
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYG2T: MODELING OBJECT DYNAMICS WITH 3D
GAUSSIAN TEMPORAL-SPATIAL PARTICLE GRAPH
TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasing interaction demands with dynamic objects require accurate modeling of
their dynamics and precise prediction of motion trajectories from limited observa-
tions. Existing approaches rely on the coordinates of downsampled Key Points as
the feature basis and model their interactions within local neighborhoods, result-
ing in the loss of fine-grained details and homogenized particle representations.
In this work, we propose DyG2T, a dynamics modeling framework that leverages
spatiotemporally completed particle representations for multi-scale force propa-
gation. Spatially, each Key Point enriches fine-grained edge features and spatial
geometry by aggregating position information from corresponding raw particles
and relative coordinates from neighboring Key Points. Temporally, after supple-
menting Key Points with inter-frame relative motion offsets via Motion Align Net,
the Temporal Attention is applied to aggregate Key Point features across adjacent
frames, preserving the dynamic evolution patterns of particles. For comprehen-
sive interactive modeling, a Particle Graph Transformer establishes multi-scale
force propagation paths from contact-near to distant Key Points, preserving dis-
criminative long-range dependencies critical for accurate trajectory modeling. Ex-
periments on synthetic and real-world datasets demonstrate that DyG2T achieves
accurate trajectory decoding, strong cross-object and real-world generalization.

1 INTRODUCTION

Recently, artificial intelligence has evolved from disembodied intelligence operating independently
of the physical world toward embodied systems that require interaction with more realistic, complex
real-world environments Li et al. (2024a); Zhang et al. (2025b). Against this evolutionary back-
drop, real-time and accurate interaction between intelligent agents and various objects has become
a fundamental prerequisite, which necessitates that the agents can infer object dynamics and pre-
dict motion trajectories based on limited observations. Consequently, object dynamics modeling
has emerged as a core technical demand, aiming to capture the motion patterns of highly maneu-
verable objects in continuous dynamic spaces by modeling complex physical processes (e.g., force
propagation Zhong et al. (2024)), with the ultimate goal of enabling precise object motion trajectory
prediction to support seamless agent-environment interaction.

To acquire the object dynamics, most existing approaches Li et al. (2019b); Zhang et al. (2025a)
begin by employing 3D reconstruction Mildenhall et al. (2021) to convert 2D visual observations
into 3D raw particle representations of moving objects, followed by downsampling such as Farthest
Point Sampling (FPS) Qi et al. (2017b) to extract sparse Key Points that serve as representatives for
dynamics modeling. Broadly, the dynamics modeling methods can be categorized into two main
groups. Physics-engine-based methods Li et al. (2023); Arnavaz et al. (2023) rely on predefined ma-
terial equations to derive the state evolution of Key Points, but they suffer from limited adaptability
when generalizing across objects with diverse materials. In contrast, differentiable network-based
approaches Zhong et al. (2024) construct deep models to capture local interaction patterns within
the neighborhoods of Key Points and infer their future positions, freeing the modeling process from
displacement calculations based on physical equations. Nevertheless, relying on Key Points infor-
mation overlooks the rich appearance details encoded in the raw particles, while restricting modeling

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

···

Dynamic Reconstruction Dynamics Modeling & Reasoning

force

DyG2T (Ours)
Particle Tokens

··
··

··

Key Point

Raw Point

Raw Point Cloud

Feature 

Complement

FPS Sampling

FPS Sampling

Key Points

Particle Graph Transformer

Node 2

Node 1

Node 0
…

…

t

Input Video

···

Key Points

······
······

······

Differentiable 

Network-based

TrajectoryAppearance

······

G
ro

u
n

d
 T

ru
th

C
am

 1
C

am
 1

Node 3

Raw Point Cloud

Figure 1: DyG2T vs Differentiable Network-based methods. DyG2T captures multi-scale force
propagation, preserving accurate appearance and trajectories.

to spatially confined interactions tends to yield homogenized feature representations. These limita-
tions manifest as inaccurate appearance predictions and drifting trajectories.

Specifically, in one respect, researchers adopt the coordinates of downsampled Key Points as the ini-
tial particle representation for dynamics modeling. As shown in Figure 1, FPS discards a substantial
portion of raw particles in the 3D raw particle representation (i.e., Raw Point Cloud) that are critical
for capturing fine-grained edge details. Moreover, relying on coordinates as initial features further
weakens the model’s perception of object geometry and appearance. This dual loss of edge details
and geometric cues compromises the integrity of the feature basis, impeding dynamics modeling
and leading to errors in both appearance and trajectory decoding. Therefore, retaining the particle
representation with complete and rich information is fundamental to robust dynamics modeling.

In another respect, local modeling overlooks the influence of forces across multiple spatial scales
on particle representations. As shown in Figure 1, each node can only indirectly acquire multi-scale
information by iterative neighborhood aggregation. This neighborhood-based update and outward
diffusion mechanism tends to homogenize particle representations Sun et al. (2022). Such homoge-
nization blurs the distinctions among forces of varying scales, ultimately causing positional decod-
ing errors and trajectory deviations. Consequently, capturing discriminative particle representations
through multi-scale force propagation modeling is also crucial for accurate dynamics modeling.

In this work, we propose DyG2T, which employs spatiotemporally completed particle representa-
tions to support multi-scale force propagation modeling. As shown in Figure 1, DyG2T leverages
dynamic reconstruction (e.g., Dyn3DGS) to extract trackable particle representations from sparse-
view videos. To ensure the integrity of spatiotemporal representations, at the spatial representation
level, each Key Point aggregates position information from the Raw Points it corresponds to before
downsampling—enriching fine-grained edge representation—and concurrently aggregates relative
position information with neighboring Key Points, which enhances the ability to perceive spatial
geometry. In addition, at the temporal representation level, we calculate the relative motion offset of
each particle between adjacent frames using Motion Align Net and employ the Temporal Attention
to aggregate particle representations across frames, enabling the retention of all Key Points’ dynamic
evolution patterns. For multi-scale force propagation modeling, we introduce a Particle Graph Trans-
former that establishes propagation paths from contact-near Key Points to those across multi-scales,
preserving discriminative long-range features essential for effectively depicting the temporal collab-
orative evolution trajectories of all Key Points. We evaluate DyG2T on the Spring-Gaus synthetic &
real-world Zhong et al. (2024) and our Unity3D-Heterogeneous datasets, demonstrating its strong
cross-object generalization and real-world scalability. The contributions of this work are as follows:
• We propose a dynamics modeling framework named DyG2T, which mitigates trajectory prediction

bias by preserving differentiated force propagation information within particle representations.
• DyG2T enriches the particle representations with fine-grained spatial semantics and temporal evo-

lution features through spatial completion and temporal aggregation, respectively.
• Extensive experiments on both synthetic and real-world datasets demonstrate that DyG2T accu-

rately models object dynamics across diverse geometries and material properties.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 DYNAMIC 3D SCENE RECONSTRUCTION

Owing to advances in dynamic neural radiance fields Fridovich-Keil et al. (2023); Pumarola et al.
(2021) and dynamic 3D Gaussians Li et al. (2024b); Lin et al. (2024), significant progress has been
made in reconstructing dynamic 3D scene representations from observations. Dyn3DGS Luiten
et al. (2024) achieves dense tracking of dynamic scenes on a unified point cloud. Compared with
these approaches, which do not consider physical modeling, we build upon dynamic reconstruction
and introduce dynamics modeling to enable future motion prediction.

