/ 3, FA(Z:
=Z¢%”D2<W,A§;{zl,-~ Zn})
<2\/ 21;1 fQ(Zi)Qij < 2\/ ZZL:l f2(Zi)

where the second-to-last step is due to the fact that the pohcy A7y is 2=M _close to 7 and the last step
is due to the definition of M. Therefore, we conclude that the term

E. [iggi ; ei(f(Zi;m) — f(Zs; AT)) H 22n2f2()

and is in the negligible regime.

n

The Effective Regime. By the previous results, we have that
Z € f(Zi;m)

}

1
R (Fi) =E. [sup =
Telr n

<E. [sup
rem N
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From now on, for easier notation, we denote A = 24/>°" | f2(Z;). We will now concentrate
on the expectation in the above inequality. Let P,, denote the projection of a policy to S;, for
A7 4 = P;j_1(A7) for all j € [J]. Note that once AT is determined, the policy A7_, is also
determined. For any ¢ > 0,

1 n
Pe(sgg Ezel(f(Zi;A}T) (Zi; A] ))‘ 2 t)
i i=1
1 n
<> R(’ ei(f(Zin) f(ZZ,le(vr’»)’ >t>
n’' €S, i=1
2n2t?
< 2 - exp (— 7 )
2 ST i) — [(Ze B (7))
Z 9.0 p( 2nt2 >
— cexp [ —
err) N D3 (n', Pia(7); Z)
<ON,(279, I D) -exp | — n*t?
= 2 ) 9 p A2D2<7TI, jfl('ﬂ'l);Z)2 .
Foranyj = 1,---,Jandp € N, let ¢;, = ﬁ\/log(%’“ﬂ - No(2779,11; D)). Then for a
fixed p, with a union bound over j = 1,--- , J, we have that
J J

< sup
mell

J
e3°r, (o
j=1

Z;Z 1(Zi; A7) f<Zi;A§_1>)‘zth,p>
IR0 20 <3 7%

ei(f(Zs; AT) = f(Z3 AT,
Jj=1 =1

3\'—‘
I/\

mell

Using helper Proposition|G.1] for any j € N,

J J
A - 4
> tin = Zw 773V 10g(27H1j2 - Ny (279 11, D))

j=1 j=1

I _ ‘
< z; 5172 V10g(N2 (277, T D)) + (p + 1) log 2 + 2log j
=

J
g% > 2 (Vi@ TED)) + Vi Dog? + /210g )

(n )+ Vp+1+1)

where the first inequality is uses the fact that va + b + ¢ < y/a + Vb + Ve fora,b,c > 0; and the
last inequality is due to the definition of x(IT). Then

E. [sup
el
J 1 n
ZE;Q (Zi; AT) — f(Zi; AT_ 1))’>t)d

oo
:/ (sup
0 mell J=1

<t + 32 e — ) = (W) VR 132 (R VD))

p=1

.4;
>

<A 1),

n
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Putting everything together, we have that

8/ i1 [2(Z:)
) < ————— (k) +7)

R (Fr) < - +

Define the oracle policy CVaR estimator with the true 7, {114, a € A}, and the oracle policy VaR Bﬂ
derived from equation[T2}

. 1 _ 1 _
Vo (m) == o Z¢(7T, Zi; 705 {Matacfo,1}, Br) = - Z¢(7T, Zi),

i€D i€D

where fir(2) = fir(q) () is constructed from {j14,a € A}. Define Fir = {¢(;;7) | ® € I}. The
following corollary bounds the Rademacher complexity of Fir.
Corollary F.4. Under Assumption2.1)and 3.3}

- 8y 6y 1
R (Fr) < Rn(Fu) < %(K(H) +7)+ N + o(\/ﬁ)

Proof. We apply Theoremwith function class Fy7, in which each function ||¢~7|| Lo < 7. O
We are now ready to prove Lemmal[E.2]

Proof of Lemma [E2] We first note that for any 7 € II, the expectation of the oracle policy value
Vo (),

E[Vo(m)]
1 n
=K _E ;qﬁ(ﬂ', Zz, 770,,“/77’/671'):|

=t Z (e + 3100060 < ) (1) + T T ) - 5 )

1{A; = 7(X;)}

_E|E {ﬂﬂ + éﬂ{uﬂ(Xi) < B} (””(X"> T R (X0 | Xi)

m—MMM—&wX:&”

8|6+ 1 1n(X) £ B UV (7(0) = )| = e+ T CX) < ) (Y ((X)) )
V().
To see the last equality, we note that, for the underlying true 3, of a policy 7 € II,
B+ E[L{in(X) < B}(¥ (1(X)) 5]
—5r + ~E[1 (e (X) < 5}V (1(X))] ~ ~E(ur(X) < 5265

=fn + ~E[1{1(X) < S}V (x(X))] - 255

zém{uﬂ(x—) < Ba}Y (x(X))]

The policy value V, is defined as the CVaR of policy 7, and the dual formulation |[Rockafellar et al.
(2000) of which is

1
= inf —E[VY(r(X
Valm) = nf VY (r(X))]
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where we define V := 1{u(X) < 3} for some p, 8. The above infimum is achieved by the true (i,
and ;.

