

SAMPLE COMPLEXITY OF CVAR BASED RISK SENSITIVE POLICY LEARNING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 The conventional offline bandit policy learning literature aims to find a policy that
012 performs well in terms of the average policy effect (APE) on the population, i.e. the
013 *social welfare*. However, in many settings, including healthcare and public policies,
014 the decision-maker also concerns about the *risk* of implementing certain policy.
015 The optimal policy that maximizes social welfare could have a risk of negative
016 effect on some percentage of the worst-affected population, hence not the ideal
017 policy. In this paper, we investigate risk sensitive offline policy learning and its
018 sample complexity, with conditional value at risk (CVaR) of covariate-conditional
019 average policy effect (CAPE) as the risk measure. To this end, we first provide a
020 doubly-robust estimator for the CVaR of CAPE, and show that the this estimator
021 enjoys asymptotic normality even if the nuisance parameters suffer a slower-than-
022 $n^{-\frac{1}{2}}$ estimation rate (n being the sample size). We then propose a risk sensitive
023 learning algorithm that finds the policy maximizing the weighted sum of APE and
024 CVaR of CAPE, within a given policy class Π . We show that the sample complexity
025 of the proposed algorithm is of the order $O(\kappa(\Pi)n^{-\frac{1}{2}})$, where $\kappa(\Pi)$ is the entropy
026 integral of Π under the Hamming distance. The proposed methods are evaluated
027 empirically, demonstrating that by sacrificing not much of the social welfare, our
028 methodology improves the outcome of the worst-affected minority population.
029

1 INTRODUCTION

030 In a variety of fields, more and more decision-makers are learning to target products, services, and
031 information provision based on the user characteristics observed through user-specific historical data
032 (Bertsimas & Kallus, 2020; Bastani & Bayati, 2020; Farias & Li, 2019). For instance, precision
033 medicine learns the optimal personalized treatment from health care records (Kim et al., 2011; Chan
034 et al., 2012; Ozanne et al., 2014); personalized education selects which lessons and learning tools
035 to offer a student on the basis of characteristics and past performance (Tetzlaff et al., 2021); public
036 policies decides personal treatment, e.g. college financial-aid package distribution, re-employment
037 service, etc.(Athey, 2017). These practical needs drive a line of *offline policy learning* literature that is
038 devoted to developing efficient treatment assignment (policy) learning algorithms using historical data
039 (Dudík et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c; Kitagawa & Tetenov,
040 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023). The optimization objective of
041 most of these works is to maximize the average policy effect (APE) on the population, i.e., the *social
042 welfare*, a key metric in offline policy learning (Rubin, 1974; Zhou et al., 2023).
043

044 However, it is widely recognized that policy effects can vary widely between individuals with
045 different characteristics (or covariates in offline policy learning literature), which is a common theme
046 underlying offline policy learning, known as heterogeneity (Crump et al., 2008; Heckman et al.,
047 1997). Therefore, even if the APE on the population is positive, there is a *risk* that many individuals
048 are harmed by the policy employment. Consequently, only considering the population APE does
049 not capture this risk. In many settings discussed previously, besides social welfare, decision-makers
050 concern about the policy effect on the worst-affected population. For example, late stage cancer
051 treatment concentrates on the average treatment effect on the population as well as the worst-possible
052 outcome; education plan considers its impact on the worst-performing students; and government
053 formulating policies would care for negative experience of the worst-affected population. If the risks
associated with the policy outweigh the social welfare it generates, deployment of such a policy is not

054 justifiable to a rational decision-maker who considers equity beyond social welfare, even if the policy
 055 is optimal in maximizing social welfare. This calls for a *risk sensitive* policy learning methodology
 056 that would improve the outcome of the worst-affected population, and ideally not comprising too
 057 much in terms of social welfare.

058 One appealing resolution is to focus on the distribution of the individual policy effect (IPE), instead
 059 of the APE (i.e. the average of IPE over the population) as in the conventional offline policy learning
 060 literature. Specifically, the risk sensitive learning object seeks to reduce the policy effect on the
 061 worst-affected population, which is the tail of the IPE distribution. A suitable measure for describing
 062 this risk is the conditional value at risk (CVaR) of the IPE distribution (Rockafellar et al., 2000),
 063 which is the average effects among, say, $\alpha\%$ of the worst-affected population ($\alpha \in [0, 1]$). Hence the
 064 risk of the policy performance on the worst-affected $\alpha\%$ of the population can be described by the
 065 CVaR of IPE, and risk sensitive policy learning aims to maximize the CVaR of IPE.

066 One challenge is that the counterfactual IPE of any given policy cannot be directly observed from the
 067 observational data. In consequence, it is difficult to learn the distribution of the IPE. However, given
 068 rich and continuous covariate spaces, there are well-developed machine learning methods which can
 069 be used to estimate covariate-conditional average policy effect (CAPE), which is the expected policy
 070 effect conditioned on the individual covariate and would predict IPE well (Künzel et al., 2019; Nie &
 071 Wager, 2021; Wager & Athey, 2018). A detailed discussion on CVaR of IPE and CAPE is given in
 072 Section 2.1.

073 Adopting CVaR of CAPE as a policy risk measure, this work aims to fill in the gap between the current
 074 offline policy learning literature and the practical needs of risk sensitive policy learning. We
 075 present a risk sensitive policy learning algorithm that finds the policy that maximizes the weighted
 076 sum of the APE and the CVaR of CAPE, within a given policy class, taking both risk and social
 077 welfare into consideration.

079 1.1 OUR CONTRIBUTIONS

080 **Policy CVaR Inference** Given a policy, we describe the risk of it through CVaR and investigate
 081 the relation between the CVaR of IPE and that of CAPE. We provide a doubly robust estimator
 082 for CVaR of CAPE, which achieves asymptotic normality even if the nuisance parameters suffer a
 083 slower-than- $n^{-\frac{1}{2}}$ estimation rate.

084 **CVaR based Risk Sensitive Policy Learning** We propose a risk sensitive policy learning scheme
 085 that maximizes the weighted sum of APE and CVaR of CAPE over a given policy class Π . We
 086 provide a sample complexity analysis, and show that our algorithm has a suboptimality gap of the
 087 order $O(\kappa(\Pi)n^{-\frac{1}{2}})$, where $\kappa(\Pi)$ is a measure quantifying the policy class complexity and n is the
 088 number of samples. This result agrees with the sample complexity of other offline policy learning
 089 algorithms that maximize social welfare in literature.

090 **Empirics** We provide efficient implementation of our risk sensitive learning algorithm, and compare
 091 its empirical performance with existing benchmark of CAIPWL (Zhou et al., 2023), which aims to
 092 maximize the APE. The results present empirical evidence that our risk sensitive policy improves the
 093 outcome of the worst-affected population with little compromise in social welfare.

096 1.2 RELATED WORKS

097 **Risk and CVaR** CVaR is a very popular choice of risk measure, particularly in the finance literature.
 098 Various methodologies for the modeling risks through CVaR can be found in Duffie & Pan (1997);
 099 Jorion (1996); Pritsker (1997); Morgan (1995); Simons (1996); Beder (1995); Stambaugh (1996);
 100 Artzner (1997); Artzner et al. (1999). We refer the readers to Mausser (1998); Embrechts et al.
 101 (1999); Pflug (2000) for detailed discussions on CVaR and its properties. Embrechts et al. (1997)
 102 provides case studies of CVaR as a risk measure in insurance industry; while Bucay & Rosen (1999);
 103 Andersson et al. (2001) used CVaR for credit risk evaluations. Later, Kallus (2023; 2022) used CVaR
 104 as a risk measure of treatment effect and discussed inference method of treatment effect CVaR.

105 **CVaR in Reinforcement Learning** The *reinforcement learning* (RL) literature has pioneered methodologies
 106 of risk sensitive learning under a CVaR objective, in the framework of *Markov decision
 107 process* (MDP) (Metelli et al., 2021; Sakhi et al., 2024; Behnamnia et al.), where the algorithm learns

108 while acts (Chow et al., 2015). These works usually assume that propensity score (the probability of
 109 choosing an action conditioned on the covariates) is known and Monte Carlo estimation is feasible.
 110 In contrast, our setting relies solely on an offline observational data with unknown propensity score,
 111 rendering sampling-based methods inapplicable.

112 More closely related to our work is the literature on risk-sensitive *online and offline policy learning*.
 113 Popular multi-armed bandit (MAB) algorithms, such as upper confidence bound and Thompson
 114 sampling, have been studied extensively in the context of CVaR based risk sensitive MAB (Galichet,
 115 2015; Galichet et al., 2013; Cassel et al., 2018; Tamkin et al., 2019; Baudry et al., 2021; Tan & Weng,
 116 2023). However, nearly all of these works disregard individual covariates, and thus the resulting
 117 algorithms cannot minimize risk at the population level. Qi et al. (2023) studied a similar CVaR
 118 based risk minimizing offline policy learning, under the assumption of known behavior policy in the
 119 two-action setting, but proved a suboptimal regret bound of $O(n^{-\frac{w}{2w+1}})$ where $w \in (0, 1]$.

120 **Offline policy learning** There is a long list of works devoted to offline policy learning (Dudík et al.,
 121 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c; Kitagawa & Tetenov, 2018; Athey &
 122 Wager, 2021; Zhou et al., 2023; Zhan et al., 2023; Jin et al., 2021; 2022; Ben-Michael et al., 2024).
 123 In particular, Swaminathan & Joachims (2015a) proposed the classical inverse-propensity weight
 124 learning (IPWL) that optimizes policy to maximize the APE with known propensity score. Zhou et al.
 125 (2023) later introduced the cross-fitted augmented inverse propensity weighted learning (CAIPWL)
 126 for learning with unknown propensity score. Policy learning under biased samples and distributional
 127 shifts also found to be closely related to CVaR (Sahoo et al., 2022; Lei et al., 2023; Mo et al., 2021).

129 2 PRELIMINARIES

131 Let \mathcal{A} be the set of M actions $\mathcal{A} := \{1, \dots, M\}$, and let $\mathcal{X} \subset \mathbb{R}^d$ be a compact set of covariates.
 132 Given some action $a \in \mathcal{A}$, the reward distribution $Y(a) \in \mathcal{Y}_a \subset \mathbb{R}$ denotes the potential reward
 133 obtained from taking the action a . We consider a training dataset $\mathcal{D} = \{(X_i, A_i, Y_i)\}_{i \in [n]}$ con-
 134 sisting of n i.i.d. draws of (X, A, Y) generated as follows.¹ The covariate and potential rewards
 135 $(X, Y(1), \dots, Y(M))$ are drawn from the underlying environment P .² Some unknown *behavior*
 136 *policy* π_0 selects an action given the covariate: $A \sim \pi_0(X)$, where the *propensity score* $\pi_0(a | X)$
 137 is the probability of $A = a$ given the covariate X . In the data set \mathcal{D} , only the factual reward
 138 corresponding to the chosen action $Y = Y(A)$ is observed. We assume the following for π_0 and P .

139 **Assumption 2.1** (Regularity). *The behavior policy π_0 and the environment P satisfy the following: 1.*
 140 *Consistency: $Y = Y(A)$; 2. Unconfoundedness: $(Y(1), \dots, Y(M)) \perp\!\!\!\perp A | X$; 3. Overlap: for some*
 141 *$\varepsilon > 0$, $\pi_0(a | x) \geq \varepsilon$, for all $(a, x) \in \mathcal{A} \times \mathcal{X}$; 4. Bounded Reward: $0 \leq Y(a) \leq \bar{y}$ for $a \in \mathcal{A}$.*

142 Assumption 2.1 is standard in offline policy learning literature (see e.g., Athey & Wager, 2021;
 143 Zhou et al., 2023). The unconfoundedness assumption guarantees identifiability; while the overlap
 144 assumption ensures sufficient exploration when collecting the data set \mathcal{D} via a positive lower bound
 145 on the propensity score. The third assumption of bounded reward support is largely technical to
 146 make later analysis tractable. In fact, our methodology can be extended to sub-Gaussian rewards
 147 straightforwardly, which we show empirically in Section 5.

148 Our task is to learn a *risk sensitive policy* π in a given policy class Π from the training dataset \mathcal{D} .

151 2.1 POLICY CONDITIONAL VALUE AT RISK

152 The policy risk measure of interest is the Conditional Value at Risk (CVaR), which is defined below.

153 **Definition 2.2** (CVaR).³ *With respect to a specified probability level $\alpha \in [0, 1]$, the α -level Value at*
 154 *Risk (VaR) of a random variable $R \in \mathbb{R}$ is the lowest amount β such that, with probability α , R will*
 155 *not exceed β . The α -level Conditional Value at Risk (CVaR) is*

$$156 \quad 157 \quad 158 \quad 159 \quad CVaR_\alpha(R) := \sup_{\beta} \left(\beta + \frac{1}{\alpha} \mathbb{E}[(R - \beta)^-] \right). \quad (1)$$

160 ¹We will later use the shorthand $Z := (X, A, Y)$.

161 ²Throughout the paper, the expectation \mathbb{E} and probability \mathbb{P} are taken over P unless stated otherwise.

162 ³CVaR is sometimes defined for the right tail of R , corresponding to $-\text{CVaR}(-R)$ in our definition.

162 **Remark 2.3.** The sup is attained by β being the α -quantile: $F_R^{-1}(\alpha) = \inf\{\beta : F_R(\beta) \geq \alpha\}$, where
 163 $F_R(r) = \mathbb{P}(R \leq r)$. Here β is the α -level VaR of R . If R is continuous, then $\text{CVaR}_\alpha(R) = \mathbb{E}[R | R \leq F_R^{-1}(\alpha)]$; otherwise $\text{CVaR}_\alpha(R) \in [\mathbb{E}[R | R < F_R^{-1}(\alpha)], \mathbb{E}[R | R \leq F_R^{-1}(\alpha)]]$.
 164
 165

166 According to Definition 2.2, given a policy π , the α -level CVaR of the IPE CVaR $_\alpha(Y(\pi(X)))$ is the
 167 average policy effect among the $(100 \times \alpha)\%$ -worst affected population. Let $\mu_\pi(X) := \mathbb{E}[Y(\pi(X)) | X]$ denote the CAPE. The next corollary following (Kallus, 2023, Theorem 3.1) gives an upper bound
 168 of CVaR of IPE by that of CAPE CVaR $_\alpha(\mu_\pi(X))$.
 169

170 **Corollary 2.4.** For any $\alpha \in [0, 1]$ and a policy π , $\text{CVaR}_\alpha(Y(\pi(X))) \leq \text{CVaR}_\alpha(\mu_\pi(X))$.
 171

172 Since CAPE represents our best guess for IPE, it is reasonable to impute the random and unknown
 173 IPE $Y(\pi(X))$ with CAPE $\mu_\pi(X)$. Consequently, CVaR $_\alpha(\mu_\pi(X))$ can be seen as a substitute for
 174 CVaR $_\alpha(Y(X))$, and a reasonable measure of policy risk.
 175

176 Formally, our goal is to learn a risk sensitive policy with a high CVaR $_\alpha(\mu_\pi(X))$ from \mathcal{D} , with a given
 177 target α -level. Our challenge is two-fold: (i) inference of CVaR $_\alpha(\mu_\pi(X))$ of a given policy π under
 178 slow parameter estimation rates of the nuisance parameters; (ii) risk sensitive policy learning whose
 179 α -level CVaR $_\alpha(\mu_\pi(X))$ is high. Specially, we focus on deriving fast rate policy CVaR estimation
 180 and subsequently provide parametric rate sample complexity for policy learning.
 181

3 POLICY CVAR INFERENCE

183 In this section, we concentrate on the first task of policy CVaR inference. We define the policy CVaR
 184

$$\mathcal{V}_\alpha(\pi) := \text{CVaR}_\alpha(\mu_\pi(X)) = \sup_{\beta} \left\{ \beta + \frac{1}{\alpha} \mathbb{E}[(\mu_\pi(X) - \beta)^-] \right\}, \quad (2)$$

185 and denote β_π as the optimizer $\beta_\pi := \arg \sup_{\beta} \{\beta + \frac{1}{\alpha} \mathbb{E}[(\mu_\pi(X) - \beta)^-]\}$ in equation 2, which is
 186 the α -level VaR of $\mu_\pi(X)$.
 187

188 Since the CAPE μ_π is not directly observed, the first step is fitting it. Let $\hat{\mu}_\pi$ be the estimator of μ_π
 189 and let $W_\pi(X_i) := \mathbb{1}\{A_i = \pi(X_i)\}Y_i$. The causal inference literature provides that $\hat{\mu}_\pi$ can be fitted
 190 via off-the-shelf estimation algorithms using $\{W_\pi(X_i) : i \in \mathcal{D}\}$ (Hastie et al., 2017; Zhou et al.,
 191 2023), e.g., logistic regression, random forests (Ho et al., 1995), kernel regression (Nadaraya, 1964;
 192 Watson, 1964), local polynomial regression (Cleveland, 1979; Cleveland & Devlin, 1988).
 193

194 Given an estimator $\hat{\mu}_\pi$, an naïve policy CVaR estimator is the plug-in estimator
 195

$$\hat{\mathcal{V}}_\alpha^{\text{plug-in}}(\pi) = \sup_{\beta} \left(\beta + \frac{1}{n\alpha} \sum_{i \in \mathcal{D}} (\hat{\mu}_\pi(X_i) - \beta)^- \right).$$

196 However, the performance of $\hat{\mathcal{V}}_\alpha^{\text{plug-in}}$ depends on the estimation of $\hat{\mu}_\pi$, which is prone to slow
 197 convergence rates and potential bias in regression estimation.
 198

199 We circumvent the issue via a *debiasing* approach (Kallus, 2023) that is insensitive to the estimation
 200 of μ_π , and thus achieving satisfying policy CVaR estimation rate even in face of the slow convergence
 201 rate of $\hat{\mu}_\pi$. Algorithm 1 summarizes the inference procedure, which computes the sample average of
 202

$$\phi(\pi, Z; \hat{\pi}_0, \hat{\mu}_\pi, \hat{\beta}_\pi) := \hat{\beta}_\pi + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}_\pi(X) \leq \hat{\beta}_\pi\} \left(\hat{\mu}_\pi(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\hat{\pi}_0(A | X)} (Y - \hat{\mu}_\pi(X)) - \hat{\beta}_\pi \right).$$

203 Here the propensity estimator $\hat{\pi}_0$ is the estimated propensity score and the estimated policy VaR is
 204

$$\hat{\beta}_\pi = \inf \left\{ \beta : \sum_{i \in \mathcal{D}} (\mathbb{1}\{\hat{\mu}_\pi(X_i) \leq \beta\} - \alpha) \geq 0 \right\}. \quad (3)$$

205 We also adopt the *cross-fitting* technique (Schick, 1986; Zheng & van der Laan, 2011) over K folds
 206 so that the nuisance estimators $(\hat{\mu}_\pi, \hat{\pi}_0, \hat{\beta}_\pi)$ are independent of the data points used for the overall
 207 sample average of ϕ . We split the dataset \mathcal{D} randomly into K fold and denote each fold as $\mathcal{D}^{(k)}$ for
 208 $k \in [K]$. At every $k \in [K]$ fold, we use the off fold dataset $\bar{\mathcal{D}}^{(k)} := \{\mathcal{D}^{(i)} : i \not\equiv k \pmod{K}\}$ to
 209 estimate the propensity score $\hat{\pi}_0^{(k)}$. Denote $\bar{\mathcal{D}}_\pi^{(k)} := \{(X_i, A_i, Y_i) : i \in \bar{\mathcal{D}}^{(k)}, A_i = \pi(X_i)\}$. We fit
 210

216 **Algorithm 1** Policy CVaR Inference

217 **Input:** Data \mathcal{D} , policy π , CVaR threshold α , regression algorithm \mathcal{R} for estimating μ_π and
218 propensity score π_0 .
219 Randomly split \mathcal{D} into K equally-sized folds;
220 **for** $k = 1, \dots, K$ **do**
221 Estimate $\hat{\pi}_0^{(k)} \sim \mathcal{R}(\{(X_i, A_i) : i \in \bar{\mathcal{D}}^{(k)}\})$ and $\hat{\mu}_\pi^{(k)} \sim \mathcal{R}(\{(X_i, W_\pi(X_i)) : i \in \bar{\mathcal{D}}_\pi^{(k)}\})$;
222 Find $\hat{\beta}_\pi^{(k)}$ with $\hat{\mu}_\pi^{(k)}$ and $\bar{\mathcal{D}}^{(k)}$ as in equation 3;
223 Compute the k th-fold $\hat{\mathcal{V}}_\alpha^{(k)}(\pi) \leftarrow \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)})$;
224 **end for**
225 **Output:** $\hat{\mathcal{V}}_\alpha(\pi) = \frac{1}{K} \sum_{k=1}^K \hat{\mathcal{V}}_\alpha^{(k)}(\pi)$.