2.2 PHYSICS-BASED DYNAMICS MODELING AND REASONING

Given the complexity of continuous motion spaces, inferring dynamics from sparsely observed ini-
tial states remains a formidable challenge. Some studies Xie et al. (2024); Zhang et al. (2024)
leverage prior-configured physics engines to model material-specific dynamics, enabling reasoning
over object deformations Arnavaz et al. (2023) or physical properties Qiao et al. (2022). Others em-
ploy GNNs as differentiable simulators to capture particle-level motion characteristics, encouraging
progress across diverse material settings Li et al. (2019b); Zhong et al. (2024). Additionally, some
researchers Xie et al. (2025) have incorporated physical constraints into interactive simulations to
facilitate urban navigation. Most relevant to our work, GS-Dynamics Zhang et al. (2025a) remains
constrained by GNN-based simulation, often overlooking the heterogeneity of force propagation. In
contrast, our approach explicitly differentiates forces across distance scales, thereby achieving more
accurate trajectory prediction.

3 METHOD

In this section, we introduce the details of DyG2T. For each dynamic object, given a set of 2D
observations {Io,t}O,T

o=1,t=1 consisting of O views and T frames, the goal is to predict the object’s
future position through dynamics modeling. As shown in Figure 2(a), we first acquire the track-
able raw particle-based representations Gt of the moving object from observations I via dynamic
reconstruction. Next, we extract Key Point G∗

t using FPS to serve as the basis for dynamics model-
ing. Subsequently, the Spatial-Temporal Feature Completion and Aggregation mechanism operates
on Raw & Key Points to perform particle-level spatial semantic completion and object-level dy-
namic temporal aggregation, resulting in enriched Key Point Embeddings XAg (Figure 2(b)). We
then employ the Particle Graph Transformer to construct direct force propagation pathways between
Key Points, enabling accurate trajectory modeling and precise displacement prediction M∗,t. After-
wards, the positions of the Key Points Ĝ∗

t+1 at frame t+ 1 is updated by adding displacement M∗,t

to G∗
t . (as shown in Figure 2(c)). Finally, with the aid of Linear Blend Skinning (LBS) Sumner

et al. (2007); Huang et al. (2024), we interpolate the positions of Key Points to estimate the final
next-frame raw particle positions Ĝt+1, thus obtaining the object’s future motion.

3.1 TRACKABLE PARTICLE-BASED REPRESENTATION BY DYNAMIC RECONSTRUCTION

Following Dyn3DGS Luiten et al. (2024), we reconstruct the trackable raw particle position se-
quences {G1, . . . , GT } from visual observations {Io,t}O,T

o=1,t=1, where Gt = {µt
i|i ∈ [1, N ]},

µt
i = (xt

i, y
t
i , z

t
i) is the i-th raw particle coordinates at frame t. Specifically, we begin with per-

forming static 3D Gaussian Splatting Kerbl et al. (2023) on the first-frame {Io,1}Oo=1 to obtain
the particle-based appearance descriptors (e.g., size, color, opacity) and the initial spatial repre-
sentations, including the positions G1 and rotations r1. The rotation r1 is represented by quater-
nion

{(
qw1

i , qx
1
i , qy

1
i , qz

1
i

)
| 1 ≤ i ≤ N

}
, where qwi is the real part, (qxi, qyi, qzi) is the imagi-

nary parts. Then, we freeze the particle appearance descriptors and adopt a recursive optimization
paradigm, where each frame’s particle positions and rotations (Gt, rt) are initialized from the pre-
vious frame and optimized sequentially under constraints from the observations {Io,t}O,T

o=1,t=2. This
frame-by-frame optimization yields one-to-one correspondence of particles across frames, resulting
in a temporal sequence of particle positions and rotations. Since rotations can be estimated via LBS,
DyG2T focuses on modeling the particle positions Gt, i.e., the Raw Point Cloud.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

t-2

t-1

t

t+1

···

Observation

Prediction

Key Points

P
o

in
t N

et

C
o

o
rd

 N
et

PosDiff Encoder

𝑄

+
𝐾

𝑉

M
u
lti-h

ead
 P

o
sitio

n
-A

w
are 

A
tten

tio
n

L
in

ear P
ro

ject

Particle-level Spatial 

Semantic Completion

𝑋Po
𝑡

𝑋Co
𝑡

𝑋In
𝑡−2

𝑋In
𝑡−1

𝑋In
𝑡

Motion Align 

Net (MAN)

Temporal Attention 
Aggregation

Object-level 

Dynamic Temporal 

Aggregation

𝑋Ag

Spatial-Temporal 

Feature Completion 

and Aggregation

Particle Graph 

Transformer-based 

Dynamics Modeling

Particle Graph

Encoded Key Point 

EmbeddingsMotion Predictor

L
B

S
 D

en
sificatio

n

Motion Densification

(b)

(c)(a)

FPS Sampling

𝑋CoP
𝑡

𝑋(𝐿)

Raw Point Cloud

····

····

····

····

········

𝐺𝑡

𝐺𝑡
∗

1

Particle Graph Transformer Layer

M
u

lti-h
ead

 S
caled

 

D
o

t-P
ro

d
u

ct A
tten

tio
n

L
ay

erN
o

rm

F
eed

 F
o

rw
ard

 L
ay

er

Gated Residual Gated Residual

× 𝐿

Key Point 

Embeddings

𝑀∗,𝑡
+

෠𝐺𝑡+1
∗෠𝐺𝑡+1

𝐺𝑡
∗

Graph Construction

Key Points’ 

neighbors

Dynamic 

Reconstruction

𝑡 − 2

𝑡 − 1

𝑡

𝛿𝑡−2

𝛿𝑡

𝑋InA
𝑡−2

𝑋InA
𝑡−1

𝑋InA
𝑡

∑

𝑠𝑡−2

𝑠𝑡−1

𝑠𝑡

Figure 2: Overview of the DyG2T. (a) DyG2T utilizes dynamic reconstruction to extract trackable
particle representations. (b) The Spatial-Temporal Feature Completion and Aggregation performs
semantic completion and temporal aggregation at both particle and object levels, which spatiotempo-
rally complete particle representations. (c) With the Particle Graph Transformer’s global interaction
modeling, DyG2T captures multi-scale force propagation across the Particle Graph.

