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ABSTRACT

The conventional offline bandit policy learning literature aims to find a policy that
performs well in terms of the average policy effect (APE) on the population, i.e. the
social welfare. However, in many settings, including healthcare and public policies,
the decision-maker also concerns about the risk of implementing certain policy.
The optimal policy that maximizes social welfare could have a risk of negative
effect on some percentage of the worst-affected population, hence not the ideal
policy. In this paper, we investigate risk sensitive offline policy learning and its
sample complexity, with conditional value at risk (CVaR) of covariate-conditional
average policy effect (CAPE) as the risk measure. To this end, we first provide a
doubly-robust estimator for the CVaR of CAPE, and show that the this estimator
enjoys asymptotic normality even if the nuisance parameters suffer a slower-than-
n~2 estimation rate (n being the sample size). We then propose a risk sensitive
learning algorithm that finds the policy maximizing the weighted sum of APE and
CVaR of CAPE, within a given policy class II. We show that the sample complexity

of the proposed algorithm is of the order O(K(H)TL_%), where x(IT) is the entropy
integral of 1I under the Hamming distance. The proposed methods are evaluated
empirically, demonstrating that by sacrificing not much of the social welfare, our
methodology improves the outcome of the worst-affected population.

1 INTRODUCTION

In a variety of fields, more and more decision-makers are learning to target products, services, and
information provision based on the user characteristics observed through user-specific historical data
(Bertsimas & Kallus,, 2020; Bastani & Bayati, [2020; [Farias & Li, [2019). For instance, precision
medicine learns the optimal personalized treatment from health care records (Kim et al., [2011; Chan
et al., 2012} |Ozanne et al.| 2014); personalized education selects which lessons and learning tools
to offer a student on the basis of characteristics and past performance (Tetzlaff et al., [2021); public
policies decides personal treatment, e.g. college financial-aid package distribution, re-employment
service, etc.(Atheyl [2017)). These practical needs drive a line of offline policy learning literature that is
devoted to developing efficient treatment assignment (policy) learning algorithms using historical data
(Dudik et al.; 2011} [Zhang et al.||2012; Swaminathan & Joachims}, 2015ajbic; [Kitagawa & Tetenov,
2018; |Athey & Wager, 2021} Zhou et al., 2023} |[Zhan et al.| 2023)). The optimization objective of
most of these works is to maximize the average policy effect (APE) on the population, i.e., the social
welfare, a key metric in offline policy learning (Rubin, (1974} Zhou et al., [2023).

However, it is widely recognized that policy effects can vary widely between individuals with
different characteristics (or covariates in offline policy learning literature), which is a common theme
underlying offline policy learning, known as heterogeneity (Crump et al.l 2008 [Heckman et al.|
1997). Therefore, even if the APE on the population is positive, there is a risk that many individuals
are harmed by the policy employment. Consequently, only considering the population APE does
not capture this risk. In many settings discussed previously, besides social welfare, decision-makers
concern about the policy effect on the worst-affected population. For example, late stage cancer
treatment concentrates on the average treatment effect on the population as well as the worst-possible
outcome; education plan considers its impact on the worst-performing students; and government
formulating policies would care for negative experience of the worst-affected population. If the risks
associated with the policy outweigh the social welfare it generates, deployment of such a policy is not
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justifiable to a rational decision-maker who considers equity beyond social welfare, even if the policy
is optimal in maximizing social welfare. This calls for a risk sensitive policy learning methodology
that would improve the outcome of the worst-affected population, and ideally not comprising too
much in terms of social welfare.

One appealing resolution is to focus on the distribution of the individual policy effect (IPE), instead
of the APE (i.e. the average of IPE over the population) as in the conventional offline policy learning
literature. Specifically, the risk sensitive learning object seeks to reduce the policy effect on the
worst-affected population, which is the tail of the IPE distribution. A suitable measure for describing
this risk is the conditional value at risk (CVaR) of the IPE distribution (Rockafellar et al., [2000)),
which is the average effects among, say, a% of the worst-affected population (o € [0,1)). Hence the
risk of the policy performance on the worst-affected a% of the population can be described by the
CVaR of IPE, and risk sensitive policy learning aims to maximize the CVaR of IPE.

One challenge is that the counterfactual IPE of any given any policy cannot be directly observed from
the observational data. In consequence, it is difficult to learn the distribution of the IPE. However,
given rich and continuous covariate spaces, there are well-developed machine learning methods which
can be used to estimate covariate-conditional average policy effect (CAPE), which is the expected
policy effect conditioned on the individual covariate and would predict IPE well (Kiinzel et al.,[2019;
Nie & Wager, 2021; Wager & Athey, [2018)). A detailed discussion on CVaR of IPE and CAPE is

given in Section

Adopting CVaR of CAPE as a policy risk measure, this work aims to fill in the gap between the
current offline policy learning literature and the practical needs of risk sensitive policy learning. We
present a risk sensitive policy learning algorithm that finds the policy that maximizes the weighted
sum of the APE and the CVaR of CAPE, within a given policy class, taking both risk and social
welfare into consideration.

1.1 OUR CONTRIBUTIONS

Our work establishes the first sample complexity result for CVaR-based risk-sensitive offline bandit
policy learning and makes the following specific contributions.

Policy CVaR Inference Given a policy, we describe the risk of it through CVaR and investigate
the relation between the CVaR of IPE and that of CAPE. We provide a doubly robust estimator
for CVaR of CAPE, which achieves asymptotic normality even if the nuisance parameters suffer a

1L
slower-than-n~2 estimation rate.

CVaR based Risk Sensitive Policy Learning We propose a risk sensitive policy learning scheme
that maximizes the weighted sum of APE and CVaR of CAPE over a given policy class II. We
provide a sample complexity analysis, and show that our algorithm has a suboptimality gap of the
order O(r(IT)n "2 ), where «(II) is a measure quantifying the policy class complexity and n is the
number of samples. This result agrees with the sample complexity of other offline policy learning
algorithms that maximize social welfare in literature.

Empirics We provide efficient implementation of our risk sensitive learning algorithm, and compare
its empirical performance with existing benchmark of CAIPWL (Zhou et al.,2023)), which aims to
maximize the APE. The results present empirical evidence that our risk sensitive policy improves the
outcome of the worst-affected population with little compromise in social welfare.

1.2 RELATED WORKS

Risk and CVaR CVaR is a very popular choice of risk measure, particularly in the finance literature.
Various methodologies for the modeling risks through CVaR can be found in|Duffie & Pan| (1997);
Jorion| (1996)); Pritsker| (1997)); Morgan| (1995)); Simons| (1996); Beder| (1995); |Stambaugh| (1996);
Artzner| (1997); |Artzner et al.| (1999). We refer the readers to [Mausser| (1998)); Embrechts et al.
(1999); Pflug (2000) for detailed discussions on CVaR and its properties. |[Embrechts et al.| (1997)
provides case studies of CVaR as a risk measure in insurance industry; while Bucay & Rosenl (1999);
Andersson et al.|(2001) used CVaR for credit risk evaluations. Later, Kallus|(2023; 2022) used CVaR
as a risk measure of treatment effect and discussed inference method of treatment effect CVaR.
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CVaR in Reinforcement Learning The reinforcement learning (RL) literature has pioneered method-
ologies of risk sensitive learning under a CVaR objective, in the framework of Markov decision
process (MDP) (Metelli et al., 2021} [Sakhi et al.,|2024; | Behnamnia et al.), where the algorithm learns
while acts (Chow et al.,[2015)). These works usually assume that propensity score (the probability of
choosing an action conditioned on the covariates) is known and Monte Carlo estimation is feasible.
In contrast, our setting relies solely on an offline observational data with unknown propensity score,
rendering sampling-based methods inapplicable.

More closely related to our work is the literature on risk-sensitive online policy learning. Popular
multi-armed bandit (MAB) algorithms, such as upper confidence bound and Thompson sampling,
have been studied extensively in the context of CVaR based risk sensitive MAB (Galichet, 2015}
Galichet et al., 2013} |Cassel et al., 2018 [Tamkin et al., 2019; |Baudry et al.,2021; /Tan & Weng, |2023)).
However, nearly all of these works disregard individual covariates, and thus the resulting algorithms
cannot minimize risk at the population level.

Offline policy learning There is a long list of works devoted to offline policy learning (Dudik
et al2011; Zhang et al.,|2012; [Swaminathan & Joachims| 2015aibic; Kitagawa & Tetenov, 2018}
Athey & Wager, 2021} [Zhou et al., 2023; |Zhan et al., 2023; Jin et al., [2021;[2022). In particular,
Swaminathan & Joachims|(2015a) proposed the classical inverse-propensity weight learning (IPWL)
that optimizes policy to maximize the APE with known propensity score. |[Zhou et al.| (2023)) later
introduced the cross-fitted augmented inverse propensity weighted learning (CAIPWL) for learning
with unknown propensity score. Policy learning under biased samples is also found to be closely
related to CVaR (Sahoo et al., [2022} [Lei et al., [2023)).

2 PRELIMINARIES

Let A be the set of M actions A := {1,--- , M}, and let ¥ C R be a compact set of covariates.
Given some action a € A, the reward distribution Y (a) € ), C R denotes the potential reward
obtained from taking the action a. We consider a training dataset D = {(X;, A;,Y;)}ie[n) con-
sisting of n i.i.d. draws of (X, A,Y") generated as followsﬂ The covariate and potential rewards
(X,Y(1),---,Y(M)) are drawn from the underlying environment P. [{ Some unknown behavior
policy g selects an action given the covariate: A ~ 7y(X ), where the propensity score mo(a | X)
is the probability of A = a given the covariate X. In the data set D, only the factual reward
corresponding to the chosen action Y = Y (A) is observed. We assume the following for g and P.

Assumption 2.1 (Regularity). The behavior policy m and the environment P satisfy the following:
1. Unconfoundedness: (Y'(1),---,Y(M)) 1 A|X; 2. Overlap: for some € > 0, mo(a | ) > ¢, for
all (a,z) € A x X; 3. Bounded Reward Support: 0 < Y(a) < g fora € A

Assumption [2.1] is standard in offline policy learning literature (see e.g., [Athey & Wager, 2021}
Zhou et al.,|2023). The unconfoundedness assumption guarantees identifiability; whiles the overlap
assumption ensures sufficient exploration when collecting the data set D via a positive lower bound
on the propensity score. The third assumption of bounded reward support is largely technical to
make later analysis tractable. In fact, our methodology can be extended to sub-Gaussian rewards
straightforwardly , which we show empirically in Section 5]

Our task is to learn a risk sensitive policy m in a given policy class II from the training dataset D.

2.1 PoLicy CONDITIONAL VALUE AT RISK

The policy risk measure of interest is the Conditional Value at Risk (CVaR), which is defined below.

Definition 2.2 (CVaR). E]With respect to a specified probability level a € [0, 1], the a-level Value at
Risk (VaR) of a random variable Z € R is the lowest amount 3 such that, with probability «, Z will
not exceed 3. The a-level Conditional Value at Risk (CVaR) is

1 _
CVaRa(Z) = sup (8+ ~E((Z-8) ). (1)
'We will later use the shorthand Z := (X, A,Y).

