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ABSTRACT

Increasing interaction demands with dynamic objects require accurate modeling of
their dynamics and precise prediction of motion trajectories from limited observa-
tions. Existing approaches rely on the coordinates of downsampled Key Points as
the feature basis and model their interactions within local neighborhoods, result-
ing in the loss of fine-grained details and homogenized particle representations.
In this work, we propose DyG2T, a dynamics modeling framework that leverages
spatiotemporally completed particle representations for multi-scale force propa-
gation. Spatially, each Key Point enriches fine-grained edge features and spatial
geometry by aggregating position information from corresponding raw particles
and relative coordinates from neighboring Key Points. Temporally, after supple-
menting Key Points with inter-frame relative motion offsets via Motion Align Net,
the Temporal Attention is applied to aggregate Key Point features across adjacent
frames, preserving the dynamic evolution patterns of particles. For comprehen-
sive interactive modeling, a Particle Graph Transformer establishes multi-scale
force propagation paths from contact-near to distant Key Points, preserving dis-
criminative long-range dependencies critical for accurate trajectory modeling. Ex-
periments on synthetic and real-world datasets demonstrate that DyG2T achieves
accurate trajectory decoding, strong cross-object and real-world generalization.

1 INTRODUCTION

Recently, artificial intelligence has evolved from disembodied intelligence operating independently
of the physical world toward embodied systems that require interaction with more realistic, complex
real-world environments Li et al. (2024a); Zhang et al. (2025b). Against this evolutionary back-
drop, real-time and accurate interaction between intelligent agents and various objects has become
a fundamental prerequisite, which necessitates that the agents can infer object dynamics and pre-
dict motion trajectories based on limited observations. Consequently, object dynamics modeling
has emerged as a core technical demand, aiming to capture the motion patterns of highly maneu-
verable objects in continuous dynamic spaces by modeling complex physical processes (e.g., force
propagation Zhong et al. (2024)), with the ultimate goal of enabling precise object motion trajectory
prediction to support seamless agent-environment interaction.

To acquire the object dynamics, most existing approaches Li et al. (2019b); Zhang et al. (2025a)
begin by employing 3D reconstruction Mildenhall et al. (2021) to convert 2D visual observations
into 3D raw particle representations of moving objects, followed by downsampling such as Farthest
Point Sampling (FPS) Qi et al. (2017b) to extract sparse Key Points that serve as representatives for
dynamics modeling. Broadly, the dynamics modeling methods can be categorized into two main
groups. Physics-engine-based methods Li et al. (2023); Arnavaz et al. (2023) rely on predefined ma-
terial equations to derive the state evolution of Key Points, but they suffer from limited adaptability
when generalizing across objects with diverse materials. In contrast, differentiable network-based
approaches Zhong et al. (2024) construct deep models to capture local interaction patterns within
the neighborhoods of Key Points and infer their future positions, freeing the modeling process from
displacement calculations based on physical equations. Nevertheless, relying on Key Points infor-
mation overlooks the rich appearance details encoded in the raw particles, while restricting modeling
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Figure 1: DyG2T vs Differentiable Network-based methods. DyG2T captures multi-scale force
propagation, preserving accurate appearance and trajectories.

to spatially confined interactions tends to yield homogenized feature representations. These limita-
tions manifest as inaccurate appearance predictions and drifting trajectories.

Specifically, in one respect, researchers adopt the coordinates of downsampled Key Points as the ini-
tial particle representation for dynamics modeling. As shown in Figure 1, FPS discards a substantial
portion of raw particles in the 3D raw particle representation (i.e., Raw Point Cloud) that are critical
for capturing fine-grained edge details. Moreover, relying on coordinates as initial features further
weakens the model’s perception of object geometry and appearance. This dual loss of edge details
and geometric cues compromises the integrity of the feature basis, impeding dynamics modeling
and leading to errors in both appearance and trajectory decoding. Therefore, retaining the particle
representation with complete and rich information is fundamental to robust dynamics modeling.

In another respect, local modeling overlooks the influence of forces across multiple spatial scales
on particle representations. As shown in Figure 1, each node can only indirectly acquire multi-scale
information by iterative neighborhood aggregation. This neighborhood-based update and outward
diffusion mechanism tends to homogenize particle representations Sun et al. (2022). Such homoge-
nization blurs the distinctions among forces of varying scales, ultimately causing positional decod-
ing errors and trajectory deviations. Consequently, capturing discriminative particle representations
through multi-scale force propagation modeling is also crucial for accurate dynamics modeling.

In this work, we propose DyG2T, which employs spatiotemporally completed particle representa-
tions to support multi-scale force propagation modeling. As shown in Figure 1, DyG2T leverages
dynamic reconstruction (e.g., Dyn3DGS) to extract trackable particle representations from sparse-
view videos. To ensure the integrity of spatiotemporal representations, at the spatial representation
level, each Key Point aggregates position information from the Raw Points it corresponds to before
downsampling—enriching fine-grained edge representation—and concurrently aggregates relative
position information with neighboring Key Points, which enhances the ability to perceive spatial
geometry. In addition, at the temporal representation level, we calculate the relative motion offset of
each particle between adjacent frames using Motion Align Net and employ the Temporal Attention
to aggregate particle representations across frames, enabling the retention of all Key Points’ dynamic
evolution patterns. For multi-scale force propagation modeling, we introduce a Particle Graph Trans-
former that establishes propagation paths from contact-near Key Points to those across multi-scales,
preserving discriminative long-range features essential for effectively depicting the temporal collab-
orative evolution trajectories of all Key Points. We evaluate DyG2T on the Spring-Gaus synthetic &
real-world Zhong et al. (2024) and our Unity3D-Heterogeneous datasets, demonstrating its strong
cross-object generalization and real-world scalability. The contributions of this work are as follows:
• We propose a dynamics modeling framework named DyG2T, which mitigates trajectory prediction

bias by preserving differentiated force propagation information within particle representations.
• DyG2T enriches the particle representations with fine-grained spatial semantics and temporal evo-

lution features through spatial completion and temporal aggregation, respectively.
• Extensive experiments on both synthetic and real-world datasets demonstrate that DyG2T accu-

rately models object dynamics across diverse geometries and material properties.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 DYNAMIC 3D SCENE RECONSTRUCTION

Owing to advances in dynamic neural radiance fields Fridovich-Keil et al. (2023); Pumarola et al.
(2021) and dynamic 3D Gaussians Li et al. (2024b); Lin et al. (2024), significant progress has been
made in reconstructing dynamic 3D scene representations from observations. Dyn3DGS Luiten
et al. (2024) achieves dense tracking of dynamic scenes on a unified point cloud. Compared with
these approaches, which do not consider physical modeling, we build upon dynamic reconstruction
and introduce dynamics modeling to enable future motion prediction.

2.2 PHYSICS-BASED DYNAMICS MODELING AND REASONING

Given the complexity of continuous motion spaces, inferring dynamics from sparsely observed ini-
tial states remains a formidable challenge. Some studies Xie et al. (2024); Zhang et al. (2024)
leverage prior-configured physics engines to model material-specific dynamics, enabling reasoning
over object deformations Arnavaz et al. (2023) or physical properties Qiao et al. (2022). Others em-
ploy GNNs as differentiable simulators to capture particle-level motion characteristics, encouraging
progress across diverse material settings Li et al. (2019b); Zhong et al. (2024). Additionally, some
researchers Xie et al. (2025) have incorporated physical constraints into interactive simulations to
facilitate urban navigation. Most relevant to our work, GS-Dynamics Zhang et al. (2025a) remains
constrained by GNN-based simulation, often overlooking the heterogeneity of force propagation. In
contrast, our approach explicitly differentiates forces across distance scales, thereby achieving more
accurate trajectory prediction.