Recall that ||¢(7, Z;; 70, fir, Br)|lL.. < §. We apply Theorem 4.10 in [Wainwright| (2019) with
results as Corollary

~ 1
sup [Va () = Vo ()| =sup | = > ¢(, Zi; mo, i Br) — Bl (m, Zis mo, i, Br)]
€Il mell |1

- 2
<2R,(Fu) + g\/;

16y
< \f
with probability at least 1 — A. O

n ‘

F.3 PROOF OF COROLLARY [E.3|

Proof. For any policy 7 € Il and any fold k € [K], we decompose:

(k) _ (k) - (k) A(k) .

VI (1) = Vo () W > o, Zisag 1), B — ¢(, Zis mo, pioe, Br)
ZED(k)
D] O Hm Zud 0, 60 — Blo(m Zi " il B) | DV = o, Zis o, ar )
zeD(k)

+E[(m, Z5m0, i, B) | D)+ Elo(m, 2527, i, BL) | D]~ Ef(m, Z; mo, o, B) | DV
=E[p(m, Z; 7", i), B0)) | DW)] — Elg(, Z; mo, e, Br) | DP)

1 k) A
+ |D(k)| Z ((j)(’ff Z“Tr(() )7M7(rk)7ﬂ(k)) - ¢(7ra Zi;TrO»lfﬂr»ﬂﬂ')
i€Dk)

~(El(r, 22484 B0 | DB] — Elp(r, Z: 70, s Br) | D“ﬂ)) — (1) + (ID).

We will bound the two terms separately, with fixed = € IL, k € [K].

Let dy (7, Z;) := ¢(Zs; 757, o), B¥)) — 6(Zis 7o, i, B ). By Lemma
sup |({)[ = sup IE[d1( ™, Z) | DW]|
well well

29y~ (k) o (k)
< 5 v — —
< sup |28 — ooy AL~ piellacr)
1 -~ A~
+ = (F 0 (oo (@) + DAY = sl +18, = B0

1 - )
+ %(F/;ﬂ(X)(F#,}(X)(O‘)) +1)|8%) — B |?

2j X »
S&(I;leajcﬂﬂé '(a| X) —mola| X)HL2(P))(I££”2§”,U'¢(1 )~ tallacey)

@
Applying Lemma@ there exists some Ng € Z4 such that when n > ny, with probability at least
1 —

2F, - (k) A(k) > F, A(k) 2
+ —( max ||fig” — pallr., +max|Br — 827 | + — max |57V — B |7
ac A well o well

)

max |3 — B | < max |40 — prall ...

which means

2y (k) ~ (k)
< X) — X -
:lép |(1)] _ag(gleaXIIW (a]X)—mo(a| )\|L2<p>)(m€aj<llua tallLo(P))

8Fa A( F )
+ - max g — ptall7 +;maX|lua — ptall? -
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On the event of Lemma|[3.4] by Assumption [3.2] there exists some n; € Z such that when n > n,
with probability at least 1 — A,

21 + 9F,
sup [([)| <———=.
rell ae\/n

In summary, there exists some N7 = max{ni, Ng} such that when n > N7, with probability at least
1 — 2K A, the above inequality holds.

We now turn to Term (I1). Let dy(m, Z;) := dy(m, Z;) — E[dy (7, Z) | D™®)]. Note that Term (IT) is
zero-mean:

E[(11))) = E[(Bx — Ejp)ld(m, 2)]] = [

By Lemmal[E.T]

NG 2. 14g
|di (7, Z;)| < 3/2|7T( (7(X) | Xi) — mo(n(X:) | Xi)| + afe\ﬂgrk)(Xi) o (X)) + = |5(k) Brl +—

2 14
<L ma 7@ | X0) — mola | X)) + —= max A (X0) — o (X0)] + 158 — Bl + L.

Applying Lemma [3.4] there exists some Cy > 0, Ng € Z such that when n > N, with probability
atleast 1 — A,

4y k 2 .
[da (. Z0)| < —57 max ") (a | X) = mo(a | Xp)| 4+ — max| 4 (X;) — pra(X0)|
14y

1 _1
+a(n 2\/PH?JLXHM( (X3) = pa(Xi)ly(py + 17 7) + e

14y (K N
<75 max (|#" (a | X5) = mo(a | X0)| + |6 (X2) — pa(X)| + 1)

1. 1 . _
+ 5(" : Vglgfﬂﬂff)(Xi) — pa(Xi)lo(p)) =: d1(Zs).
Consequently,
|d2(7T, Zz)l = ‘dl(ﬂ', Zz) — E[dl(ﬂ', Zl)H S 2621(Xi) = dQ(Xi).