>Throughout the paper, the expectation E and probability P are taken over P unless stated otherwise.
3CVaR is sometimes defined for the right tail of Z, corresponding to —CVaR(—Z2) in our definition.
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Remark 2.3. The sup is attained by 3 being the a-quantile: F;' (o)) = inf{83 : Fz(3) > a}, where
Fz(2) = P(Z < z). Here § is the a-level VaR of Z. If Z is continuous, then CVaR,(Z) = E[Z |
Z < F; ()], otherwise CVaR,(Z) € [E[Z | Z < F;*(a)|,E[Z | Z < F;*(a)]l.

According to Definition[2.2} given a policy 7, the a-level CVaR of the IPE CVaR,, (Y (7(X))) is the
average policy effect among the (100 x «)%-worst affected population. Let p1.(X) := E[Y (7(X)) |
X denote the CAPE. The next corollary following (Kallus, 2023} Theorem 3.1) gives an upper bound
of CVaR of IPE by that of CAPE CVaR,, (11 (X)).

Corollary 2.4. For any o € [0, 1] and a policy w1, CVaR, (Y (7(X))) < CVaRy (pr (X)).

Since CAPE represents our best guess for IPE, it is reasonable to impute the random and unknown
IPE Y (7(X)) with CAPE p,(X). Consequently, CVaR (., (X)) can be seen as a substitute for
CVaR(Y (X)), and a reasonable measure of policy risk.

Formally, our goal is to learn a risk sensitive policy with a high CVaR,, (u, (X)) from D, with a given
target a-level. Our challenge is two-fold: (i) inference of CVaR,, (1, (X)) of a given policy 7 under
slow parameter estimation rates; (ii) risk sensitive policy learning whose a-level CVaR,, (i (X)) is
high. Specially, we focus on deriving fast rate policy CVaR estimation and subsequently provide
parametric rate sample complexity for policy learning.

3 PoLicy CVAR INFERENCE

In this section, we concentrate on the first task of policy CVaR inference. We define the policy CVaR
1 _
Vo () :=CVaRa (1 (X)) = sup {ﬂ + ~E[(ur(X) = 8) ] } @

and denote S as the optimizer 3 := argsupg{ + E[(p-(X) — 8) |} in equation which is
the a-level VaR of pi,(X).

Since the CAPE p,. is not directly observed, the first step is fitting it. Let /i, be the estimator of ji
and let W, (X;) := 1{A; = w(X;)}Y;. The causal inference literature provides that /i, can be fitted
via off-the-shelf estimation algorithms using {W(X;) : i € D} (Hastie et al.,[2017}; |Zhou et al.,
2023), e.g., logistic regression, random forests (Ho et al.||1995), kernel regression (Nadarayal |1964;
Watson, [1964), local polynomial regression (Cleveland, |1979;|Cleveland & Devlin, |1988).

Given an estimator ji,, an naive policy CVaR estimator is the plug-in estimator

V() = Sup(8 3 (e (X0) — ).

nao 4

~plug-i o . S
However, the performance of V5"®™ depends on the estimation of /i, which is prone to slow
convergence rates and potential bias in regression estimation.

We circumvent the issue via a debiasing approach (Kallus, [2023)) that is insensitive to the estimation
of 1, and thus achieving satisfying policy CVaR estimation rate even in face of the slow convergence
rate of /ir. Algorithm [I]summaries the inference procedure, which computes the sample average of

.. A . 1 .. o 1{A=n(X)} . 5
Z; m Pr) ‘= Pr -1 ‘n'XSrr 7TX AiY*ﬂX*ﬂ-
O, 7o i, ) 1= B Wi (X) < B} (1 () + =P (Y = e (X)) = )
Here the propensity estimator 7 is the estimated propensity score and the estimated policy VaR is
B =it {8 > (1 (X:) < B} — ) > 0}, 3)
i€D

We also adopt the cross-fitting technique (Schick, [1986; Zheng & van der Laan, |2011) over K folds
so that the nuisance estimators (fi, 7o, B,r) are independent of the data points used for the overall
sample average of ¢. We split the dataset D randomly into K fold and denote each fold as D¥) for
k € [K]. Atevery k € [K] fold, we use the off fold dataset D*) := {D() : i # k mod K} to

estimate the propensity score 4. Denote D) := {(X;, A;, ;) : i € D®), A; = n(X;)}. We fit
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Algorithm 1 Policy CVaR Inference

Input: Data D, policy m, CVaR threshold «, regression algorithm R for estimating p,. and
propensity score 7.

Randomly split D into K equally-sized folds;

fork=1,--- /K do

Estimate 7% ~ R({(X;, 4;) :i € D®}) and 4 ~ R{(X;, W (X;)) : i € D))
Find A% with 4 and D® as in equation
Compute the kth-fold Vi*)(m) ¢ oty Sicpnr o(m, Zis ity i, 55):

end for )
Output: Va( )_ KZk 1 ( )

Ag,k) by the off fold {W,(X;) : i € ﬁ(k)} The kth fold policy VaR Bﬂk is found via equation
Finally, the kth fold CVaR estimator is the sample average of ¢(, ZZ, i (k)7 i (k)7 ﬁ,r ) on the kth
fold D*), and the policy CVaR estimator is the sample average of {Va (7)Y kel k-

Remark 3.1. If o = 1, then CVaR, (jix (X)) = E[pr(X)] = E[Y (n(X))], and V, is reduced to the

Cross-fitted Augmented Inverse Propensity Weighted (CAIPW) estimator|Zhou et al.|(2023)) for the
inference of APE E[Y (w(X))], with unknown propensity scores.

3.1 CONSISTENT PoLIiCcY CVAR ESTIMATOR

In this section, we look at the asymptotic behavior of the proposed policy CVaR estimator. We first
make some assumptions on the estimation rates.

Assumption 3.2 (Asymptotic estimation rate). Suppose that for each fold k € [K] and any policy
m € II, we assume that ||7iék) — 70| Lo (p) = 0p(1), Hﬂsrk) — UrllLy(py = 0p(1). Furthermore, we

~(k _1
Y talln. = 0p(n=1).

~(k ~(k _1
assume that |15 — ol e - 15 = pellia(p) = 0p(n %),

Assumption is nonrestrictive and standard in literature [Zhou et al.| (2023)); Kallus| (2023), and
can be achieved by the estimation methods discussed before, which is discussed extensively in
double-machine-learning estimation literatureChernozhukov et al.[(2018); |[Farrell (2015)). It suffices

to have slow op(n‘i)—rates on both CAPE and propensity score estimation or no rate on CAPE
estimation if the propensity score is known.

We also need another assumption that prohibits degeneracy of the quantile.

Assumption 3.3 (Regularity of Quantile). We assume that the CDF F),, (x is continuously differen-

tiable at F;ﬂl(X) () for the given o € [0, 1].

If 1. (X) is discrete, Assumptioncan be replaced by F) - X)( €)=F, 1( x) (a + €) for some
€ > 0 (Kallus, |2023). Since the covariate space X is rich, we focus on the continuous p.,(X) case.

Since 37(71@) is deriveﬁ ﬂSJ” in equation |3} the following lemma translates the convergence rate of

(k) in Assumption [3.2]to that of B *) e proof is in Appendix
Lemma 3.4 (Convergence rate of ﬁﬂ) Under Assumptton n n and . 3| for all k € [K], the

estimation error |B — Be| = Op(n2 v ||/1,(k) /JwHTH ),V € [1, o0].

The following theorem shows the asymptotic normality of the CVaR policy estimator in Algorithm [T}
despite of the slow estimation rates in Assumption 3.2} The proof is deferred to Appendix [E.3]

Theorem 3.5 (Asymptotic Normality). Under Assumption 2.1 B.2|and[3.3] for any w € 11, we have
ViV (m) = Va(r)) = N(0,07), where 03 = Var(¢(Z; 7o, i, B))-

4 CVAR BASED RISK SENSITIVE POLICY LEARNING

We now turn to the second goal and present our CVaR based risk sensitive policy learning (A\-RSL).
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4.1 WEIGHTED POLICY VALUE

A straight forward candidate of risk sensitive policy in a policy class II is the one that maximizes
the policy CVaR,, (- (X)). In many applications, only considering the CVaR objective could be
too conservative, as it is also important to monitor the APE. We propose the learning objective that
maximizes the policy value U) o (), which is the weighted sum of the APE and the policy CVaR
with weighting parameter A € [0, 1]:

Una(m) :=2Q(m) + (1 — AM)Vu(m), Vmell %)

where Q(7) := E[Y(n(X))] = E[E[Y(n(X)) | X]]. Detailed discussions of the choice of A
empirically and theoretically are given in Section [5|and Appendix [B|respectively. Zhou et al.| (2023)
provided the well-known CAIPW Learning (CAIPWL) scheme for policy learning under the APE
maximization objective.

We define the optimal policy of a policy class II to be 7* = max e Uy o (7). Policy learning task
finds a near-optimal robust policy m € II whose policy value is close to the optimal policy. The
performance of a learnt policy 7 is measured by the sub-optimality gap (regret), defined as

Ry o(7) = U o(T7) — Un,o (7). 5)
4.2 RISK SENSITIVE POLICY LEARNING

To find the optimal policy 7* that maximize the policy value U, ., the major challenge is the
estimations of u, and 3. This is because both p,, 5, are functions of 7, and it is infeasible to
estimate for every 7 within a policy class IT containing an infinite number of policies.

To tackle the first issue of z, estimation, we can express 1. (X ) as a function of the policy action
m(X): pr(X) = Zi\il 1{n(X) = a}pq(X). To be more precise, we estimate . (X) by collecting
{Wa(X;) = 1{A; = a}Y;,i € D}aca. We can construct i (X) = fir(x)(X) with {ji,,a € A},
for any policy m € II,. As before, we adopt the cross-fitting technique over K folds to avoid
dependence between [i, and the data points used for calculating the sample average.