3 METHOD

In this section, we introduce the details of DyG2T. For each dynamic object, given a set of 2D
observations {Io,t}O,T

o=1,t=1 consisting of O views and T frames, the goal is to predict the object’s
future position through dynamics modeling. As shown in Figure 2(a), we first acquire the track-
able raw particle-based representations Gt of the moving object from observations I via dynamic
reconstruction. Next, we extract Key Point G∗

t using FPS to serve as the basis for dynamics model-
ing. Subsequently, the Spatial-Temporal Feature Completion and Aggregation mechanism operates
on Raw & Key Points to perform particle-level spatial semantic completion and object-level dy-
namic temporal aggregation, resulting in enriched Key Point Embeddings XAg (Figure 2(b)). We
then employ the Particle Graph Transformer to construct direct force propagation pathways between
Key Points, enabling accurate trajectory modeling and precise displacement prediction M∗,t. After-
wards, the positions of the Key Points Ĝ∗

t+1 at frame t+ 1 is updated by adding displacement M∗,t

to G∗
t . (as shown in Figure 2(c)). Finally, with the aid of Linear Blend Skinning (LBS) Sumner

et al. (2007); Huang et al. (2024), we interpolate the positions of Key Points to estimate the final
next-frame raw particle positions Ĝt+1, thus obtaining the object’s future motion.

3.1 TRACKABLE PARTICLE-BASED REPRESENTATION BY DYNAMIC RECONSTRUCTION

Following Dyn3DGS Luiten et al. (2024), we reconstruct the trackable raw particle position se-
quences {G1, . . . , GT } from visual observations {Io,t}O,T

o=1,t=1, where Gt = {µt
i|i ∈ [1, N ]},

µt
i = (xt

i, y
t
i , z

t
i) is the i-th raw particle coordinates at frame t. Specifically, we begin with per-

forming static 3D Gaussian Splatting Kerbl et al. (2023) on the first-frame {Io,1}Oo=1 to obtain
the particle-based appearance descriptors (e.g., size, color, opacity) and the initial spatial repre-
sentations, including the positions G1 and rotations r1. The rotation r1 is represented by quater-
nion

{(
qw1

i , qx
1
i , qy

1
i , qz

1
i

)
| 1 ≤ i ≤ N

}
, where qwi is the real part, (qxi, qyi, qzi) is the imagi-

nary parts. Then, we freeze the particle appearance descriptors and adopt a recursive optimization
paradigm, where each frame’s particle positions and rotations (Gt, rt) are initialized from the pre-
vious frame and optimized sequentially under constraints from the observations {Io,t}O,T

o=1,t=2. This
frame-by-frame optimization yields one-to-one correspondence of particles across frames, resulting
in a temporal sequence of particle positions and rotations. Since rotations can be estimated via LBS,
DyG2T focuses on modeling the particle positions Gt, i.e., the Raw Point Cloud.

3
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Figure 2: Overview of the DyG2T. (a) DyG2T utilizes dynamic reconstruction to extract trackable
particle representations. (b) The Spatial-Temporal Feature Completion and Aggregation performs
semantic completion and temporal aggregation at both particle and object levels, which spatiotempo-
rally complete particle representations. (c) With the Particle Graph Transformer’s global interaction
modeling, DyG2T captures multi-scale force propagation across the Particle Graph.

3.2 SPATIAL-TEMPORAL FEATURE COMPLETION AND AGGREGATION

In this section, we strengthen particle representations through two complementary perspectives. We
first employ FPS Qi et al. (2017b) to extract Key Point µ∗,t

i from the Raw Point Cloud at each frame
t. FPS operates by iteratively selecting the point farthest from the already selected set, ensuring a
spatially uniform coverage. The resulting Key Points set G∗

t = {µ∗,t
i | i ∈ [1, N∗]} at different

frame t forms a sequence G∗
1, . . . , G

∗
T . As shown in Figure 2(b), we introduce a Particle-level

Spatial Semantic Completion module that enriches the Key Points’ spatial features by integrating
fine-grained edge information from the Raw Point Cloud and relative positions between Key Points.
Subsequently, the Object-level Dynamic Temporal Aggregation module employs a Motion Align
Net (MAN) to compensate for inter-frame motion offsets, and aggregates particle features across
adjacent frames (i.e., t− 2 to t), enhancing object-level dynamics perception.

3.2.1 PARTICLE-LEVEL SPATIAL SEMANTIC COMPLETION

To obtain a particle-level initial representation, we first employ Coord Net to map the µ∗,t
i ∈ G∗

t

into coordinate features Xt
Co ∈ RN∗×HCo , which serve as the initial embedding for the Key Points:

Xt
Co = ReLU

(
G∗

tW
T
1 + b1

)
·WT

2 + b2 (1)

To enhance DyG2T’s awareness of Key Points’ spatial distribution for accurate geometry appear-
ance prediction, we adopt a PosDiff Encoder to learn pairwise relative distances as spatial biases to
enrich the initial Key Point embeddings. Specifically, we encode the coordinate differences between
Key Points using a 2-layer MLP with ReLU. The pairwise encodings are reduced to nodewise via
neighbor-wise mean aggregation and added to the coordinate features Xt

Co, yielding the enhanced
coordinate feature Xt

CoP ∈ RN∗×HCo . H denotes the feature embedding dimensions, and the sub-
script Co is introduced for distinction.

Relying on the coordinate features of sparse Key Points will lose the fine-grained edge features
encoded by the Raw Point Cloud. Therefore, as shown in Figure 2(b), we utilize PointNet Qi et al.
(2017a) to aggregate the k-nearest neighbors of each Key Point from the Raw Point Cloud, yielding
neighborhood features Xt

Po ∈ RN∗×HPo . Specifically, for each Key Point, we apply a shared MLP to
encode the coordinates of its k-nearest neighboring Raw Points. A feature transformation module is
then introduced to map these coordinate features from different frames into a unified neighborhood
feature space. Finally, a max-pooling operation is performed over the k neighborhood features of
each Key Point i at frame t, yielding the representation Xt

Po,i ∈ RHPo .

Furthermore, to address the inconsistency of feature spaces between coordinate features Xt
CoP and

neighborhood features Xt
Po, we design a Multi-head Position-Aware Attention mechanism that en-
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ables cross-space feature fusion guided by Gaussian-weighted relations ω Yang et al. (2025). For
clarity, we illustrate the process using a single-head example:

Q = Xt
CoPW

Q,K = Xt
CoPW

K , V = Xt
PoW

V (2)

Xt
In = SoftMax

(
Q ·KT

√
HK

+ log (ω)

)
V (3)

where WQ,WK ∈ RHCo×HK and WV ∈ RHPo×HV are learnable matrices, ω = exp
(
− d2

2ρ2

)
,

d is the Euclidean distance between Key Points and ρ is a sharpness coefficient. This mechanism
allows neighborhood features to be aggregated in a spatially-aware manner guided by the prior ω.
Xt

In ∈ RN∗×HIn is the spatial semantic features at frame t. Applying the same procedure to Key
Points at t− 2 and t− 1, we obtain the spatial semantic feature sequence {Xt−2

In , Xt−1
In , Xt

In}.