226
227
228 $\hat{\mu}_\pi^{(k)}$ by the off fold $\{W_\pi(X_i) : i \in \bar{\mathcal{D}}_\pi^{(k)}\}$. The k th fold policy VaR $\hat{\beta}_\pi^{(k)}$ is found via equation 3.
229 Finally, the k th fold CVaR estimator is the sample average of $\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)})$ on the k th
230 fold $\mathcal{D}^{(k)}$, and the policy CVaR estimator is the sample average of $\{\hat{\mathcal{V}}_\alpha^{(k)}(\pi)\}_{k \in [K]}$.
231

232 **Remark 3.1.** If $\alpha = 1$, then $CVaR_\alpha(\mu_\pi(X)) = \mathbb{E}[\mu_\pi(X)] = \mathbb{E}[Y(\pi(X))]$, and $\hat{\mathcal{V}}_\alpha$ is reduced to the
233 Cross-fitted Augmented Inverse Propensity Weighted (CAIPW) estimator Zhou et al. (2023) for the
234 inference of APE $\mathbb{E}[Y(\pi(X))]$, with unknown propensity scores.
235

236 3.1 CONSISTENT POLICY CVAR ESTIMATOR

237 In this section, we look at the asymptotic behavior of the proposed policy CVaR estimator. We first
238 make some standard assumptions on the estimation rates (Zhou et al., 2023; Kallus, 2023).
239

240 **Assumption 3.2** (Asymptotic estimation rate). Suppose that for each fold $k \in [K]$ and any policy
241 $\pi \in \Pi$, we assume that $\|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} = o_p(1)$, $\|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} = o_p(1)$. Furthermore, we
242 assume that $\|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \cdot \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} = o_p(n^{-\frac{1}{2}})$, $\|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_\infty} = o_p(n^{-\frac{1}{4}})$.
243

244 Assumption 3.2 is nonrestrictive, as it suffices to have slow $o_p(n^{-\frac{1}{4}})$ -rates on both CAPE and
245 propensity score estimation or no rate on CAPE estimation if the propensity score is known. We
246 impose smoothness of μ_π on the rich covariate space \mathcal{X} to ensure that the CAPE estimator attains the
247 $o_p(n^{-\frac{1}{4}})$ convergence rate in L_∞ -norm (Stone, 1982). Recalling the definition of μ_π , the smoothness
248 of μ_π is justified as long as the conditional expectation $\mathbb{E}[Y(a) | X]$ is well-behaved and smooth in \mathcal{X} ,
249 which is a common requirement in off-policy learning literature (Zhou et al., 2023). Provided that μ_π
250 is sufficiently smooth, many estimation methods discussed previously in the double-machine-learning
251 estimation literature (Chernozhukov et al., 2018; Farrell, 2015) can easily achieve Assumption 3.2.
252

253 We also need another assumption that prohibits degeneracy of the quantile.
254

255 **Assumption 3.3** (Regularity of Quantile). For all $\pi \in \Pi$, we assume that the CDF $F_{\mu_\pi(X)}$ is
256 continuously differentiable at $F_{\mu_\pi(X)}^{-1}(\alpha)$ for the given $\alpha \in [0, 1]$.
257

258 Under well-behaved conditional outcome distributions $\mathbb{P}_{Y(a)|X}$, $a \in \mathcal{A}$, we may safely assume the
259 above condition holds uniformly for all $\pi \in \Pi$. In particular, we require a locally smooth PDF of
260 $F'_{\mu_\pi(X)}$ around $F_{\mu_\pi}^{-1}(\alpha)$. If $\mu_\pi(X)$ is discrete, Assumption 3.3 can be replaced by $F_{\mu_\pi(X)}^{-1}(\alpha - \epsilon) =$
261 $F_{\mu_\pi(X)}^{-1}(\alpha + \epsilon)$ for some $\epsilon > 0$ (Kallus, 2023). A sufficient condition is that the CDF $F_{Y(a)|X}$ of
262 the conditional outcome $\mathbb{P}_{Y(a)|X}$ is smooth for $a \in \mathcal{A}$, and, by the bounded-reward assumption, its
263 corresponding PDF is bounded. Under the unconfoundedness assumption in Assumption 2.1, this
264 implies that the induced distribution of $\mu_\pi(X)$ also has a well-behaved PDF. Consequently, we are
265 able to define the uniform bound $\bar{F}_\alpha := \sup_{\pi \in \Pi} F'_{\mu_\pi(X)}(F_{\mu_\pi}^{-1}(\alpha))$ over the policy class Π .
266

267 Since $\hat{\beta}_\pi^{(k)}$ is derived by $\hat{\mu}_\pi^{(k)}$ in equation 3, the following lemma translates the convergence rate of
268 $\hat{\mu}_\pi^{(k)}$ in Assumption 3.2 to that of $\hat{\beta}_\pi^{(k)}$. Its proof is in Appendix E.2.
269

270 **Lemma 3.4** (Convergence rate of $\hat{\beta}_\pi$). Under Assumption 2.1, 3.2 and 3.3, for all $k \in [K]$, the
271 estimation error $|\hat{\beta}_\pi^{(k)} - \beta_\pi| = O_p(n^{-\frac{1}{2}} \vee \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_r(P)}^{\frac{r}{r+1}})$, $\forall r \in [1, \infty]$.
272

270 We are now ready to show the the asymptotic normality of the CVaR policy estimator in Algorithm 1,
 271 despite of the slow estimation rates in Assumption 3.2. The proof is deferred to Appendix E.3.

272 **Theorem 3.5** (Asymptotic Normality). *Under Assumption 2.1, 3.2 and 3.3, for any $\pi \in \Pi$, we have*
 273 $\sqrt{n}(\hat{\mathcal{V}}_\alpha(\pi) - \mathcal{V}_\alpha(\pi)) \rightarrow \mathcal{N}(0, \sigma_\pi^2)$, where $\sigma_\pi^2 = \text{Var}(\phi(Z; \pi_0, \mu_\pi, \beta_\pi))$.

275 4 CVAR BASED RISK SENSITIVE POLICY LEARNING

278 We now turn to the second goal and present our CVaR based risk sensitive policy learning (λ - α RSL).

280 4.1 WEIGHTED POLICY VALUE

281 A straight forward candidate of risk sensitive policy in a policy class Π is the one that maximizes
 282 the policy $\text{CVaR}_\alpha(\mu_\pi(X))$. In many applications, only considering the CVaR objective could be
 283 too conservative, as it is also important to monitor the APE. We propose the learning objective that
 284 maximizes the policy value $\mathcal{U}_{\lambda, \alpha}(\pi)$, which is the weighted sum of the APE and the policy CVaR
 285 with weighting parameter $\lambda \in [0, 1]$:

$$286 \quad \mathcal{U}_{\lambda, \alpha}(\pi) := \lambda \mathcal{Q}(\pi) + (1 - \lambda) \mathcal{V}_\alpha(\pi), \quad \forall \pi \in \Pi \quad (4)$$

287 where $\mathcal{Q}(\pi) := \mathbb{E}[Y(\pi(X))] = \mathbb{E}[\mathbb{E}[Y(\pi(X)) \mid X]]$. Detailed discussions of the choice of λ
 288 empirically and theoretically are given in Section 5 and Appendix B respectively. Zhou et al. (2023)
 289 provided the well-known CAIPW Learning (CAIPWL) scheme for policy learning under the APE
 290 maximization objective.

291 We define the optimal policy of a policy class Π to be $\pi^* = \max_{\pi \in \Pi} \mathcal{U}_{\lambda, \alpha}(\pi)$. Policy learning task
 292 finds a near-optimal robust policy $\pi \in \Pi$ whose policy value is close to the optimal policy. The
 293 performance of a learnt policy $\hat{\pi}$ is measured by the sub-optimality gap (regret), defined as

$$295 \quad R_{\lambda, \alpha}(\hat{\pi}) := \mathcal{U}_{\lambda, \alpha}(\pi^*) - \mathcal{U}_{\lambda, \alpha}(\hat{\pi}). \quad (5)$$

297 4.2 RISK SENSITIVE POLICY LEARNING

298 To find the optimal policy π^* that maximize the policy value $\mathcal{U}_{\lambda, \alpha}$, the major challenge is the
 299 estimations of μ_π and β_π . This is because both μ_π, β_π are functions of π , and it is infeasible to
 300 estimate for every π within a policy class Π containing an infinite number of policies.

302 To tackle the first issue of μ_π estimation, we can express $\mu_\pi(X)$ as a function of the policy action
 303 $\pi(X)$: $\mu_\pi(X) = \sum_{a=1}^M \mathbb{1}\{\pi(X) = a\} \mu_a(X)$. To be more precise, we estimate $\mu_a(X)$ by collecting
 304 $\{W_a(X_i) = \mathbb{1}\{A_i = a\} Y_i, i \in \mathcal{D}\}_{a \in \mathcal{A}}$. We can construct $\hat{\mu}_\pi(X) = \hat{\mu}_{\pi(X)}(X)$ with $\{\hat{\mu}_a, a \in \mathcal{A}\}$,
 305 for any policy $\pi \in \Pi$. As before, we adopt the cross-fitting technique over K folds to avoid
 306 dependence between $\hat{\mu}_\pi$ and the data points used for calculating the sample average.

307 Deriving the estimator $\hat{\mu}_\pi$ also benefits the learning of the APE $\mathcal{Q}(\pi)$. As discussed before, $\mathcal{Q}(\pi)$
 308 can be learnt via CAIPWL Zhou et al. (2023), which maximizes the CAIPW estimator $\hat{\mathcal{Q}}(\pi)$

$$310 \quad \psi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}) := \frac{\mathbb{1}\{A = \pi(X)\}}{\hat{\pi}_0^{(k)}(\pi(X) \mid X)} (Y - \hat{\mu}_\pi^{(k)}(X)) + \hat{\mu}_\pi^{(k)}(X),$$

$$312 \quad \hat{\mathcal{Q}}^{(k)}(\pi) = \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}), \quad \hat{\mathcal{Q}}(\pi) = \frac{1}{K} \sum_{k=1}^K \hat{\mathcal{Q}}^{(k)}(\pi). \quad (6)$$

315 Given $\{\hat{\mu}_\pi^{(k)}(X_i)\}_{i \in \bar{\mathcal{D}}^{(k)}}$, equation 3 finds the policy VaR $\hat{\beta}_\pi^{(k)}$ for a specific policy $\pi \in \Pi$. Previously
 316 $\mu_\pi(\cdot)$ can be decoupled on the action level, thus transforming the infeasible task of computing a class
 317 of infinite nuisance parameters $\{\mu_\pi : \pi \in \Pi\}$ to the feasible task of computing a finite one, however
 318 this is not implementable for estimating β_π , which imposes the second challenge. We tackle the issue
 319 by jointly optimizing the nuisance parameter $\hat{\beta}_\pi$ and policy π (by taking policy gradient updates)
 320 in an alternating fashion. In particular, we start by initiating a random policy $\hat{\pi}$ and estimate its $\beta_{\hat{\pi}}$.
 321 Then, we take gradient steps to maximize $\hat{\pi} \in \arg \max_{\pi \in \Pi} \hat{\mathcal{U}}_{\lambda, \alpha}(\pi) := \lambda \hat{\mathcal{Q}}(\pi) + (1 - \lambda) \hat{\mathcal{V}}_\alpha(\pi)$,
 322 where $\hat{\mathcal{V}}_\alpha(\pi) = \frac{1}{K} \sum_{k=1}^K \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)})$, while updating $\beta_{\hat{\pi}}$ along the way. Such
 323 process ends when the learnt policy converges. Details of λ - α RSL is in Algorithm 2.

Algorithm 2 λ - α Risk-Sensitive Learning (λ - α RSL)

324 **Input:** Data \mathcal{D} , policy class Π , CVaR threshold α , objective weighting parameter λ , regression
 325 algorithm \mathcal{R} for estimating $\mu_a(X)$ and propensity score π_0 .
 326 Randomly split \mathcal{D} into K equally-sized folds;
 327 **for** $k = 1, \dots, K$ **do**
 328 Estimate $\hat{\pi}_0^{(k)} \sim \mathcal{R}(\{(X_i, A_i) : i \in \bar{\mathcal{D}}^{(k)}\})$;
 329 **for** $a \in \mathcal{A}$ **do**
 330 Estimate $\hat{\mu}_a^{(k)} \sim \mathcal{R}(\{(X_i, W_a(X_i)) : i \in \bar{\mathcal{D}}^{(k)}\})$;
 331 **end for**
 332 **end for**
 333 Initiate some $\hat{\pi} \in \Pi$ and estimate $\{\hat{\beta}_{\hat{\pi}}^{(k)}\}_{k \in [K]}$ with $\{\hat{\mu}_a^{(k)}\}_{k \in [K], a \in \mathcal{A}}$;
 334 **while** $\hat{\pi}$ does not converge **do**
 335 Update $\hat{\pi}$ by some gradient steps to maximize $\hat{\mathcal{U}}_{\lambda, \alpha}(\pi)$;
 336 Estimate $\{\hat{\beta}_{\hat{\pi}}^{(k)}\}_{k \in [K]}$ with $\{\hat{\mu}_a^{(k)}\}_{k \in [K], a \in \mathcal{A}}$;
 337 **end while**
 338 **Output:** $\hat{\pi}$.

342 **Remark 4.1** (Convergence of λ - α RSL). *We note that the policy learning objective $\hat{\mathcal{U}}_{\lambda, \alpha}(\pi)$ is*
 343 *nonsmooth (due to the indicator functions) with weak concavity structure, which poses particular*
 344 *computation challenges that are common in RL in general (Kaelbling et al., 1996). As the scope of*
 345 *this work does not include developing optimization method for nonsmooth and nonconcave objectives,*
 346 *we defer further discussions on the theoretical convergence of λ - α RSL to Appendix C. The alternating*
 347 *optimization scheme shown in Algorithm 2 is an empirically proven heuristic optimization of $\hat{\mathcal{U}}_{\lambda, \alpha}(\pi)$*
 348 *that is easy to implement with a variety of optimization methods, including AdaGrad (Duchi et al.,*
 349 *2011) and RMSProp (Hinton et al., 2012; Graves, 2013; Ziyin et al., 2020). We shall see an efficient*
 350 *implementation with a softmax policy class in Section 5.*

351 4.3 MAIN REGRET ANALYSIS

353 In this section, we present the regret analysis of λ - α RSL. Before we embark on the regret result, we
 354 need to introduce the *Hamming entropy integral* $\kappa(\Pi)$, which measures the complexity of Π .

356 **Definition 4.2** (Hamming entropy integral). *Given a policy class Π and dataset $\{x_1, \dots, x_n\} \subseteq \mathcal{X}$,*
 357 *(1) the Hamming distance between $\pi, \pi' \in \Pi$ as $D_H(\pi, \pi') := \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\pi(x_i) \neq \pi'(x_i)\}$;* (2)
 358 *the ϵ -covering number of $\{x_1, \dots, x_n\}$, denoted as $N_H(\epsilon, \Pi; \{x_1, \dots, x_n\})$, is the smallest number*
 359 *N of policies $\{\pi_1, \dots, \pi_N\}$ in Π , such that $\forall \pi \in \Pi, \exists \pi_\ell$ such that $D_H(\pi, \pi_\ell) \leq \epsilon$;* (3) *the*
 360 *Hamming entropy integral of Π is defined as $\kappa(\Pi) := \int_0^1 \sqrt{\log N_H(\epsilon^2, \Pi)} d\epsilon$, where $N_H(\epsilon, \Pi) :=$*
 361 *$\sup_{n \geq 1} \sup_{x_1, \dots, x_n} N_H(\epsilon, \Pi; \{x_1, \dots, x_n\})$.*

362 We now present the regret guarantee of the policy $\hat{\pi}$ learnt by λ - α RSL. The proof is deferred to
 363 Appendix E.4. The main idea is to first decompose the regret

$$R_{\lambda, \alpha}(\hat{\pi}) = \mathcal{U}_{\lambda, \alpha}(\pi^*) - \mathcal{U}_{\lambda, \alpha}(\hat{\pi}) = \lambda(\mathcal{Q}(\pi^*) - \mathcal{Q}(\hat{\pi})) + (1 - \lambda)(\mathcal{V}_\alpha(\pi^*) - \mathcal{V}_\alpha(\hat{\pi})). \quad (7)$$

366 Note that the first term can be translate to the supremum of the estimation error:

$$\lambda(\mathcal{Q}(\pi^*) - \hat{\mathcal{Q}}(\pi^*) + \hat{\mathcal{Q}}(\pi^*) - \hat{\mathcal{Q}}(\hat{\pi}) + \hat{\mathcal{Q}}(\hat{\pi}) - \mathcal{Q}(\hat{\pi})) \leq 2\lambda \sup_{\pi \in \Pi} |\mathcal{Q}(\pi) - \hat{\mathcal{Q}}(\pi)|,$$

370 and bounded by the known results from Zhou et al. (2023). We concentrate on the second term, which
 371 can be similarly upper bounded by

$$(1 - \lambda)(\mathcal{V}_\alpha(\pi^*) - \mathcal{V}_\alpha(\hat{\pi})) \leq 2(1 - \lambda) \sup_{\pi \in \Pi} |\mathcal{V}_\alpha(\pi) - \hat{\mathcal{V}}_\alpha(\pi)|. \quad (8)$$

374 At a high level, we bound the right hand side of equation 8 by establishing uniform convergence
 375 results for the policy CVaR estimators, through a careful chaining argument.