Deriving the estimator /i, also benefits the learning of the APE Q(7). As discussed before, Q()
can be learnt via CAIPWL |Zhou et al.| (2023), which maximizes the CAIPW estimator Q()

1{A=n(X)} (Y — ﬂgrk)(X))-f— A(k)(X)v

bim, Zsig” ) = gy
AP (r(X) | X)

W

A - 1
Q)(m) = |D(k)| > wm Zawg? 4, Q) = Yl (©)
k:

ieD(k) =1

Given { ,15!“) (Xi) }iens equationﬁnds the policy VaR Bfrk) for a specific policy 7 € II. Previously
- (+) can be decoupled on the action level, thus transforming the infeasible task of computing a class
of infinite nuisance parameters {y, : © € II} to the feasible task of computing a finite one, however
this is not implementable for estimating 3., which imposes the second challenge. We tackle the issue
by jointly optimizing the nuisance parameter B and policy 7 (by taking policy gradient updates)
in an alternating fashion. In particular, we start by initiating a random policy 7 and estimate its 3.
Then, we take gradient steps to maximize 7 € arg max, i U o(7) := AQ(1) + (1 — \)Va(7),

where V() = % Zk 12 iept (T, Zis k), Agr ) (k)) while updating 3 along the way. Such
process ends when the learnt policy converges. Detalls of A-RSL is in Algorithm 2]

Remark 4.1 (Convergence of A\-RSL). We note that the policy learning objective L{,\,a(w) is non-
smooth (due to the indicator functions) with weak concavity structure, which poses particular
computation challenges that are common in RL in general (Kaelbling et al.||1996). As the scope of
this work does not include developing optimization method for nonsmooth and nonconcave objectives,
we defer further discussions on the theoretical convergence of A\-RSL to Appendix|C| Empirically, the
policy gradient update scheme is easy to implement with a variety of optimization methods, including
AdaGrad (Duchi et al.| |2011) and RMSProp (Hinton et al.| 2012} \Graves, |2013} Ziyin et al.| 2020).
We shall see an efficient implementation with a softmax policy class in Section 5]
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Algorithm 2 \-Risk-Sensitive Learning (A\-RSL)

Input: Data D, policy class II, CVaR threshold «, objective weighting parameter ), regression
algorithm R for estimating 11, (X) and propensity score .
Randomly split D into K equally-sized folds;
fork=1,--- /K do

Estimate 7% ~ R({(X;, 4;) : i € D®)});

fora € Ado

Estimate 15" ~ R({(X;, Wa(X;)) : i € D®);

end for
end for .
Initiate some 7 € IT and estimate {ﬁ;k)}ke[;q with {ﬂék)}ke[K]yaeA;
while 7 does not converge do

Update 7 by some gradient steps to maximize U o, (7);

Estimate {5 }eqx) with {5} ke (i) acas
end while
Output: 7.

4.3 MAIN REGRET ANALYSIS

In this section, we present the regret analysis of \-RSL. Before we embark on the regret result, we
need to introduce the Hamming entropy integral x(IT), which measures the complexity of II.

Definition 4.2 (Hamming entropy integral). Given a policy class I1 and dataset {x1,...,x,} C X,
(1) the Hamming distance between w, ' € Il as Dy (m,7') := 23" 1{m(x;) # 7' (z:)}; (2)
the e-covering number of {z1, ...,z }, denoted as Ny (e,11;{x1, ..., 2, }), is the smallest number
N of policies {m1,...,nn} in IL, such that ¥V m € 11, 3 m, such that Dy (7, 7;) < € (3) the
Hamming entropy integral of 11 is defined as x(II) := fol \/log Ny (e2,11) de, where Ny (e,11) :=
SUp,, > 8Up,, . Nu(eII; {z1,...,2,}).

We now present the regret guarantee of the policy 7 learnt by A-RSL. The proof is deferred to
Appendix The main idea is to first decompose the regret

Ry o) =Uno(m") = Un,a(T) = M(Q(1") = Q7)) + (1 = M) (Va(r") = Va(®)). (D
Note that the first term can be translate to the supremum of the estimation error:

MQ(r") = Q(x") + Q") — Q(#) + Q(#) — Q(#)) < 2A sup |Q(m) — Q(m),

and bounded by the known results from Zhou et al.|(2023)). We concentrate on the second term, which
can be similarly upper bounded by
(1= N (Va(*) = Va()) < 2(1 = X) 51 Va(m) = Va(m)]. (8)
S

At a high level, we bound the right hand side of equation [§] by establishing uniform convergence
results for the policy CVaR estimators, through a careful chaining argument.

Theorem 4.3. Under Assumption and there exists some N € Z. such that with
n > N and denoting q := sup,,, ., E[((71, Z; 70, pta) — (72, Z; 70, f1a))?], we have that with
probability at least 1 — A, the regret of \-RSL

Ry.a(7) gA\/g(54.4\f2n(H) 4352+ /2 log(l/A)>

+(1- A)% ((8 + ag)k(TT) + (64 + 5ag) + log(l/A)>.

Theoremm shows that the dependence of R o (7) on the sample size n is of order O(n_%), which
agrees with the regret guarantee of CAIPWL Zhou et al.|(2023). This implies that the CVaR based
risk sensitive policy learning with \-RSL attains the same order of sample complexity as other offline
policy learning algorithms, especially CAIPWL which maximizes average policy effect, i.e. social
welfare, with no consideration of risks.
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5 EXPERIMENTS

We evaluated the performance of A-RSL against the benchmark CAIPWL |[Zhou et al.| (2023)), with a
simulated and a real-world dataset. The specific setups are given in Appendix [D}

Simulated Dataset The simulated data generating process follows that of the linear boundary
example in |Si et al.| (2023). We generate 50 training datasets of data tuple (X, A,Y), with a
behavior policy my; and similarly generate 50 testing datasets, each of size 10,000. The covariate set
X = {x € R®: ||z||2 < 1} is the closed unit ball of R® and the action space is .A = [3]. The covariate
are sampled independently X ~Unif(X); the action A ~ 7o(X) and the rewards Y (a)’s are mutually
independent conditioned on X with Y (a) | X ~ N(3, X,02), for B, € R®,0, € R,a € A. Note
that the reward distributions here are not of bounded supports.

Real-world Dataset We consider the dataset of a large-scale randomized experiment comparing
assistance programs offered to French unemployed individuals provided in Behaghel et al.[(2014).
Behaghel et al.|(2014) compares three treatments: (i) the “control” treatment individuals receive the
standard services of the Public Employment Services; (ii) the “public” treatment individuals receive
an intensive counseling program run by a public agency; and (iii) the “private” treatment individuals
receive a similar program run by private agencies. We consider a scenario where the decision maker
is trying to learn a personalized policy that decides whether to provide the public-run (A = 0) or the
private-run program (A = 1). The binary reward Y indicates reemployment within six months.

Implementation with Softmax Policies We implement A-RSL and the benchmark CAIPWL on
a softmax policy class II. Given a covariate z € X, each policy 7 € II chooses its action a € A
with probability 7(a | 2) o exp(z "v2) with some policy weights {72} ,c.4. We consider the neural
network softmax policies with a hidden layer of 32 neurons and ReL U activation.

In our implementation, the learning parameters are set to be the same for both \-RSL and CAIPWL.
The number of data splits is taken to be K = 2. We use the Random Forest regressor from the
scikit-learn Python library to estimate 7y and {4 }aeca. For the policy gradient step, we
implement A\-RSL by maximizing the objective in equation [d]using RMSProp with a learning rate
of 0.01. For CAIPWL, we similarly use RMSProp to maximize its objective equation|[6] Since the
objective equation ] and equation [6] are non-convex in the policy weights, following [Dudik et al.
(2011); Kallus et al.| (2022), every policy update is repeated 10 times with perturbed starting weights
and the best weights based on the chosen policy learning objective. The policy convergence criteria is
whenever the difference between the previous and the updated policy value to be less then 1e-6.

Performance Metrics We compare the performance of the learnt policy 7 by A-RSL and the
benchmark CAIPWL with the following two metrics: (i) empirical CVaR of CAPE (empirical policy
CVaR); and (ii) empirical APE, on the testing dataset. The two metrics are defined formally as

—_~— ~

CVaRq (44 (X)) = Ep, [12(X) | 2 (X) < F 2 (@), E[Y (7(X))] := Ep,,, [Y (#(X))].

Here we use L to denote the empirical CDF of a random variable Z. For every experiment
environment, we test weighting parameters A € {0,0.2,0.5,0.7} and CAIPWL. Note that when

Table 1: C/\le/{a(u;r (X)) under a-level 0.01, 0.05 and 0.1, over 50 seeds. We denote 7 as the
policy learnt by A-RSL with different A’s. The "Increase” column shows the percentage increase of

C/Gé/Ra(u,}o_o (X)) compared to the benchmark C/\Zﬁa (Heamwr. (X)), when n = 20, 000.

a | A | n =5,000 n =10,000 n =15,000 n =20,000 | Increase
0.0 -7.155e-2+1e-2  -3.942e-2+8e-3  -2.731e-2+6e-3  -2.209e-2+7e-3
0.01 0.5 -7.227e-24+1e-2  -3.948e-2+8e-3 -2.755e-2+7e-3 -2.250e-2+7e-3 ~10%
CAIPWL | -7.278e-2+t1e-2 -4.012e-24+8e-3 -2.914e-2+6e-3 -2.444e-2+7e-3
0.0 8.10e-3+7e-3 3.128e-24+5e-3  4.012e-2+4e-3  4.378e-2+4e-3
0.05 0.5 7.88e-3+7e-3 3.022e-245e-3  3.944e-2+4e-3  4.302e-2+4e-3 ~5%
CAIPWL 7.85e-3+7e-3 2.998e-2+5e-3 3.913e-2+4e-3  4.182e-2+4e-3
0.0 5.553e-24+5e-3  7.345e-2+4e-3  8.102¢-2+3e-3  8.370e-2+2e-3
0.1 0.5 5.528e-24+5e-3  7.273e-2+4e-3 8.018e-243e-3 8.312e-243e-3 ~2%
CAIPWL | 5.515e-2+6e-3  7.241e-2+4e-3 8.001e-243e-3 8.211e-243e-3
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Table 2: E[Y (7(X))] under a-level 0.1, 0.05 and 0.01, over 50 seeds. We denote 7 as the policy
learnt by A-RSL with different A’s. The "Decrease” column shows the percentage decrease of

E[Y (#0.0(X))] compared to the benchmark E[Y (7icapwr (X))], when n = 20, 000.

a | A | n =5,000 n =10,000 n =15,000 n =20,000 | Decrease
0.01 0.0 3.9492e-1+1e-3  3.9903e-1+9e-4 4.0062e-1+7e-4 4.0145e-1+Te-4 ~0.05%
: 0.5 3.9510e-1+1e-3  3.9898e-1+9e-4 4.0039e-1+7e-4 4.0149e-1+8e-4 R
0.05 0.0 3.9502e-1+1e-3 3.9889%e-1+1e-3 4.0058e-1+7e-4 4.0141e-1+Te-4 ~0.06%
’ 0.5 3.9508e-1+1e-3  3.9894e-1+9e-4 4.0039e-1+7e-4 4.0144e-1+7e-4 R
0.1 0.0 3.9511e-1+t1e-3 3.9884e-1+1e-3 4.0067e-1+8e-4 4.0142e-1+Te-4 ~0.06%
’ 0.5 3.9520e-1+1e-3  3.9896e-1+9e-4 4.0052e-1+7e-4 4.0143e-1+8e-4 R
‘ CAIPWL ‘ 3.9554e-1+1e-3  3.9923e-1+1e-3  4.0067e-1+7e-4 4.0166e-1+7e-4 ‘

A = 0, the training objective equation @ reduces to policy CVaR maximization objective equation
when A = 1, A-RSL reduced to the benchmark CAIPWL.