We now apply the bounded difference inequality in (Wainwright, 2019, Corollary 2.21) conditional
on X = {Xi}ié[n]s

1 1
. ; >
P(ilelg D] Z do (7, Z;) E[sup D] Z do(7, Z;) ] > t‘X)
i€DF) ieD®)
- ( 2|D*) 242 )
<exp| —=———=—==
ZiED(k> d%(Z )
a2(Z;)log(1/A
Setting t = \/Zlep(k)lp(i)l Jlos(1/2) , then with probability at least 1 — A,
ity 3 e ] <5 g ey 5 i ] ¢ Y AR
i |D(k)| 2( i i |D(k)| 2( D] '
ieD k) ieDk)

Next, we turn to the expectation in the above inequality.

oI

E [ sup
ieDk)

mell

)| 1x] <raFnta).

where we denote Fij(ds) = {da(m,-) | © € II}, in which |do(m, Z;)| < do(Z;). Applying
Theorem[F3] we have that

8/ 2is1 d3(Z; 64/, B(Zi
Ro(Frr(d2)) < Ro(Fir) < m(ﬁ(n) +7)+ @ n 0(1)

n n
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Consequently, with probability 1 — A,

Z dQ(ﬂ', Zz)

ieDK)

>im1 d3(Z:)
Sw(8ﬂ +62+ \/ log 1/A

1
nett D]

Now let e(a, X;) = (") (a | Xi) = mo(a | Xi))? + (" (Xi) — pa(X,))*. Since e(a, X;) <
1 + 442, applying Hoeffding’s inequality gives that

P(DlzmaxeaX ZE (a, X)] >)

ieDk) acA
< Z > ela, Xi) = Ele(a, X)] > t)
icDk) ac A ac€A

S;I[D(W Z e(a, X;) — Ele(a, X)] > t) < M(1+ 47%) exp ( _ 2‘1)(’6)‘752)7

ieDK)

recalling that |.A| = M. Taking a union bound, with probability at least 1 — 2A, we have that
sup |(I1)] <

—————(8k(II) + 62 + /log(1/A))
mell aey/|DH)]

A log(M (1 + 452)/A)
) (Z 1767 = Toll acpy + 1A% — rall Lacry + 1+ \/ 2D
acA

28

+ [ —
agy/|DH)|

By AssumptlonnzaeA ||7r0 — 7ol Lo (P) + ||,tlak "Nl Ly(py = 0p(1). Then there exists some
ne € Z4 such that when n > no, with probability at least 1 — 4K A,

(8r(IT) + 62 + y/log(1/A)) x (™2 VmeaXHM( N(Xi) = 1a(Xi) | o))

sup [(IT)] <

1
sup D )|(8/£(H) + 62+ +/log(1/A)) + 0(

)

Putting everything together, and setting A’ = 6 KA, with probability at least 1 — A/,

. 287 2y+9F <1>
sup | Vo (m) = Vo (m)| < IT) + 71 + y/log(1/A)) + ol —
sup [V () = Vi ()] < = (3 VIog(178)) + Lo

G HELPER RESULTS

Proposition G.1. For any sample size n, data set {x1,- - , x,} with size of n, and 71,79 € II,

1. Triangle inequality holds for Do (w1, m2) < Do(rm1,m3) + Da(ms, m2).
2. N2(€7H, {xl, tee ,:L‘n}) S NH(62, H)

Proof. Statement 1 is easy to show by triangle inequality. Statement 2 is proved similarly as in (Zhan

et al.| 2024, Lemma 1). O
Proposition G.2. Conditioned on the data {X1,--- , X,,}, the sequence of refining approximation
operators Ay, - -+ , Ay as constructed above satisfies the following properties:

1. maxyemn Do(m, A%) < 27,
2. |{A}T|7r €I} < No(279, IL,{ X1, -, X, }), forevery j = 0,1,--- ,.J
3. maxgzen Dy(AT, AT, ;) <2707, forevery j =0,1,---,J — 1.
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4. Forany J > j' > j >0,
(AT, Ajo(m))|m € I} < No (277, 1L { Xy, -, X }).

Proof. The proof can be found in (Zhou et al., 2023, Theorem 1, Step 1). O

H FURTHER DISCUSSION AND CONCLUSIONS

In this paper, we design a risk sensitive policy learning algorithm A-aRSL that maximizes the
weighted sum of APE and a-level CVaR of CAPE. We show that the sample complexity of this pro-
posed algorithm is O(x(II)n~ 7). Numerical results show that \-aRSL is particularly advantageous
when the objective is to improve outcomes for the worst-affected minority groups in the population,
while incurring only a statistically negligible loss in overall social welfare compared to the benchmark
CAIPWL, which is designed to maximize social welfare.

One possible future research direction is to design a heuristic algorithm, possibly with theoretical
regret or convergence guarantee, that solves the constrained optimization problem in equation [I0]
proposed in Appendix [B] The optimal solution to equation [I0]ensures the highest attainable social
welfare while simultaneously hedging against a pre-specified level of risk, making it more suitable
for real-world applications.
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