377 **Theorem 4.3.** *Under Assumption 2.1, 3.2 and 3.3, there exists some $N \in \mathbb{Z}_+$ such that with*
 378 *$n \geq N$ and denoting $q := \sup_{\pi_1, \pi_2 \in \Pi} \mathbb{E}[(\psi(\pi_1, Z; \pi_0, \mu_a) - \psi(\pi_2, Z; \pi_0, \mu_a))^2]$, we have that with*

378 probability at least $1 - \Delta$, the regret of λ - α RSL

$$380 \quad R_{\lambda,\alpha}(\hat{\pi}) \leq \lambda \sqrt{\frac{q}{n}} \left(54.4\sqrt{2}\kappa(\Pi) + 435.2 + \sqrt{2\log(1/\Delta)} \right) \\ 381 \\ 382 \quad + (1 - \lambda) \frac{56\bar{y}}{\alpha\varepsilon\sqrt{n}} \left((8 + \alpha\varepsilon)\kappa(\Pi) + \bar{F}_\alpha/3 + (64 + 5\alpha\varepsilon) + \sqrt{\log(1/\Delta)} \right). \\ 383$$

384 Theorem 4.3 shows that the dependence of $R_{\lambda,\alpha}(\hat{\pi})$ on the sample size n is of order $O(n^{-\frac{1}{2}})$, which
 385 agrees with the regret guarantee of CAIPWL Zhou et al. (2023). This implies that the CVaR based
 386 risk sensitive policy learning with λ - α RSL attains the same order of sample complexity as other
 387 offline policy learning algorithms, especially CAIPWL which maximizes average policy effect, i.e.
 388 social welfare, with no consideration of risks.
 389

390 5 EXPERIMENTS

391 We evaluated the performance of λ - α RSL against the benchmark CAIPWL Zhou et al. (2023).

405 Figure 1: The estimated $\widetilde{\text{CVaR}}_\alpha(\mu_{\hat{\pi}}(X))$ under α -level 0.01, 0.05 and 0.1, of learnt policies $\hat{\pi} \in \{ \text{CAIPWL}, \lambda\text{-}\alpha\text{RS}, \lambda = 0, 0.2, 0.5, 0.7 \}$ on $n = 1000$ training data points, over 50 seeds.
 406
 407

408 **Data Generating Process** The data generating process follows that of the classical linear boundary
 409 example in Si et al. (2023). We generate 50 training datasets of data tuple (X, A, Y) , with a
 410 behavior policy π_0 ; and similarly generate 50 testing datasets, each of size 10,000. The covariate set
 411 $\mathcal{X} = \{x \in \mathbb{R}^5 : \|x\|_2 \leq 1\}$ is the closed unit ball of \mathbb{R}^5 and the action space is $\mathcal{A} = [3]$. The covariate
 412 are sampled independently $X \sim \text{Unif}(\mathcal{X})$; the action $A \sim \pi_0(X)$ and the rewards $Y(a)$'s are mutually
 413 independent conditioned on X with $Y(a) | X \sim \mathcal{N}(\beta_a^\top X, \sigma_a^2)$, for $\beta_a \in \mathbb{R}^5$, $\sigma_a \in \mathbb{R}$, $a \in \mathcal{A}$. Note
 414 that the reward distributions here are not of bounded supports.
 415

416 **Implementation with Softmax Policies** We implement λ - α RSL and the benchmark CAIPWL on
 417 a softmax policy class Π . Given a covariate $x \in \mathcal{X}$, each policy $\pi \in \Pi$ chooses its action $a \in \mathcal{A}$
 418 with probability $\pi(a | x) \propto \exp(x^\top \gamma_\pi^a)$ with some policy weights $\{\gamma_\pi^a\}_{a \in \mathcal{A}}$. We consider the neural
 419 network softmax policies with a hidden layer of 32 neurons and ReLU activation.
 420

421 In our implementation, the learning parameters are set to be the same for both λ - α RSL and CAIPWL.
 422 The number of data splits is taken to be $K = 2$. We use the Random Forest regressor from the
 423 scikit-learn Python library to estimate π_0 and $\{\mu_a\}_{a \in \mathcal{A}}$. For the policy gradient step, we
 424 implement λ - α RSL by maximizing the objective in equation 4 using AdaGrad with a learning
 425 rate of 0.01. For CAIPWL, we use RMSProp to maximize its objective equation 6. Since the
 426 objective equation 4 and equation 6 are non-convex in the policy weights, following Dudík et al.
 427 (2011); Kallus et al. (2022), every policy update is repeated 10 times with perturbed starting weights
 428 and the best weights based on the chosen policy learning objective. The policy convergence criteria is
 429 whenever the difference between the previous and the updated policy value to be less then 1e-5.
 430

431 **Performance Metrics** We compare the performance of the learnt policy $\hat{\pi}$ by λ - α RSL and the
 432 benchmark CAIPWL with the following two metrics: (i) empirical CVaR of CAPE (empirical policy
 433 CVaR); and (ii) empirical APE, on the testing dataset. The two metrics are defined formally as

$$\widetilde{\text{CVaR}}_\alpha(\mu_{\hat{\pi}}(X)) := \hat{\mathbb{E}}_{\mathcal{D}_{\text{test}}} [\mu_{\hat{\pi}}(X) | \mu_{\hat{\pi}}(X) \leq \hat{F}_{\mu_{\hat{\pi}}(X)}^{-1}(\alpha)], \quad \hat{\mathbb{E}}[Y(\hat{\pi}(X))] := \hat{\mathbb{E}}_{\mathcal{D}_{\text{test}}} [Y(\hat{\pi}(X))].$$

432

433 Table 1: The estimated $\tilde{\mathbb{E}}[Y(\hat{\pi}(X))]$ under α -level 0.01, 0.05 and 0.1, of learnt policies $\hat{\pi} \in$
434 $\{\text{CAIPWL}, \lambda\text{-}\alpha\text{RS}, \lambda = 0, 0.2, 0.5, 0.7\}$ on $n = 1000$ training data points, over 50 seeds.

435

$\hat{\pi}$	$\tilde{\mathbb{E}}[Y(\hat{\pi}(X))]$		
	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
$\lambda\text{-}\alpha\text{RS}$	$0.370 \pm 1\text{e-}2$	$0.365 \pm 1\text{e-}2$	$0.365 \pm 1\text{e-}2$
$\lambda = 0.0$	$0.370 \pm 1\text{e-}2$	$0.365 \pm 1\text{e-}2$	$0.368 \pm 1\text{e-}2$
$\lambda = 0.2$	$0.372 \pm 1\text{e-}2$	$0.368 \pm 1\text{e-}2$	$0.371 \pm 1\text{e-}2$
$\lambda = 0.5$	$0.370 \pm 1\text{e-}2$	$0.368 \pm 1\text{e-}2$	$0.373 \pm 1\text{e-}2$
$\lambda = 0.7$	$0.376 \pm 1\text{e-}2$		
CAIPWL			

441

442
443
444 Here we use \hat{F}_Z to denote the empirical CDF of a random variable Z . For every experiment
445 environment, we test weighting parameters $\lambda \in \{0, 0.2, 0.5, 0.7\}$ and CAIPWL. Note that when
446 $\lambda = 0$, the training objective equation 4 reduces to policy CVaR maximization objective equation 2;
447 when $\lambda = 1$, $\lambda\text{-}\alpha\text{RS}$ reduced to the benchmark CAIPWL.448
449 **Results and Discussion** Figure 1 and Table 1 respectively report the empirical policy CVaR and
450 APE of the learnt policies on training datasets of size $n = 1000$, under α -levels 0.01, 0.05 and 0.1.
451 Appendix D provides detailed results of the performances on different samples sizes in Figure 3; and
452 presents the empirical policy CVaRs under large α -levels ($\alpha = 0.2, 0.5, 0.9$) in Figure 3.453 Our proposed $\lambda\text{-}\alpha\text{RS}$ outperforms the benchmark CAIPWL in terms of empirical policy CVaR,
454 particularly in the small α regime ($\alpha = 0.01, 0.05, 0.1$). On the other hand, CAIPWL attains a higher
455 average empirical APE, whereas $\lambda\text{-}\alpha\text{RS}$ exhibits a modest, yet statistically insignificant, reduction
456 in average empirical APE. For a larger value of $\alpha = 0.2$, although the improvement in policy CVaR
457 provided by $\lambda\text{-}\alpha\text{RS}$ diminishes, the quantile of the policy CVaR becomes tighter. This indicates that
458 $\lambda\text{-}\alpha\text{RS}$ offers more stable performance with respect to the CVaR criterion. As the value of α increases
459 (particularly when $\alpha \geq 0.5$), the performance of $\lambda\text{-}\alpha\text{RS}$ becomes increasingly similar to that of
460 CAIPWL. This occurs because $\lambda\text{-}\alpha\text{RS}$ places greater emphasis on the majority of the population
461 as α grows, effectively reducing its objective to that of CAIPWL. Consequently, when α is large,
462 practitioners are primarily optimizing outcomes for the majority group, which is aligned with the
463 goal of CAIPWL, and therefore CAIPWL is recommended in such settings. This also demonstrates
464 that $\lambda\text{-}\alpha\text{RS}$ performs best when the goal is to target and improve the risk, i.e., the worst outcomes
465 experienced by minority groups in the population.466 The heatmap of Figure 5 further visualizes this trade-off between risk and social welfare through
467 the weighting parameter λ and α -level. Large λ under small α -level results in a much greater
468 improvements in policy CVaR (~ 0.12), compared to its loss in APE (~ 0.008). This improvement
469 diminishes as α increases. Conversely, a large λ helps prevent reductions in social welfare. As λ, α
470 both increases, the performance of $\lambda\text{-}\alpha\text{RS}$ is similar to that of CAIPWL.

471

481 Figure 2: The average $\widetilde{\text{CVaR}}_\alpha(\mu_{\hat{\pi}}(X))$ increase (right) and the average $\tilde{\mathbb{E}}[Y(\hat{\pi}(X))]$ decrease (left)
482 compared to CAIPWL under different α -levels and λ for $\hat{\pi} = \lambda\text{-}\alpha\text{RS}$, over 50 seeds.

483

484 In conclusion, the empirics show that $\lambda\text{-}\alpha\text{RS}$ improves the outcome of the worst-affected minority
485 population by sacrificing little social welfare.

486 REFERENCES
487

488 Fredrik Andersson, Helmut Mausser, Dan Rosen, and Stanislav Uryasev. Credit risk optimization
489 with conditional value-at-risk criterion. *Mathematical programming*, 89:273–291, 2001.

490 Philippe Artzner. Thinking coherently. *Risk*, 10:68–71, 1997.

491

492 Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
493 *Mathematical finance*, 9(3):203–228, 1999.

494 Susan Athey. Beyond prediction: Using big data for policy problems. *Science*, 355(6324):483–485,
495 2017.

496 Susan Athey and Stefan Wager. Policy learning with observational data. *Econometrica*, 89(1):
497 133–161, 2021.

498 Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional covariates.
499 *Operations Research*, 68(1):276–294, 2020.

500

501 Dorian Baudry, Romain Gautron, Emilie Kaufmann, and Odalric Maillard. Optimal thompson
502 sampling strategies for support-aware cvar bandits. In *International Conference on Machine
503 Learning*, pp. 716–726. PMLR, 2021.

504

505 Tanya Styblo Beder. Var: Seductive but dangerous. *Financial Analysts Journal*, 51(5):12–24, 1995.

506

507 Armin Behnamnia, Gholamali Aminian, Alireza Aghaei, Chengchun Shi, Vincent YF Tan, and
508 Hamid R Rabiee. Batch learning via log-sum-exponential estimator from logged bandit feedback.
509 In *ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and Theorists*.

510

511 Eli Ben-Michael, Kosuke Imai, and Zhichao Jiang. Policy learning with asymmetric counterfactual
512 utilities. *Journal of the American Statistical Association*, 119(548):3045–3058, 2024.

513

514 Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. *Management
515 Science*, 66(3):1025–1044, 2020.

516

517 Nisso Bucay and Dan Rosen. Credit risk of an international bond portfolio: A case study. *ALGO
518 Research Quarterly*, 2(1):9–29, 1999.

519

520 Asaf Cassel, Shie Mannor, and Assaf Zeevi. A general approach to multi-armed bandits under risk
521 criteria. In *Conference on learning theory*, pp. 1295–1306. PMLR, 2018.

522

523 Carri W Chan, Vivek F Farias, Nicholas Bambos, and Gabriel J Escobar. Optimizing intensive care
524 unit discharge decisions with patient readmissions. *Operations research*, 60(6):1323–1341, 2012.

525

526 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
527 Newey, and James Robins. Double/debiased machine learning for treatment and structural
528 parameters, 2018.

529

530 Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
531 making: a cvar optimization approach. *Advances in neural information processing systems*, 28,
532 2015.

533

534 William S Cleveland. Robust locally weighted regression and smoothing scatterplots. *Journal of the
535 American statistical association*, 74(368):829–836, 1979.

536

537 William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression
538 analysis by local fitting. *Journal of the American statistical association*, 83(403):596–610, 1988.

539

540 Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Nonparametric tests for
541 treatment effect heterogeneity. *The Review of Economics and Statistics*, 90(3):389–405, 2008.

542

543 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
544 stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

545

546 Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. *arXiv
547 preprint arXiv:1103.4601*, 2011.

540 Darrell Duffie and Jun Pan. An overview of value at risk. *Journal of derivatives*, 4(3):7–49, 1997.
 541

542 Paul Embrechts, S Kluppelberg, and Thomas Mikosch. Extremal events in finance and insurance.
 543 *Berling: Springer Verlag*, 1997.

544 Paul Embrechts, Sidney I Resnick, and Gennady Samorodnitsky. Extreme value theory as a risk
 545 management tool. *North American Actuarial Journal*, 3(2):30–41, 1999.

546

547 Vivek F Farias and Andrew A Li. Learning preferences with side information. *Management Science*,
 548 65(7):3131–3149, 2019.

549 Max H Farrell. Robust inference on average treatment effects with possibly more covariates than
 550 observations. *Journal of Econometrics*, 189(1):1–23, 2015.

551

552 Nicolas Galichet. *Contributions to multi-armed bandits: Risk-awareness and sub-sampling for linear*
 553 *contextual bandits*. PhD thesis, Université Paris Sud-Paris XI, 2015.

554 Nicolas Galichet, Michele Sebag, and Olivier Teytaud. Exploration vs exploitation vs safety: Risk-
 555 aware multi-armed bandits. In *Asian conference on machine learning*, pp. 245–260. PMLR,
 556 2013.

557

558 Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
 559 programming. *SIAM journal on optimization*, 23(4):2341–2368, 2013.

560 Alex Graves. Generating sequences with recurrent neural networks. *arXiv preprint arXiv:1308.0850*,
 561 2013.

562

563 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
 564 mining, inference, and prediction, 2017.

565

566 James J Heckman, Jeffrey Smith, and Nancy Clements. Making the most out of programme evalua-
 567 tions and social experiments: Accounting for heterogeneity in programme impacts. *The Review of*
 568 *Economic Studies*, 64(4):487–535, 1997.

569

570 Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Overview of mini-batch gradient descent.
 571 *Neural Networks for Machine Learning*, 575(8), 2012.

572

573 Tin Kam Ho et al. Proceedings of 3rd international conference on document analysis and recognition.
 574 In *Proceedings of 3rd international conference on document analysis and recognition*, 1995.

575

576 Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
 577 *International Conference on Machine Learning*, pp. 5084–5096. PMLR, 2021.

578

579 Ying Jin, Zhimei Ren, Zhuoran Yang, and Zhaoran Wang. Policy learning” without”overlap: Pes-
 580 simism and generalized empirical bernstein’s inequality. *arXiv preprint arXiv:2212.09900*, 2022.

581

582 Philippe Jorion. Value at risk: a new benchmark for measuring derivatives risk. *Irwin Professional*
 583 *Pub*, 1996.

584

585 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
 586 *Journal of artificial intelligence research*, 4:237–285, 1996.

587

588 Nathan Kallus. What’s the harm? sharp bounds on the fraction negatively affected by treatment.
 589 *Advances in Neural Information Processing Systems*, 35:15996–16009, 2022.

590

591 Nathan Kallus. Treatment effect risk: Bounds and inference. *Management Science*, 69(8):4579–4590,
 592 2023.

593

594 Nathan Kallus, Xiaojie Mao, Kaiwen Wang, and Zhengyuan Zhou. Doubly robust distributionally
 595 robust off-policy evaluation and learning. In *International Conference on Machine Learning*, pp.
 596 10598–10632. PMLR, 2022.

597

598 Edward S Kim, Roy S Herbst, Ignacio I Wistuba, J Jack Lee, George R Blumenschein Jr, Anne
 599 Tsao, David J Stewart, Marshall E Hicks, Jeremy Erasmus Jr, Sanjay Gupta, et al. The battle trial:
 600 personalizing therapy for lung cancer. *Cancer discovery*, 1(1):44–53, 2011.

594 Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization
 595 methods for treatment choice. *Econometrica*, 86(2):591–616, 2018.
 596

597 Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
 598 neous treatment effects using machine learning. *Proceedings of the national academy of sciences*,
 599 116(10):4156–4165, 2019.

600 Lihua Lei, Roshni Sahoo, and Stefan Wager. Policy learning under biased sample selection. *arXiv*
 601 preprint *arXiv:2304.11735*, 2023.
 602

603 Helmut Mausser. Beyond var: From measuring risk to managing risk. *ALGO research quarterly*, 1
 604 (2):5–20, 1998.

605 Alberto Maria Metelli, Alessio Russo, and Marcello Restelli. Subgaussian and differentiable impor-
 606 tance sampling for off-policy evaluation and learning. *Advances in neural information processing*
 607 systems, 34:8119–8132, 2021.