3.2 SPATIAL-TEMPORAL FEATURE COMPLETION AND AGGREGATION

In this section, we strengthen particle representations through two complementary perspectives. We
first employ FPS Qi et al. (2017b) to extract Key Point µ∗,t

i from the Raw Point Cloud at each frame
t. FPS operates by iteratively selecting the point farthest from the already selected set, ensuring a
spatially uniform coverage. The resulting Key Points set G∗

t = {µ∗,t
i | i ∈ [1, N∗]} at different

frame t forms a sequence G∗
1, . . . , G

∗
T . As shown in Figure 2(b), we introduce a Particle-level

Spatial Semantic Completion module that enriches the Key Points’ spatial features by integrating
fine-grained edge information from the Raw Point Cloud and relative positions between Key Points.
Subsequently, the Object-level Dynamic Temporal Aggregation module employs a Motion Align
Net (MAN) to compensate for inter-frame motion offsets, and aggregates particle features across
adjacent frames (i.e., t− 2 to t), enhancing object-level dynamics perception.

3.2.1 PARTICLE-LEVEL SPATIAL SEMANTIC COMPLETION

To obtain a particle-level initial representation, we first employ Coord Net to map the µ∗,t
i ∈ G∗

t

into coordinate features Xt
Co ∈ RN∗×HCo , which serve as the initial embedding for the Key Points:

Xt
Co = ReLU

(
G∗

tW
T
1 + b1

)
·WT

2 + b2 (1)

To enhance DyG2T’s awareness of Key Points’ spatial distribution for accurate geometry appear-
ance prediction, we adopt a PosDiff Encoder to learn pairwise relative distances as spatial biases to
enrich the initial Key Point embeddings. Specifically, we encode the coordinate differences between
Key Points using a 2-layer MLP with ReLU. The pairwise encodings are reduced to nodewise via
neighbor-wise mean aggregation and added to the coordinate features Xt

Co, yielding the enhanced
coordinate feature Xt

CoP ∈ RN∗×HCo . H denotes the feature embedding dimensions, and the sub-
script Co is introduced for distinction.

Relying on the coordinate features of sparse Key Points will lose the fine-grained edge features
encoded by the Raw Point Cloud. Therefore, as shown in Figure 2(b), we utilize PointNet Qi et al.
(2017a) to aggregate the k-nearest neighbors of each Key Point from the Raw Point Cloud, yielding
neighborhood features Xt

Po ∈ RN∗×HPo . Specifically, for each Key Point, we apply a shared MLP to
encode the coordinates of its k-nearest neighboring Raw Points. A feature transformation module is
then introduced to map these coordinate features from different frames into a unified neighborhood
feature space. Finally, a max-pooling operation is performed over the k neighborhood features of
each Key Point i at frame t, yielding the representation Xt

Po,i ∈ RHPo .

Furthermore, to address the inconsistency of feature spaces between coordinate features Xt
CoP and

neighborhood features Xt
Po, we design a Multi-head Position-Aware Attention mechanism that en-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ables cross-space feature fusion guided by Gaussian-weighted relations ω Yang et al. (2025). For
clarity, we illustrate the process using a single-head example:

Q = Xt
CoPW

Q,K = Xt
CoPW

K , V = Xt
PoW

V (2)

Xt
In = SoftMax

(
Q ·KT

√
HK

+ log (ω)

)
V (3)

where WQ,WK ∈ RHCo×HK and WV ∈ RHPo×HV are learnable matrices, ω = exp
(
− d2

2ρ2

)
,

d is the Euclidean distance between Key Points and ρ is a sharpness coefficient. This mechanism
allows neighborhood features to be aggregated in a spatially-aware manner guided by the prior ω.
Xt

In ∈ RN∗×HIn is the spatial semantic features at frame t. Applying the same procedure to Key
Points at t− 2 and t− 1, we obtain the spatial semantic feature sequence {Xt−2

In , Xt−1
In , Xt

In}.

3.2.2 OBJECT-LEVEL DYNAMIC TEMPORAL AGGREGATION

Considering that forces such as collisions can cause object deformations and alter motion trajecto-
ries, we employ Motion Align Net (MAN) to compute the relative motion supplement. Specifically,
we take frame t − 1 as the reference and compute the relative motion offsets δt−2, δt ∈ RN∗×HIn

for frames t − 2 and t. These offsets are added to the spatial semantic features Xt−2
In and Xt

In,
respectively, to compensate for the motion space gaps caused by motion across frames:

Xt−2
InA = Xt−2

In + δt−2, Xt
InA = Xt

In + δt (4)

δt−2, δt = tanh (MAN (XInC; WIn,bIn)) (5)

where XInC = Concat
(
Xt−2

In , Xt−1
In , Xt

In

)
∈ RN∗×3HIn is cross-frame feature. The learnable weight

W ∈ R2HIn×3HIn and bias b ∈ R2HIn are employed in the mapping process. The tanh(·) constrains
the magnitude of motion offset to prevent excessive correction. The function MAN projects the
cross-frame feature XInC into a unified feature space and partitions it into blocks, from which relative
motion offsets δt−2 and δt are derived under the tanh(·) constraint. Xt−2

InA and Xt
InA represent the

aligned features of frames t− 2 and t. Zero correction is applied to Xt−1
InA = Xt−1

In , which serves as
the alignment reference.

Subsequently, we apply Temporal Attention to aggregate the Key Points’ features across frames:

XAg =

t∑
i=t−2

exp (si)∑t
j=t−2 exp (sj)

Xi
InA (6)

si = WT
n2 · tanh

(
Wn1X

i
InA + bn1

)
+ bn2 (7)

where XAg ∈ RN∗×HAg represents the Key Point features after dynamic temporal aggregation.

3.3 DYNAMICS MODELING BASED ON PARTICLE GRAPH TRANSFORMER

In this section, we describe how the Particle Graph and XAg are utilized to capture multi-scale force
propagation patterns at a global scale, and to predict the translation vectors M∗,t ∈ RN∗×3 of Key
Points at frame t, estimating the Key Point position Ĝ∗

t+1 at frame t+ 1.

As shown in Figure 2(c), inspired by Shi et al. (2021), we introduce a Particle Graph Transformer.
For the Particle Graph constructed from the Key Points, we add edges between each Key Point and
its top-kG nearest neighbors within a distance threshold de. The presence or absence of edges using
binary values 0, 1. After vectorizing the binarized adjacency matrix, eij is defined as the learnable
embedding of the edge features between nodes i and j. Then, we capture global force propagation
through Graph Attention. Specifically, the aggregated Key Point features XAg are projected into the
key k(0) ∈ RN∗×dk , query q(0) ∈ RN∗×dq , and value v(0) ∈ RN∗×dv using separate linear layers.
The attention scores α are computed using a scaled dot-product function:

α
(l)
ij =

⟨q(l)i , k
(l)
j + eij⟩∑

u∈N (i)⟨q
(l)
i , k

(l)
u + eiu⟩

(8)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ⟨q, k⟩ = exp
(

qTk√
dk

)
, i and j are the endpoints of an edge, i ∈ N∗, N represents the set of

neighbors of node i, and l = 1, 2, . . . , L denotes the index of the Particle Graph Transformer layer.
Finally, we selectively aggregate node features over the entire graph to obtain X̂(l) ∈ RN∗×HG :

X̂(l) =
∑∑

i∈N∗ j∈N (i)

α
(l)
i,j(v

(l)
j + ei,j) (9)

The Particle Graph Transformer constructs direct multi-scale force propagation paths by performing
attention interactions globally. This allows distinctive information to be preserved in particle rep-
resentations, which is critical for decoding accurate motion trajectories. Furthermore, to mitigate
feature homogenization in multi-scale force propagation, we incorporate Gated Residual between
Particle Graph Transformer layers. Refer to the Appendix for details.