3.2.2 OBJECT-LEVEL DYNAMIC TEMPORAL AGGREGATION

Considering that forces such as collisions can cause object deformations and alter motion trajecto-
ries, we employ Motion Align Net (MAN) to compute the relative motion supplement. Specifically,
we take frame t − 1 as the reference and compute the relative motion offsets δt−2, δt ∈ RN∗×HIn

for frames t − 2 and t. These offsets are added to the spatial semantic features Xt−2
In and Xt

In,
respectively, to compensate for the motion space gaps caused by motion across frames:

Xt−2
InA = Xt−2

In + δt−2, Xt
InA = Xt

In + δt (4)

δt−2, δt = tanh (MAN (XInC; WIn,bIn)) (5)

where XInC = Concat
(
Xt−2

In , Xt−1
In , Xt

In

)
∈ RN∗×3HIn is cross-frame feature. The learnable weight

W ∈ R2HIn×3HIn and bias b ∈ R2HIn are employed in the mapping process. The tanh(·) constrains
the magnitude of motion offset to prevent excessive correction. The function MAN projects the
cross-frame feature XInC into a unified feature space and partitions it into blocks, from which relative
motion offsets δt−2 and δt are derived under the tanh(·) constraint. Xt−2

InA and Xt
InA represent the

aligned features of frames t− 2 and t. Zero correction is applied to Xt−1
InA = Xt−1

In , which serves as
the alignment reference.

Subsequently, we apply Temporal Attention to aggregate the Key Points’ features across frames:

XAg =

t∑
i=t−2

exp (si)∑t
j=t−2 exp (sj)

Xi
InA (6)

si = WT
n2 · tanh

(
Wn1X

i
InA + bn1

)
+ bn2 (7)

where XAg ∈ RN∗×HAg represents the Key Point features after dynamic temporal aggregation.

3.3 DYNAMICS MODELING BASED ON PARTICLE GRAPH TRANSFORMER

In this section, we describe how the Particle Graph and XAg are utilized to capture multi-scale force
propagation patterns at a global scale, and to predict the translation vectors M∗,t ∈ RN∗×3 of Key
Points at frame t, estimating the Key Point position Ĝ∗

t+1 at frame t+ 1.

As shown in Figure 2(c), inspired by Shi et al. (2021), we introduce a Particle Graph Transformer.
For the Particle Graph constructed from the Key Points, we add edges between each Key Point and
its top-kG nearest neighbors within a distance threshold de. The presence or absence of edges using
binary values 0, 1. After vectorizing the binarized adjacency matrix, eij is defined as the learnable
embedding of the edge features between nodes i and j. Then, we capture global force propagation
through Graph Attention. Specifically, the aggregated Key Point features XAg are projected into the
key k(0) ∈ RN∗×dk , query q(0) ∈ RN∗×dq , and value v(0) ∈ RN∗×dv using separate linear layers.
The attention scores α are computed using a scaled dot-product function:

α
(l)
ij =

⟨q(l)i , k
(l)
j + eij⟩∑

u∈N (i)⟨q
(l)
i , k

(l)
u + eiu⟩

(8)
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where ⟨q, k⟩ = exp
(

qTk√
dk

)
, i and j are the endpoints of an edge, i ∈ N∗, N represents the set of

neighbors of node i, and l = 1, 2, . . . , L denotes the index of the Particle Graph Transformer layer.
Finally, we selectively aggregate node features over the entire graph to obtain X̂(l) ∈ RN∗×HG :

X̂(l) =
∑∑

i∈N∗ j∈N (i)

α
(l)
i,j(v

(l)
j + ei,j) (9)

The Particle Graph Transformer constructs direct multi-scale force propagation paths by performing
attention interactions globally. This allows distinctive information to be preserved in particle rep-
resentations, which is critical for decoding accurate motion trajectories. Furthermore, to mitigate
feature homogenization in multi-scale force propagation, we incorporate Gated Residual between
Particle Graph Transformer layers. Refer to the Appendix for details.

The encoded features X(L) from the Particle Graph Transformer are finally decoded by the Motion
Predictor into Key Point displacement vectors M∗,t ∈ RN∗×3. Based on these vectors, we predict
Key Point positions at frame t+ 1 as Ĝ∗

t+1 =
{
µ̂∗,t+1
i

∣∣∣ 1 ≤ i ≤ N∗
}

, µ̂∗,t+1
i = µ∗,t

i +M∗,t
i .

Loss Function. DyG2T is optimized by minimizing the MSE losses ∥·∥2 between the predicted Key
Point positions Ĝ∗

t+i and the ground truth G∗
t+i over the next ϵ frames:

Lpred =

ϵ∑
i=1

∥∥∥Ĝ∗
t+i −G∗

t+i

∥∥∥2 (10)

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Table 1: Quantitative results of dynamic reconstruction for
DyG2T and baselines on Spring-Gaus synthetic dataset.

CD↓ EMD↓

Objects Spring-Gaus DyG2T(Ours) Spring-Gaus DyG2T(Ours)

Torus 0.012 0.008 0.003 0.001
Cross 0.016 0.010 0.005 0.002
Cream 0.014 0.012 0.007 0.005
Apple 0.014 0.011 0.006 0.003
Paste 0.011 0.008 0.003 0.002
Chess 0.017 0.010 0.007 0.002

Banana 0.049 0.007 0.027 0.002
Mean 0.019 0.010 0.008 0.003

Dataset. We introduce Spring-
Gaus dataset Zhong et al. (2024)
and our Unity3D-Heterogeneous
(Unity3D-H) dataset. The Spring-
Gaus synthetic dataset contains
multiple elastic objects with diverse
appearances and materials, recorded
as 30-frame 512×512 motion videos
from 10 views, and provides 3D
motion trajectory ground truth. The
Spring-Gaus real-world part includes
videos of five dolls, recorded as 20-frame 1920 × 1080 motion videos from 3 views. We also
construct the Unity3D-H dataset using the simulation software Unity3D Wang et al. (2010),
consisting of a polyhedron made in two materials, rendered as 30-frame 2098 × 1327 videos from
10 views. Following Spring-Gaus, the first 20 frames (visible during training) are used for dynamic
reconstruction (10 frames for the Spring-Gaus real-world dataset), while the unseen final 10 frames
are reserved for evaluating dynamic prediction.

Metrics. Following prior work Zhang et al. (2025a), we adopt CD, computed the bidirectional
L2 distance between the predicted and ground-truth point clouds, and EMD, which quantifies the
minimal transformation cost between the two point clouds, as metrics for 3D trajectory evaluation.
For 2D appearance evaluation, we use PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al.
(2018) to assess the similarity between reasoning and ground-truth images from different points of
view. Since the baselines do not provide evaluation code, we reimplement and evaluate all methods
within a unified framework to ensure fair comparison. Specificity, 3D metrics are averaged over all
evaluated frames, while 2D metrics are first averaged across views per frame and then across frames.

4.2 DYNAMIC RECONSTRUCTION OF MOVING OBJECTS

To evaluate the dynamic reconstruction of DyG2T, we primarily use CD and EMD to assess the
quality of the reconstructed 3D trajectories. Quantitative results are presented in Table 1. The
results demonstrate DyG2T’s ability to reconstruct 3D trajectories accurately across objects with
varying appearances. Refer to the Appendix for more results.
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Table 2: Quantitative results of motion prediction on Spring-Gaus synthetic dataset.

Metrics Methods Torus Cross Cream Apple Paste Chess Banana Mean

CD↓
Spring-Gaus 0.033 0.046 0.032 0.047 0.068 0.053 0.184 0.066

GS-Dynamics 0.073 0.122 0.154 0.043 0.227 0.284 0.328 0.176
DyG2T(Ours) 0.029 0.038 0.027 0.028 0.038 0.050 0.055 0.039

EMD↓
Spring-Gaus 0.014 0.024 0.023 0.029 0.035 0.027 0.091 0.035

GS-Dynamics 0.033 0.062 0.097 0.021 0.164 0.200 0.171 0.107
DyG2T(Ours) 0.013 0.018 0.013 0.015 0.020 0.021 0.029 0.019

PSNR↑
Spring-Gaus 12.220 11.993 11.267 17.443 11.016 11.305 15.949 13.028

GS-Dynamics 13.450 10.621 12.647 19.632 11.506 11.758 16.622 13.748
DyG2T(Ours) 14.048 11.632 14.765 20.477 14.698 15.653 17.904 15.587

SSIM↑
Spring-Gaus 0.850 0.876 0.709 0.828 0.775 0.755 0.865 0.808

GS-Dynamics 0.876 0.842 0.763 0.887 0.802 0.749 0.880 0.828
DyG2T(Ours) 0.895 0.871 0.875 0.907 0.887 0.873 0.919 0.889

LPIPS↓
Spring-Gaus 0.349 0.303 0.370 0.230 0.332 0.335 0.250 0.310

GS-Dynamics 0.197 0.280 0.324 0.163 0.317 0.306 0.210 0.257
DyG2T(Ours) 0.139 0.220 0.189 0.131 0.178 0.207 0.122 0.171

Table 3: Quantitative results of motion prediction on Spring-Gaus real-world dataset and our
Unity3D-H dataset.