608

609 Weibin Mo, Zhengling Qi, and Yufeng Liu. Learning optimal distributionally robust individualized
 610 treatment rules. *Journal of the American Statistical Association*, 116(534):659–674, 2021.

611 JP Morgan. Riskmetrics technical manual. *New York: JP Morgan*, 1995.

612

613 Elizbar A Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):
 614 141–142, 1964.

615

616 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*,
 617 108(2):299–319, 2021.

618

619 Elissa M Ozanne, Rebecca Howe, Zehra Omer, and Laura J Esserman. Development of a personalized
 620 decision aid for breast cancer risk reduction and management. *BMC medical informatics and*
 621 *decision making*, 14:1–8, 2014.

622

623 Georg Ch Pflug. Some remarks on the value-at-risk and the conditional value-at-risk. *Probabilistic*
 624 *constrained optimization: Methodology and applications*, pp. 272–281, 2000.

625

626 Matthew Pritsker. Evaluating value at risk methodologies: accuracy versus computational time.
 627 *Journal of Financial Services Research*, 12(2):201–242, 1997.

628

629 Zhengling Qi, Jong-Shi Pang, and Yufeng Liu. On robustness of individualized decision rules.
 630 *Journal of the American Statistical Association*, 118(543):2143–2157, 2023.

631

632 R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. *Journal of*
 633 *risk*, 2:21–42, 2000.

634

635 Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 636 *Journal of educational Psychology*, 66(5):688, 1974.

637

638 Roshni Sahoo, Lihua Lei, and Stefan Wager. Learning from a biased sample. *arXiv preprint*
 639 *arXiv:2209.01754*, 2022.

640

641 Otmane Sakhi, Imad Aouali, Pierre Alquier, and Nicolas Chopin. Logarithmic smoothing for
 642 pessimistic off-policy evaluation, selection and learning. *arXiv preprint arXiv:2405.14335*, 2024.

643

644 Anton Schick. On asymptotically efficient estimation in semiparametric models. *The Annals of*
 645 *Statistics*, pp. 1139–1151, 1986.

646

647 Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust batch contextual
 648 bandits. *Management Science*, 2023.

649

650 Katerina Simons. Value at risk-new approaches to risk management. *New England Economic Review*,
 651 pp. 3–14, 1996.

652

653 Fred Stambaugh. Risk and value at risk. *European Management Journal*, 14(6):612–621, 1996.

648 Charles J Stone. Optimal global rates of convergence for nonparametric regression. *The annals of*
 649 *statistics*, pp. 1040–1053, 1982.
 650

651 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 652 and momentum in deep learning. In *International conference on machine learning*, pp. 1139–1147.
 653 PMLR, 2013.

654 Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
 655 counterfactual risk minimization. *The Journal of Machine Learning Research*, 16(1):1731–1755,
 656 2015a.

658 Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged
 659 bandit feedback. In *International Conference on Machine Learning*, pp. 814–823. PMLR, 2015b.

660 Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learning.
 661 *advances in neural information processing systems*, 28, 2015c.

663 Alex Tamkin, Ramtin Keramati, Christoph Dann, and Emma Brunskill. Distributionally-aware
 664 exploration for cvar bandits. In *NeurIPS 2019 Workshop on Safety and Robustness on Decision*
 665 *Making*, 2019.

667 Chenmien Tan and Paul Weng. Cvar-regret bounds for multi-armed bandits. In *Asian Conference on*
 668 *Machine Learning*, pp. 974–989. PMLR, 2023.

669 Leonard Tetzlaff, Florian Schmiedek, and Garvin Brod. Developing personalized education: A
 670 dynamic framework. *Educational Psychology Review*, 33:863–882, 2021.

671 Kai Tu, Zhi Chen, and Man-Chung Yue. A max-min-max algorithm for large-scale robust optimization.
 672 *arXiv preprint arXiv:2404.05377*, 2024.

674 Stanislav Uryasev. Conditional value-at-risk: Optimization algorithms and applications. In *proceed-
 675 ings of the IEEE/IAFE/INFORMS 2000 conference on computational intelligence for financial*
 676 *engineering (CIFEr)(Cat. No. 00TH8520)*, pp. 49–57. IEEE, 2000.

678 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 679 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

680 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 681 bridge university press, 2019.

683 Geoffrey S Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A*,
 684 pp. 359–372, 1964.

686 Ruohan Zhan, Zhimei Ren, Susan Athey, and Zhengyuan Zhou. Policy learning with adaptively
 687 collected data. *Management Science*, 2023.

688 Ruohan Zhan, Zhimei Ren, Susan Athey, and Zhengyuan Zhou. Policy learning with adaptively
 689 collected data. *Management Science*, 70(8):5270–5297, 2024.

691 Baqun Zhang, Anastasios A Tsiatis, Marie Davidian, Min Zhang, and Eric Laber. Estimating optimal
 692 treatment regimes from a classification perspective. *Stat*, 1(1):103–114, 2012.

694 Wenjing Zheng and Mark J van der Laan. Cross-validated targeted minimum-loss-based estimation.
 695 In *Targeted learning: causal inference for observational and experimental data*, pp. 459–474.
 696 Springer, 2011.

698 Zhengyuan Zhou, Susan Athey, and Stefan Wager. Offline multi-action policy learning: Generalization
 699 and optimization. *Operations Research*, 71(1):148–183, 2023.

700 Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: Separating momentum and adaptivity in
 701 adam. *arXiv preprint arXiv:2002.04839*, 2020.

702 **A NOTATION**
 703

704 We use $[n]$ to denote the discrete set $\{1, 2, \dots, n\}$ for any $n \in \mathbb{Z}$. We use argmin and argmax to
 705 denote the minimizers and maximizers; if the minimizer or the maximizer cannot be attained, we
 706 project it back to the feasible set. We denote $u^- := u \wedge 0 = \min\{u, 0\}$ for $u \in \mathbb{R}$. We denote the usual
 707 p -norm as $\|\cdot\|_p$. For simplicity, we let $\|\cdot\|$ denote the 2-norm $\|\cdot\|_2$. Denote P to be any probability
 708 measure defined on the probability space $(\Omega, \sigma(\Omega), P)$. For any function f , we denote the $L_r(P)$ -
 709 norm of f conventionally as $\|f\|_{L_p(P)} = (\int |f(x)|^p dP(x))^{1/p}$ and $\|f\|_{L_\infty} = \sup_{x \in \mathcal{X}} |f(x)|$. We
 710 also denote $x^- := x \wedge 0 = \min\{x, 0\}$ for $x \in \mathbb{R}$. For any random variables X, Y , we use $X \perp\!\!\!\perp Y$ to
 711 denote that X is independent of Y . For a random variable/vector X , we use $\mathbb{E}_X[\cdot]$ to indicate the
 712 expectation taken over the distribution of X .
 713

714 **B WEIGHTING PARAMETER AND CONSTRAINED POLICY LEARNING**
 715

716 As discussed in Section 5, empirically, the weighting parameter λ controls how much Algorithm 2
 717 would like to hedge against the policy CVaR. Higher λ results in a lower CVaR of CAPE and higher
 718 APE.

719 Theoretically, we can interpret λ as an Lagrangian variable of a risk-constrained policy learning
 720 problem. The maximization of the policy learning objective in equation 4 is equivalent to
 721

$$\max_{\pi \in \Pi} \mathcal{Q}(\pi) + \frac{1-\lambda}{\lambda} \mathcal{V}_\alpha(\pi) =: \max_{\pi \in \Pi} \mathcal{Q}(\pi) + \eta \mathcal{V}_\alpha(\pi), \quad (9)$$

722 where we set $\eta := \frac{1-\lambda}{\lambda}$. The above is equivalent to the Lagrangian form of the CVaR constrained
 723 policy learning problem:
 724

$$\begin{aligned} \max_{\pi \in \Pi} \quad & \mathbb{E}[Y(\pi(X))] \\ \text{s.t.} \quad & \text{CVaR}(\mu_\pi(X)) \geq c, \end{aligned} \quad (10)$$

725 where c is some risk tolerance threshold determined by the decision maker, that satisfies the following
 726 assumption.
 727

728 **Assumption B.1.** *The feasible set $S_c = \{\pi \in \Pi : \text{CVaR}_\alpha(\pi(X)) \geq c\}$ is not empty.*
 729

730 Let $\mu_a(x) = \mathbb{E}[Y(a) | X = x]$. Then, by the definition of π , we can write
 731

$$\mathbb{E}[Y(\pi(X))] = \int_x \sum_{a \in \mathcal{A}} \pi(a | x) \mu_a(x) d\mathbb{P}_X.$$

732 Therefore, for any $\pi_1, \pi_2 \in \Pi$ and $t \in (0, 1)$,
 733

$$\begin{aligned} & \mathbb{E}[Y((t\pi_1 + (1-t)\pi_2)(X))] \\ &= \int_x \sum_{a \in \mathcal{A}} (t\pi_1(a | x) + (1-t)\pi_2(a | x)) \mu_a(x) d\mathbb{P}_X \\ &= \int_x \sum_{a \in \mathcal{A}} t\pi_1(a | x) \mu_a(x) d\mathbb{P}_X + \int_x \sum_{a \in \mathcal{A}} (1-t)\pi_2(a | x) \mu_a(x) d\mathbb{P}_X \\ &= t\mathbb{E}[Y(\pi_1(X))] + (1-t)\mathbb{E}[Y(\pi_2(X))]. \end{aligned}$$

734 Combining the above with Assumption B.1 and the concavity of $\text{CVaR}_\alpha(\pi(X))$ shown in Rockafellar
 735 et al. (2000), we conclude that the Slater's condition holds and strong duality holds for the below
 736 dual of Problem equation 10:
 737

$$\min_{\eta \geq 0} \max_{\pi \in \Pi} \mathbb{E}[Y(\pi(X))] + \eta(\text{CVaR}_\alpha(\pi(X)) - c).$$

738 To solve the risk constrained policy learning problem equation 10 using the training dataset \mathcal{D} , solve
 739

$$\begin{aligned} \min_{\eta \geq 0} \max_{\pi \in \Pi} \quad & \frac{1}{K} \sum_{k=1}^K \hat{\mathcal{Q}}^{(k)}(\pi) + \frac{\eta}{K} \sum_{k=1}^K \hat{\mathcal{V}}_\alpha^{(k)}(\pi) \\ \text{s.t.} \quad & \hat{\beta}_\pi^{(k)} = \inf \left\{ \beta : \sum_{i \in \mathcal{D}^{(k)}} (\mathbb{1}\{\hat{\mu}_\pi^{(k)}(X_i) \leq \beta\} - \alpha) \geq 0 \right\}, \quad \forall k \in [K], \pi \in \Pi, \end{aligned}$$

756 where $\{\hat{Q}^{(k)}(\pi), \hat{\mathcal{V}}_\alpha^{(k)}(\pi)\}_{k \in [K], \pi \in \Pi}$ are as defined before. Recent literature has provided efficient
 757 algorithms to find min-max-min problems as the above. One could apply a first-order method ProM3
 758 in Tu et al. (2024) to solve the risk constrained policy learning problem.
 759

760 C CONVERGENCE OF λ - α RSL

762 Recall that the policy learning task requires us to maximize the following *deterministic* objective
 763

$$764 \hat{\mathcal{U}}_{\lambda, \alpha}(\pi) = \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\lambda \cdot \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}) \right. \\ 765 \left. + (1 - \lambda) \cdot \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_\pi^{(k)}\}_{k \in [K]}) \right), \\ 766 \\ 767 =: f(\pi, \{\hat{\beta}_\pi^{(k)}\}) \\ 768$$

769 with a bilevel structure

$$771 \max_{\pi \in \Pi} f(\pi, \{\hat{\beta}_\pi^{(k)}\}) \\ 772 \text{s.t. } \hat{\beta}_\pi^{(k)} = \inf \left\{ \beta : \sum_{i \in \mathcal{D}^{(k)}} (\mathbb{1}\{\hat{\mu}_\pi^{(k)}(X_i) \leq \beta\} - \alpha) \geq 0 \right\}, \quad \forall k \in [K]. \\ 773 \\ 774$$

775 The inner-level optimization problem has a closed form solution $\{\hat{\beta}_\pi^{(k)}\}$, which is the empirical
 776 VaR $_\alpha(\hat{\mu}_\pi^{(k)}(X_i))$, i.e., the $\alpha|\mathcal{D}^{(k)}|$ -th ordered statistics of $\{\hat{\mu}_\pi^{(k)}(X_i)\}_{i \in \mathcal{D}^{(k)}}$.
 777

778 On the other hand, the upper-level objective function f is neither smooth nor convex, which poses
 779 particular computational challenges. To overcome this issue, consider the smoothed version \tilde{f} for f ,
 780 which adopts the sigmoid approximation for the indicator function in ϕ :
 781

$$782 \tilde{f}(\pi, \{\hat{\beta}^{(k)}\}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\lambda \cdot \psi(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}) \right. \\ 783 \left. + (1 - \lambda) \cdot \tilde{\phi}(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_\pi^{(k)}\}_{k \in [K]}) \right), \\ 784 \\ 785$$

786 with $\sigma(x) = \frac{1}{1+e^{-x}}$, $\tau > 0$ a small constant, and
 787

$$788 \tilde{\phi}(\pi, Z_i; \hat{\pi}_0^{(k)}, \{\hat{\mu}_a^{(k)}\}_{a \in [M]}, \{\hat{\beta}_\pi^{(k)}\}_{k \in [K]}) \\ 789 = \hat{\beta}_\pi^{(k)} + \frac{1}{\alpha} \cdot \sigma \left(\frac{\hat{\beta}_\pi^{(k)} - \hat{\mu}_\pi^{(k)}(X_i)}{\tau} \right) \cdot \left(\hat{\mu}_\pi^{(k)}(X_i) + \frac{\pi(A_i | X_i)}{\hat{\pi}_0^{(k)}(A_i | X_i)} \left(Y_i - \hat{\mu}_\pi^{(k)}(X_i) \right) - \hat{\beta}_\pi^{(k)} \right). \\ 790 \\ 791$$

792 In this way, we can apply gradient ascent method under the smooth objective \tilde{f} . At each time t , we
 793 take $\pi_{t+1} = \pi_t + \eta \nabla_\pi \tilde{f}(\pi_t, \{\hat{\beta}_t^{(k)}\})$, where η is the step size and we denote $\{\hat{\beta}_t^{(k)}\} = \{\hat{\beta}_{\pi_t}^{(k)}\}$. We
 794 then update the correct $\{\hat{\beta}_{t+1}^{(k)}\}$.
 795

796 It can be shown that under the assumptions on the outcome distribution and the propensity scores,
 797 the gradient $\nabla_\pi \tilde{f}$ is upper bounded, and thus \tilde{f} is Lipschitz continuous. Subsequently, our policy
 798 learning task reduces to a gradient ascent scheme for a Lipschitz continuous but nonconvex objective
 799 function. Following the optimization literature (Ghadimi & Lan, 2013), the solution π_T converges to
 800 a stationary point with a rate of $O(1/\sqrt{T})$, where T is the iteration number.
 801

802 One limitation is that due to the weak concavity structure of the objective function, we cannot
 803 guarantee convergence to the global maximum. We can reformulate the above bilevel optimization
 804 problem as a joint optimization problem

$$805 \max_{\pi \in \Pi, \{\beta_\pi^{(k)}\}} f(\pi, \{\beta_\pi^{(k)}\}), \\ 806$$

807 where the optimal $\beta_\pi^{(k)}$ is achieved at

$$808 \hat{\beta}_\pi^{(k)} = \inf \left\{ \beta : \sum_{i \in \mathcal{D}^{(k)}} (\mathbb{1}\{\hat{\mu}_\pi^{(k)}(X_i) \leq \beta\} - \alpha) \geq 0 \right\}, \quad \forall k \in [K]. \\ 809$$

810 Under this formulation, the alternating scheme used in λ - α RSL (Algorithm 2) serves as an imple-
 811 mentable heuristic for solving the joint problem. Although we have provided empirical evidence of
 812 its effectiveness, the convergence properties of this alternating scheme remain an open question and
 813 lie beyond the scope of this paper.

815 D EXPERIMENT DETAILS AND MORE RESULTS

816 **Simulated Dataset Generation Details** We choose the action set $\mathcal{A} = [3]$. Let $\sigma = \{\sigma_a, a \in \mathcal{A}\} =$
 817 $\{0.2, 0.5, 0.8\}$ and let $\{\beta_a, a \in \mathcal{A}\}$ to be

$$820 \quad \{\beta_1 = (1, 0, 0, 0, 0), \beta_2 = (-1/2, \sqrt{3}/2, 0, 0, 0), \beta_3 = (-1/2, -\sqrt{3}/2, 0, 0, 0)\}.$$

821 The underlying policy π_0 chooses actions with covariate x according to the following rules:

$$823 \quad (\pi_0(1|x), \pi_0(2|x), \pi_0(3|x)) = \begin{cases} (0.5, 0.25, 0.25), & \text{if } \arg \max_{i=1,2,3} \{\beta_i^\top x\} = 1, \\ (0.25, 0.5, 0.25), & \text{if } \arg \max_{i=1,2,3} \{\beta_i^\top x\} = 2, \\ (0.25, 0.25, 0.5), & \text{if } \arg \max_{i=1,2,3} \{\beta_i^\top x\} = 3. \end{cases}$$

826 We generate 50 training datasets of

$$828 \quad \mathcal{D}_{\text{train}} = \{(X_i, A_i = \pi_0(X_i), Y_i(\pi_0(X_i)))\}_{i=1}^n,$$

830 where X_i 's are sampled i.i.d. uniformly from the closed unit ball of \mathbb{R}^5 , $A_i \sim \pi_0(X_i)$, and
 831 $Y_i(A_i) \sim \mathcal{N}(\beta_{A_i}^\top X_i, \sigma_{A_i}^2)$. Similarly, we sample 50 testing datasets

$$832 \quad \mathcal{D}_{\text{test}} = \left\{ (X_i, (Y_i(1), Y_i(2), Y_i(3)), (\mu_1(X_i), \mu_2(X_i), \mu_3(X_i))) \right\}_{i=1}^{10,000},$$

835 where $\mu_a(X_i) = \beta_a^\top X_i$.