The encoded features X(L) from the Particle Graph Transformer are finally decoded by the Motion
Predictor into Key Point displacement vectors M∗,t ∈ RN∗×3. Based on these vectors, we predict
Key Point positions at frame t+ 1 as Ĝ∗

t+1 =
{
µ̂∗,t+1
i

∣∣∣ 1 ≤ i ≤ N∗
}

, µ̂∗,t+1
i = µ∗,t

i +M∗,t
i .

Loss Function. DyG2T is optimized by minimizing the MSE losses ∥·∥2 between the predicted Key
Point positions Ĝ∗

t+i and the ground truth G∗
t+i over the next ϵ frames:

Lpred =

ϵ∑
i=1

∥∥∥Ĝ∗
t+i −G∗

t+i

∥∥∥2 (10)

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Table 1: Quantitative results of dynamic reconstruction for
DyG2T and baselines on Spring-Gaus synthetic dataset.

CD↓ EMD↓

Objects Spring-Gaus DyG2T(Ours) Spring-Gaus DyG2T(Ours)

Torus 0.012 0.008 0.003 0.001
Cross 0.016 0.010 0.005 0.002
Cream 0.014 0.012 0.007 0.005
Apple 0.014 0.011 0.006 0.003
Paste 0.011 0.008 0.003 0.002
Chess 0.017 0.010 0.007 0.002

Banana 0.049 0.007 0.027 0.002
Mean 0.019 0.010 0.008 0.003

Dataset. We introduce Spring-
Gaus dataset Zhong et al. (2024)
and our Unity3D-Heterogeneous
(Unity3D-H) dataset. The Spring-
Gaus synthetic dataset contains
multiple elastic objects with diverse
appearances and materials, recorded
as 30-frame 512×512 motion videos
from 10 views, and provides 3D
motion trajectory ground truth. The
Spring-Gaus real-world part includes
videos of five dolls, recorded as 20-frame 1920 × 1080 motion videos from 3 views. We also
construct the Unity3D-H dataset using the simulation software Unity3D Wang et al. (2010),
consisting of a polyhedron made in two materials, rendered as 30-frame 2098 × 1327 videos from
10 views. Following Spring-Gaus, the first 20 frames (visible during training) are used for dynamic
reconstruction (10 frames for the Spring-Gaus real-world dataset), while the unseen final 10 frames
are reserved for evaluating dynamic prediction.

Metrics. Following prior work Zhang et al. (2025a), we adopt CD, computed the bidirectional
L2 distance between the predicted and ground-truth point clouds, and EMD, which quantifies the
minimal transformation cost between the two point clouds, as metrics for 3D trajectory evaluation.
For 2D appearance evaluation, we use PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al.
(2018) to assess the similarity between reasoning and ground-truth images from different points of
view. Since the baselines do not provide evaluation code, we reimplement and evaluate all methods
within a unified framework to ensure fair comparison. Specificity, 3D metrics are averaged over all
evaluated frames, while 2D metrics are first averaged across views per frame and then across frames.

4.2 DYNAMIC RECONSTRUCTION OF MOVING OBJECTS

To evaluate the dynamic reconstruction of DyG2T, we primarily use CD and EMD to assess the
quality of the reconstructed 3D trajectories. Quantitative results are presented in Table 1. The
results demonstrate DyG2T’s ability to reconstruct 3D trajectories accurately across objects with
varying appearances. Refer to the Appendix for more results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Quantitative results of motion prediction on Spring-Gaus synthetic dataset.

Metrics Methods Torus Cross Cream Apple Paste Chess Banana Mean

CD↓
Spring-Gaus 0.033 0.046 0.032 0.047 0.068 0.053 0.184 0.066

GS-Dynamics 0.073 0.122 0.154 0.043 0.227 0.284 0.328 0.176
DyG2T(Ours) 0.029 0.038 0.027 0.028 0.038 0.050 0.055 0.039

EMD↓
Spring-Gaus 0.014 0.024 0.023 0.029 0.035 0.027 0.091 0.035

GS-Dynamics 0.033 0.062 0.097 0.021 0.164 0.200 0.171 0.107
DyG2T(Ours) 0.013 0.018 0.013 0.015 0.020 0.021 0.029 0.019

PSNR↑
Spring-Gaus 12.220 11.993 11.267 17.443 11.016 11.305 15.949 13.028

GS-Dynamics 13.450 10.621 12.647 19.632 11.506 11.758 16.622 13.748
DyG2T(Ours) 14.048 11.632 14.765 20.477 14.698 15.653 17.904 15.587

SSIM↑
Spring-Gaus 0.850 0.876 0.709 0.828 0.775 0.755 0.865 0.808

GS-Dynamics 0.876 0.842 0.763 0.887 0.802 0.749 0.880 0.828
DyG2T(Ours) 0.895 0.871 0.875 0.907 0.887 0.873 0.919 0.889

LPIPS↓
Spring-Gaus 0.349 0.303 0.370 0.230 0.332 0.335 0.250 0.310

GS-Dynamics 0.197 0.280 0.324 0.163 0.317 0.306 0.210 0.257
DyG2T(Ours) 0.139 0.220 0.189 0.131 0.178 0.207 0.122 0.171

Table 3: Quantitative results of motion prediction on Spring-Gaus real-world dataset and our
Unity3D-H dataset.