Metrics Methods Spring-Gaus real-world Unity3D-H
Dog Potato Pig Burger Bun Polyhedron

PSNR↑
Spring-Gaus 21.499 20.881 21.136 21.026 20.456 31.027

GS-Dynamics 26.141 28.623 27.114 27.969 26.929 31.352
DyG2T(Ours) 27.676 27.933 27.750 30.645 27.197 31.768

SSIM↑
Spring-Gaus 0.987 0.985 0.986 0.985 0.984 0.985

GS-Dynamics 0.988 0.989 0.989 0.988 0.988 0.987
DyG2T(Ours) 0.991 0.987 0.989 0.994 0.988 0.990

LPIPS↓
Spring-Gaus 0.030 0.032 0.031 0.031 0.032 0.020

GS-Dynamics 0.023 0.020 0.020 0.022 0.020 0.018
DyG2T(Ours) 0.019 0.021 0.017 0.012 0.018 0.015

4.3 DYNAMICS MODELING AND REASONING OF MOVING OBJECTS

Table 4: Quantitative results of motion prediction
on the Heterogeneous Torus in Spring-Gaus synthetic
dataset. DyG2Tnoisy uses noisy dynamic reconstruction
results to evaluate sensitivity to noise input.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

Spring-Gaus 0.030 0.012 12.197 0.850 0.350
GS-Dynamics 0.116 0.049 13.342 0.861 0.235

DyG2Tnoisy 0.035 0.016 13.647 0.878 0.188
DyG2T(Ours) 0.015 0.000 14.080 0.893 0.129

To evaluate dynamic reasoning, we con-
duct motion predictions on both Spring-
Gaus and Unity3D-H datasets. As shown
in Table 2, DyG2T achieves promis-
ing results on the Spring-Gaus synthetic
dataset, particularly in 3D trajectory rea-
soning (CD & EMD), highlighting the
enhanced trajectory prediction accuracy
through more faithful dynamics modeling.
Although DyG2T ranks second on Cross
in terms of PSNR and SSIM, it still outper-
forms all methods on LPIPS, which better
aligns with human perceptual similarity. Figure 3(a) further illustrates that the predictions of Spring-
Gaus (spring-mass model) Zhong et al. (2024) and GS-Dynamics (GNN-based simulator) Zhang
et al. (2025a) exhibit noticeable positional deviations, whereas DyG2T accurately infers trajectories
and fine-grained appearance details, demonstrating strong generalizability across diverse objects.
Moreover, the inference time (Time) and frame rate (FPS) in Figure 3(a) also confirm that DyG2T
performs dynamic reasoning with higher computational efficiency.

Furthermore, as shown in Table 3, the evaluation on the Spring-Gaus real-world and Unity3D-H
datasets demonstrates that DyG2T exhibits strong real-world generalization and can be readily trans-
ferred to other benchmarks. While GS-Dynamics achieves leading performance on the relatively
simple Potato, it falls behind on toys with more complex geometries, such as Burger.
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Figure 3: Qualitative results. Motion prediction of (a) homogeneous, (b) heterogeneous objects, and
(c) DyG2T ablation variant in the Spring-Gaus synthetic dataset.

Table 5: Quantitative results of module ablation study.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

w/o spatial 0.354 0.203 16.174 0.875 0.220
w/o temporal 0.227 0.120 16.493 0.882 0.198

w/o transformer 0.197 0.110 16.246 0.875 0.201
DyG2T(Ours) 0.055 0.029 17.904 0.919 0.122

To further evaluate robustness and gen-
eralization, we conduct experiments on a
Heterogeneous Torus with complex phys-
ical properties. As shown in Table 4,
DyG2T achieves more accurate trajectory
prediction than the methods by capturing
the intricate force propagation within het-
erogeneous objects, yielding trajectories
closer to the ground truth (Figure 3(b)).
Moreover, we assess sensitivity to noisy inputs by introducing perturbations to the central trajec-
tory and applying non-rigid deformations to the dynamic reconstruction results. While noise causes
only minor degradation in 3D trajectory prediction for DyG2Tnoisy, its 2D appearance evaluation
still surpasses the baselines. The results on the Unity3D-H dataset in Table 3 also validate DyG2T’s
scalability to heterogeneous objects across different benchmarks.

4.4 ABLATION STUDIES Table 6: Ablation study on neighborhood ranges k
(Row 2 & 3), the Particle-level Spatial Semantic Com-
pletion (Row 4 & 5), and the Object-level Dynamic
Temporal Aggregation (Row 6∼9).

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

DyG2Tk=8 0.244 0.125 16.368 0.878 0.207
DyG2Tk=32 0.169 0.092 16.365 0.879 0.190

w/o PosDiff 0.372 0.178 16.742 0.886 0.195
w/o PosAware 0.107 0.056 17.613 0.912 0.139

w/o MAN 0.107 0.240 16.071 0.871 0.242
LSTM 0.117 0.055 17.002 0.893 0.166

avg pool 0.096 0.052 17.344 0.906 0.145
max pool 0.365 0.195 16.290 0.874 0.221

DyG2T(Ours) 0.055 0.029 17.904 0.919 0.122

The Modules of DyG2T. The ablation re-
sults for DyG2T’s core modules are pre-
sented in Table 5 and Figure 3(c). Com-
pared to DyG2T, the w/o spatial vari-
ant, where the neighborhood feature XPo
is disabled, exhibits a significant perfor-
mance drop. This confirms that sparse
sampling from the Raw Point cloud causes
a notable loss of fine-grained edge in-
formation and spatial semantics, and the
Particle-level Spatial Semantic Comple-
tion mechanism effectively addresses this
issue. Similarly, the performance degrada-
tion of w/o temporal, which replaces the
temporal attention aggregation with sim-
ple feature concatenation, highlights the
effectiveness of the Object-level Dynamic Temporal Aggregation in preserving dynamic evolution
patterns. Moreover, the comparison between DyG2T and w/o transformer, which replaces the Par-
ticle Graph Transformer with a vanilla GNN, demonstrates the importance of modeling force prop-
agation across multi-scales. Due to GNN’s limitations in local modeling, w/o transformer fails to
perform effective dynamics modeling, even when enriched with spatiotemporal features.

Spatial-Temporal Feature Completion and Aggregation. We investigate how the range k of Raw
Point neighborhood features Xt

Po influences dynamics modeling. As shown in Table 6 row 2 &
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3, we observe that an insufficient neighborhood (DyG2Tk=8) leads to inadequate spatial semantic
completion, resulting in a more significant performance drop compared to the large neighborhood
(DyG2Tk=32), which introduces redundant information. Thus, we set k = 16, which empirically
serves as the best practice for DyG2T.

We further conduct an ablation study on different components of the Particle-level Spatial Semantic
Completion. As shown in Table 6 row 4 & 5, the w/o PosDiff variant, which disables the PosDiff En-
coder, exhibits the most substantial degradation in CD and EMD. This highlights the importance of
encoding relative positional information among Key Points. Furthermore, the comparison between
w/o PosAware and DyG2T demonstrates that the Multi-head Position-Aware Attention mechanism
effectively guides the integration of coordinate and neighborhood features via Gaussian-weighted
ω, enhancing the accuracy of dynamics modeling.