836 **Implementation Details** In our implementation, the learning parameters are set to be the same
 837 for both λ - α RSL and CAIPWL. The number of data splits is taken to be $K = 2$. We use the
 838 Random Forest regressor from the `scikit-learn` Python library to estimate π_0 and $\{\mu_a\}_{a \in \mathcal{A}}$.
 839 For the policy gradient step, we implement λ - α RSL by maximizing the objective in equation 4 using
 840 RMSProp with a learning rate of 0.01. For the benchmark, we similarly use RMSProp to maximize
 841 the CAIPWL objective equation 6. Since the objective equation 4 and equation 6 are non-convex in
 842 the policy weights, following Dudík et al. (2011); Kallus et al. (2022), every policy update is repeated
 843 10 times with perturbed starting weights and the best weights based on the chosen policy learning
 844 objective. The policy convergence criteria is whenever the difference between the previous and the
 845 updated policy value to be less then 1e-6.

846 **Computation Details** The experiments were run on the following cloud servers: (i) an Intel Xeon
 847 Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum
 848 8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59
 849 GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4 @ 2.59
 850 GHz with 384GB RAM and 64 CPU x 2.59 GHz.

851 **More Results** We now provide detailed results of the policies' performances on different samples
 852 sizes in Figure 3, and the empirical policy CVaRs under large α -levels ($\alpha = 0.2, 0.5, 0.9$) in Figure 3.
 853 For a value of $\alpha = 0.2$, although the improvement in policy CVaR provided by λ - α RS diminishes,
 854 the quantile of the policy CVaR becomes tighter. When $\alpha \geq 0.5$, there is no significant statistical
 855 evidence that the performance of λ - α RSL is different from that of CAIPWL.

856 We also test the policy CVaR inference task. We implement Algorithm 1 on the training dataset
 857 and estimate the policy CVaR of a fixed policy π , which is different from the behavior policy π_0 .
 858 The performance of Algorithm 1 is evaluated by the mean squared error (MSE) of the estimated
 859 policy CVaR. Figure 5 shows the MSE of the estimated policy CVaR by Algorithm 1, with α -level
 860 $\{0.1, 0.05, 0.01\}$. A variant of Algorithm 1 with known propensity score is also tested. As the
 861 sample size increases, the estimation becomes more accurate and stable. With large sample size,
 862 the estimation with unknown propensity score is comparable to the one with known propensity
 863 score, which highlights the double-robustness of our estimator. We also observe that with larger α ,
 Algorithm 1 needs more samples to achieve small MSE.

878 Figure 3: The estimated $\widetilde{\text{CVaR}}_\alpha(\mu_{\hat{\pi}}(X))$ under α -level 0.01, 0.05 and 0.1, over 50 seeds, of learnt
879 policies $\hat{\pi} \in \{\text{CAIPWL}, \lambda\text{-}\alpha\text{RS}, \lambda = 0, 0.2, 0.5, 0.7\}$ on $n = 1000, 3000, 5000$ training data points.
880

897 Figure 4: The estimated $\widetilde{\text{CVaR}}_\alpha(\mu_{\hat{\pi}}(X))$ under α -level 0.2, 0.5 and 0.9, over 50 seeds, of learnt
898 policies $\hat{\pi} \in \{\text{CAIPWL}, \lambda\text{-}\alpha\text{RS}, \lambda = 0, 0.2, 0.5, 0.7\}$ on $n = 1000$ training data points.
899

915 Figure 5: Average MSE of estimated policy CVaR by Algorithm 1 with unknown and known
916 propensity score, over 25 seeds. α -level is chosen to be 0.01, 0.05 and 0.1.
917

918 **E DEFERRED PROOFS OF THE MAIN RESULTS**
 919

920 **E.1 PROOF OF COROLLARY 2.4**
 921

922 *Proof.* We follow Theorem 3.1 in Kallus (2023). By Jensen' inequality,

$$\begin{aligned} \text{CVaR}_\alpha(Y(\pi(X))) &= \sup_\beta \left(\beta + \frac{1}{\alpha} \mathbb{E}[\mathbb{E}[(Y(\pi(X)) - \beta)^- | X]] \right) \\ &\leq \sup_\beta \left(\beta + \frac{1}{\alpha} \mathbb{E}(\mu_\pi(X) - \beta)^- \right) = \text{CVaR}_\alpha(\mu_\pi(X)). \end{aligned}$$

□

923 **E.2 PROOF OF LEMMA 3.4**
 924

925 *Proof.* Denote the quantile $Q_\alpha(f)$ of any function $f(x)$ as $Q_\alpha(f) = \inf\{\beta : \mathbb{E}[\mathbb{1}\{f(X) \leq \beta\} - \alpha] \geq 0\}$. We also denote the empirical quantile using the k th off fold data as

$$\hat{Q}_\alpha^{(k)}(f) = \inf \left\{ \beta : \sum_{i \in \bar{\mathcal{D}}^{(k)}} (\mathbb{1}\{f(X_i) \leq \beta\} - \alpha) \geq 0 \right\}.$$

926 As in Algorithm 1, we have $\hat{\beta}_\pi^{(k)} = \hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)})$, and the true $\beta_\pi = F_{\mu_\pi(X)}^{-1}(\alpha) = Q_\alpha(\mu_\pi)$.
 927

928 We will show the equality by proving that the RHS is the upper bound and the lower bound of the
 929 LHS. We first prove the upper bound of case where $r = \infty$. By definition of $\hat{Q}_\alpha^{(k)}$, we have that
 930

$$|\hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)}) - Q_\alpha(\mu_\pi)| \leq \sup_{i \in \bar{\mathcal{D}}^{(k)}} |\hat{\mu}_\pi^{(k)}(X_i) - \mu_\pi(X_i)| = O_p(\|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_\infty}).$$

931 Now we consider the case where $r < \infty$. Let $\delta = \|\mu_\pi - \hat{\mu}_\pi^{(k)}\|_{L_r(P)}^{\frac{r}{r+1}}$. By a union bound with respect
 932 to the empirical distribution,
 933

$$\hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)}) \leq \hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) + \hat{Q}_{1-\delta}^{(k)}(\hat{\mu}_\pi^{(k)} - \mu_\pi).$$

934 By continuous differentiability in Assumption 3.3, the first term on the RHS can be bounded by
 935

$$\begin{aligned} \hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) &= \hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) - Q_{\alpha+\delta}(\mu_\pi) + Q_{\alpha+\delta}(\mu_\pi) \\ &\leq \hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) - Q_{\alpha+\delta}(\mu_\pi) + Q_\alpha(\mu_\pi) + O_p(\delta). \end{aligned}$$

936 Furthermore, using the delta method, we have that $\hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) - Q_{\alpha+\delta}(\mu_\pi) = O_P(n^{-\frac{1}{2}})$ and,
 937

$$\hat{Q}_{\alpha+\delta}^{(k)}(\mu_\pi) \leq O_p(n^{-\frac{1}{2}}) + Q_\alpha(\mu_\pi) + O_p(\delta).$$

938 To upper bound the second term, we apply Markov's inequality with respect to the empirical
 939 distribution:
 940

$$\begin{aligned} \hat{Q}_{1-\delta}^{(k)}(\hat{\mu}_\pi^{(k)} - \mu_\pi) &= \inf \left\{ \beta : \sum_{i \in \bar{\mathcal{D}}^{(k)}} (\mathbb{1}\{\hat{\mu}_\pi^{(k)}(X_i) - \mu_\pi(X_i) \leq \beta\} - (1 - \|\mu_\pi - \hat{\mu}_\pi^{(k)}\|_{L_r(P)}^{\frac{r}{r+1}})) \geq 0 \right\} \\ &\leq \frac{\left(\frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} |\hat{\mu}_\pi^{(k)}(X_i) - \mu_\pi(X_i)|^r \right)^{\frac{1}{r}}}{\delta^{-\frac{1}{r}}} = O_p(\delta^{\frac{1}{r}} \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_r(P)}) = O_p(\delta). \end{aligned}$$

941 Combining the two results, we have
 942

$$\begin{aligned} \hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)}) &\leq O_p(n^{-\frac{1}{2}}) + Q_\alpha(\mu_\pi) + O_p(\delta) \\ \Rightarrow \hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)}) - Q_\alpha(\mu_\pi) &\leq O_p(n^{-\frac{1}{2}}) + O_p(\|\mu_\pi - \hat{\mu}_\pi^{(k)}\|_{L_r(P)}^{\frac{r}{r+1}}). \end{aligned}$$

943 To derive a lower bound, we can make a symmetric argument by similarly writing:
 944

$$\hat{Q}_\alpha^{(k)}(\hat{\mu}_\pi^{(k)}) \geq \hat{Q}_{\alpha-\delta}^{(k)}(\mu_\pi) + \hat{Q}_{1+\delta}^{(k)}(\hat{\mu}_\pi^{(k)} - \mu_\pi).$$

945 The upper bound and lower bound gives the desired result when $r < \infty$.
 946

□

972 E.3 PROOF OF THEOREM 3.5
973974 *Proof.* We first state the following helper lemma, the proof of which can be found in Appendix F.1.
975976 **Lemma E.1.** *Suppose that Assumption 2.1, 3.2, and 3.3 hold. Then there exists some constant $c_1 > 0$
977 such that $\|\mu_\pi - \hat{\mu}\|_{L_\infty} \leq c_1$ and $|\beta_\pi - \hat{\beta}| \leq c_1$, and for any $\alpha \in (0, 1]$, we have*

$$\begin{aligned}
& |\mathbb{E}[\phi(\pi, Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi)]| \\
& \leq \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} \|\hat{\mu} - \mu_\pi\|_{L_2(P)} \\
& \quad + \frac{1}{\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (\|\hat{\mu}_\pi - \mu_\pi\|_{L_\infty} + |\beta_\pi - \hat{\beta}|)^2 \\
& \quad + \frac{1}{2\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) |\hat{\beta} - \beta_\pi|^2 \\
& \quad \| \phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi) \|_{L_2(P)} \\
& \leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_2(P)} \\
& \quad + \frac{16\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (|\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}).
\end{aligned}$$

991 Fixing a sample $i \in \mathcal{D}^{(k)}$, we also have
992

$$\begin{aligned}
|\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)| & \leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} |\hat{\pi}_0(\pi(X_i) | X_i) - \pi_0(\pi(X_i) | X_i)| + \frac{1}{\alpha} |\hat{\beta} - \beta_\pi| \\
& \quad + \frac{1}{\alpha\varepsilon} |\hat{\mu}(X_i) - \mu_\pi(X_i)| + \frac{7\bar{y}}{\alpha\varepsilon}.
\end{aligned}$$

997 In the following sequel, we shall show that $\hat{\mathcal{V}}_\alpha^{(k)} = \mathcal{V}_\alpha(\pi) + o_p(n^{-\frac{1}{2}})$, for all data fold $k \in [K]$.
998999 We can decompose
1000

$$\begin{aligned}
& \hat{\mathcal{V}}_\alpha^{(k)} - \mathcal{V}_\alpha(\pi) \\
& = \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \\
& = \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \\
& \quad + \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) | \bar{\mathcal{D}}^{(k)}] + \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) | \bar{\mathcal{D}}^{(k)}] \\
& = \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) | \bar{\mathcal{D}}^{(k)}] \\
& \quad + \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \right. \\
& \quad \left. - (\mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) | \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) | \bar{\mathcal{D}}^{(k)}]) \right) =: (I) + (II).
\end{aligned}$$

1015 We will show that Term (I), (II) are both $o_p(n^{-\frac{1}{2}})$.
10161017 By Lemma E.1 and Lemma 3.4, Term (I) is
1018

$$\begin{aligned}
(I) & \leq \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} \|\hat{\mu} - \mu_\pi\|_{L_2(P)} + \frac{1}{\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (\|\hat{\mu}_\pi - \mu_\pi\|_{L_\infty} + |\beta_\pi - \hat{\beta}|)^2 \\
& \quad + \frac{1}{2\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) |\hat{\beta} - \beta_\pi|^2 \\
& = O_p(\|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} + \|\hat{\mu}_\pi - \mu_\pi\|_{L_\infty}^2 + \|\hat{\mu}_\pi - \mu_\pi\|_{L_\infty} |\hat{\beta}_\pi^{(k)} - \beta_\pi| + |\hat{\beta}_\pi^{(k)} - \beta_\pi|^2) \\
& = O_p(\|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} + \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_\infty}^2).
\end{aligned}$$

1024 By Assumption 3.2, we have that Term (I) = $o_p(n^{-\frac{1}{2}})$.
1025

1026 Conditioned on the off-fold data $\bar{\mathcal{D}}^{(k)}$, we apply Chebyshev's inequality to Term (II). For any $t > 0$,
 1027 we have that

$$\begin{aligned} 1029 \mathbb{P}(|II| \geq t | \bar{\mathcal{D}}^{(k)}) &\leq \frac{\text{Var}(\|\phi(Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|)}{|\mathcal{D}^{(k)}|t^2} \\ 1031 &\leq \frac{1}{|\mathcal{D}^{(k)}|t^2} \left(\frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} + |\hat{\beta}_\pi^{(k)} - \beta_\pi| \right. \\ 1033 &\quad \left. + \frac{16\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (|\hat{\beta}_\pi^{(k)} - \beta_\pi| + \|\hat{\mu}_\pi^{(k)}(X) - \mu_\pi(X)\|_{L_\infty}) \right), \\ 1035 \end{aligned}$$

1036 where the last step is due to Lemma E.1. Consequently,

$$1037 (II) = O_p \left(\frac{\|\phi(Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|_{L_2(P)}}{|\mathcal{D}^{(k)}|^{\frac{1}{2}}} \right). \\ 1039$$

1040 By Lemma 3.4, and Assumption 3.2, we further have

$$\begin{aligned} 1041 (II) &= O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}} (\|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \|\hat{\mu} - \mu_\pi\|_{L_2(P)} + |\hat{\beta}_\pi - \beta_\pi|)) \\ 1042 &= O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}} (\|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \|\hat{\mu} - \mu_\pi\|_{L_2(P)} + n^{-\frac{1}{2}} \vee \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)}^{\frac{2}{3}})) \\ 1043 &= O_p(|\mathcal{D}^{(k)}|^{-\frac{1}{2}} o_p(1)) = o_p(n^{-\frac{1}{2}}). \\ 1045 \end{aligned}$$

1046 We conclude that $\hat{\mathcal{V}}_\alpha^{(k)} = \mathcal{V}_\alpha(\pi) + o_p(n^{-\frac{1}{2}})$, for all data fold $k \in [K]$. Thus

$$1047 \sqrt{n}(\hat{\mathcal{V}}_\alpha - \mathcal{V}_\alpha(\pi)) = \frac{1}{\sqrt{n}} \sum_{i \in \mathcal{D}} (\phi(Z_i; \pi_0, \mu_\pi, \beta_\pi) - \mathcal{V}_\alpha(\pi)) + o_p(1), \\ 1050$$

1051 and it converges in distribution $\mathcal{N}(0, \sigma_\pi^2)$ by the central limit theorem and Slutsky's theorem. The
 1052 asymptotic variance is

$$1053 \sigma_\pi^2 = \text{Var}(\phi(Z; \pi_0, \mu_\pi, \beta_\pi)).$$

1054 \square

1055 E.4 PROOF OF THEOREM 4.3

1058 We first write the second term of equation 7, without the $(1 - \lambda)$ scale, as

$$\begin{aligned} 1059 \mathcal{V}_\alpha(\pi^*) - \mathcal{V}_\alpha(\hat{\pi}) &= \mathcal{V}_\alpha(\pi^*) - \hat{\mathcal{V}}_\alpha(\pi^*) + \hat{\mathcal{V}}_\alpha(\pi^*) - \hat{\mathcal{V}}_\alpha(\hat{\pi}) + \hat{\mathcal{V}}_\alpha(\hat{\pi}) - \mathcal{V}_\alpha(\hat{\pi}) \\ 1060 &\leq 2 \sup_{\pi \in \Pi} |\mathcal{V}_\alpha(\pi) - \hat{\mathcal{V}}_\alpha(\pi)| = 2 \sup_{\pi \in \Pi} |\mathcal{V}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi) + \tilde{\mathcal{V}}_\alpha(\pi) - \hat{\mathcal{V}}_\alpha(\pi)| \\ 1061 &\leq \underbrace{\sup_{\pi \in \Pi} 2|\mathcal{V}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi)|}_{(1)} + \underbrace{\sup_{\pi \in \Pi} 2|\tilde{\mathcal{V}}_\alpha(\pi) - \hat{\mathcal{V}}_\alpha(\pi)|}_{(2)}. \\ 1063 \end{aligned} \tag{11}$$

1065 We will show the upper bound of both terms separately.

1067 As an important intermediate step, we first establish a regret bound for the policy when
 1068 the algorithm has access to the quantities $\pi_0(x), \mu_a(x)$. Note that when the true $\pi_0, \{\mu_a\}_{a \in \{0,1\}}$ are
 1069 known, the oracle policy learning CVaR estimator does not rely on cross-fold fitting as it is designed
 1070 for deriving independent $\hat{\pi}_0, \{\hat{\mu}_a\}_{a \in \{0,1\}}$ estimators. Also note that if we are given $\{\mu_a\}_{a \in \{0,1\}}$,
 1071 then for every $\pi \in \Pi$, we can find the oracle policy VaR

$$1072 \beta_\pi = \arg \sup_{\beta} \left\{ \beta + \frac{1}{\alpha} \mathbb{E}[(\mu_\pi(X) - \beta)^-] \right\}. \tag{12}$$

1075 We also denote the oracle α -level policy CVaR as

$$1076 \tilde{\mathcal{V}}_\alpha = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi).$$

1078 The following lemma provides the oracle regret of Term (1) in equation 11, and the proof of which
 1079 can be found in Appendix F.2.