Metrics Methods Spring-Gaus real-world Unity3D-H
Dog Potato Pig Burger Bun Polyhedron

PSNR↑
Spring-Gaus 21.499 20.881 21.136 21.026 20.456 31.027

GS-Dynamics 26.141 28.623 27.114 27.969 26.929 31.352
DyG2T(Ours) 27.676 27.933 27.750 30.645 27.197 31.768

SSIM↑
Spring-Gaus 0.987 0.985 0.986 0.985 0.984 0.985

GS-Dynamics 0.988 0.989 0.989 0.988 0.988 0.987
DyG2T(Ours) 0.991 0.987 0.989 0.994 0.988 0.990

LPIPS↓
Spring-Gaus 0.030 0.032 0.031 0.031 0.032 0.020

GS-Dynamics 0.023 0.020 0.020 0.022 0.020 0.018
DyG2T(Ours) 0.019 0.021 0.017 0.012 0.018 0.015

4.3 DYNAMICS MODELING AND REASONING OF MOVING OBJECTS

Table 4: Quantitative results of motion prediction
on the Heterogeneous Torus in Spring-Gaus synthetic
dataset. DyG2Tnoisy uses noisy dynamic reconstruction
results to evaluate sensitivity to noise input.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

Spring-Gaus 0.030 0.012 12.197 0.850 0.350
GS-Dynamics 0.116 0.049 13.342 0.861 0.235

DyG2Tnoisy 0.035 0.016 13.647 0.878 0.188
DyG2T(Ours) 0.015 0.000 14.080 0.893 0.129

To evaluate dynamic reasoning, we con-
duct motion predictions on both Spring-
Gaus and Unity3D-H datasets. As shown
in Table 2, DyG2T achieves promis-
ing results on the Spring-Gaus synthetic
dataset, particularly in 3D trajectory rea-
soning (CD & EMD), highlighting the
enhanced trajectory prediction accuracy
through more faithful dynamics modeling.
Although DyG2T ranks second on Cross
in terms of PSNR and SSIM, it still outper-
forms all methods on LPIPS, which better
aligns with human perceptual similarity. Figure 3(a) further illustrates that the predictions of Spring-
Gaus (spring-mass model) Zhong et al. (2024) and GS-Dynamics (GNN-based simulator) Zhang
et al. (2025a) exhibit noticeable positional deviations, whereas DyG2T accurately infers trajectories
and fine-grained appearance details, demonstrating strong generalizability across diverse objects.
Moreover, the inference time (Time) and frame rate (FPS) in Figure 3(a) also confirm that DyG2T
performs dynamic reasoning with higher computational efficiency.

Furthermore, as shown in Table 3, the evaluation on the Spring-Gaus real-world and Unity3D-H
datasets demonstrates that DyG2T exhibits strong real-world generalization and can be readily trans-
ferred to other benchmarks. While GS-Dynamics achieves leading performance on the relatively
simple Potato, it falls behind on toys with more complex geometries, such as Burger.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Banana Toothpaste Apple

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p
ri

n
g
-G

au
s

G
S

-D
y
n

am
ic

Time Time

Time: 3.07s

FPS: 9.76 

Time: 11.22s

FPS: 2.67 

Time: 6.85s

FPS: 4.38 

Time: 8.17s

FPS: 3.67 

Time: 4.69s

FPS: 6.39 

Time: 15.90s

FPS: 1.89

Time: 6.85s

FPS: 4.38 

Time: 13.42s

FPS: 2.23 

Time: 8.14s

FPS: 3.69 

T
im

e

Ground Truth w/o spatial w/o temporal w/o transformerDyG2T(Ours)

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p

ri
n

g
-G

au
s

G
S

-D
y
n

am
ic

(a)

(b)

(c)

Figure 3: Qualitative results. Motion prediction of (a) homogeneous, (b) heterogeneous objects, and
(c) DyG2T ablation variant in the Spring-Gaus synthetic dataset.

Table 5: Quantitative results of module ablation study.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

w/o spatial 0.354 0.203 16.174 0.875 0.220
w/o temporal 0.227 0.120 16.493 0.882 0.198

w/o transformer 0.197 0.110 16.246 0.875 0.201
DyG2T(Ours) 0.055 0.029 17.904 0.919 0.122

To further evaluate robustness and gen-
eralization, we conduct experiments on a
Heterogeneous Torus with complex phys-
ical properties. As shown in Table 4,
DyG2T achieves more accurate trajectory
prediction than the methods by capturing
the intricate force propagation within het-
erogeneous objects, yielding trajectories
closer to the ground truth (Figure 3(b)).
Moreover, we assess sensitivity to noisy inputs by introducing perturbations to the central trajec-
tory and applying non-rigid deformations to the dynamic reconstruction results. While noise causes
only minor degradation in 3D trajectory prediction for DyG2Tnoisy, its 2D appearance evaluation
still surpasses the baselines. The results on the Unity3D-H dataset in Table 3 also validate DyG2T’s
scalability to heterogeneous objects across different benchmarks.

4.4 ABLATION STUDIES Table 6: Ablation study on neighborhood ranges k
(Row 2 & 3), the Particle-level Spatial Semantic Com-
pletion (Row 4 & 5), and the Object-level Dynamic
Temporal Aggregation (Row 6∼9).

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

DyG2Tk=8 0.244 0.125 16.368 0.878 0.207
DyG2Tk=32 0.169 0.092 16.365 0.879 0.190

w/o PosDiff 0.372 0.178 16.742 0.886 0.195
w/o PosAware 0.107 0.056 17.613 0.912 0.139

w/o MAN 0.107 0.240 16.071 0.871 0.242
LSTM 0.117 0.055 17.002 0.893 0.166

avg pool 0.096 0.052 17.344 0.906 0.145
max pool 0.365 0.195 16.290 0.874 0.221

DyG2T(Ours) 0.055 0.029 17.904 0.919 0.122

The Modules of DyG2T. The ablation re-
sults for DyG2T’s core modules are pre-
sented in Table 5 and Figure 3(c). Com-
pared to DyG2T, the w/o spatial vari-
ant, where the neighborhood feature XPo
is disabled, exhibits a significant perfor-
mance drop. This confirms that sparse
sampling from the Raw Point cloud causes
a notable loss of fine-grained edge in-
formation and spatial semantics, and the
Particle-level Spatial Semantic Comple-
tion mechanism effectively addresses this
issue. Similarly, the performance degrada-
tion of w/o temporal, which replaces the
temporal attention aggregation with sim-
ple feature concatenation, highlights the
effectiveness of the Object-level Dynamic Temporal Aggregation in preserving dynamic evolution
patterns. Moreover, the comparison between DyG2T and w/o transformer, which replaces the Par-
ticle Graph Transformer with a vanilla GNN, demonstrates the importance of modeling force prop-
agation across multi-scales. Due to GNN’s limitations in local modeling, w/o transformer fails to
perform effective dynamics modeling, even when enriched with spatiotemporal features.

Spatial-Temporal Feature Completion and Aggregation. We investigate how the range k of Raw
Point neighborhood features Xt

Po influences dynamics modeling. As shown in Table 6 row 2 &

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3, we observe that an insufficient neighborhood (DyG2Tk=8) leads to inadequate spatial semantic
completion, resulting in a more significant performance drop compared to the large neighborhood
(DyG2Tk=32), which introduces redundant information. Thus, we set k = 16, which empirically
serves as the best practice for DyG2T.

We further conduct an ablation study on different components of the Particle-level Spatial Semantic
Completion. As shown in Table 6 row 4 & 5, the w/o PosDiff variant, which disables the PosDiff En-
coder, exhibits the most substantial degradation in CD and EMD. This highlights the importance of
encoding relative positional information among Key Points. Furthermore, the comparison between
w/o PosAware and DyG2T demonstrates that the Multi-head Position-Aware Attention mechanism
effectively guides the integration of coordinate and neighborhood features via Gaussian-weighted
ω, enhancing the accuracy of dynamics modeling.