Table 7: Ablation study of the number of Key
Points N∗ in the Particle Graph.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

N∗ = 50 0.470 0.247 16.003 0.869 0.248
N∗ = 100 0.055 0.029 17.904 0.919 0.122
N∗ = 150 0.098 0.050 17.509 0.909 0.151

We also ablate the Motion Align Net (MAN)
to investigate whether it successfully compen-
sates for relative motion offset. As shown in
Table 6 row 6∼9, the w/o MAN variant fails
to model object dynamics from misaligned mo-
tion features. This validates the effectiveness
of MAN in compensating for potential inter-
frame inconsistencies. Additionally, we com-
pare DyG2T’s Temporal Attention mechanism
with alternative feature aggregation strategies, including LSTM and average&max pooling. The re-
sults demonstrate that Temporal Attention achieves superior performance in aggregate temporally
coherent motion patterns, whereas the alternatives suffer from feature ambiguity or loss.

Table 8: Ablation study of the presence of edges
between Key Points and their top-kG nearest
neighbors.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

kG = 2 0.564 0.255 18.436 0.910 0.183
kG = 5 0.055 0.029 17.904 0.919 0.122
kG = 10 0.186 0.107 16.398 0.881 0.193

Dynamics Modeling Based on Particle
Graph Transformer. Table 7 presents the
impact of the number of Key Points N∗ on
dynamics modeling. A small Graph (N∗ = 50)
including sparse Key Points, which fail to
provide sufficient support for dynamics mod-
eling. Moreover, a large Graph (N∗ = 150)
introduces excessive redundancy, which can
hinder effective modeling of dynamics. Table 8
investigates the effect of different edge sparsity
levels in the Particle Graph. A sparse Particle Graph (kG = 2) lacks sufficient alternative paths for
modeling force propagation, while a dense graph (kG = 10) increases the difficulty of identifying
optimal propagation. Notably, the kG = 2 variant exhibits poor trajectory prediction, causing the
rendering images to be filled with a large number of invalid pixels and resulting in abnormally high
PSNR; the LPIPS and SSIM still demonstrate the superiority of our method. Accordingly, we adopt
a moderate value of N∗ = 100, kG = 5 as the best practice for DyG2T.

5 CONCLUSION

This paper proposes DyG2T, a dynamics modeling framework that integrates spatiotemporally com-
pleted particle representations with multi-scale force propagation modeling. Spatially, DyG2T en-
riches each Key Point feature with fine-grained edge information and geometry perception by ag-
gregating positions from corresponding raw particles and relative coordinates from neighboring Key
Points. Temporally, inter-frame relative motion offsets are computed via Motion Align Net, and
Temporal Attention aggregates particle features across frames to preserve dynamic evolution pat-
terns. A Particle Graph Transformer further captures long-range interactions through multi-scale
force propagation paths, enabling accurate modeling of complex object dynamics. Extensive exper-
iments on both synthetic and real-world datasets demonstrate that DyG2T achieves precise trajectory
prediction while maintaining strong cross-object and real-world generalization. For future work, we
plan to investigate adaptive optimization mechanisms for hyperparameters (e.g., the neighborhood
range k of Raw Points), reducing reliance on prior knowledge. In addition, we aim to extend DyG2T
to model the dynamics of more complex heterogeneous objects (e.g., solid–liquid–gas mixtures),
further enhancing its scalability to real-world scenarios.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide general details on the datasets and exper-
imental settings in Section 4.1. Comprehensive information on the model architecture, datasets,
baselines, training setup, and additional results can be found in the Appendix A.
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APPENDIX

THE USAGE OF LLMS

In this work, large language models (LLMs) are employed solely during the manuscript preparation
stage to assist with translation and language refinement. Beyond this purpose, they are not utilized
for any other aspects of the study.

A OVERVIEW

We provide Implementation Details and Additional Results of DyG2T in the Appendix. Specifically,
the Appendix includes the following sections:

• Implementation details of the Trackable Particle-based Representation by Dynamic Reconstruc-
tion module, including:

– A comprehensive introduction to 3D Gaussian Splatting, which serves as the theoretical foun-
dation;

– The initialization strategy for the first frame;
– The physics-based prior loss functions used to constrain dynamic reconstruction;
– Training settings used during dynamic reconstruction.

• Implementation details of the Spatial-Temporal Features Completion and Aggregation module,
including:

– Normalization procedures to ensure the stability of Key/Raw Points;
– Details on PointNet-based encoding of k-nearest neighbors for each Key Point.

• Implementation details of the Dynamics Modeling based on the Particle Graph Transformer mod-
ule, including:

– The construction process of the Particle Graph;
– The implementation of the Particle Graph Transformer;
– Details on how Linear Blend Skinning (LBS) is used to predict dense motion point clouds.

• Datasets and baselines used to evaluate the performance of DyG2T.
• Hyperparameter settings used during the training of DyG2T.
• Configuration details of the released DyG2T source code.
• Additional results of dynamic reconstruction and ablation studies of the physics-based prior con-

straints.
• An investigation on how different reference frames in Motion Align Net affect the dynamics mod-

eling performance.
• Evaluation of DyG2T and GNN-based baselines on dynamics modeling of heterogeneous materi-

als.
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B IMPLEMENTATION DETAILS

B.1 TRACKABLE PARTICLE-BASED REPRESENTATIONS BY DYNAMIC RECONSTRUCTION

B.1.1 PRELIMINARY: 3D GAUSSIAN SPALTTING

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) optimizes a set of learnable Gaussian kernels as
an explicit scene representation through a differentiable rasterizer. Each kernel is parameterized by a
center µi, a covariance matrix Σi, an opacity σi, and spherical harmonics coefficients hi. The color
C of each 2D pixel is computed using a depth-sorted Max Volume Rendering Luiten et al. (2024):

C =
∑
i∈N

ciϕ
2D
i

i−1∏
j=1

(1− ϕ2D
j ) (11)

where N denotes the set of the Gaussian kernels, and ci is the RGB color of kernel i obtained from
spherical harmonics based on the viewing direction and coefficients hi. ϕi is the weighted opacity
of kernel i:

ϕi = σi exp

(
−1

2
(x− µi)

TΣ−1
i (x− µi)

)
(12)

ϕ2D
i is the 2D version of Equation 12. The pixel position is obtained by approximating a perspective

projection of the 3D Gaussian’s center µi and covariance matrix Σi:

µ2D
i = (K((Wµi)/(Wµi)z))1:2

Σ2D
i = (JWΣiW

TJT )1:2,1:2
(13)

where W and K represent the extrinsic and intrinsic parameters of the view camera, respectively,
and J is the Jacobian matrix of the projection transformation.

B.1.2 FIRST FRAME POINT CLOUD INITIALIZATION STRATEGY

Most existing methods utilize COLMAP Schonberger & Frahm (2016) to obtain a coarse 3D estima-
tion of the object as the initialization for 3D Gaussian Splatting. However, prior studies Zhong et al.
(2024) have shown that such initialization typically leads to Gaussian kernels being predominantly
distributed on the object’s surface, primarily encoding appearance information. This surface-biased
distribution hinders subsequent modeling of internal force propagation within the object. To address
this issue, we randomly initialize 100,000 Gaussian kernels with random RGB colors within the 3D
space corresponding to the object’s initial position. This strategy ensures a more uniform spatial
distribution of kernels, providing a better foundation for capturing internal dynamics.