1080
1081**Lemma E.2.** *Under Assumption 2.1, 3.2 and 3.3, with probability at least $1 - \Delta$,*1082
1083
1084

$$\sup_{\pi \in \Pi} |\mathcal{V}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi)| \leq \frac{16\bar{y}}{\sqrt{n}}(\kappa(\Pi) + 7) + \frac{(12 + \sqrt{2})\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

1085

1086 The proof of Theorem 4.3 also utilized the following result, which upper bounds Term (2) in equa-
1087 tion 11, and the proof is deferred to Appendix F.3.1088
1089
1090**Corollary E.3.** *Under Assumption 2.1, 3.2 and 3.3, there exists some $N \in \mathbb{Z}_+$ such that with $n \geq N$, we have that with probability at least $1 - \Delta$,*1091
1092
1093

$$\sup_{\pi \in \Pi} |\hat{\mathcal{V}}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi)| \leq \frac{28\bar{y}}{\alpha\varepsilon\sqrt{n}}(8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) + \frac{2\bar{y} + 9\bar{F}_\alpha}{\alpha\varepsilon\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

1094
10951096 *Proof of Theorem 4.3.* By the regret decomposition as in equation 11 and the results from Lemma E.2
1097 and Corollary E.3, there exists some $N \in \mathbb{Z}_+$ such that with $n \geq N$, we have that with probability at
1098 least $1 - \Delta$,1099
1100
1101
1102
1103

$$\begin{aligned} \mathcal{V}_\alpha(\pi^*) - \mathcal{V}_\alpha(\hat{\pi}) &\leq \sup_{\pi \in \Pi} 2|\mathcal{V}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi)| + \sup_{\pi \in \Pi} 2|\tilde{\mathcal{V}}_\alpha(\pi) - \hat{\mathcal{V}}_\alpha(\pi)| \\ &\leq \frac{56\bar{y}}{\alpha\varepsilon\sqrt{n}}(8\kappa(\Pi) + \bar{F}_\alpha/3 + 64 + \sqrt{\log(1/\Delta)}) + \frac{56\bar{y}}{\sqrt{n}}(\kappa(\Pi) + 5). \end{aligned}$$

1104
1105
1106The proof concludes by (Zhou et al., 2023, Theorem 3), the above result and the regret decomposi-
1105 tion equation 7. \square

1107

1108
1109

F PROOF OF TECHNICAL LEMMAS

1110
1111
1112

F.1 PROOF OF LEMMA E.1

1113
1114*Proof.* First, we can compute the expectation1115
1116
1117
1118
1119
1120
1121
1122

$$\begin{aligned} \mathbb{E}[\phi(\pi, Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta})] &= \mathbb{E}\left[\mathbb{E}\left[\hat{\beta} + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\hat{\pi}_0(\pi(X_i) | X_i)}(Y_i - \hat{\mu}(X_i)) - \hat{\beta}\right) | X_i\right]\right] \\ &= \mathbb{E}\left[\hat{\beta} + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \left(\hat{\mu}(X_i) + \frac{\pi_0(\pi(X_i) | X_i)}{\hat{\pi}_0(\pi(X_i) | X_i)}(\mu_\pi(X_i) - \hat{\mu}(X_i)) - \hat{\beta}\right)\right] \\ &= \hat{\beta} + \frac{1}{\alpha} \mathbb{E}\left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) | X)}{\hat{\pi}_0(\pi(X) | X)}(\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta}\right)\right]. \end{aligned} \tag{13}$$

1123

The first inequality in the statement can be decomposed into the following:

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

$$\begin{aligned} &|\mathbb{E}[\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \beta_\pi)]| \\ &= |\mathbb{E}[\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \hat{\mu}, \hat{\beta})] + \mathbb{E}[\phi(Z; \pi_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \hat{\beta})] + \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \hat{\beta})] \\ &\quad - \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \beta_\pi)]| \\ &\leq \underbrace{|\mathbb{E}[\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \hat{\mu}, \hat{\beta})]|}_{(I)} + \underbrace{|\mathbb{E}[\phi(Z; \pi_0, \hat{\mu}, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \hat{\beta})]|}_{(II)} \\ &\quad + \underbrace{|\mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \hat{\beta})] - \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \beta_\pi)]|}_{(III)}. \end{aligned}$$

1134 We will bound the three terms (I), (II), (III), (IV) individually. We first look at Term (I):
1135

$$\begin{aligned}
 (I) &= \left| \hat{\beta} + \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) | X)}{\hat{\pi}_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right. \\
 &\quad \left. - \hat{\beta} - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) | X)}{\pi_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\
 &= \left| \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) | X)}{\hat{\pi}_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\hat{\pi}_0(\pi(X) | X)}{\hat{\pi}_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\
 &\leq \left| \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \frac{|\pi_0(\pi(X) | X) - \hat{\pi}_0(\pi(X) | X)|}{\hat{\pi}_0(\pi(X) | X)} |\mu_\pi(X) - \hat{\mu}(X)| \right] \right| \\
 &\leq \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} \|\hat{\mu} - \mu\|_{L_2(P)}.
 \end{aligned}$$

1149 By continuous density Assumption 3.3, there exists some $c_1 > 0$ such that $\mu_\pi(X) - \beta_\pi$ has a density
1150 on $(-3c_1, 3c_1)$ bounded by $F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1$. Therefore, provided that $|\hat{\beta} - \beta_\pi| \leq c_1$ and
1151 $\|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty} \leq c_1$,

$$\begin{aligned}
 (II) &= \left| \hat{\beta} + \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\pi_0(\pi(X) | X)}{\pi_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right. \\
 &\quad \left. - \hat{\beta} - \frac{1}{\alpha} \mathbb{E} \left[\mathbb{1}\{\mu_\pi(X) \leq \hat{\beta}\} \left(\mu_\pi(X) + \frac{\pi_0(\pi(X) | X)}{\pi_0(\pi(X) | X)} (\mu_\pi(X) - \hat{\mu}(X)) - \hat{\beta} \right) \right] \right| \\
 &= \left| \frac{1}{\alpha} \mathbb{E} [(\mu_\pi(X) - \hat{\beta}) (\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\mu_\pi(X) \leq \hat{\beta}\})] \right| \\
 &= \left| \frac{1}{\alpha} \mathbb{E} [(\mu_\pi(X) - \hat{\beta}) (\mathbb{1}\{\mu_\pi(X) - \beta_\pi \leq \hat{\beta} - \beta_\pi + \mu_\pi(X) - \hat{\mu}(X)\} - \mathbb{1}\{\mu_\pi(X) - \beta_\pi \leq \hat{\beta} - \beta_\pi\})] \right| \\
 &\leq \frac{1}{\alpha} \mathbb{E} [|\mu_\pi(X) - \hat{\beta}| \mathbb{1}\{|\mu_\pi(X) - \beta_\pi| \leq |\hat{\beta} - \beta_\pi| + |\hat{\mu}(X) - \mu_\pi(X)|\}] \\
 &\leq \frac{1}{\alpha} \mathbb{E} [|\mu_\pi(X) - \hat{\beta}| \mathbb{1}\{|\mu_\pi(X) - \beta_\pi| \leq |\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}\}] \\
 &\leq \frac{1}{\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (|\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty})^2.
 \end{aligned}$$

1168 Finally we analyze Term (III). Define
1169

$$f(\beta) = \mathbb{E}[\phi(Z; \pi_0, \mu_\pi, \beta)] = \beta + \frac{1}{\alpha} \mathbb{E}[(\mu_\pi(X) - \beta)^-]$$

1172 By definition $f'(\beta_\pi) = 0$ and $|f''(\beta)| \leq \frac{1}{\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1)$ for $\beta \in (\beta_\pi - c_1, \beta_\pi + c_1)$.
1173 Therefore, provided with the assumption that $|\hat{\beta} - \beta_\pi| \leq c_1/3$, by Taylor's theorem, we can upper
1174 bound Term (III) by:

$$(III) \leq \frac{1}{2\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) |\hat{\beta} - \beta_\pi|^2.$$

1178 Now we turn to the second inequality. The difference in interest can be written as
1179

$$\begin{aligned}
 &\|\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|_{L_2(P)} \\
 &= \|\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \hat{\mu}, \hat{\beta}) + \phi(Z; \pi_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \hat{\mu}, \beta_\pi) + \phi(Z; \pi_0, \hat{\mu}, \beta_\pi) \\
 &\quad - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|_{L_2(P)} \\
 &\leq \underbrace{\|\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \hat{\mu}, \hat{\beta})\|_{L_2(P)}}_{(1)} + \underbrace{\|\phi(Z; \pi_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \hat{\mu}, \beta_\pi)\|_{L_2(P)}}_{(2)} \\
 &\quad + \underbrace{\|\phi(Z; \pi_0, \hat{\mu}, \beta_\pi) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|_{L_2(P)}}_{(3)}.
 \end{aligned}$$

1188 We will upper bound the three terms above individually. For Term (1), we compute that
1189

$$\begin{aligned}
1191 \quad (1) &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\hat{\pi}_0(\pi(X) | X)} - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) (Y - \hat{\mu}(X)) \right\|_{L_2(P)} \\
1192 &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \mathbb{1}\{A = \pi(X)\} \left(\frac{1}{\hat{\pi}_0(\pi(X) | X)} - \frac{1}{\pi_0(\pi(X) | X)} \right) (Y - \hat{\mu}(X)) \right\|_{L_2(P)},
\end{aligned}$$

1197 where the last equality uses the fact that $\hat{\pi}_0(0 | X) + \hat{\pi}_0(1 | X) = 1$ and that $\pi_0(0 | X) + \pi_0(1 | X) = 1$. By Assumption 2.1, we have that
1198

$$\left\| \frac{1}{\hat{\pi}_0(\pi(X) | X)} - \frac{1}{\pi_0(\pi(X) | X)} \right\|_{L_2(P)} \leq \varepsilon^{-3/2} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)}, \quad \|Y - \hat{\mu}(X)\|_{L_2(P)} \leq 2\bar{y},$$

1204 and thus (1) $\leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)}$.
1205

1206 We also compute Term (2):
1207

$$\begin{aligned}
1208 \quad (2) &= \left\| (\hat{\beta} - \beta_\pi) + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \left(\hat{\mu}(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \hat{\mu}(X)) - \hat{\beta} \right) \right. \\
1209 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\hat{\mu}(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \hat{\mu}(X)) - \beta_\pi \right) \right\|_{L_2(P)} \\
1210 &= \left\| (\hat{\beta} - \beta_\pi) - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \hat{\beta} + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \beta_\pi + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \beta_\pi - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} \beta_\pi \right. \\
1211 &\quad \left. + \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\}) \left(\hat{\mu}(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \hat{\mu}(X)) - \beta_\pi \right) \right\|_{L_2(P)} \\
1212 &= \left\| (\hat{\beta} - \beta_\pi) \left(1 - \frac{\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\}}{\alpha} \right) \right. \\
1213 &\quad \left. + \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\}) \left(\hat{\mu}(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \hat{\mu}(X)) - \beta_\pi \right) \right\|_{L_2(P)}.
\end{aligned}$$

1224 By Assumption 2.1, we have that $|\beta_\pi| \leq \bar{y}$. Therefore, Term (2) is bounded by
1225

$$(2) \leq \frac{1}{\alpha} |\hat{\beta} - \beta_\pi| + \frac{4\bar{y}}{\alpha\varepsilon} \|\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\}\|_{L_2(P)}.$$

1230 Now, applying a similar trick as in the analysis of Term (II), we have that
1231

$$\begin{aligned}
1233 \quad \|\mathbb{1}\{\hat{\mu}(X) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\}\|_{L_2(P)} &\leq \mathbb{P}(|\mu(X) - \beta_\pi| \leq |\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}) \\
1234 &\leq 2(F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1)(|\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}),
\end{aligned}$$

1237 where the last inequality is due to the fact that $|\hat{\beta} - \beta_\pi| \leq c/3$, and $\|\hat{\mu} - \mu_\pi\|_{L_\infty} \leq c/3$. Finally,
1238 Term (2) is upper bounded by
1239

$$(2) \leq \frac{1}{\alpha} |\hat{\beta} - \beta_\pi| + \frac{8\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1)(|\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}).$$

1242 Similarly, Term (3) can be written as

$$\begin{aligned}
 1243 \quad (3) &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\hat{\mu}(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \hat{\mu}(X)) - \beta_\pi \right) \right. \\
 1244 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\mu_\pi(X) + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} (Y - \mu_\pi(X)) - \beta_\pi \right) \right\|_{L_2(P)} \\
 1245 &= \left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right. \\
 1246 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1247 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1248 &= \left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right. \\
 1249 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1250 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1251 &= \left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right. \\
 1252 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1253 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1254 &= \left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right. \\
 1255 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1256 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1257 &= \left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right. \\
 1258 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1259 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1260 &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1261 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right) \right\|_{L_2(P)} \\
 1262 &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right. \\
 1263 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right\|_{L_2(P)} \\
 1264 &= \left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \hat{\mu}(X) \right) \right\|_{L_2(P)}.
 \end{aligned}$$

1267 Rearrange, we have that

$$\begin{aligned}
 1268 \quad (3) &\leq \underbrace{\left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} Y - \beta_\pi \right) \right\|_{L_2(P)}}_{(3)_I} \\
 1269 &\quad + \underbrace{\left\| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} \left(1 - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) (\hat{\mu}(X) - \mu_\pi(X)) \right\|_{L_2(P)}}_{(3)_{II}} \\
 1270 &\quad + \underbrace{\left\| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}) \left(1 - \frac{\mathbb{1}\{A = \pi(X)\}}{\pi_0(\pi(X) | X)} \right) \mu_\pi(X) \right\|_{L_2(P)}}_{(3)_{III}}
 \end{aligned}$$

1271 By the result of Term (2), we have that

$$1272 \quad \|\mathbb{1}\{\hat{\mu}(X) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\}\|_{L_2(P)} \leq 2(F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}.$$

1273 Therefore, we can bound

$$\begin{aligned}
 1274 \quad (3)_I &\leq \frac{4\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty} \\
 1275 \quad (3)_{II} &\leq \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_2(P)} \\
 1276 \quad (3)_{III} &\leq \frac{4\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}.
 \end{aligned}$$

1277 Putting everything together, we have that

$$\begin{aligned}
 1278 \quad &\|\phi(Z; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z; \pi_0, \mu_\pi, \beta_\pi)\|_{L_2(P)} \\
 1279 &\leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} \|\hat{\pi}_0 - \pi_0\|_{L_2(P)} + \frac{2}{\alpha\varepsilon} \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_2(P)} \\
 1280 &\quad + \frac{16\bar{y}}{\alpha\varepsilon} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (|\hat{\beta} - \beta_\pi| + \|\hat{\mu}(X) - \mu_\pi(X)\|_{L_\infty}).
 \end{aligned}$$

1296 For the last inequality, we note that we can similarly decompose
 1297
 1298

$$\begin{aligned}
 & |\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)| \\
 &= |\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \hat{\mu}, \hat{\beta}) + \phi(Z_i; \pi_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \hat{\mu}, \beta_\pi) \\
 &\quad + \phi(Z_i; \pi_0, \hat{\mu}, \beta_\pi) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)| \\
 &\leq \underbrace{|\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \hat{\mu}, \hat{\beta})|}_{(1)} + \underbrace{|\phi(Z_i; \pi_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \hat{\mu}, \beta_\pi)|}_{(2)} \\
 &\quad + \underbrace{|\phi(Z_i; \pi_0, \hat{\mu}, \beta_\pi) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)|}_{(3)}.
 \end{aligned}$$

1309 We will upper bound the three terms above individually. For Term (1), we compute that
 1310
 1311

$$\begin{aligned}
 (1) &= \left| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\hat{\pi}_0(\pi(X_i) | X_i)} - \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) (Y_i - \hat{\mu}(X_i)) \right| \\
 &= \left| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \mathbb{1}\{A_i = \pi(X_i)\} \left(\frac{1}{\hat{\pi}_0(\pi(X_i) | X_i)} - \frac{1}{\pi_0(\pi(X_i) | X_i)} \right) (Y_i - \hat{\mu}(X_i)) \right|,
 \end{aligned}$$

1318 where the last equality uses the fact that $\hat{\pi}_0(0 | X_i) + \hat{\pi}_0(1 | X_i) = 1$ and that $\pi_0(0 | X_i) + \pi_0(1 | X_i) = 1$. Since
 1319
 1320

$$\left| \frac{1}{\hat{\pi}_0(\pi(X_i) | X_i)} - \frac{1}{\pi_0(\pi(X_i) | X_i)} \right| \leq \varepsilon^{-3/2} |\hat{\pi}_0(\pi(X_i) | X_i) - \pi_0(\pi(X_i) | X_i)|, \quad |Y_i - \hat{\mu}(X_i)| \leq 2\bar{y},$$

1325 we have that (1) $\leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} |\hat{\pi}_0(\pi(X_i) | X_i) - \pi_0(\pi(X_i) | X_i)|$.
 1326

1327 We also compute Term (2):
 1328

$$\begin{aligned}
 (2) &= \left| (\hat{\beta} - \beta_\pi) + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \hat{\mu}(X_i)) - \hat{\beta} \right) \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \hat{\mu}(X_i)) - \beta_\pi \right) \right| \\
 &= \left| (\hat{\beta} - \beta_\pi) - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \hat{\beta} + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \beta_\pi + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \beta_\pi - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} \beta_\pi \right. \\
 &\quad \left. + \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\}) \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \hat{\mu}(X_i)) - \beta_\pi \right) \right| \\
 &= \left| (\hat{\beta} - \beta_\pi) \left(1 - \frac{\mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\}}{\alpha} \right) \right. \\
 &\quad \left. + \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \hat{\beta}\} - \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\}) \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \hat{\mu}(X_i)) - \beta_\pi \right) \right|.
 \end{aligned}$$

1345 By Assumption 2.1, we have that $|\beta_\pi| \leq \bar{y}$. Therefore, Term (2) is bounded by
 1346
 1347

$$(2) \leq \frac{1}{\alpha} |\hat{\beta} - \beta_\pi| + \frac{4\bar{y}}{\alpha\varepsilon}.$$

1350

Similarly, Term (3) can be written as

$$\begin{aligned}
 (3) &= \left| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\hat{\mu}(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \hat{\mu}(X_i)) - \beta_\pi \right) \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\} \left(\mu_\pi(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} (Y_i - \mu_\pi(X_i)) - \beta_\pi \right) \right| \\
 &= \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} Y_i - \beta_\pi \right) \right. \\
 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \hat{\mu}(X_i) \right) \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \mu_\pi(X_i) \right) \right| \\
 &= \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} Y_i - \beta_\pi \right) \right. \\
 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \hat{\mu}(X_i) \right) \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \mu_\pi(X_i) \right) \right. \\
 &\quad \left. + \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \mu_\pi(X_i) \right) \right. \\
 &\quad \left. - \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(\left(1 + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \mu_\pi(X_i) \right) \right|.
 \end{aligned}$$

1375

Rearrange, we have that

$$\begin{aligned}
 (3) &\leq \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\}) \left(\frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} Y_i - \beta_\pi \right) \right| \\
 &\quad + \left| \frac{1}{\alpha} \mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} \left(1 - \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) (\hat{\mu}(X_i) - \mu_\pi(X_i)) \right| \\
 &\quad + \left| \frac{1}{\alpha} (\mathbb{1}\{\hat{\mu}(X_i) \leq \beta_\pi\} - \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\}) \left(1 - \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) | X_i)} \right) \mu_\pi(X_i) \right| \\
 &\leq \frac{3\bar{y}}{\alpha\varepsilon} + \frac{1}{\alpha\varepsilon} |\hat{\mu}(X_i) - \mu_\pi(X_i)|.
 \end{aligned}$$

1386

Putting everything together, we have that

$$\begin{aligned}
 |\phi(Z_i; \hat{\pi}_0, \hat{\mu}, \hat{\beta}) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)| &\leq \frac{2\bar{y}}{\alpha\varepsilon^{3/2}} |\hat{\pi}_0(\pi(X_i) | X_i) - \pi_0(\pi(X_i) | X_i)| + \frac{1}{\alpha} |\hat{\beta} - \beta_\pi| \\
 &\quad + \frac{1}{\alpha\varepsilon} |\hat{\mu}(X_i) - \mu_\pi(X_i)| + \frac{7\bar{y}}{\alpha\varepsilon}.
 \end{aligned}$$

□

1392

F.2 PROOF OF LEMMA E.2

1393

Before we embark on the proof that utilizes a chaining argument Zhou et al. (2023), we present the following definitions that will be needed throughout the analysis.