Results and Discussion Table |1| and Table [2| reports the empirical policy CVaR and APE of the
learnt policies on the simulated dataset, respectively. Figure[5|shows the empirical policy CVaR of
the learnt policies on the real-world dataset. Appendix |D|provides detailed results of the algorithm
performance on the real-world dataset in Table 4] and Table [5

In both the simulated and real-world settings, our proposed A\-RSL outperforms the benchmark
CAIPWL in terms of empirical policy CVaRs; on the other hand, CAIPWL receives higher empirical
APE across all trials. As « increases, the advantage of applying A-RSL to improve policy CVaR
gradually diminishes. Theoretically, in the extreme case of @ = 1, A-RSL reduces to CAIPWL.

This reflects that the optimal policy that maximizes the overall social welfare would overlook the
negative impact on the worst-affected population. In the case of a = 0.01 and given large sample
size (~20,000), A-RSL (setting A\ = 0) shows a ~ 10% and ~ 16% increase in the policy CVaR
compared to CAIPWL, on the simulated and real-world dataset respectively. This increase only
costs a corresponding ~ 0.05% and ~ 1.2% decrease in the empirical APE. This shows that A\-RSL
produces a risk sensitive policy which improves the outcome of the worst-affected population, with
little reduction in the social welfare.

The trade-off between risk and social welfare is controlled by the weighting parameter \. As we see
in Figure[5] larger A results in smaller improvements in policy CVaR, however it would achieve better
APE (especially with large sample size). We also would like to note that even when A is set to be 0,
which means A\-RSL is only maximizing policy CVaR, Table [2] shows that its loss in APE is relatively
minor, compared to the improvements it gains in policy CVaR.

a=0.01

Estimated CVaR of ps(X) (1e-3)

8000 10000 12000

Sample Size n

14000 16000

Figure 1: &Eﬁa (1#(X)) under a-level 0.01, on the real-world dataset, over 50 seeds. Confidence
intervals are given in Table[d] Appendix

In conclusion, the empirics show that A-RSL improves the outcome of the worst-affected population
by sacrificing little social welfare.
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A  NOTATION

We use [n] to denote the discrete set {1,2,--- ,n} for any n € Z. We use argmin and argmax to
denote the minimizers and maximizers; if the minimzer or the maximizer cannot be attained, we
project it back to the feasible set. We denote v~ := uA0 = min{u, 0} for u € R. We denote the usual
p-norm as || - || . For simplicity, we let || - || denote the 2-norm || - ||2. Denote P to be any probability
measure defined on the probability space (2, o(2), P). For any function f, we denote the L,.(P)-

norm of f conventionally as || f||z,p) = (f|f(2)|” dP(x))"/ and || f|1.. = supscx |f(2)]. We
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also denote z~ := x A 0 = min{x, 0} for z € R. For any random variables X, Y, we use X 1l Y to
denote that X is independent of Y. For a random variable/vector X, we use Ex[] to indicate the
expectation taken over the distribution of X.

B WEIGHTING PARAMETER AND CONSTRAINED POLICY LEARNING

As discussed in Section[5} empirically, the weighting parameter A controls how much Algorithm 2]
would like to hedge against the policy CVaR. Higher A results in a lower CVaR of CAPE and higher
APE.

Theoretically, we can interpret A as an Lagrangian variable of a risk-constrained policy learning
problem. The maximization of the policy learning objective in equation[]is equivalent to

max Q(7) + %Va (m) =: max () + nVu(m), 9

mell

where we set 7 := % The above is equivalent to the Lagrangian form of the CVaR constrained
policy learning problem:

max E[Y (7(X))] (10)
s.t.  CVaR(u,(X)) > ¢,

where c is some risk tolerance threshold determined by the decision maker, that satisfies the following
assumption.

Assumption B.1. The feasible set S, = {m € Il : CVaR,(7(X)) > ¢} is not empty.

Let po(z) = E[Y (a) | X = z]. Then, by the definition of 7, we can write

/Z (a| z)pq(x) dPx.

T acA

Therefore, for any 71,79 € Iland ¢ € (0, 1),
E[Y ((tm + (1 = t)m2)(X))]
= [ Stmal @)+ (1= ma(a ] a)pola) dPx

acA
/Ztﬂ'la|xua dﬂbx+/zl—t72a|$)ﬂa( ) dPx
acA acA

=tE[Y (m(X))] + (1 = O)E[Y (m2(X))].

Combining the above with Assumption[B.1]and the concavity of CVaR,, (7 (X)) shown in[Rockafellar
et al.| (2000), we conclude that the Slater’s condition holds and strong duality holds for the below
dual of Problem equation

minmax E[Y (7(X))] 4+ n(CVaR, (7 (X)) — ¢).

n>0 well

To solve the risk constrained policy learning problem equation [T0]using the training dataset D, solve

min max Z Q k) ﬂ V(k)( )

n>0 well

N

st. B = inf{ Z ]1{,#) )< B} —a) > o} Vk € [K], 7 e1l,

eD(k

where {Q(k) (m), v (7) }ke|K),~em are as defined before. Recent literature has provided efficient
algorithms to find min-max-min problems as the above. One could apply a first-order method ProM3
in|Tu et al.|(2024) to solve the risk constrained policy learning problem.
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C CONVERGENCE OF A\-RSL

Recall that the policy learning task requires us to maximize the following deterministic objective

UAO‘ Z|D(k Z ()‘ Y(, ZZ77TO v{ﬂ(k)}ae[M})

ieD(k)
+ (1 =N - o(m, Zi; 7y & Aalr }ae M]s {8} e K])))
(. {B%})

with a bilevel structure

max  f(m, {85}
i B$>—hﬁ{ﬂ: 3 u{ﬂﬁkxnfzﬂ}a>zo}, vk € K],

ieD(k)
The inner-level optimization problem has a closed form solution {Bﬁk)}, which is the empirical
VaRa(/lSTk)(Xi)), i.e., the a|D*)|-th ordered statistics of {,ugrk) (Xi)}iep -

On the other hand, the upper-level objective function f is neither smooth nor convex, which poses

particular computational challenges. To overcome this issue, consider the smoothed version f for f,
which adopts the sigmoid approximation for the indicator function in ¢:

K

’L’

<mmmn:1 5 (i Y ae )

ZGD(k)

+O—M@WZM'&MmmM&@%mmmv

with o(x) = 7 > 0 a small constant, and

1
14e—=>
&(m, Zi; 787 {8 Y ey 185 e ix))

_B%) 4 é . U(M) () + m<y (X)) - A).

In this way, we can apply gradient ascent method under the smooth objective f . At each time ¢, we
take Ty 1 = 7w 4+ NV f (70, {Bt(k)}), where 1) is the step size and we denote {/S’t(k)} {B(k)} We
then update the correct { Bt(_li)l }.

It can be shown that under the assumptions on the outcome distribution and the propensity scores,

the gradient V fis upper bounded, and thus fis Lipchitz continuous. Subsequently, our policy
learning task reduces to a gradient ascent scheme for a Lipchitz continuous but nonconvex objective
function. Following the optimization literature (Ghadimi & Lan| [2013)), the solution 77 converges to

a stationary point with a rate of O(1/+/T)), where T is the iteration number.

One limitation is that due to the weak concavity structure of the objective function, we cannot
guarantee convergence to the global maximum. We can further improve this result by applying a
convex upper bound of f, then following convex optimization literature (Boyd & Vandenberghe,
2004)), we can guarantee convergence to the global maximum with a faster convergence rate.

In Table |3 l we report the result of \-RSL solving the smoothed objective f under different choices of
7’s. Juxtaposing Table [3| with Tables[d]and [5] we observe that \-RSL performs comparably under

both the nonsmooth objective u '\, and its smoothed counterpart f with smaller values of 7 yielding
better performance. This outcome is expected, since as 7 decreases, the sigmoid approximation

function o approaches the indicator function in iy 4.
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Table 3: Results of A-RSL using the smoothed objective f in the real-world dataset with A = 0 and
a-level 0.01 over 50 seeds. Here we denote the policy learnt as 7.

Metric T n =7,500 n =13,500 n =15,000 n =16,500

—— 0.001 136¢-3+5c-4 1.4de-3+5c-4 145¢-3+5e-4  1.53c-4+he-4
CVaRo (k4. (X)) 00001 1.37e-3+5e-4 1.45e-3+5e-4  1.48e-3+5e-4  1.53e-4-+be-4

P 0001 228¢-147e-3 228¢-1+7¢-3 2291473 2.29e-1+7e-3
Y@ (X 00001 228¢-147e-3 2.29e-147e-3  2.29e-147e-3  2.30e-1+7e-3

D EXPERIMENT DETAILS AND MORE RESULTS

Simulated Dataset Generation Details We choose the action set A = [3]. Let 0 = {0,,a € A} =
{0.2,0.5,0.8} and let {/3,,a € A} to be

{1 =(1,0,0,0,0), 82 = (~1/2,v/3/2,0,0,0), B5 = (~1/2,~v/3/2,0,0,0)}.
The underlying policy 7y chooses actions with covariate « according to the following rules:
(0.5,0.25,0.25), if argmax;_; 5 3{8; 2} =1,
(mo(1|x),m0(2| ), mo(3| x)) =  (0.25,0.5,0.25), if argmax;_; 5 3{B #} =2,
(0.25,0.25,0.5), if argmaxizlgﬁ{,@;x} =3.
We generate 50 training datasets of
Duvain = {(le A = W()(Xi)a K(W()(Xl)))}

where X;’s are sampled i.i.d. uniformly from the closed unit ball of R?, A; ~ 7mo(X;), and
Yi(As) ~ N(B4, Xi,0%,). Similarly, we sample 50 testing datasets

n
=1’

10,000
Do = { (6 (0400) Y20 Y. (0. il X s ()}
where 11, (X;) = 8] X;.

Implementation Details In our implementation, the learning parameters are set to be the same for
both A-RSL and CAIPWL. The number of data splits is taken to be K = 2. We use the Random
Forest regressor from the scikit-1learn Python library to estimate mg and {4 }qca. For the
policy gradient step, we implement A-RSL by maximizing the objective in equation 4] using RMSProp
with a learning rate of 0.01. For the benchmark, we similarly use RMSProp to maximize the CAIPWL
objective equation [6] Since the objective equation ] and equation [6] are non-convex in the policy
weights, following Dudik et al.|(2011); [Kallus et al.| (2022), every policy update is repeated 10 times
with perturbed starting weights and the best weights based on the chosen policy learning objective.
The policy convergence criteria is whenever the difference between the previous and the updated
policy value to be less then 1e-6.

Computation Details The experiments were run on the following cloud servers: (i) an Intel Xeon
Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum
8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59
GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4 @ 2.59
GHz with 384GB RAM and 64 CPU x 2.59 GHz.

The following Figure [3]shows the MSE of the estimated policy CVaR by Algorithm [T} with o-level
{0.1,0.05,0.01}. A variant of Algorithmwith known propensity score is also tested. As the sample
size increases, the estimation becomes more accurate and stable.

More Results We now provide detailed algorithm performances on the real-world dataset. Table 4]
shows detailed values of learnt policies’ CVaR of CAPE as well as confidence intervals. Table |5
shows the APE of the learnt policies.