B.1.3 PHYSICAL CONSTRAINTS FOR DYNAMIC RECONSTRUCTION

To ensure physical consistency while fitting the appearance of dynamic objects across frames, we
incorporate both appearance loss and physical constraints following a similar strategy to Dynamic
3D Gaussian (Dyn3DGS) Luiten et al. (2024). Specifically, we employ a weighted combination of
L1 loss and Structural Similarity Index (SSIM) Wang et al. (2004) loss as the optimization objective
for static appearance reconstruction on the first frame:

Lvis = (1− λvis)L1 + λvisLSSIM (14)

where Lvis is simultaneously applied to constrain both the 2D rendered images and the semantic
segmentation maps, λvis = 0.2. Moreover, to ensure that the Gaussians with frozen visual attributes
can accurately capture the motion dynamics of the object, we introduce non-rigid physical modeling
constraints inspired by Dyn3DGS. These include the local rigidity loss Lrigid, local rotation simi-
larity loss Lrot, and local isometric loss Liso. As a key constraint to prevent arbitrary movement of
the Gaussian kernels, the local rigidity loss Lrigid enforces each Gaussian and its spatial neighbors
to undergo consistent rigid transformations. This ensures compatibility of Gaussian rotation and
translation across frames:

Lrigid
i,j = wi,j

∥∥(µj,t−1 − µi,t−1)−Ri,t−1R
−1
i,t (µj,t − µi,t)

∥∥
2

(15)
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Lrigid =
1

k|S|
∑
i∈S

∑
j∈knni;kPh

;

Lrigid
i,j (16)

where S is the set of Gaussian functions, knni;k denotes the kPh-nearest neighbors of Gaussian i,
and wi,j represents the unnormalized isotropic Gaussian weight factor:

wi,j = exp
(
−λw ∥µj,0 − µi,0∥22

)
(17)

where λw = 2000. The weight wi,j is initialized using the positions of the Gaussian kernels in the
first frame, µi,0 and µj,0, and kept fixed at all subsequent frames. In this way, Dyn3DGS enforces
local rigidity while still allowing non-rigid transformations at the object scale. Although Dyn3DGS
implicitly enforces consistent rotation among a Gaussian kernel and its neighbors through Lrigid,
introducing an explicit constraint on this objective can further improve the convergence behavior of
the model:

Lrot =
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j

∥∥q̂j,tq̂−1
j,t−1 − q̂i,tq̂

−1
i,t−1

∥∥
2

(18)

where q denotes the rotation of a Gaussian kernel in quaternion form, and the Gaussian weight
factor wi,j is shared with Lrigid. Furthermore, to prevent dynamic point cloud tearing and separation
that may arise from the continuous application of the local rigidity loss Lrigid and the local rotation
similarity loss Lrot across adjacent frames, the local isometry loss Liso is introduced. It enforces the
consistency of relative distances among neighboring Gaussian kernels with respect to the first frame,
thereby ensuring point cloud stability throughout long-term motion:

Liso =
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j |∥µj,0 − µi,0∥2 − ∥µj,t − µi,t∥2| (19)

Overall, the dynamic reconstruction constraint is formulated as a weighted sum of all the aforemen-
tioned losses. For clarity, we use λim, λseg, λrigid, λrot, and λiso to denote the weights corresponding
to Lim, Lseg, Lrigid, Lrot, and Liso, respectively. Contrary to prior empirical practices, our experi-
ments reveal that the 2D rendered images and semantic segmentation maps should be assigned equal
weights; assigning inappropriate or excessively high weights can degrade the object appearance and
introduce significant noise. In addition, the selection of kPh-nearest neighbors for Gaussian i also
has a notable impact on dynamic reconstruction performance.

As shown in Appendix B.1.3, we determine the optimal set of dynamic tracking parameters for
the Spring-Gaus synthetic dataset through ablation studies. In practice, we set λim = λseg = 1,
λrigid = 4, λrot = 0.08, λiso = 20, and kPh = 20.

B.1.4 DYNAMIC RECONSTRUCTION CONFIGS

We set the number of iterations for the static reconstruction of the first frame to 10,000, during
which all Gaussian kernel attributes are allowed to be optimized. Subsequently, except for the
centers and rotations, all other attributes are frozen, and the iteration is reduced to 2,000. The
dynamic reconstruction process consists of frame-by-frame optimization performed on the same
set of Gaussian kernels. The centers and rotations for the next frame are estimated based on the
motion vectors relative to the previous frame. The momentum parameters of the Adam optimizer
are reinitialized at each frame.

B.2 SPATIAL-TEMPORAL FEATURES COMPLETION AND AGGREGATION

B.2.1 RAW POINT CLOUD CONSTRUCTION

To mitigate the impact of outliers on dynamics modeling, we introduce an outlier detection and filter-
ing system based on the Median Absolute Deviation (MAD). Specifically, for a temporal sequence
P = {p0,p1, · · · ,pT−1} where pt ∈ R3, we first quantify the relative motion d ∈ R(T−1)×N of
the point cloud using inter-frame Euclidean distances:

dt = ∥pt+1 − pt∥2 for t = 0, 1, · · · , T − 2 (20)
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The per-frame relative motion d is accumulated along the temporal dimension to compute the total
relative motion s ∈ RN for each point:

sn =

T−2∑
t=0

d
(n)
t for n = 0, 1, · · · , N − 1 (21)

Subsequently, we apply a Median Absolute Deviation (MAD)-based outlier detection method to
filter the point cloud:

µ = median(s)

MAD = median(|si − µ|)
zi = |si − µ|/MAD

validi = I[zi < 3]

(22)

where I denotes that validi is set to 1 when zi < 3. In this way, we effectively filter out abnormal
trajectory points that exhibit sudden jumps or remain stationary, ensuring the consistency of motion
patterns across trajectory points.

Furthermore, we apply a 3-point moving average to suppress high-frequency noise and smooth local
fluctuations in the trajectories:

P
(m)
1:T−1,: =

1

3

(
P

(m−1)
0:T−2,: +P

(m−1)
1:T−1,: +P

(m−1)
2:T,:

)
(23)

where m = 1, . . . , 10 denotes the number of smoothing iterations. This method essentially functions
as a low-pass filter for discrete signals, analogous to a convolution operation:

pnew = p ∗ h (24)
where h =

[
1
3 ,

1
3 ,

1
3

]
. The transfer function of this filter in the frequency domain is:

H(ω) =
1

3
(1 + e−iω + e−i2ω) (25)

Through the above method, we extracted the Raw Point Cloud from the tracking reconstruction
results of Dyn3DGS. Subsequently, we applied Farthest Point Sampling (FPS) Qi et al. (2017b) to
downsample the Raw Point Cloud containing N points into a set of Key Points with N∗ points. In
addition, to avoid overly dense and imbalanced distributions of key points, we employed a distance-
based filtering strategy to remove clustered points whose pairwise distances fall below a predefined
threshold.

B.2.2 k-NEAREST-NEIGHBOR SPATIAL SEMANTIC ENCODING

We adopt PointNet Qi et al. (2017a) as the local spatial-semantic encoder for the Key Point neigh-
borhoods. To better tailor it to our task, we make slight modifications to the vanilla PointNet.
Specifically, we extract the N∗ × dPN hidden features before the global pooling layer of the vanilla
PointNet Classification Network as the spatial-semantic representations of the N∗ Key Points, where
dPN is a hyperparameter of DyG2T, typically set to 256 in practice.

Moreover, we disable the T-Net module (Input Transform), originally designed to predict affine
transformation matrices in vanilla PointNet. This is because DyG2T already ensures affine alignment
and cross-frame translation consistency via the Motion Align Net. Introducing an additional T-Net
would lead to redundant correction and may negatively affect motion coherence.