1394

Definition F.1 (Rademacher complexity). *Let γ_i 's be i.i.d. Rademacher random variables $\mathbb{P}(\gamma_i = 1) = \mathbb{P}(\gamma_i = -1) = \frac{1}{2}$.*

1400

1. The empirical Rademacher complexity $\mathcal{R}_n(\mathcal{F})$ of a function class \mathcal{F} with domain \mathcal{X} is defined as

1402

$$\mathcal{R}_n(\mathcal{F} | \{X_i \in \mathcal{X}\}_{i=1}^n) = \mathbb{E}_\gamma \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \gamma_i f(X_i) \right| \mid \{X_i \in \mathcal{X}\}_{i=1}^n \right].$$

1404 2. The Rademacher complexity $\mathcal{R}(\mathcal{F})$ of the function class \mathcal{F} is $\mathbb{E}_X[\mathcal{R}_n(\Pi \mid \{X_i \in \mathcal{X}\}_{i=1}^n)]$.
 1405

1406 Before we introduce the chaining technique, we define the Hamming distance $H(\pi_1, \pi_2) =$
 1407 $\frac{1}{n} \sum_{j=1}^n \mathbb{1}\{\pi_1 \neq \pi_2\}$, and the Entropy integral $\nu(\Pi)$.
 1408

1409 **Definition F.2** (L_2 policy distance). *Given a fixed policy class Π and a set of n covariate points
 1410 $\{x_1, \dots, x_n\}$, we define the following.*

1411 1. For a function class $\mathcal{F}_\Pi = \{f(\cdot; \pi) \mid \pi \in \Pi\}$ such that f is a function on $(Z; \pi)$ such
 1412 that $|f(Z; \pi)| \leq \bar{f}(Z)$, define L_2 distance $D_2(\pi_1, \pi_2; \{Z_1, \dots, Z_n\})$ between two policies
 1413 π_1, π_2 with respect to $\{Z_1, \dots, Z_n\}$ is

$$1414 \quad 1415 \quad 1416 \quad 1417 \quad D_2(\pi_1, \pi_2) = \sqrt{\frac{\sum_{i=1}^n |f(Z_i; \pi_1) - f(Z_i; \pi_2)|^2}{4 \sum_{i=1}^n \bar{f}^2(Z_i)}}.$$

1418 2. The ϵ - L_2 covering number of the set $\{x_1, \dots, x_n\}$ (denoted as $N_2(\epsilon, \Pi, \{x_1, \dots, x_n\})$) is
 1419 the smallest number N of policies $\{\pi_1, \dots, \pi_N\}$ in Π such that $\forall \pi \in \Pi$, there exists π_i
 1420 such that $D_2(\pi, \pi_i) \leq \epsilon$.
 1421

1422 3. The ϵ - L_2 covering number of Π is $N_{\ell_2}(\epsilon, \Pi) := \sup\{N_2(\gamma, \Pi, \{x_1, \dots, x_j\}) \mid j \geq$
 1423 $1, x_1, \dots, x_j \in \mathcal{X}\}$.
 1424

Policy Chaining. Conditioned on the data $\{X_1, \dots, X_n\}$, we define a sequence of refining approximation operators: A_0, A_1, \dots, A_J where $J = \lceil \log_2 n \rceil$ and each $A_j^\pi : \mathcal{X} \rightarrow \mathcal{A}$ is another policy. Define $\underline{J} = \lfloor 1/2 \log_2 n \rfloor$. For each policy $\pi \in \Pi$, we can write it in terms of the approximation policies as

$$1428 \quad 1429 \quad 1430 \quad 1431 \quad \pi(x) = A_0^\pi + \sum_{j=1}^J (A_j^\pi(x) - A_{j-1}^\pi(x)) + (A_J^\pi(x) - A_{\underline{J}}^\pi(x)) + (\pi(x) - A_J^\pi(x)). \quad (14)$$

1432 We now give an explicit construction of the sequence of approximation operators. Set $\gamma_j = \frac{1}{2^j}$ and
 1433 let S_0, S_1, \dots, S_J be a sequence of policy classes (understood to be subclasses of Π) such that S_j
 1434 could γ_j -cover Π under the inner product distance:

$$1435 \quad 1436 \quad \forall \pi \in \Pi, \exists \pi' \in S_j, D_2(\pi, \pi') \leq \gamma_j.$$

1437 By Definition F.2, we can choose the m -th policy class S_m such that $|S_j| =$
 1438 $N_2(2^{-j}, \Pi, \{X_1, \dots, X_n\})$. Note that in particular $|S_0| = 1$, since any single policy is enough
 1439 to 1-cover all policies in Π .
 1440

1441 Next, we use the following backward selection scheme to define A_j 's. For each $\pi \in \Pi$, define

$$1442 \quad 1443 \quad A_J^\pi = \arg \min_{\pi' \in S_J} D_2(\pi, \pi').$$

1444 Further, for each $0 \leq j < J$ and each $\pi \in \Pi$, inductively define

$$1445 \quad 1446 \quad A_j^\pi = \arg \min_{\pi' \in S_j} D_2(A_{j+1}^\pi, \pi').$$

1447 Appendix G presents a few helper results that would facilitate the following theorem, which is needed
 1448 for the proof of Lemma E.2.
 1449

1450 **Theorem F.3.** *Suppose that $\mathcal{F}_\Pi := \{f(\cdot; \pi) \mid \pi \in \Pi\}$ is a function class of $f(\cdot; \pi)$ that takes Z as
 1451 input. Given a set of dataset $\mathcal{D} = \{Z_i = (X_i, A_i, Y_i)\}_{i=1}^n$, suppose that $|f(Z_i; \pi(X_i))|_\infty \leq \bar{f}(Z_i)$.
 1452 Then the Rademacher complexity*

$$1453 \quad 1454 \quad 1455 \quad \mathcal{R}_n(\mathcal{F}_\Pi) \leq \frac{8\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n}(\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} + o\left(\frac{1}{\sqrt{n}}\right).$$

1456 *Proof.* We will investigate the Rademacher complexity of the function class $\mathcal{F}_\Pi := \{f(\cdot, \pi) \mid \pi \in$
 1457 $\Pi\}$. Each policy $\pi \in \Pi$ can be written in terms of the approximation policies as in equation 14.

1458 Accordingly, we can expand the Rademacher complexity
 1459

$$\begin{aligned}
 1460 \mathcal{R}_n(\mathcal{F}_\Pi) &= \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \pi) \right| \right] \\
 1461 &= \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i \left(f(Z_i; A_0^\pi) + \sum_{j=1}^J (f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi)) + (f(Z_i; \pi) - f(Z_i; A_J^\pi)) \right) \right| \right] \\
 1462 &\leq \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; A_0^\pi) \right| \right] + \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i (f(Z_i; \pi) - f(Z_i; A_J^\pi)) \right| \right] \\
 1463 &\quad + \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i \left(\sum_{j=1}^J f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi) \right) \right| \right].
 \end{aligned}$$

1464 We first note that the first term
 1465

$$\mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; A_0^\pi) \right| \right] = \mathbb{E}_\epsilon \left[\frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \bar{\pi}) \right| \right],$$

1466 as A_0^π maps all $\pi \in \Pi$ to a singular policy $\bar{\pi}$. Since $|\epsilon_i f(Z_i; \bar{\pi})| \leq \bar{f}(Z_i)$, by Azuma-Hoeffding's
 1467 lemma, we have that
 1468

$$\mathbb{P} \left(\frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \bar{\pi}) \right| \geq t \right) \leq 2 \exp \left(- \frac{n^2 t^2}{2 \sum_{i=1}^n \bar{f}^2(Z_i)} \right).$$

1469 Therefore, the expectation
 1470

$$\begin{aligned}
 1471 \mathbb{E}_\epsilon \left[\frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \bar{\pi}) \right| \right] &= \int_0^\infty \mathbb{P}_\epsilon \left(\frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \bar{\pi}) \right| \geq t \right) dt \leq \int_0^\infty 2 \exp \left(- \frac{n^2 t^2}{2 \sum_{i=1}^n \bar{f}^2(Z_i)} \right) dt \\
 1472 &= \frac{6 \sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n}.
 \end{aligned}$$

1473 We will bound the other terms separately in the following steps.
 1474

1475 **The Negligible Regime.** In this step, we establish two claims to show that $\pi - A_M(\pi)$ is in the
 1476 negligible regimes. For any $\pi \in \Pi$, by the Cauchy-Schwarz inequality,
 1477

$$\begin{aligned}
 1478 \sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i |f(Z_i; \pi) - f(Z_i; A_J^\pi)| \right| &\leq \frac{1}{n} \sqrt{n \sum_{i=1}^n (f(Z_i; \pi) - f(Z_i; A_J^\pi))^2} \\
 1479 &= \frac{2 \sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{\sqrt{n}} D_2(\pi, A_J^\pi; \{Z_1, \dots, Z_n\}) \\
 1480 &\leq \frac{2 \sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{\sqrt{n}} 2^{-J} \leq \frac{2 \sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n^{\frac{3}{2}}},
 \end{aligned}$$

1481 where the second-to-last step is due to the fact that the policy A_M^π is 2^{-M} -close to π and the last step
 1482 is due to the definition of M . Therefore, we conclude that the term
 1483

$$\mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i (f(Z_i; \pi) - f(Z_i; A_J^\pi)) \right| \right] \leq \frac{2 \sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n^{\frac{3}{2}}},$$

1484 and is in the negligible regime.
 1485

1486 **The Effective Regime.** By the previous results, we have that
 1487

$$\begin{aligned}
 1488 \mathcal{R}_n(\mathcal{F}_\Pi) &= \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(Z_i; \pi) \right| \right] \\
 1489 &\leq \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i \left(\sum_{j=1}^J f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi) \right) \right| \right] + o\left(\frac{1}{\sqrt{n}}\right).
 \end{aligned}$$

From now on, for easier notation, we denote $\Lambda = 2\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}$. We will now concentrate on the expectation in the above inequality. Let P_m denote the projection of a policy to S_j , for $A_{j-1}^\pi = P_{j-1}(A_j^\pi)$ for all $j \in [J]$. Note that once A_j^π is determined, the policy A_{j-1}^π is also determined. For any $t > 0$,

$$\begin{aligned} & \mathbb{P}_\epsilon \left(\sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi)) \right| \geq t \right) \\ & \leq \sum_{\pi' \in S_j} \mathbb{P}_\epsilon \left(\left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(Z_i; \pi') - f(Z_i; P_{j-1}(\pi'))) \right| \geq t \right) \\ & \leq \sum_{\pi' \in S_j} 2 \cdot \exp \left(- \frac{2n^2 t^2}{\sum_{i=1}^n (f(Z_i; \pi') - f(Z_i; P_{j-1}(\pi')))^2} \right) \\ & = \sum_{\pi' \in S_j} 2 \cdot \exp \left(- \frac{2nt^2}{\lambda^2 D_2^2(\pi', P_{j-1}(\pi'); Z)} \right) \\ & \leq 2N_2(2^{-j}, \Pi; \mathcal{D}) \cdot \exp \left(- \frac{n^2 t^2}{\Lambda^2 D_2(\pi', P_{j-1}(\pi'); Z)^2} \right). \end{aligned}$$

For any $j = 1, \dots, J$ and $p \in \mathbb{N}$, let $t_{j,p} = \frac{\Lambda}{n2^{j-1/2}} \sqrt{\log(2^{p+1}j^2 \cdot N_2(2^{-j}, \Pi; \mathcal{D}))}$. Then for a fixed p , with a union bound over $j = 1, \dots, J$, we have that

$$\begin{aligned} & \mathbb{P}_\epsilon \left(\sup_{\pi \in \Pi} \left| \sum_{j=1}^J \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi)) \right| \geq \sum_{j=1}^J t_{j,p} \right) \\ & \leq \sum_{j=1}^J \mathbb{P}_\epsilon \left(\sup_{\pi \in \Pi} \left| \sum_{j=1}^J \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi)) \right| \geq t_{j,p} \right) \leq \sum_{j=1}^J \frac{1}{j^2 2^{2p}} \leq \frac{1}{2^{p-1}}. \end{aligned}$$

Using helper Proposition G.1, for any $j \in \mathbb{N}$,

$$\begin{aligned} \sum_{j=1}^J t_{j,p} &= \sum_{j=1}^J \frac{\Lambda}{2^{j-1/2} n} \sqrt{\log(2^{p+1}j^2 \cdot N_2(2^{-j}, \Pi; \mathcal{D}))} \\ &\leq \sum_{j=1}^J \frac{\Lambda}{2^{j-1/2} n} \sqrt{\log(N_2(2^{-j}, \Pi; \mathcal{D})) + (p+1) \log 2 + 2 \log j} \\ &\leq \frac{2\Lambda}{n} \sum_{j=1}^J 2^{-j} (\sqrt{\log(N_2(2^{-j}, \Pi; \mathcal{D}))} + \sqrt{(p+1) \log 2} + \sqrt{2 \log j}) \\ &\leq \frac{4\Lambda}{n} (\kappa(\Pi) + \sqrt{p+1} + 1) =: t_p, \end{aligned}$$

where the first inequality is uses the fact that $\sqrt{a+b+c} \leq \sqrt{a} + \sqrt{b} + \sqrt{c}$ for $a, b, c \geq 0$; and the last inequality is due to the definition of $\kappa(\Pi)$. Then

$$\begin{aligned} & \mathbb{E}_\epsilon \left[\sup_{\pi \in \Pi} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i \left(\sum_{j=1}^J f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi) \right) \right| \right] \\ &= \int_0^\infty \mathbb{P}_\epsilon \left(\sup_{\pi \in \Pi} \left| \sum_{j=1}^J \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(Z_i; A_j^\pi) - f(Z_i; A_{j-1}^\pi)) \right| > t \right) dt \\ &\leq t_1 + \sum_{p=1}^\infty 2^{-p+1} (u_{p+1} - u_p) = \frac{4\Lambda}{n} \left(\kappa(\Pi) + \sqrt{2} + 1 + \sum_{p=1}^\infty 2^{-p+1} (\sqrt{p+2} - \sqrt{p+1}) \right) \\ &\leq \frac{4\Lambda}{n} (\kappa(\Pi) + 7). \end{aligned}$$

1566 Putting everything together, we have that
 1567

$$1568 \quad 1569 \quad 1570 \quad \mathcal{R}_n(\mathcal{F}_\Pi) \leq \frac{8\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n}(\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^n \bar{f}^2(Z_i)}}{n} + o\left(\frac{1}{\sqrt{n}}\right).$$

1571 \square
 1572

1573 Define the oracle policy CVaR estimator with the true $\pi_0, \{\mu_a, a \in \mathcal{A}\}$, and the oracle policy VaR $\tilde{\beta}_\pi$
 1574 derived from equation 12:

$$1575 \quad 1576 \quad 1577 \quad \tilde{\mathcal{V}}_\alpha(\pi) := \frac{1}{n} \sum_{i \in \mathcal{D}} \phi(\pi, Z_i; \pi_0, \{\mu_a\}_{a \in \{0,1\}}, \tilde{\beta}_\pi) =: \frac{1}{n} \sum_{i \in \mathcal{D}} \tilde{\phi}(\pi, Z_i),$$

1578 where $\mu_\pi(x) = \mu_{\pi(x)}(x)$ is constructed from $\{\mu_a, a \in \mathcal{A}\}$. Define $\tilde{\mathcal{F}}_\Pi := \{\tilde{\phi}(\cdot; \pi) \mid \pi \in \Pi\}$. The
 1579 following corollary bounds the Rademacher complexity of $\tilde{\mathcal{F}}_\Pi$.
 1580

1581 **Corollary F.4.** *Under Assumption 2.1 and 3.3,*

$$1582 \quad 1583 \quad 1584 \quad \mathcal{R}_n(\tilde{\mathcal{F}}_\Pi) \leq \mathcal{R}_n(\mathcal{F}_\Pi) \leq \frac{8\bar{y}}{\sqrt{n}}(\kappa(\Pi) + 7) + \frac{6\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

1585
 1586 *Proof.* We apply Theorem F.3 with function class $\tilde{\mathcal{F}}_\Pi$, in which each function $\|\tilde{\phi}\|_{L_\infty} \leq \bar{y}$. \square
 1587

1588 We are now ready to prove Lemma E.2.
 1589

1590 *Proof of Lemma E.2.* We first note that for any $\pi \in \Pi$, the expectation of the oracle policy value
 1591 $\tilde{\mathcal{V}}_\alpha(\pi)$,

$$1592 \quad 1593 \quad \mathbb{E}[\tilde{\mathcal{V}}_\alpha(\pi)] \\ 1594 \quad 1595 \quad 1596 \quad = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^n \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi)\right] \\ 1597 \quad 1598 \quad 1599 \quad = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^n \left(\beta_\pi + \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\} \left(\mu_\pi(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)} (Y_i - \mu_\pi(X_i)) - \beta_\pi\right)\right)\right] \\ 1600 \quad 1601 \quad 1602 \quad = \mathbb{E}\left[\mathbb{E}\left[\beta_\pi + \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X_i) \leq \beta_\pi\} \left(\mu_\pi(X_i) + \frac{\mathbb{1}\{A_i = \pi(X_i)\}}{\pi_0(\pi(X_i) \mid X_i)} (Y_i - \mu_\pi(X_i)) - \beta_\pi\right) \mid X = X_i\right]\right] \\ 1603 \quad 1604 \quad 1605 \quad = \mathbb{E}\left[\beta_\pi + \frac{1}{\alpha} \mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} (Y(\pi(X)) - \beta_\pi)\right] = \beta_\pi + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} (Y(\pi(X)) - \beta_\pi)] \\ 1606 \quad 1607 \quad = \mathcal{V}_\alpha(\pi).$$

1606 To see the last equality, we note that, for the underlying true β_π of a policy $\pi \in \Pi$,

$$1608 \quad 1609 \quad \beta_\pi + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} (Y(\pi(X)) - \beta_\pi)] \\ 1610 \quad 1611 \quad = \beta_\pi + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} Y(\pi(X))] - \frac{1}{\alpha} \mathbb{P}(\mu_\pi(X) \leq \beta_\pi) \beta_\pi \\ 1612 \quad 1613 \quad = \beta_\pi + \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} Y(\pi(X))] - \frac{\alpha}{\alpha} \beta_\pi \\ 1614 \quad 1615 \quad = \frac{1}{\alpha} \mathbb{E}[\mathbb{1}\{\mu_\pi(X) \leq \beta_\pi\} Y(\pi(X))]$$

1616 The policy value \mathcal{V}_α is defined as the CVaR of policy π , and the dual formulation Rockafellar et al.
 1617 (2000) of which is

$$1618 \quad 1619 \quad \mathcal{V}_\alpha(\pi) = \inf_{0 \leq V \leq 1, \mathbb{E}[V] = 1} \frac{1}{\alpha} \mathbb{E}[VY(\pi(X))],$$

1620 where we define $V := \mathbb{1}\{\mu(X) \leq \beta\}$ for some μ, β . The above infimum is achieved by the true μ_π
1621 and β_π .