On the simulated dataset, we also compare the performance of the learnt policy 7« by A-RSL and the
benchmark CAIPWL with the empirical CVaR of IPE:

CVaR, (Y (7(X)) = Ep,,, [Y (#(X)) | Y(7(X)) < Fyls ) (@)].
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Table 4: a\é/Ra(/lﬁ— (X)) under a-level 0.01, on the real-world dataset, over 50 seeds. We denote
7 as the policy learnt by \-RSL with different \’s. The “Increase” column shows the percentage

increase of CVaR,, (114, (X)) compared to the benchmark C/\Elﬁa(,uﬁcmm (X)), when n = 20, 000.

A \ n =7,500 n =13,500 n =15,000 n =16,500 \ Increase

0.0 1.40e-3+5e-4 1.50e-3+5e-4 1.52e-3+5e-4 1.55e-3+5e-4 | ~ 16%

0.2 1.31e-3+5e-4 1.34e-3+5e-4 1.35e-3+£5e-4 1.47e-3+5e-4 | ~ 10%

0.5 1.30e-3+£5e-4 1.32e-3+5e-4 1.34e-3+5e-4 1.40e-3+5e-4 ~ 5%

0.7 1.30e-3+5e-4 1.31e-3+5e-4 1.32e-3+5e-4 1.38e-3+5e-4 ~ 4%
CAIPWL | 1.23e-3+5e-4 1.27e-3+5e-4 1.30e-3+5e-4 1.33e-3+be-4

Table 5: E[Y (7(X)] under a-level 0.01, on the real-world dataset, over 50 seeds. We denote 7 as
the policy learnt by A-RSL with different A’s. The "Decrease” column shows the percentage increase
of E[Y (75 (X)] compared to the benchmark E[Y (7carpwr (X )], when n = 20, 000.

A | n=7500 n =13,500 n =15,000 n =16,500 | Decrease

0.0 2.27e-1+£7e-3  2.28e-1£7e-3 2.29e-1+7e-3  2.29e-1+7e-3 | ~1.2%

0.2 2.28e-1£7e-3 2.28e-14+7e-4 2.29e-14+7e-3 2.29e-14+7e-3 | ~ 1.2%

0.5 2.28e-1+£57-3  2.28e-1+7e-3  2.29e-1+6e-3 2.29e-1+6e-3 | ~ 1.2%

0.7 2.28e-1+£7e-3  2.29e-1+7e-3 2.29e-1+7e-3  2.30e-1+7e-3 | ~ 0.9%
CAIPWL | 1.29e-1+7e-3 2.30e-1£7e-3 2.30e-1+7e-3 2.32e-1+£7e-3

—0.668 1 ~1.480
~0.950
-0.6904

~0.952

(X)

< -1.485
~0.692
~0.954

—0.694 ~1.490

-0.956
~0.696

—0.956 _1.405 |

MSE of Estimated CVaR of y,

~0.698 -
—0.960

07004 /- ~1.500
—0.9624

10000

14000 16000 18000 20000

Sample Size

14000 16000 18000 20000 10000 12000

sample Size

14000 16000 18000 20000 12000

sample Size

10000 12000

Figure 2: CT\ZTRQ (Y(#(X))) under a-level 0.1, 0.05 and 0.01, over 50 seeds.

a=0.05 a=0.01

—— unknown my

MSE of Estimated CVaR of (x(X)

;

2500 5000 7500 10000 12500 15000 17500 20000
sample Size

2500 5000 7500 10000 12500 15000 17500 20000
sample Size

2500 5000 7500 10000 12500 15000 17500 20000
sample Size

Figure 3: Average MSE of estimated policy CVaR by Algorithm [1| with unknown and known
propensity score, over 25 seeds. a-level is chosen to be 0.1, 0.05 and 0.01.
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Table |1 in Section |5| and Figure [2| report a;ﬁa(/,tﬁ(X )) and C/\Zlﬁa(Y(ﬁ(X ))) of the tested

algorithms. We observe that CVaR,, (u#(X)) > C/\Zlﬁa(Y(fr(X ))) in all settings for any learnt
policy 7, which agrees with Corollary 2.4]

We also test the policy CVaR inference task. We implement Algorithm[T|on the simulated dataset
and estimate the policy CVaR of a fixed policy 7w, which is different from the behavior policy 7.
The performance of Algorithm [I]is evaluated by the mean squared error (MSE) of the estimated
policy CVaR. Figure [3]shows the MSE of the estimated policy CVaR by Algorlthmm with a-level
{0.1,0.05,0. 01} A variant of Algorithm I 1| with known propensity score is also tested. As the
sample size increases, the estimation becomes more accurate and stable. With large sample size,
the estimation with unknown propensity score is comparable to the one with known propensity
score, which highlights the double-robustness of our estimator. We also observe that with larger «,
Algorithm[I|needs more samples to achieve small MSE.

E DEFERRED PROOFS OF THE MAIN RESULTS

E.1 PROOF OF COROLLARY [2.4]

Proof. We follow Theorem 3.1 in |Kallus|(2023). By Jensen’ inequality,
1 _
CVaRa (¥ (r(X) =sup (B + —E[E[(Y(«(X)) - B)" | X}])

<sup <B + LB () - ﬂ)) — CVaR, (12(X)).
B (0%

E.2 PROOF OF LEMMA[3.4]

Proof. Denote the quantile Q,,(f) of any function f(z) as Q. (f) = inf{8 : E[1{f(X) < 8}—a] >
0}. We also denote the empirical quantile using the kth off fold data as

ng(f):inf{ﬁ: > a{fx )<ﬁ}—a)>0}
ieD*)
As in Algorithm we have 37(1' = (k)( ()) and the true ﬁ”_F_ ( ) = Qapa)-

We will show the equality by proving that the RHS is the upper bound and the lower bound of the
LHS. We first prove the upper bound of case where » = co. By definition of QE,@, we have that

QW () = Qalpa) < sup |0 (X:) = pa(Xa)| = Op(IA — pallz)-
ieD k)
Now we consider the case where r < co. Let § = ||pr — k) 7 7T " (p)- By a union bound with respect
to the empirical distribution,
A(k) ([ k k
QW (D) < QU5 (1am) + Q5 (A — pr).

By continuous differentiability in Assumption [3.3] the first term on the RHS can be bounded by

ngklé(/iw) Qg?r(s( 7) = Qats(in) + Qats(pix)
Qa+5( 7) — Qats(pin) + Qaltr) + Op(9).

Furthermore, using the delta method, we have that Ql ot 5(u,,) Qa+ts(pix) = Op(n~2) and,

QY (1tr) < Op(n”™%) + Qulpin) + Op(8).
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To upper bound the second term, we apply Markov’s inequality with respect to the empirical
distribution:

QM5 (A% — px)
:inf{ﬂ: S (A (X) — pa(X2) < B} — (1~ [l —u(’“)l’“))EO}

ieDk)
(|D<k)| Sienm 57 (Xi) = i (X)) 7
5

:Op( v 12

2. p)) = Op(d).

Combining the two results, we have

QW (A™) = Qalir) < Op(n™2) + Op(llun — II}S*EP )-
To derive a lower bound, we can make a symmetric argument by similarly writing:
A . Ak
QW (™) = QU s () + QY5 (i = ).

The upper bound and lower bound gives the desired result when r < oco. O

E.3 PROOF OF THEOREM[3.3|

Proof. We first state the following helper lemma, the proof of which can be found in Appendix

Lemma E.1. Suppose that Assumption2.1} 3.2} and[3.3|hold. Then there exists some constant ¢, > 0
such that ||px — gL, < c1and|Br — B| < c1, and for any o € (0, 1), we have

|E[ o(m, Z; 7o, [, B)] —E[Qb(ﬂ' Z'7T07M7r7ﬁ7r)]|
<2—||7T0—7T0||L2(P i — :U’TF||L2
+= (F’ 0 (Fy (@) + (1 = pisll e, + 187 — A1)
1

+£(F;:W(X)(FM (X)( a)) +1)[3 = B

||¢)<Z1 7}0) ﬂ7B) - ¢(Z;7T07//['7T7B7T)||L2(P)

2y . 2.
SWHWO —mollLy(p) + oTs“MX) — ptx (X)) 2o(p)

£ 2 o (F ey @) 4 D18 = el + 100 — i (X) 1.0,

Fixing a sample i € D*), we also have

R 2y 1 -
|9(Zi; 7o, 1, B) — &(Zis mo, pirs Bre)| < 3/2|7To( m(Xi) | Xi) — mo(m(Xa) | Xa)| + 5\5 — Bl
1. 7y
+ o IA(Xe) = pe (Xa)[ + 2

In the following sequel, we shall show that v =y, (m) + op(n‘% ), for all data fold k € [K].

19



Under review as a conference paper at ICLR 2026

We can decompose

vl
|D(k)| Z d) Zl’ﬂ-O ’/’l’ﬂ' aﬁ(k)) ¢(7raZi;7707ﬂ'7r7BTr)
i€DK)
k: ~ ~ —
=g o O Zal i, 50) — Elo(r, Zia, i), B0) | DV — (. Zi o, n. )
i€Dk)

+ E[¢(7, Z; 7o, i Bx) | DW] + Elg(, Z; 257, 1P, 30)) | DM — Elg(rr, Z; 7o, fims Br) | DX)]
=E[¢(m, Z; 77, a0, 0 | DB — Blg(r, Z; w0, pix, B) | DX

. Z (¢(7T Zi T, Ak )7ﬂw aﬂ(k)) ¢(7T7Zi;7707u7r757r)

D™
ieDk)

— (Blo(r, Z; 75", i), B8)Y | DRI — Elg(r, Z; 70, b, Br) | DW])) = (I) + (II).

+

We will show that Term (I), (IT) are both o, (n" 7).
By Lemma E.1|and Lemma3.4] Term (I) is

2y . . . _ . ~
(1) ==Zllfo = moll eyl = prll oy + (F' L0 Eioy (@) + D) ([l — pallia + 187 — BI)?

1 ~
+ Z(Fliw(X)(F 1(X)( @) +1)|8 = Bx|?

~ (K . . . . .
=0, (178" = moll Loy | — ttnllLapy + liiw — piall3 o + lfir — prell Lo 1B = Bal + [BE) — Be[?)
=0, (178" = ol Loy | — pill Ly + 185 — pall3).

By Assumptlon we have that Term () = o, (n*%).

Conditioned on the off-fold data D(¥), we apply Chebyshev’s inequality to Term (I1). For any ¢ > 0,
we have that

Var(|6(Z; 78, 4P, B — 6(Z; 70, pims B )

P(|II| >t |D®) <
(| |— | )— ‘D ‘tQ

1 .
=02 (a53/2 176" = Toll acry + 1B = Brl

20 8)(By @) + DB = Bl + 10 (X) = i (O)2) ).

where the last step is due to Lemma[E.] Consequently,

(k) (K
||¢(Z 7Té 7/’1’;’)7 U ) (Z 7‘-07/’[/71'7571')“[12(13)

|D(k)|2 '
By Lemma[3:4] and Assumption[3.2] we further have

_1 N ~ A
(11) =0, (ID™ |72 (||t — 0| a(p) + It = sl La(p) + 1B — BI))
1 2
=0, (ID® 72 (|lit0 =m0l La(r) + it = pixllLacry + 777 V1 = piel3, )
=0, (1D |2 0,(1)) = 0, (n"2).