B.3 DYNAMICS MODELING BASED ON PARTICLE GRAPH TRANSFORMER

B.3.1 PARTICLE GRAPH CONSTRUCTION

We construct the Particle Graph by adding undirected edges between Key Points whose pairwise
distances fall below a predefined threshold de. Specifically, we compute the Euclidean distances
between all pairs of Key Points at frame t and connect each point to the top-kG closest neighbors
with distances less than de. In practice, we set de = 0.08 (with de = 0.1 for Cross), and the value
of top-kG is determined based on the object category: for Cross, Apple, Toothpaste, and Chess,
kG = 7; for all other objects, kG = 5. The size of the Particle Graph is denoted as N∗, with
its optimal value varying across object appearances: N∗ = 100 for Torus, Cream, and Banana;
N∗ = 120 for Cross; and N∗ = 150 for Apple, Toothpaste, and Chess.
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B.3.2 FORCE PROPAGATION BASED ON PARTICLE GRAPH TRANSFORMER

As shown in Figure 2 of the main text, the aggregated output of the Spatial-Temporal Features
Completion and Aggregation mechanism module, denoted as XAg ∈ RN∗×HAg , serves as the node
feature input for force propagation modeling. Before performing computations within the Particle
Graph Transformer, we introduce a Particle Encoder to bridge the learnable feature gap between the
two modules. This encoder is implemented as a 3-layer MLP with ReLU, which maps the feature
space from HAg to HG.

Our Particle Graph Transformer for dynamics modeling is built upon the UniMP architecture pro-
posed by Shi et al. Shi et al. (2021), with several key adaptations. Specifically, we disable the
Masked Label Prediction mechanism and retain the core Particle Graph Transformer module for
global interaction modeling, along with the Gated Residual to mitigate over-smoothing. Further-
more, recognizing the unordered nature of point cloud particles in dynamic modeling—i.e., the
invariance to the ordering of nodes in the adjacency or feature matrices—we also remove the Rotary
Embedding strategy originally used for node positional encoding in UniMP. To mitigate the over-
smoothing that often arises in full-graph modeling, we introduce Gated Residual Chen et al. (2020);
Li et al. (2019a):

g(l) = W(l)
g X̂(l) + b(l)

g (26)

β(l) = Sigmod
(
W

(l)
β

[
X̂(l); g(l); X̂(l) − g(l)

])
(27)

X(l+1) = max
(

LN
((

1− β(l)
)
X̂(l+1) + β(l)g(l)

))
(28)

B.3.3 DENSE 3D GAUSSIAN MOTION PREDICTION

We need to estimate the 3D rotation R∗,t ∈ RN∗×3 based on the key point translation motion M∗,t:

R∗,t
i = arg min

R∈SO(3)

∑
j∈N∗(i)

∥∥∥R (µ∗,t
j − µ∗,t

i

)
−
(
µ∗,t+1
j − µ∗,t+1

i

)∥∥∥2 (29)

where N ∗(i) is the local neighborhood of key point i. Next, we use Linear Blend Skinning
(LBS) Sumner et al. (2007); Huang et al. (2024) to interpolate the densified Gaussian kernel at
t+ 1, Gt+1 =

{
µt+1
i

}
0≤i≤N

, based on the 6-DoF transformation of key points at t (i.e., M∗,t and

R∗,t
i ). Specifically:

µt+1
i =

N∗∑
u=1

γt
iu

(
Rt

u

(
µt
i − µ∗,t

u

)
+ µ∗,t

u +M∗,t)
rt+1
i =

(
N∗∑
u=1

γt
iuf
(
R∗,t

u

))
⊙ rti

(30)

where f (R∗,t
u ) denotes the mapping from the rotation matrix of key point u at t to its quaternion

representation. µt+1
i and rt+1

i represent the center and rotation quaternion of the Gaussian kernel

i at t + 1, respectively. The weight γt
iu =

∥µt
i−µ∗,t

b ∥−1∑N∗
u=1∥µt

i−µ∗,t
u ∥−1 captures the relative influence of key

point u on Gaussian kernel i.

B.4 DATASET & BASELINES

Dataset. We evaluate DyG2T on Spring-Gaus synthetic & real-world dataset Zhong et al. (2024)
and Unity3D-Heterogeneous dataset. In the Spring-Gaus synthesis dataset, the initial 3D appear-
ance is derived from PAC-NeRF Li et al. (2023) and OmniObject3D Wu et al. (2023). Then, MPM
is used to simulate dynamics and obtain dynamic ground truth, followed by multi-view RGB video
rendering using Blender. For the Unity3D-Heterogeneous dataset, we first constructed a polyhe-
dron in Unity3D Wang et al. (2010) composed of heterogeneous elastic materials in a 1:1 ratio.
Subsequently, we strategically placed ten synchronized cameras across the upper hemisphere of the
scene to capture the motion of the polyhedron being released from midair and bouncing upon im-
pact with the ground. Unlike the Spring-Gaus synthetic dataset, which simulates 3D point clouds
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Table 9: Quantitative results of dynamic reconstruction for DyG2T and baselines on Spring-Gaus
synthetic dataset.

Metrics Methods Torus Cross Cream Apple Paste Chess Banana Mean

CD↓

Dy-Gaus 579 773 479 727 2849 764 2963 1305
4D-Gaus 11.12 1.77 2.87 2.23 1.95 3.97 7.13 4.43

PAC-NeRF 4.92 1.10 0.77 1.11 3.14 0.96 2.77 2.11
Spring-Gaus 0.012 0.016 0.014 0.014 0.110 0.017 0.049 0.019

DyG2T(Ours) 0.008 0.010 0.012 0.011 0.008 0.010 0.007 0.010

EMD↓

Dy-Gaus 0.857 0.995 0.783 0.903 1.739 0.985 1.591 1.116
4D-Gaus 0.130 0.078 0.089 0.088 0.070 0.097 0.112 0.095

PAC-NeRF 0.056 0.052 0.041 0.045 0.054 0.052 0.062 0.052
Spring-Gaus 0.003 0.005 0.007 0.006 0.003 0.007 0.024 0.008

DyG2T(Ours) 0.001 0.002 0.005 0.003 0.002 0.002 0.002 0.003

before rendering videos, Unity3D directly simulates and renders the dynamics of the object based
on its heterogeneous material properties. Consequently, the Unity3D-Heterogeneous dataset does
not provide 3D point cloud data that could be used to evaluate trajectory consistency.

Baselines. Following previous works, we evaluate DyG2T from two perspectives. For dynamic
reconstruction, we compare against Spring-Gaus Zhong et al. (2024), which optimizes per-frame
geometry using a spring-mass model initialized from the first frame. Referring to the Spring-
Gaus Zhong et al. (2024), we also introduced Dy-Gaus Luiten et al. (2024), 4D-Gaus Wu et al.
(2024), and PAC-NeRF Li et al. (2023) to more comprehensively evaluate the dynamic reconstruc-
tion performance. For dynamics modeling, we adopt GS-Dynamics Zhang et al. (2025a), a pipeline
that combines Dyn3DGS with GNNs, and Spring-Gaus as baselines. All baselines are retrained
using the optimal hyperparameters recommended by the authors, and the best performances are
reported.

B.5 TRAINING SETUP

We train DyG2T for 1000 epochs, with each epoch comprising 100 iterations Zhang et al. (2025a).
We adopt the Adam optimizer with a learning rate of 0.001. The PointNet uses k = 16 (k = 8 in
Apple and Toothpaste), and the sharpness parameter ρ is set to half the minimum distance between
key points. We perform ϵ = 5 predictions in each training iteration and sum the MSE losses,
which are used for backpropagation. To meet training requirements, we augment each dynamic
reconstructed object trajectory to 30 instances via random translation and rotation, and split them
into training and validation sets at a 4:1 ratio.