1622 Recall that $\|\phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi)\|_{L_\infty} \leq \bar{y}$. We apply Theorem 4.10 in Wainwright (2019) with
1623 results as Corollary F.4,

$$\begin{aligned} 1625 \sup_{\pi \in \Pi} |\mathcal{V}_\alpha(\pi) - \tilde{\mathcal{V}}_\alpha(\pi)| &= \sup_{\pi \in \Pi} \left| \frac{1}{n} \sum_{i=1}^n \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) - \mathbb{E}[\phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi)] \right| \\ 1626 &\leq 2R_n(\tilde{\mathcal{F}}_\Pi) + \bar{y} \sqrt{\frac{2}{n}} \\ 1627 &\leq \frac{16\bar{y}}{\sqrt{n}} (\kappa(\Pi) + 7) + \frac{(12 + \sqrt{2})\bar{y}}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right), \end{aligned}$$

1632 with probability at least $1 - \Delta$. \square

1634 F.3 PROOF OF COROLLARY E.3

1635 *Proof.* For any policy $\pi \in \Pi$ and any fold $k \in [K]$, we decompose:

$$\begin{aligned} 1637 \hat{\mathcal{V}}_\alpha^{(k)}(\pi) - \mathcal{V}_\alpha(\pi) &= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \\ 1638 &= \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \\ 1639 &\quad + \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) \mid \bar{\mathcal{D}}^{(k)}] + \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) \mid \bar{\mathcal{D}}^{(k)}] \\ 1640 &= \mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) \mid \bar{\mathcal{D}}^{(k)}] \\ 1641 &\quad + \frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \left(\phi(\pi, Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(\pi, Z_i; \pi_0, \mu_\pi, \beta_\pi) \right. \\ 1642 &\quad \left. - (\mathbb{E}[\phi(\pi, Z; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) \mid \bar{\mathcal{D}}^{(k)}] - \mathbb{E}[\phi(\pi, Z; \pi_0, \mu_\pi, \beta_\pi) \mid \bar{\mathcal{D}}^{(k)}]) \right) =: (I) + (II). \end{aligned}$$

1650 We will bound the two terms separately, with fixed $\pi \in \Pi, k \in [K]$.

1651 Let $d_1(\pi, Z_i) := \phi(Z_i; \hat{\pi}_0^{(k)}, \hat{\mu}_\pi^{(k)}, \hat{\beta}_\pi^{(k)}) - \phi(Z_i; \pi_0, \mu_\pi, \beta_\pi)$. By Lemma E.1,

$$\begin{aligned} 1653 \sup_{\pi \in \Pi} |(I)| &= \sup_{\pi \in \Pi} |\mathbb{E}[d_1(\pi, Z) \mid \bar{\mathcal{D}}^{(k)}]| \\ 1654 &\leq \sup_{\pi \in \Pi} \left| \frac{2\bar{y}}{\alpha\varepsilon} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} \|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_2(P)} \right. \\ 1655 &\quad \left. + \frac{1}{\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) (\|\hat{\mu}_\pi^{(k)} - \mu_\pi\|_{L_\infty} + |\beta_\pi - \hat{\beta}_\pi^{(k)}|) \right. \\ 1656 &\quad \left. + \frac{1}{2\alpha} (F'_{\mu_\pi(X)}(F_{\mu_\pi(X)}^{-1}(\alpha)) + 1) |\hat{\beta}_\pi^{(k)} - \beta_\pi|^2 \right| \\ 1657 &\leq \frac{2\bar{y}}{\alpha\varepsilon} \left(\max_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)}(a \mid X) - \pi_0(a \mid X)\|_{L_2(P)} \right) \left(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} \right) \\ 1658 &\quad + \frac{2\bar{F}_\alpha}{\alpha} \left(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty} + \max_{\pi \in \Pi} |\beta_\pi - \hat{\beta}_\pi^{(k)}| \right)^2 + \frac{\bar{F}_\alpha}{\alpha} \max_{\pi \in \Pi} |\hat{\beta}_\pi^{(k)} - \beta_\pi|^2. \end{aligned}$$

1666 Applying Lemma 3.4, there exists some $N_\beta \in \mathbb{Z}_+$ such that when $n > n_1$, with probability at least
1667 $1 - \Delta$,

$$\max_{\pi \in \Pi} |\hat{\beta}_\pi^{(k)} - \beta_\pi| < \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty},$$

1669 which means

$$\begin{aligned} 1670 \sup_{\pi \in \Pi} |(I)| &\leq \frac{2\bar{y}}{\alpha\varepsilon} \left(\max_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)}(a \mid X) - \pi_0(a \mid X)\|_{L_2(P)} \right) \left(\max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} \right) \\ 1671 &\quad + \frac{8\bar{F}_\alpha}{\alpha} \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty}^2 + \frac{\bar{F}_\alpha}{\alpha} \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_\infty}^2. \end{aligned}$$

1674 On the event of Lemma 3.4, by Assumption 3.2, there exists some $n_1 \in \mathbb{Z}_+$ such that when $n \geq n_1$
 1675 with probability at least $1 - \Delta$,

$$1677 \sup_{\pi \in \Pi} |(I)| \leq \frac{2\bar{y} + 9\bar{F}_\alpha}{\alpha\varepsilon\sqrt{n}}.$$

1679 In summary, there exists some $N_1 = \max\{n_1, N_\beta\}$ such that when $n \geq N_1$, with probability at least
 1680 $1 - 2K\Delta$, the above inequality holds.

1681 We now turn to Term (II). Let $d_2(\pi, Z_i) := d_1(\pi, Z_i) - \mathbb{E}[d_1(\pi, Z) \mid \bar{\mathcal{D}}^{(k)}]$. Note that Term (II) is
 1682 zero-mean:

$$1684 \mathbb{E}[(II)] = \mathbb{E}[(\hat{\mathbb{E}}_k - \mathbb{E}_{\bar{k}})[d(\pi, Z)]] = \mathbb{E}\left[\frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i)\right] = \mathbb{E}[d_1(\pi, Z)] - \mathbb{E}[d_1(\pi, Z)] = 0.$$

1686 By Lemma E.1,

$$1688 |d_1(\pi, Z_i)| \leq \frac{4\bar{y}}{\alpha\varepsilon^{3/2}} |\hat{\pi}_0^{(k)}(\pi(X_i) \mid X_i) - \pi_0(\pi(X_i) \mid X_i)| + \frac{2}{\alpha\varepsilon} |\hat{\mu}_\pi^{(k)}(X_i) - \mu_\pi(X_i)| + \frac{1}{\alpha} |\hat{\beta}_\pi^{(k)} - \beta_\pi| + \frac{14\bar{y}}{\alpha\varepsilon} \\ 1689 \leq \frac{4\bar{y}}{\alpha\varepsilon^{3/2}} \max_{a \in \mathcal{A}} |\hat{\pi}_0^{(k)}(a \mid X_i) - \pi_0(a \mid X_i)| + \frac{2}{\alpha\varepsilon} \max_{a \in \mathcal{A}} |\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)| + \frac{1}{\alpha} |\hat{\beta}_\pi^{(k)} - \beta_\pi| + \frac{14\bar{y}}{\alpha\varepsilon}.$$

1692 Applying Lemma 3.4, there exists some $C_1 > 0, N_\beta \in \mathbb{Z}_+$ such that when $n > N_\beta$, with probability
 1693 at least $1 - \Delta$,

$$1694 |d_1(\pi, Z_i)| \leq \frac{4\bar{y}}{\alpha\varepsilon^{3/2}} \max_{a \in \mathcal{A}} |\hat{\pi}_0^{(k)}(a \mid X_i) - \pi_0(a \mid X_i)| + \frac{2}{\alpha\varepsilon} \max_{a \in \mathcal{A}} |\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)| \\ 1695 + \frac{1}{\alpha} (n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)\|_{L_2(P)} + n^{-\frac{1}{4}}) + \frac{14\bar{y}}{\alpha\varepsilon} \\ 1696 \leq \frac{14\bar{y}}{\alpha\varepsilon^{3/2}} \max_{a \in \mathcal{A}} (|\hat{\pi}_0^{(k)}(a \mid X_i) - \pi_0(a \mid X_i)| + |\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)| + 1) \\ 1697 + \frac{1}{\alpha} (n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)\|_{L_2(P)}) =: \bar{d}_1(Z_i).$$

1702 Consequently,

$$1703 |d_2(\pi, Z_i)| = |d_1(\pi, Z_i) - \mathbb{E}[d_1(\pi, Z_i)]| \leq 2\bar{d}_1(Z_i) := \bar{d}_2(Z_i).$$

1704 We now apply the bounded difference inequality in (Wainwright, 2019, Corollary 2.21) conditional
 1705 on $X = \{X_i\}_{i \in [n]}$,

$$1706 \mathbb{P}\left(\sup_{\pi \in \Pi} \left| \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i) \right| - \mathbb{E}\left[\sup_{\pi \in \Pi} \left| \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i) \right| \mid X\right] \geq t \mid X\right) \\ 1707 \leq \exp\left(-\frac{2|\bar{\mathcal{D}}^{(k)}|^2 t^2}{\sum_{i \in \bar{\mathcal{D}}^{(k)}} \bar{d}_2^2(Z_i)}\right).$$

1708 Setting $t = \frac{\sqrt{\sum_{i \in \bar{\mathcal{D}}^{(k)}} \bar{d}_2^2(Z_i) \log(1/\Delta)}}{|\bar{\mathcal{D}}^{(k)}|}$, then with probability at least $1 - \Delta$,

$$1709 \sup_{\pi \in \Pi} \left| \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i) \right| \leq \mathbb{E}\left[\sup_{\pi \in \Pi} \left| \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i) \right| \mid X\right] + \frac{\sqrt{\sum_{i \in \bar{\mathcal{D}}^{(k)}} \bar{d}_2^2(Z_i) \log(1/\Delta)}}{|\bar{\mathcal{D}}^{(k)}|}.$$

1710 Next, we turn to the expectation in the above inequality.

$$1711 \mathbb{E}\left[\sup_{\pi \in \Pi} \left| \frac{1}{|\bar{\mathcal{D}}^{(k)}|} \sum_{i \in \bar{\mathcal{D}}^{(k)}} d_2(\pi, Z_i) \right| \mid X\right] \leq R_n(\mathcal{F}_\Pi(d_2)),$$

1712 where we denote $\mathcal{F}_\Pi(d_2) = \{d_2(\pi, \cdot) \mid \pi \in \Pi\}$, in which $|d_2(\pi, Z_i)| \leq \bar{d}_2(Z_i)$. Applying
 1713 Theorem F.3, we have that

$$1714 \mathcal{R}_n(\mathcal{F}_\Pi(d_2)) \leq \mathcal{R}_n(\mathcal{F}_\Pi) \leq \frac{8\sqrt{\sum_{i=1}^n \bar{d}_2^2(Z_i)}}{n} (\kappa(\Pi) + 7) + \frac{6\sqrt{\sum_{i=1}^n \bar{d}_2^2(Z_i)}}{n} + o\left(\frac{1}{\sqrt{n}}\right).$$

1728 Consequently, with probability $1 - \Delta$,

$$1730 \sup_{\pi \in \Pi} \frac{1}{|\mathcal{D}^{(k)}|} \left| \sum_{i \in \mathcal{D}^{(k)}} d_2(\pi, Z_i) \right| \leq \frac{\sqrt{\sum_{i=1}^n d_2^2(Z_i)}}{|\mathcal{D}^{(k)}|} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}).$$

1733 Now let $e(a, X_i) := (\hat{\pi}_0^{(k)}(a | X_i) - \pi_0(a | X_i))^2 + (\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i))^2$. Since $e(a, X_i) \leq 1 + 4\bar{y}^2$, applying Hoeffding's inequality gives that

$$1736 \mathbb{P} \left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \max_{a \in \mathcal{A}} e(a, X_i) - \sum_{a \in \mathcal{A}} \mathbb{E}[e(a, X)] \geq t \right) \\ 1737 \leq \mathbb{P} \left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} \sum_{a \in \mathcal{A}} e(a, X_i) - \sum_{a \in \mathcal{A}} \mathbb{E}[e(a, X)] \geq t \right) \\ 1738 \leq \sum_{a \in \mathcal{A}} \mathbb{P} \left(\frac{1}{|\mathcal{D}^{(k)}|} \sum_{i \in \mathcal{D}^{(k)}} e(a, X_i) - \mathbb{E}[e(a, X)] \geq t \right) \leq M(1 + 4\bar{y}^2) \exp(-2|\mathcal{D}^{(k)}|t^2),$$

1744 recalling that $|\mathcal{A}| = M$. Taking a union bound, with probability at least $1 - 2\Delta$, we have that

$$1746 \sup_{\pi \in \Pi} |(II)| \leq \frac{28\bar{y}}{\alpha\varepsilon\sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) \\ 1747 \times \left(\sum_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} + \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} + 1 + \sqrt[4]{\frac{\log(M(1 + 4\bar{y}^2)/\Delta)}{2|\mathcal{D}^{(k)}|}} \right) \\ 1748 + \frac{28\bar{y}}{\alpha\varepsilon\sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) \times (n^{-\frac{1}{2}} \vee \max_{a \in \mathcal{A}} \|\hat{\mu}_a^{(k)}(X_i) - \mu_a(X_i)\|_{L_2(P)}).$$

1754 By Assumption 3.2 $\sum_{a \in \mathcal{A}} \|\hat{\pi}_0^{(k)} - \pi_0\|_{L_2(P)} + \|\hat{\mu}_a^{(k)} - \mu_a\|_{L_2(P)} = o_p(1)$. Then there exists some
1755 $n_2 \in \mathbb{Z}_+$ such that when $n \geq n_2$, with probability at least $1 - 4K\Delta$,

$$1757 \sup_{\pi \in \Pi} |(II)| \leq \frac{28\bar{y}}{\alpha\varepsilon\sqrt{|\mathcal{D}^{(k)}|}} (8\kappa(\Pi) + 62 + \sqrt{\log(1/\Delta)}) + o\left(\frac{1}{\sqrt{n}}\right).$$

1760 Putting everything together, and setting $\Delta' = 6K\Delta$, with probability at least $1 - \Delta'$,

$$1762 \sup_{\pi \in \Pi} |\hat{\mathcal{V}}_\alpha(\pi) - \mathcal{V}_\alpha(\pi)| \leq \frac{28\bar{y}}{\alpha\varepsilon\sqrt{n}} (8\kappa(\Pi) + 71 + \sqrt{\log(1/\Delta)}) + \frac{2\bar{y} + 9\bar{F}_\alpha}{\alpha\varepsilon\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

1764 \square

1766 G HELPER RESULTS

1768 **Proposition G.1.** *For any sample size n , data set $\{x_1, \dots, x_n\}$ with size of n , and $\pi_1, \pi_2 \in \Pi$,*

- 1770 1. *Triangle inequality holds for $D_2(\pi_1, \pi_2) \leq D_2(\pi_1, \pi_3) + D_2(\pi_3, \pi_2)$.*
- 1771 2. *$N_2(\epsilon, \Pi, \{x_1, \dots, x_n\}) \leq N_H(\epsilon^2, \Pi)$.*

1773 *Proof.* Statement 1 is easy to show by triangle inequality. Statement 2 is proved similarly as in (Zhan
1774 et al., 2024, Lemma 1). \square

1776 **Proposition G.2.** *Conditioned on the data $\{X_1, \dots, X_n\}$, the sequence of refining approximation
1777 operators A_1, \dots, A_J as constructed above satisfies the following properties:*

- 1778 1. $\max_{\pi \in \Pi} D_2(\pi, A_J^\pi) \leq 2^{-J}$.
- 1779 2. $|\{A_j^\pi | \pi \in \Pi\}| \leq N_2(2^{-j}, \Pi, \{X_1, \dots, X_n\})$, for every $j = 0, 1, \dots, J$
- 1781 3. $\max_{\pi \in \Pi} D_2(A_j^\pi, A_{j+1}^\pi) \leq 2^{-(j-1)}$, for every $j = 0, 1, \dots, J - 1$.

1782 4. For any $J \geq j' \geq j \geq 0$,

$$1784 |\{(A_j^\pi, A_{j'}(\pi)) | \pi \in \Pi\}| \leq N_2(2^{-j'}, \Pi, \{X_1, \dots, X_n\}).$$

1786 *Proof.* The proof can be found in (Zhou et al., 2023, Theorem 1, Step 1). \square

1788 H FURTHER DISCUSSION AND CONCLUSIONS

1790 In this paper, we design a risk sensitive policy learning algorithm λ - α RSL that maximizes the
 1791 weighted sum of APE and α -level CVaR of CAPE. We show that the sample complexity of this
 1792 proposed algorithm is $O(\kappa(\Pi)n^{-\frac{1}{2}})$. Numerical results show that λ - α RSL is particularly advantageous
 1793 when the objective is to improve outcomes for the worst-affected minority groups in the population,
 1794 while incurring only a statistically negligible loss in overall social welfare compared to the benchmark
 1795 CAIPWL, which is designed to maximize social welfare.

1796 One possible future research direction is to design a heuristic algorithm, possibly with theoretical
 1797 regret or convergence guarantee, that solves the constrained optimization problem in equation 10
 1798 proposed in Appendix B. The optimal solution to equation 10 ensures the highest attainable social
 1799 welfare while simultaneously hedging against a pre-specified level of risk, making it more suitable
 1800 for real-world applications.

1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835