(11) =

We conclude that VI = V), (m) + op(n_%) for all data fold k& € [K]. Thus
\/ﬁ(]}a - Va 7T \f Z Z177r07ﬂ71'7ﬁ7r) - (ﬂ)) + Op(l)v

i€D
and it converges in distribution A/(0, 02) by the central limit theorem and Slutsky’s theorem. The

asymptotic variance is
U?r = Var(¢<Za Ty My /671'))
O
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E.4 PROOF OF THEOREM [4.3]

We first write the second term of equation without the (1 — ) scale, as

Va (™) = Va(#) =Va (1) = Va (") + Va (1) = Va(#) + Va(#) = Va(#)
(m) ) —

<2 sup [Va(r) - Va | =25up Va(m) = Va(m ) + Va(m) = Va(m)]
< sup 2|Va () = Va ()| + sup 2| Ve (7) = Va (7). (11)
well well

1) (2

We will show the upper bound of both terms separately.

As an important intermediate step, we first establish a regret bound a regret bound for the policy when
the algorithm has access to the quantities (), p14 (). Note that when the true 7o, {ftq }acgo,1} are
known, the oracle policy learning CVaR estimator does not rely on cross-fold fitting as it is designed
for deriving independent g, {/iq }ac (0,1} estimators. Also note that if we are given {/ia }ac 0,1}
then for every 7 € II, we can find the oracle policy VaR

1 _
fr = arg sup {ﬁ+aE[(uﬂ(X) - ) ]}. (12)
We also denote the oracle a-level policy CVaR as

(,Y |D‘ Z¢ Z177T07/f(‘77767r)

i€D

The following lemma provides the oracle regret of Term (1) in equation[TT] and the proof of which
can be found in Appendix

Lemma E.2. Under Assumption 2.1} 3.2 and with probability at least 1 — A,

167 (12+2)g Nas
sup Va(m) = Do) < 2+ 7) + 2T (L),

The proof of Theorem[4.3]also utilized the following result, which upper bounds Term (2) in equa-
tion[I 1] and the proof is deferred to Appendix [F.3]

Corollary E.3. Under Assumption[2.1)[3.2]and there exists some N € Z. such that withn > N,
we have that with probability at least 1 — A,
9 n 1
ol —= .
vn

Proof of Theorem By the regret decomposition as in equation[IT]and the results from Lemma[E.2]
and Corollary there exists some N € Z such that with n > N, we have that with probability at
least 1 — A,

sup Vi (7) = V()] < = (3m(01) + 62+ og(1/8) +

mell

Vo (%) = Vo (7)) < sup 2[Va (1) — Vo ()| + sup 2|V (1) — Vo ()]

mell mell
56y 567
Saaf( ) + 64 + /log(1/A)) + ( ) +5).

The proof concludes by (Zhou et al., 2023 Theorem 3), the above result and the regret decomposi-
tion equation O
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F PROOF OF TECHNICAL LEMMAS

F.1 PRrROOF oF LEMMAI[E.T

Proof. First, we can compute the expectation

Elo(r, Zi o, B) =E[E|6 + 210a(x) < B} (4x v>+“‘(4 - ) - 6) 1 x4
—i i+ 21a(x) < B0 + IERSS §§3<u (x) - a(x) - 3|
=B+ ;E[ﬂ{u ) (0x) + 2 ue) 00 - 5

13)

The first inequality in the statement can be decomposed into the following:

[6(Z; 70, f1, B)] — E[¢(Z; 70, 1, B)] + E[B(Z; 70, 1, B)] — ElG(Z; 70, i, B)] + E[B(Z; 70, fir, B)]
E[¢(Z WO»/‘W»BW”

< [E[¢(Z; 70, i, B)] — Elb(Z; mo, i, B)]| + [Ed(Z; w0, f1, B)] — E[$(Z; 70, i, B)]]
() (IT)
+ [E[¢(Z; 7o, ptr, B)] — E[¢(Z; 70, i, Br)]| -
(IT1)

[E[6(Z; o, i B)] — ES(Z; mo, pix, )|
=[E [
|

We will bound the three terms (1), (I1), (I1T), (IV') individually. We first look at Term (I):

-5 2e[1ax0) < 4 (300 + ST e () - 00 - 6|
|2 {1000 < 53 (a0 + T 0 (0) - () - )|

- 281000 < (00 + 2 000 - ) - 8) |
<|ze |10 < oy L SRR LI, () - x| ]

2y, . .
SOTE”WO —mollLypy It — 1l Lo Py

By continuous density Assumptlonn 3.3] there exists some ¢; > 0 such that u, (X) — S has a density

on (—3cy,3c;) bounded by F} v\ (F), (X)( )) + 1. Therefore, provided that |3 — ;| < ¢; and
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i) ~ e () < e
i el < o0 s o T 1)

(1) =+ 15[ 14300) < ) (00 + 0L

- 5= 2[4 (0) < B} (e(3) + LD

LBl ) - AN <5} - 1) < 3})1\

| B0 00) = B)(10r(X) = B < 6= B4 0 0X) = ACO) = 10 () = B < 5= 623)]

< LB [l () — BRI (X) — Bl < 18— Bl + 1(X) — 1o (X))
< B[l (X) — AL (X) — el < 1~ Bl + J(X) — (X))
<L o (Fhy (@) + 1) (18 = Bel + 1(X) = i (X)]12..)”

Finally we analyze Term (/7). Define
£(8) = El6(Z;mo, e B)] = B+ ~Bl(1=(X) — )]

By definition f/(8,) = 0.and |(8)] < £(F,_((F,. ! x)(@) + 1) for B € (B — 1. B + 1)

I‘ﬂ'(
Therefore, provided with the assumption that |3 — | < ¢; /3, by Taylor’s theorem, we can upper
bound Term (I11) by:

1

(1) < ?(FL oo (Fr (@) + 1B = B,

Now we turn to the second inequality. The difference in interest can be written as

1p(Z; 750, f1, B) — (Z; 70, fims Br) | 1P
=|¢(Z; 7o, i1, B) — $(Z; w0, i1, B) + $(Z; w0, 1, B) — &(Z: w0, i Br) + S(Z; w0, i Bre)
— ¢(Z; 0, fr, Br )l Lo (P)
<||¢(Z; 7o, i1, B) — $(Z; w0, it B Lo(py + |6(Z;5 0, i1 B) — S(Z; 0, it Bl ()
(1) (2)
+ |¢(Z; 7o, i, Brx) — &(Z5 70, pims B )| Lo (P) -
(3)

We will upper bound the three terms above individually. For Term (1), we compute that

a0 <A (FEGTT - S o ) e

| 21000 < 31104 =700 (-t - e T ) - D)

Ly (P)

)

L2(P)

where the last equality uses the fact that 7o(0 | X) + 7o(1 | X) = 1 and that (0 | X) + 7o(1 |
X) = 1. By Assumption[2.1] we have that

1 1

- — < e fg—m Y — (X < 27,
7T()(7T(X) | X) 71_0(7_(_()() ‘ X) = H 0 OHL2(P) || :u( )HLz(P) > 2y

L2(P)

and thus (1) < 2L ||7g — 70| L,(p)-
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We also compute Term (2):

(5= o)+ 1000 < ) () + HEEE v - ) - 5)

1 ) HA=m(X)} o
- 3100 < 800 + TP FE ) - 5, )

=03 - 80— 210a(x) < 515+ 100X < 8210 + L1ACN) < Y~ 21(A(X) < )6,

1 . - . . 1{A==n(X)} .
+ 20000 < 5 - 1300 < 60 (00 + HESEE R ) - )

8- 501 1 23)

L2 (P)

La(P)

«

1 ) . R R 1{A =n(X)} ~
+ a(]l{,u(X) < B -1{aX) < 5w})(M(X) + m(y - (X)) - 57\')

By Assumption[2.1] we have that |3;| < §. Therefore, Term (2) is bounded by
1 4y . A R
@) < 218 el + L 04a0x) < ) - HAK) < B lacr)
Now, applying a similar trick as in the analysis of Term (1), we have that

I{A(X) < BY = LX) < BeHlracp) SPAR(X) = Bel < 1B — Bel + 1(X) = pia (X))
<P, (Fr ) (@) + 1) (18 = Bl + 10X = (X)),

where the last inequality is due to the fact that |3 — 3| < ¢/3, and ||ji — jix |l < ¢/3. Finally,
Term (2) is upper bounded by

(2) < 18— Bel + L (F) i) (e (@) £ D (18 = el + 1K) = ia (X)),

L2(P).

Similarly, Term (3) can be written as

) 1{4 = n(X)

= ‘;]l{ﬂ(X) <ﬁw}(ﬂ(X)+ W<
(

= 204000 < 00 (100 + TR

)~<

— (X)) - ﬂw>

(¥ = (X)) = m)

Ly (P)

|00 < ) - 1nx ><@r}><ff‘ WAy )

o(m(X

<50 20 )
S0 < 5 (141 “A X§X>§’)uﬂ )

|00 < 5.3 - 1000 < o) (FE =Ty 5 )

Lo (P)

)
+$1{u( )<ﬂﬂ}<< I{A X)Du )
7&1{ <8 ]l{A m(X)} H(X)

n TR{Z < 8} <<(< B X))(()X);)): >)
_é]l{,u ) < Bx} (<1+ ]I{A_)S X)D”” ) La(P)
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Rearrange, we have that

) < | 3000 < 8.0 - 1 (x0) < 5.0) (HEZFE Dy -5

mo(m(X) | X) L>(P)
(31
" H;]l{/l(X) <00} (1= 2EZEE ) — ) o
(3)r11
+ H;(ﬂ{ﬂ(x) < Br} = Hpn(X) < Br}) (1 - m)ﬂw(x) )
(3)r111

By the result of Term (2), we have that
IL{A(X) < B} = Hpn(X) < Brtllacr) < 2(F,, x) (F x) (@) + DIAX) = i (X)) 1o -

Therefore, we can bound

(3)r <=

L (FL o (Fyloy (@) + D) = (X2

(11 <) ~ ()
(1rr <L) ) (Fyoe (@) + DI — e (X) 1.

Putting everything together, we have that

||¢(Z’/ﬁ-0’l[l7ﬂ/\) _¢(Z;7T07/*L777ﬁ7r)||L2(P)
2y . 2
< —a7llfo = Mol + —IAX) = pr (X)L p)

16

+ =L EL 0(F o (@) + D18 = Bel + 14(X) = pn(O)llz..).