B.6 CODE IMPLEMENTATION

The source codes and corresponding operation instructions are shown in code.zip. The results of the
submitted codes are achieved in the following environment:

cuda = 12.4

cudnn = 9.1.0

pytorch = 2.4.0

torchvision = 0.19.0

python = 3.10.16

(31)

The third-party library used in our study has also been attached to the package. Users are encouraged
to run the code in the same setting. For other possible environments, the performance reproduction
results may not be guaranteed to be the same.
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Figure 4: Qualitative results of dynamic reconstruction for DyG2T and baselines. (a), (b), and (c)
correspond to Banana, Toothpaste, and Apple, respectively.

Table 10: Quantitative results of dynamic reconstruction for DyG2T and its variants. “-” indicates
memory overflow during metric computation caused by the explosion of point cloud size. ”Num
PT” denotes the number of particles in the reconstructed point cloud.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓ Num PT

Overweight 0.008 - 32.027 0.981 0.014 311198
Unequal 0.007 0.002 33.038 0.980 0.009 12691

Large Ner 0.008 0.001 33.744 0.985 0.007 7566
Small Ner 0.010 0.003 32.753 0.981 0.013 7564

Ours 0.008 0.001 34.001 0.985 0.007 7307

C ADDITIONAL RESULTS

C.1 TRACKABLE PARTICLE-BASED REPRESENTATION BY DYNAMIC RECONSTRUCTION

C.1.1 QUALITATIVE AND QUANTITATIVE RESULTS OF DYNAMIC RECONSTRUCTION

In Section 4.2 of the main text, we present the quantitative results of dynamic reconstruction for
DyG2T and the baselines on the synthetic Spring-Gaus dataset Zhong et al. (2024). The complete
quantitative results compared with more baselines are shown in Table 9. Some results are cited
from Spring-Gaus Zhong et al. (2024). Furthermore, we present the qualitative results of this task
in Figure 4. As shown in Figure 4(a), Spring-Gaus Zhong et al. (2024) exhibits significant spa-
tial mismatch during dynamic reconstruction under the supervision of visible frames. Figure 4(c)
shows another manifestation of reconstruction error: inaccurate motion estimation leads to incor-
rect judgments about the object’s contact timing and rebound amplitude, resulting in biased object
appearances. The reconstruction deviations shown in Figures 4(a) and (c) may mislead dynamics
modeling and cause severe error accumulation. Moreover, as shown in Figure 4(b), Spring-Gaus per-
forms relatively well on the Cross object, suggesting that its reconstruction performance is sensitive
to object appearance and attributes, revealing a limitation in generalization compatibility.

C.1.2 PHYSICAL PRIORS ON THE DYNAMIC RECONSTRUCTION

To further investigate the impact of different physical priors on the dynamic reconstruction per-
formance of DyG2T, we design four variants: Overweight, which applies overly strong physical
constraint weights inspired by GS-Dynamics Zhang et al. (2025a); Unequal, which assigns imbal-
anced weights to 2D rendered images and semantic segmentation maps; and Large/Small Ner, where
the number of Gaussian neighbors kPh is set to 20 and 3, respectively. The quantitative results are
reported in Table 10.

In our experiments, the optimal dynamic tracking parameters achieve the best description of object
motion with the smallest point cloud scale. Although the Unequal and Large Ner variants achieve
comparable point cloud quality (CD & EMD) to our full model, they suffer from noisy outlier
points in the reconstructed clouds (as shown in Figure 5), which directly degrade the 2D rendering
performance—PSNR for Large Ner; PSNR, SSIM, and LPIPS for Unequal. We attribute this to
two factors: the imbalanced weighting of semantic segmentation maps (Unequal), and the overly
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Ours Overweight Unequal

Large Ner Small Ner

Figure 5: Visualization of dynamic reconstruction point clouds generated by DyG2T and its variants.
Zoomed-in views are provided to highlight the fine-grained structural details of the reconstructed
point clouds. The background planes composed of blue, red, and green points represent the planes
z = 0, x = 0, and y = 0, respectively.

Table 11: Ablation study on using different frames as the alignment reference. ”Align Refer” indi-
cates the index of the selected reference frame.

Align Refer CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

t-2 0.250 0.125 16.810 0.882 0.211
t-1 (Ours) 0.055 0.029 17.904 0.919 0.122

t 0.131 0.068 16.964 0.893 0.175

broad Gaussian neighborhoods (Large Ner), both of which introduce excessive noise into dynamic
reconstruction.

In contrast, the Overweight variant produces an excessively large point cloud (311,198 particles)
due to overly strong physical constraints. This results in distorted and deformed point clouds that
are difficult to evaluate quantitatively (EMD computation leads to out-of-memory errors), and also
exhibit degraded 2D rendering quality. The Small Ner variant, which considers only 3 Gaussian
neighbors, yields the worst point cloud quality; the visualizations in Figure 5 further support this
finding. We believe that enforcing physical constraints within such a limited local neighborhood
leads to a disconnect between local and global structures, ultimately hampering coherent dynamic
reconstruction.

C.2 SPATIAL-TEMPORAL FEATURE COMPLETION AND AGGREGATION

In the Object-level Dynamic Temporal Aggregation module, we adopt the Motion Align Net to
achieve flexible alignment of cross-frame motion, reducing trajectory prediction errors. In practice,
Motion Align Net requires selecting a reference frame to compute relative motion offsets. To inves-
tigate the impact of different reference frames on dynamics modeling, we conduct ablation studies
by varying the reference frame used for alignment.

As shown in Table 11, variants that use either the t − 2 or t frame as the alignment reference fail
to achieve accurate trajectory prediction. These two frames represent the endpoints of the visible
motion observation window. When using either as the reference, alignment must span across the
intermediate frame. For instance, if the t − 2 frame is selected as the reference, aligning the t
frame requires skipping over the t− 1 frame. We argue that this skip-frame alignment increases the
difficulty of computing reliable cross-frame offsets, making motion compensation more challenging.
Therefore, in practice, we adopt the t− 1 frame as the reference frame to balance observability and
alignment stability.
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Table 12: Quantitative results of DyG2T and its GNN variants on the dynamics modeling of the
Heterogeneous Torus.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

DyG2T-GNN 0.021 0.008 13.995 0.891 0.143
DyG2T(Ours) 0.015 0.000 14.080 0.893 0.129
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Figure 6: (a) Qualitative results of DyG2T and its GNN variants on the dynamics modeling of the
Heterogeneous Torus. (b) Local zoom-in views for evaluating the fine-grained details of dynamics
modeling.

C.3 DYNAMICS MODELING AND REASONING OF MOVING OBJECTS

We further present the dynamics modeling results of DyG2T and its GNN-based variant on the
Heterogeneous Torus. In the DyG2T-GNN variant, we retain the Spatial-Temporal Features Com-
pletion and Aggregation mechanism while replacing the Particle Graph Transformer module with a
GNN. The quantitative results are shown in Table 12. Although DyG2T-GNN benefits from suffi-
cient spatiotemporal semantic information via the hierarchical attention mechanism, it struggles to
accurately capture the complex internal force propagation patterns of heterogeneous materials due
to limitations such as over-smoothing Sun et al. (2022; 2025); Li et al. (2019a). This significantly
hampers dynamics reasoning, leading to degraded performance in both 3D point cloud reconstruc-
tion (as measured by CD and EMD) and 2D rendering (PSNR, SSIM, and LPIPS), compared to
DyG2T.

The qualitative results in Figure 6 further support these observations. The heterogeneous mate-
rial properties of the Torus increase the difficulty of dynamics modeling. Without the capacity to
globally capture multi-scale force propagation, DyG2T-GNN exhibits noticeable error accumulation
during the later stages of dynamics reasoning (Figure 6(a)). This results in evident artifacts in the
inferred appearance of the Heterogeneous Torus, as shown in Figure 6(b).
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