Table 7: Ablation study of the number of Key
Points N∗ in the Particle Graph.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

N∗ = 50 0.470 0.247 16.003 0.869 0.248
N∗ = 100 0.055 0.029 17.904 0.919 0.122
N∗ = 150 0.098 0.050 17.509 0.909 0.151

We also ablate the Motion Align Net (MAN)
to investigate whether it successfully compen-
sates for relative motion offset. As shown in
Table 6 row 6∼9, the w/o MAN variant fails
to model object dynamics from misaligned mo-
tion features. This validates the effectiveness
of MAN in compensating for potential inter-
frame inconsistencies. Additionally, we com-
pare DyG2T’s Temporal Attention mechanism
with alternative feature aggregation strategies, including LSTM and average&max pooling. The re-
sults demonstrate that Temporal Attention achieves superior performance in aggregate temporally
coherent motion patterns, whereas the alternatives suffer from feature ambiguity or loss.

Table 8: Ablation study of the presence of edges
between Key Points and their top-kG nearest
neighbors.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

kG = 2 0.564 0.255 18.436 0.910 0.183
kG = 5 0.055 0.029 17.904 0.919 0.122
kG = 10 0.186 0.107 16.398 0.881 0.193

Dynamics Modeling Based on Particle
Graph Transformer. Table 7 presents the
impact of the number of Key Points N∗ on
dynamics modeling. A small Graph (N∗ = 50)
including sparse Key Points, which fail to
provide sufficient support for dynamics mod-
eling. Moreover, a large Graph (N∗ = 150)
introduces excessive redundancy, which can
hinder effective modeling of dynamics. Table 8
investigates the effect of different edge sparsity
levels in the Particle Graph. A sparse Particle Graph (kG = 2) lacks sufficient alternative paths for
modeling force propagation, while a dense graph (kG = 10) increases the difficulty of identifying
optimal propagation. Notably, the kG = 2 variant exhibits poor trajectory prediction, causing the
rendering images to be filled with a large number of invalid pixels and resulting in abnormally high
PSNR; the LPIPS and SSIM still demonstrate the superiority of our method. Accordingly, we adopt
a moderate value of N∗ = 100, kG = 5 as the best practice for DyG2T.

5 CONCLUSION

This paper proposes DyG2T, a dynamics modeling framework that integrates spatiotemporally com-
pleted particle representations with multi-scale force propagation modeling. Spatially, DyG2T en-
riches each Key Point feature with fine-grained edge information and geometry perception by ag-
gregating positions from corresponding raw particles and relative coordinates from neighboring Key
Points. Temporally, inter-frame relative motion offsets are computed via Motion Align Net, and
Temporal Attention aggregates particle features across frames to preserve dynamic evolution pat-
terns. A Particle Graph Transformer further captures long-range interactions through multi-scale
force propagation paths, enabling accurate modeling of complex object dynamics. Extensive exper-
iments on both synthetic and real-world datasets demonstrate that DyG2T achieves precise trajectory
prediction while maintaining strong cross-object and real-world generalization. For future work, we
plan to investigate adaptive optimization mechanisms for hyperparameters (e.g., the neighborhood
range k of Raw Points), reducing reliance on prior knowledge. In addition, we aim to extend DyG2T
to model the dynamics of more complex heterogeneous objects (e.g., solid–liquid–gas mixtures),
further enhancing its scalability to real-world scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide general details on the datasets and exper-
imental settings in Section 4.1. Comprehensive information on the model architecture, datasets,
baselines, training setup, and additional results can be found in the Appendix A.

REFERENCES

Kasra Arnavaz, M Kragballe Nielsen, Paul G Kry, Miles Macklin, and Kenny Erleben. Differentiable
depth for real2sim calibration of soft body simulations. In Computer Graphics Forum, volume 42,
pp. 277–289. Wiley Online Library, 2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning,
pp. 1725–1735. PMLR, 2020.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9267–9276, 2019a.

Jinming Li, Yichen Zhu, Zhibin Tang, Junjie Wen, Minjie Zhu, Xiaoyu Liu, Chengmeng Li, Ran
Cheng, Yaxin Peng, and Feifei Feng. Improving vision-language-action models via chain-of-
affordance. arXiv preprint arXiv:2412.20451, 2024a.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chen-
fanfu Jiang, and Chuang Gan. Pac-nerf: Physics augmented continuum neural radiance fields
for geometry-agnostic system identification. In Proceedings of the International Conference on
Learning Representations, 2023.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In Proceedings of the
International Conference on Learning Representations, 2019b.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024b.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dy-
namic 3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21136–21145, 2024.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In Proceedings of the 2024 International Confer-
ence on 3D Vision, pp. 800–809. IEEE, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. In Proceedings of the 31th International Conference
on Neural Information Processing Systems, 2017b.

Yi-Ling Qiao, Alexander Gao, and Ming Lin. Neuphysics: Editable neural geometry and physics
from monocular videos. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, volume 35, pp. 12841–12854, 2022.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4104–4113, 2016.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1548–1554, 2021.

Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape manipula-
tion. ACM Transactions on Graphics, 26(3):80, 2007.

Yundong Sun, Dongjie Zhu, Haiwen Du, and Zhaoshuo Tian. Mhnf: Multi-hop heterogeneous
neighborhood information fusion graph representation learning. IEEE Transactions on Knowl-
edge and Data Engineering, 35(7):7192–7205, 2022.

Yundong Sun, Dongjie Zhu, Yansong Wang, Yansheng Fu, and Zhaoshuo Tian. Gtc: Gnn-
transformer co-contrastive learning for self-supervised heterogeneous graph representation. Neu-
ral Networks, 181:106645, 2025.

Sa Wang, Zhengli Mao, Changhai Zeng, Huili Gong, Shanshan Li, and Beibei Chen. A new method
of virtual reality based on unity3d. In 2010 18th International Conference on Geoinformatics, pp.
1–5. IEEE, 2010.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024.

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi
Wang, Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object dataset for realistic percep-
tion, reconstruction and generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 803–814, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389–4398, 2024.

Ziyang Xie, Zhizheng Liu, Zhenghao Peng, Wayne Wu, and Bolei Zhou. Vid2sim: Realistic and
interactive simulation from video for urban navigation. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 1581–1591, 2025.

Minmin Yang, Huantao Ren, and Senem Velipasalar. Trans2-cbct: A dual-transformer framework
for sparse-view cbct reconstruction. arXiv preprint arXiv:2506.17425, 2025.

Mingtong Zhang, Kaifeng Zhang, and Yunzhu Li. Dynamic 3d gaussian tracking for graph-based
neural dynamics modeling. In Proceedings of the Conference on Robot Learning, pp. 1851–1862.
PMLR, 2025a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 586–595, 2018.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y Feng, Changxi Zheng, Noah Snavely, Ji-
ajun Wu, and William T Freeman. Physdreamer: Physics-based interaction with 3d objects via
video generation. In Proceedings of the European Conference on Computer Vision, pp. 388–406.
Springer, 2024.