For the last inequality, we note that we can similarly decompose

|6(Zi; 70, 1, B) — (Zis 70, fhr Br)|

=6(Zi; 7o, 1z B) — ¢(Zis o, 1, B) + $(Zis w0, 1. B) — (Zi; 70, 1, Br)
+ &(Zi; 70, i, Br) — &(Zi; o, i, Br)|

< [0(Zis #o. 1. B) = $(Zis w0, v, B)| + |6(Zis o, iz B) — ¢(Ziz o s )|

1) 2
+|6(Zi; o, f1, Br) — &(Zis 7o, o, Br)| -
(3)
We will upper bound the three terms above individually. For Term (1), we compute that

(1) = én{ﬂ(xi) < B}<ﬁ0(ﬂ(Xi) AR Al Xi)>(Y,; g(xi))‘
[ < 91 =700 (5 - w7 ) - A

where the last equality uses the fact that 77¢(0 | X;) + 7o(1 | X;) = 1 and that 7o(0 | X;) + 7o (1 |
X;) = 1. Since

1 1

7?['0(7T(X1) | Xz) '/TO('/T(Xi) | X’L) = 6_3/2|7AT0(7T(Xi) | X’L) - TrO(Tr(Xi) | Xl)|) D/’L - ﬂ(X’L)‘ S 23;,
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we have that (1) < —2- |70 (m(X,) | Xi) — mo(m(X,) | Xi)].

We also compute Term (2):

) =3 - 50) + 210060 < ) () + 2B - ) - 6)

i ><ﬂﬂ}(< ”W(Y ) - 6

=|(8 B2~ S LX) < Y3+~ HAX) < B2} + —H{AX) < BYBr — ~L{A(X) < B)6s

b R0 < 5) - 1) < 8.0) (a0 + Bt B ey - 5. )

B <B—ﬁﬂ>( 1{ju(x )<ﬂ})

(%

1{A; = 7(Xi)}
(m(X5)

( |X)(Y_ (XZ))_BW>

1 R N . A
F L0 < 8} - 1a0x) < 8.0) (a0 + T
By Assumption 2.1} we have that | 3| < y. Therefore, Term (2) is bounded by
1. 45
(2) < =B =Bl +—.
o ae

Similarly, Term (3) can be written as

(3) = ] (X )<ﬁw}(( X+ HAS T ) - m)

mo(m(Xi) | X5)
B a]]-{uﬂ'(Xi) < gﬂ}<uw(Xi) + ]W(Y (X)) — 5,,)
‘1 (LX) < Be) — Tpun(X) < M(WY 6”>
o A(X) < ﬁﬂ}(<1 * W)“ (Xi))
én{uw(xi) < m((l + ];i(A ) X)>’ )
(1{u( i) < Br} = Hua (X)) < 56)(“?( (|ijy o
+ éll{ﬂ(X') < ﬁw}(<1 ];EA ) )X
Dy < ﬁw(<<< {{ o i)) <X¢;>
+ il{u < Br} = ur(X
_éll{ﬂ ) < B} <<1+1{A_7T )N” )’
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Rearrange, we have that

) <[ 210 < 52}~ 1ne(x) < ) (He Ty )
WA =7(X)PN vy
M OE) 130 ) (K0 ()

)

ﬂjummsmrwwmmsm}Q—E@gﬁ@bwuo

#1000 < 0 1

3y

a5+*lu( i) — pa (X3)]-

Putting everything together, we have that

. 24 1 .
|p(Zs; 70, i, B) — &(Zi5 T, oy Brr)| _73/2|7To( (Xs) | Xi) — mo(m(Xy) | Xi)| + 5\5 — frl
1. 7§
+ —|(Xi) — pr (X5)| + P

(075

F.2 PROOF oF LEMMA[E.2|

Before we embark on the proof that utilizes a chaining argument|Zhou et al.|(2023), we present the
following definitions that will be needed throughout the analysis.

Definition F.1 (Rademacher complexity). Let v;’s be i.i.d. Rademacher random variables P(vy; =
1) =By, = -1) = L.

1. The empirical Rademacher complexity R.,,(F) of a function class F with domain X is

defined as
> ur(x b

2. The Rademacher complexity R(F) of the function class F is Ex[R, (Il | {X; € X} ;)

Ru(F| {X, € X)) = {wp

Before we introduce the chaining technique, we define the Hamming distance H(my,m2) =
i 2?21 1{m # my}, and the Entropy integral v (IT).

Definition F.2 (L, policy distance). Given a fixed policy class 11 and a set of n covariate points
{z1, -+ ,zp}, we define the following.

1. For a function class Fi = {f(-;m) | m € II} such that f is a function on (Z; ) such
that | f(Z; )| < f(Z), define Lg dlstcmce Dy(m1,m2;{Z1, - , Zn}) between two policies
71, o With respectto {Zy,- -+ , Z

Zz Zi; 2
e, ma) V/}:z N (Zim) — 1(Zmo)l?

4350 FA(Z)
2. The e-Ly covering number of the set {21, -+ , 2, } (denoted as No(e, 11, {x1, -+ ,x,}) is
the smallest number N of policies {1, ,mwn} in Il such that VY € 11, there exists m;

such that Dy (m,m;) < €.

3. The e-Lgy covering number of II is Ny, (e, II) = sup{Nao(v,IL, {z1, - ,x;})|j
Lay,-- x; € X},

Policy Chaining. Conditioned on the data { X7, --- , X, }, we define a sequence of refining approxi-
mation operators: Ag, A, -+, A; where M = [log, n| and each AT : X — A is another policy.
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Define J = |1/2log, n]. For each policy m € II, we can write it in terms of the approximation
policies as

J
= A5+ (A7 (z) — A7, (2)) + (A5 (z) — AG(2)) + (m(x) — AT(2)). (14)
=1

We now give an explicit construction of the sequence of approximation operators. Set «y; = QJ and
let Sp, S1,- -+, Sy be a sequence of policy classes (understood to be subclasses of II) such that S
could ~y;-cover II under the inner product distance:

Vr e IL, 3’ € S}, Da(m,7") < ;.

By Definition we can choose the m-th policy class S, such that [S;] =
No(279,10,{X1,---,X,}). Note that in particular |Sy| = 1, since any single policy is enough
to 1-cover all policies in II.

Next, we use the following backward selection scheme to define A;’s. For each w € II, define
™ — : D / .
7 =arg min o(m, )
Further, for each 0 < 5 < J and each 7 € II, inductively define
A7 = arg ereigj Dy(AT 7).

Appendix [G]presents a few helper results that would facilitate the following theorem, which is needed
for the proof of Lemma|E.2]

Theorem F.3. Suppose that Fr1 := {f(-;7) | # € 11} is a function class of f(-; ) that takes Z as

input. Given a set of dataset D = {Z; = (X;, A;, Y)Yy, suppose that | f(Z;; 7r( X))|oo < f(Zy).
Then the Rademacher complexity

) < V2 ) Z?‘nl &) (w() 1 7) 1 Y 2=t T2 Z?‘nl SO o(;ﬁ>

Proof. We will investigate the Rademacher complexity of the function class F1 := {f(-,7) | 7 €
IT}. Each policy 7 € II can be written in terms of the approximation policies as in equation
Accordingly, we can expand the Rademacher complexity

1 |

n

Ro(Fui) =B | sup —| Y eif(Zi;7)

n
L mell i—1

1 n

n
L mell i—1

r 1 n - n -
<E. _:1611?1; ;eif(ZiQAo)] {:ggn ;61 — f(Zi; AT ))H
s e D - <Z“A?—1>>H~

=1 Jj=1

We first note that the first term

n

> eif(Zi; AF)

=1

n

> ef(Zisn)

1
E. [ sup —
i=1

e n

-a [t

as AF maps all 7 € II to a singular policy 7. Since |e; f(Z;;7)| < f(Z;), by Azuma-Hoeffding’s

lemma, we have that
1 n2t?
p( zt>ggexp<n_).
n 2> 1 fA(Zy)
28

n

Zeif(zi;ﬁ')

=1

_ J
=E.| sup — Z ( (Zi; AT) —&-; (Zi; A7) f(Zi%A;‘r—l))+(f(Zi;7T)_f(Zi;A7JF))>H
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n

> ef(Zi7)

i=1

n

Therefore, the expectation
1 & 1
E.|— = P.| — f(Zi 7
B ARG
76\/2?:11@(21‘)

n

oo n2t2
>t)dt < 2exp | — ————— | dt
) */o p( 2Zi_1f2<zi>>

We will bound the other terms separately in the following steps.

The Negligible Regime. In this step, we establish two claims to show that 7 — Ay, (7) is in the
negligible regimes. For any 7 € II, by the Cauchy-Schwarz inequality,

n

LY alf(Zn) - F@ AR | <h 0D (1) - 112 47)°

n -
=1

sup
mell

\/ﬁ n
SQV Z{—}fg(zi)2] < 2 Z?:ifz(zz)7
n nz

where the second-to-last step is due to the fact that the policy A%, is 2~ -close to 7 and the last step
is due to the definition of M. Therefore, we conclude that the term

- 2\/2?:1JF2(Z¢)

n

E{supl Z

)

&i(f(Zism) — (2 AT)) H

Tell M P nz
and is in the negligible regime.
The Effective Regime. By the previous results, we have that
1 n
Rn(Fr) =E. | sup — f(Zs;
o) = sup 1| > e s(2m) |
1|« 1
SEE sup — €; Zi;ATF — ZZ';ATI; +0(>
[l s )| (G

From now on, for easier notation, we denote A = 2,/>"" | f2(Z;). We will now concentrate
on the expectation in the above inequality. Let P,, denote the projection of a policy to S;, for
A7y = Pj_1(A7) for all j € [J]. Note that once AT is determined, the policy A7_, is also
determined. For any ¢ > 0,

PE<:1€13 izz_;ez(f(Z“A;) - f(Zi§A§r—1))‘ 2 t)
<> PE(’rlzzei(f(Zi;W') —f(Zi;le(W/)))’ = ’5)
w'eSs, i=1
2n?t?
2-ex —
Sw;@,- ’ p< i (f(Zim) = f(Zi;le(W’)))z)
2nt?
:ﬂéj 2 - exp ( - /\QDg(ﬂ_/, Pj—l(ﬂ—/); Z))

n2¢2

— A2Dy(x!, Py (n); Z)2>'

<2N5 (279 II; D) - exp (
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Forany j = 1,---,Jandp € N, let ¢, = W\/log(%’“ﬂ - No(2-3,11; D)). Then for a

fixed p, with a union bound over j = 1,--- , J, we have that
J 1 n J
P. (sup| 3523 i A7) - 12 A;-u»\ > Zw)
el s j=1
J J oo I 1
i= j=1"" = j=

Using helper Proposition|[G.1] for any j € N,

J

A - -
Ztm > g Vios@ 7 No(2 71 D))

j=1

A - -
< Z; =172, V1og(N2(279, T, D)) + (p + 1) log 2 + 21og j
=

J

§?AZ \/log No(2-9,11; D) +\/p+ 10g2+\/210gj)
4A

Sn(n(H)—l—\/p—Fl—i-l):

where the first inequality is uses the fact that v/a + b + ¢ < v/a + Vb + \/c for a, b, ¢ > 0; and the
last inequality is due to the definition of «(II). Then

= s e aan - i) |
/OOO]P’6<§‘;§ iiiq(ﬂzi;/x;) F(Zi; AT ))‘>t> dt

<t; + i?”“(up+1 —u,) = % <n(H) +V2+14 221’“(\/;7 \/ﬁ)>
<%(H(n)+7)

Putting everything together, we have that

8/, F2(Z;
R (Fir) < M(KJ(H) +7)

n

+

Define the oracle policy CVaR estimator with the true 7, {114, a € A}, and the oracle policy VaR B
derived from equation T2}

1 ~ 1 -
=2 0(m Zismo, {patac oy, Br) =t - D 6(m. 2
1€D ieD

where fir(2) = fir(q) () is constructed from {114, a € A}. Define Fi = {¢(-;7) | © € II}. The
following corollary bounds the Rademacher complexity of Fir.
Corollary F.4. Under Assumption2.1)and[3.3]

Ru(F) < Ro(Frr) < 2

(k(IT) +7) + % +0(\}5).

30
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Proof. We apply Theorem with function class J7j, in which each function ||¢||._. < 7. O
We are now ready to prove Lemma[E2]

Proof of LemmalE.2] We first note that for any 7 € II, the expectation of the oracle policy value
Vo (1),

E[Va(m)]
-E % Z o(m, Zi; T0, fhos @r)]

- =1

rlly 1 | G HA=TXa))
5[ 30 (0 20000 ) (00 + L 205 el - 50 )

I 1
=E _E |:/87r + a]l{ﬂﬂ(Xi) < Br} <.U7T(Xi) + W

(Yi = 1 (X)) = ﬁﬂ) | X= X”

8|6+ 5 1n(X) £ B UV (R(0) = )| = e+ TG C6) < Br) (Y ((X)) )

=V, (7).
To see the last equality, we note that, for the underlying true 5, of a policy 7 € II,

e+ ZB[L{e(X) < B}V (7(X) - B

=be + ZE[1{1=(X) < Br}Y (r(X))] = ~B(ur(X) < B)5r
1 o}

=B+ ~E[1{nn(X) < B} (n(X))] = B
:é]E[]l{uﬂ(X) < B }Y (m(X))]

The policy value V,, is defined as the CVaR of policy 7, and the dual formulation Rockafellar et al.
(2000) of which is

1
= inf —E[VY (m(X
Valm) = inf  E[VY (r(X)]

where we define V := 1{u(X) < S} for some p, 5. The above infimum is achieved by the true j,x
and ;.

Recall that ||¢(7, Z;; 70, tir, Br )|l < §. We apply Theorem 4.10 in [Wainwright| (2019) with
results as Corollary [F-4]

- 1 <&
sup |V04(7T) - Va(ﬂ-)‘ =sup |— Z ¢(7Ta Zla 0, My Bﬂ') - E[¢(F, Zla 0, My Bﬂ')]‘
well Tel |1 =1
- /2
16y (124 v2)y 1
<—Z(r(II - g i
S (e(ID) +7) + T + NaA
with probability at least 1 — A. O
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F.3 PROOF OF COROLLARY [E.3|

Proof. For any policy 7 € II and any fold k € [K], we decompose:

V) (1) = Val 5730, 8 B — g(m, Zis o, by Br)
7€D(k>
(k) (k) Ak) ~ (k) A(k) k) .
‘D(k)‘ Z ¢ Z?Jﬂ- 7.u“7r 7/8 ) [QS(W?Z 7T 7 /8 )|D ] ¢(7T7Z1,7ﬂ-07,u’ﬂ'7571')
ieD(k)
+Elo(r, Z; wo,umm | DW) + Elg(r, 27", 1), B0 | DV — Elg(n, Z; 7o, i, Br) | DP)

=Elg(r, Z; 75", i), BE)) | DV — Elp(m, Z; w0, pr, Bx) | DY)

1 A~
" |D(k)| Z <¢( Zuﬂ'(k)’ ) B7(Tk)) _(25(7‘" Z’i;ﬂ-O?uW?/Bﬂ')

ieDk)
— (Blp(m, Z; 75", p®), g0y | DW] — E[¢(W,Z;7To,umﬂw)|D(k)})> = (I) + (I1).

We will bound the two terms separately, with fixed = € I, k € [K].

Let dl(ﬂ.> Zl) ¢( a,uﬂ' 7ﬂ(k)) - ¢(Z27 05 My B‘n’) By Lemma
sup |()] =sup |E[d1(7T»Z) | DW]]
mwell
< sup *||7To = 70/l Lo (2 1A = pirll o (p)
well | €
1 _ ”
+ g(Fm J(F 0 (@) + DAY = prll e + 18 — B5))?

(F/ (X)(F,;l(x)(a)) +1)|6% -

2y
<£

(k)
<= (ma |7 (0 | X) = mofa@ | X)ll,(r) (max 18 — pallsace)

2 | )
2 A (k) — _ 3k z (h) _ g |2
+2 (rgleajg /26" = Hallzoe +max|Br — Bz I) + - max |57 — B

Applying Lemma 3.4} there exists some N € Z such that when n > n;, with probability at least
]- - s

max B8 — | < max |40 — pral| .

which means

2y (k .
sup |(1)] <= (max 17" (a | X) —mo(a | X)l|za(p)) (mase [0 — pralacr))
nell g acA

8
S ma |~ pallf_ -+ ma | — pall.
On the event of Lemma@ by Assumption[3.2] there exists some ny € Z such that when n > ny
with probability at least 1 — A,
2y +9
sup |(1
sup (Dl <~ T

In summary, there exists some N; = max{ni, Ng} such that when n > N7, with probability at least
1 — 2K A, the above inequality holds.

We now turn to Term (I7). Let do(7, Z;) := dy(w, Z;) — E[dy(n, Z) | D®)]. Note that Term (I7) is
zero-mean:

E[(I)] = E[(Ex — Ep)ld(r, 2)]] = E{D%k) > do(m, Zi)} = E[di(7, Z)] = E[ds(, Z2)] = 0.

1eD(k)
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By Lemma [ET]
4y | (k 14y
s, 20)] S 30 (r(X0) | X0) = mo(m(X) | X0)] + A (50) — pr(Xo)| + 1B — ] + L
2 R 14y
Soe ma |78 (a | X1) — mo(a | Xo)| + — mag |af9(X0) — paal(X0)| + 1B — el 4 2L

Applying Lemma there exists some C1 > 0, Ng € Z_ such that when n > NN, with probability
atleast 1 — A,

4y (k) _ 2 - (k) ( .
jda(m, 20)] < mae |7 (0 | X) = mo(a | Xo)| + — ma | (X) — pa(Xo)
1 1 14@
+ a(n 2 VmaXHH( (X3) = ta(X)lLagpy + 07 %) + e
14y k .
< max (17 (@ | X) = mola | X0)| + A () — pa(X)| + 1)
1 -
— T2V A(k) Xz — Ugq X,L . = Z,L .
+ (07 v max |47 (X5) — pa(X) | o)) =2 d1(Z0)
Consequently,

\da(m, Zi)| = |di (70, Zi) — Blda (7, Zy)]| < 2d1(X;) := da(X5).

We now apply the bounded difference inequality in (Wainwright, |2019] Corollary 2.21) conditional
on X = {X;}icn

P(sup Z do(m [sup - Z do(m ] > t‘X)
mell seDF) mell |D( )l ieD

<oxp (_ M)

B Yiepw d5(Z;)

d2(Zi)log(1/A

Setting t = \/Eleb(k)lp<i)| Jlos(t/2) , then with probability at least 1 — A,

| VZiep B3(Z) log(1/A)
s ey 3 20| < | o gy 3 1]+ LT

ieDk) ieDk)
Next, we turn to the expectation in the above inequality.

1
e mp |y 3
ieDk)

where we denote Fij(ds) = {da(m,-) | @ € II}, in which |do(7, Z;)| < do(Z;). Applying

Theorem[F3] we have that
< 84/ Z?_T; d3(Z;) k(D) + 7) + 64/ Z?_nl d3(Z;) N 0(\/15)

] <R, (Fu(ds)),

Rn(]:n(dg)) <R (]:H) <
Consequently, with probability 1 — A,

- i)
eH \D —)(SH(H) + 62 + /log(1/A)).

Now let e(a, X;) := (m(’@ (a | X:) —mola | X;)2 + (a8 (X:) — pa(X;))2. Since e(a, X;) <
1 + 442, applying Hoeffding’s inequality gives that

1
P(D(k) Z maxeaX ZE (a, X)] >t>
'eD<k>

acA
< Z Z a, X;) ZE[e(a,X)] > t)
ZED(k) acA acA

< ]P’( ! > e(a,XQ—E[e(a,X)]Zt)SM(1+4y2)eXp(—2D(k)t2),
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recalling that |A| = M. Taking a union bound, with probability at least 1 — 2A, we have that

28y
:16111% [(IT)] SW@/{(H) + 62 + /log(1/A))

e : log(M (1 + 45)/A)
x (a;nwé P ol aey + 1A — prallacey +1+ \/ D]
28y -3 i) (X) — (X,
¥ o/ B 62+ Viog(L/A)) x (04 v mage |47 (X0 = o (X o)

By AssumptionZaeA |#§F) — 7ol Loy + | ) e | o(P) = 0p(1). Then there exists some
ng € Zy such that when n > no, with probability at least 1 — 4K A,

287 1
787161% |(11)| Sm(&f(ﬂ) + 62 + +/log(1/A)) + O(ﬁ)'

Putting everything together, and setting A’ = 6 KA, with probability at least 1 — A/,

. 287 27+ 9 1
Tsrlé% Vo () = Vo (m)] < O@\/ﬁ(&f(l'[) + 71+ +/log(1/A)) + ocvn + 0()

G HELPER RESULTS

Proposition G.1. For any sample size n, data set {x1,- - ,x,} with size of n, and 71,79 € 11,
1. Triangle inequality holds for Do(m1,m2) < Do(7m1,m3) + Da(ms, m2).
2. N2(€7H, {xl, v ,l‘n}) S NH(62, H)

Proof. Statement 1 is easy to show by triangle inequality. Statement 2 is proved similarly as in (Zhan
et al.,[2024, Lemma 1).

Proposition G.2. Conditioned on the data {X,--- , X, }, the sequence of refining approximation
operators Ay, - -- , Ay as constructed above satisfies the following properties:

1. maxqen Do(m, AT) < 277,
2. {AF|m e T}| < No(277, I, { Xy, - -+, X, }), forevery j = 0,1,--- . J
3. maxgen Da(AT, A7 ;) < 2-G-1 forevery j =0,1,---,J — 1.
4. Forany J > 7' > j >0,
(A7, Ayr(m)) | € T < Na(277 TL{X, -, X }),

Proof. The proof can be found in (Zhou et al.,|2023, Theorem 1, Step 1). O
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