Yuanhang Zhang, Tianhai Liang, Zhenyang Chen, Yanjie Ze, and Huazhe Xu. Catch it! learning to
catch in flight with mobile dexterous hands. In 2025 IEEE International Conference on Robotics
and Automation (ICRA), pp. 14385–14391. IEEE, 2025b.

Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
objects with spring-mass 3d gaussians. In Proceedings of the European Conference on Computer
Vision, pp. 407–423. Springer, 2024.

APPENDIX

THE USAGE OF LLMS

In this work, large language models (LLMs) are employed solely during the manuscript preparation
stage to assist with translation and language refinement. Beyond this purpose, they are not utilized
for any other aspects of the study.

A OVERVIEW

We provide Implementation Details and Additional Results of DyG2T in the Appendix. Specifically,
the Appendix includes the following sections:

• Implementation details of the Trackable Particle-based Representation by Dynamic Reconstruc-
tion module, including:

– A comprehensive introduction to 3D Gaussian Splatting, which serves as the theoretical foun-
dation;

– The initialization strategy for the first frame;
– The physics-based prior loss functions used to constrain dynamic reconstruction;
– Training settings used during dynamic reconstruction.

• Implementation details of the Spatial-Temporal Features Completion and Aggregation module,
including:

– Normalization procedures to ensure the stability of Key/Raw Points;
– Details on PointNet-based encoding of k-nearest neighbors for each Key Point.

• Implementation details of the Dynamics Modeling based on the Particle Graph Transformer mod-
ule, including:

– The construction process of the Particle Graph;
– The implementation of the Particle Graph Transformer;
– Details on how Linear Blend Skinning (LBS) is used to predict dense motion point clouds.

• Datasets and baselines used to evaluate the performance of DyG2T.
• Hyperparameter settings used during the training of DyG2T.
• Configuration details of the released DyG2T source code.
• Additional results of dynamic reconstruction and ablation studies of the physics-based prior con-

straints.
• An investigation on how different reference frames in Motion Align Net affect the dynamics mod-

eling performance.
• Evaluation of DyG2T and GNN-based baselines on dynamics modeling of heterogeneous materi-

als.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

B.1 TRACKABLE PARTICLE-BASED REPRESENTATIONS BY DYNAMIC RECONSTRUCTION

B.1.1 PRELIMINARY: 3D GAUSSIAN SPALTTING

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) optimizes a set of learnable Gaussian kernels as
an explicit scene representation through a differentiable rasterizer. Each kernel is parameterized by a
center µi, a covariance matrix Σi, an opacity σi, and spherical harmonics coefficients hi. The color
C of each 2D pixel is computed using a depth-sorted Max Volume Rendering Luiten et al. (2024):

C =
∑
i∈N

ciϕ
2D
i

i−1∏
j=1

(1− ϕ2D
j ) (11)

where N denotes the set of the Gaussian kernels, and ci is the RGB color of kernel i obtained from
spherical harmonics based on the viewing direction and coefficients hi. ϕi is the weighted opacity
of kernel i:

ϕi = σi exp

(
−1

2
(x− µi)

TΣ−1
i (x− µi)

)
(12)

ϕ2D
i is the 2D version of Equation 12. The pixel position is obtained by approximating a perspective

projection of the 3D Gaussian’s center µi and covariance matrix Σi:

µ2D
i = (K((Wµi)/(Wµi)z))1:2

Σ2D
i = (JWΣiW

TJT )1:2,1:2
(13)

where W and K represent the extrinsic and intrinsic parameters of the view camera, respectively,
and J is the Jacobian matrix of the projection transformation.

B.1.2 FIRST FRAME POINT CLOUD INITIALIZATION STRATEGY

Most existing methods utilize COLMAP Schonberger & Frahm (2016) to obtain a coarse 3D estima-
tion of the object as the initialization for 3D Gaussian Splatting. However, prior studies Zhong et al.
(2024) have shown that such initialization typically leads to Gaussian kernels being predominantly
distributed on the object’s surface, primarily encoding appearance information. This surface-biased
distribution hinders subsequent modeling of internal force propagation within the object. To address
this issue, we randomly initialize 100,000 Gaussian kernels with random RGB colors within the 3D
space corresponding to the object’s initial position. This strategy ensures a more uniform spatial
distribution of kernels, providing a better foundation for capturing internal dynamics.

B.1.3 PHYSICAL CONSTRAINTS FOR DYNAMIC RECONSTRUCTION

To ensure physical consistency while fitting the appearance of dynamic objects across frames, we
incorporate both appearance loss and physical constraints following a similar strategy to Dynamic
3D Gaussian (Dyn3DGS) Luiten et al. (2024). Specifically, we employ a weighted combination of
L1 loss and Structural Similarity Index (SSIM) Wang et al. (2004) loss as the optimization objective
for static appearance reconstruction on the first frame:

Lvis = (1− λvis)L1 + λvisLSSIM (14)

where Lvis is simultaneously applied to constrain both the 2D rendered images and the semantic
segmentation maps, λvis = 0.2. Moreover, to ensure that the Gaussians with frozen visual attributes
can accurately capture the motion dynamics of the object, we introduce non-rigid physical modeling
constraints inspired by Dyn3DGS. These include the local rigidity loss Lrigid, local rotation simi-
larity loss Lrot, and local isometric loss Liso. As a key constraint to prevent arbitrary movement of
the Gaussian kernels, the local rigidity loss Lrigid enforces each Gaussian and its spatial neighbors
to undergo consistent rigid transformations. This ensures compatibility of Gaussian rotation and
translation across frames:

Lrigid
i,j = wi,j

∥∥(µj,t−1 − µi,t−1)−Ri,t−1R
−1
i,t (µj,t − µi,t)

∥∥
2

(15)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lrigid =
1

k|S|
∑
i∈S

∑
j∈knni;kPh

;

Lrigid
i,j (16)

where S is the set of Gaussian functions, knni;k denotes the kPh-nearest neighbors of Gaussian i,
and wi,j represents the unnormalized isotropic Gaussian weight factor:

wi,j = exp
(
−λw ∥µj,0 − µi,0∥22

)
(17)

where λw = 2000. The weight wi,j is initialized using the positions of the Gaussian kernels in the
first frame, µi,0 and µj,0, and kept fixed at all subsequent frames. In this way, Dyn3DGS enforces
local rigidity while still allowing non-rigid transformations at the object scale. Although Dyn3DGS
implicitly enforces consistent rotation among a Gaussian kernel and its neighbors through Lrigid,
introducing an explicit constraint on this objective can further improve the convergence behavior of
the model:

Lrot =
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j

∥∥q̂j,tq̂−1
j,t−1 − q̂i,tq̂

−1
i,t−1

∥∥
2

(18)

where q denotes the rotation of a Gaussian kernel in quaternion form, and the Gaussian weight
factor wi,j is shared with Lrigid. Furthermore, to prevent dynamic point cloud tearing and separation
that may arise from the continuous application of the local rigidity loss Lrigid and the local rotation
similarity loss Lrot across adjacent frames, the local isometry loss Liso is introduced. It enforces the
consistency of relative distances among neighboring Gaussian kernels with respect to the first frame,
thereby ensuring point cloud stability throughout long-term motion:

Liso =
1

k|S|
∑
i∈S

∑
j∈knni;k

wi,j |∥µj,0 − µi,0∥2 − ∥µj,t − µi,t∥2| (19)

Overall, the dynamic reconstruction constraint is formulated as a weighted sum of all the aforemen-
tioned losses. For clarity, we use λim, λseg, λrigid, λrot, and λiso to denote the weights corresponding
to Lim, Lseg, Lrigid, Lrot, and Liso, respectively. Contrary to prior empirical practices, our experi-
ments reveal that the 2D rendered images and semantic segmentation maps should be assigned equal
weights; assigning inappropriate or excessively high weights can degrade the object appearance and
introduce significant noise. In addition, the selection of kPh-nearest neighbors for Gaussian i also
has a notable impact on dynamic reconstruction performance.

As shown in Appendix B.1.3, we determine the optimal set of dynamic tracking parameters for
the Spring-Gaus synthetic dataset through ablation studies. In practice, we set λim = λseg = 1,
λrigid = 4, λrot = 0.08, λiso = 20, and kPh = 20.

B.1.4 DYNAMIC RECONSTRUCTION CONFIGS

We set the number of iterations for the static reconstruction of the first frame to 10,000, during
which all Gaussian kernel attributes are allowed to be optimized. Subsequently, except for the
centers and rotations, all other attributes are frozen, and the iteration is reduced to 2,000. The
dynamic reconstruction process consists of frame-by-frame optimization performed on the same
set of Gaussian kernels. The centers and rotations for the next frame are estimated based on the
motion vectors relative to the previous frame. The momentum parameters of the Adam optimizer
are reinitialized at each frame.

B.2 SPATIAL-TEMPORAL FEATURES COMPLETION AND AGGREGATION

B.2.1 RAW POINT CLOUD CONSTRUCTION

To mitigate the impact of outliers on dynamics modeling, we introduce an outlier detection and filter-
ing system based on the Median Absolute Deviation (MAD). Specifically, for a temporal sequence
P = {p0,p1, · · · ,pT−1} where pt ∈ R3, we first quantify the relative motion d ∈ R(T−1)×N of
the point cloud using inter-frame Euclidean distances:

dt = ∥pt+1 − pt∥2 for t = 0, 1, · · · , T − 2 (20)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The per-frame relative motion d is accumulated along the temporal dimension to compute the total
relative motion s ∈ RN for each point:

sn =

T−2∑
t=0

d
(n)
t for n = 0, 1, · · · , N − 1 (21)

Subsequently, we apply a Median Absolute Deviation (MAD)-based outlier detection method to
filter the point cloud:

µ = median(s)

MAD = median(|si − µ|)
zi = |si − µ|/MAD

validi = I[zi < 3]

(22)

where I denotes that validi is set to 1 when zi < 3. In this way, we effectively filter out abnormal
trajectory points that exhibit sudden jumps or remain stationary, ensuring the consistency of motion
patterns across trajectory points.

Furthermore, we apply a 3-point moving average to suppress high-frequency noise and smooth local
fluctuations in the trajectories:

P
(m)
1:T−1,: =

1

3

(
P

(m−1)
0:T−2,: +P

(m−1)
1:T−1,: +P

(m−1)
2:T,:

)
(23)

where m = 1, . . . , 10 denotes the number of smoothing iterations. This method essentially functions
as a low-pass filter for discrete signals, analogous to a convolution operation:

pnew = p ∗ h (24)
where h =

[
1
3 ,

1
3 ,

1
3

]
. The transfer function of this filter in the frequency domain is:

H(ω) =
1

3
(1 + e−iω + e−i2ω) (25)

Through the above method, we extracted the Raw Point Cloud from the tracking reconstruction
results of Dyn3DGS. Subsequently, we applied Farthest Point Sampling (FPS) Qi et al. (2017b) to
downsample the Raw Point Cloud containing N points into a set of Key Points with N∗ points. In
addition, to avoid overly dense and imbalanced distributions of key points, we employed a distance-
based filtering strategy to remove clustered points whose pairwise distances fall below a predefined
threshold.

B.2.2 k-NEAREST-NEIGHBOR SPATIAL SEMANTIC ENCODING

We adopt PointNet Qi et al. (2017a) as the local spatial-semantic encoder for the Key Point neigh-
borhoods. To better tailor it to our task, we make slight modifications to the vanilla PointNet.
Specifically, we extract the N∗ × dPN hidden features before the global pooling layer of the vanilla
PointNet Classification Network as the spatial-semantic representations of the N∗ Key Points, where
dPN is a hyperparameter of DyG2T, typically set to 256 in practice.

Moreover, we disable the T-Net module (Input Transform), originally designed to predict affine
transformation matrices in vanilla PointNet. This is because DyG2T already ensures affine alignment
and cross-frame translation consistency via the Motion Align Net. Introducing an additional T-Net
would lead to redundant correction and may negatively affect motion coherence.

B.3 DYNAMICS MODELING BASED ON PARTICLE GRAPH TRANSFORMER

B.3.1 PARTICLE GRAPH CONSTRUCTION

We construct the Particle Graph by adding undirected edges between Key Points whose pairwise
distances fall below a predefined threshold de. Specifically, we compute the Euclidean distances
between all pairs of Key Points at frame t and connect each point to the top-kG closest neighbors
with distances less than de. In practice, we set de = 0.08 (with de = 0.1 for Cross), and the value
of top-kG is determined based on the object category: for Cross, Apple, Toothpaste, and Chess,
kG = 7; for all other objects, kG = 5. The size of the Particle Graph is denoted as N∗, with
its optimal value varying across object appearances: N∗ = 100 for Torus, Cream, and Banana;
N∗ = 120 for Cross; and N∗ = 150 for Apple, Toothpaste, and Chess.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3.2 FORCE PROPAGATION BASED ON PARTICLE GRAPH TRANSFORMER

As shown in Figure 2 of the main text, the aggregated output of the Spatial-Temporal Features
Completion and Aggregation mechanism module, denoted as XAg ∈ RN∗×HAg , serves as the node
feature input for force propagation modeling. Before performing computations within the Particle
Graph Transformer, we introduce a Particle Encoder to bridge the learnable feature gap between the
two modules. This encoder is implemented as a 3-layer MLP with ReLU, which maps the feature
space from HAg to HG.

Our Particle Graph Transformer for dynamics modeling is built upon the UniMP architecture pro-
posed by Shi et al. Shi et al. (2021), with several key adaptations. Specifically, we disable the
Masked Label Prediction mechanism and retain the core Particle Graph Transformer module for
global interaction modeling, along with the Gated Residual to mitigate over-smoothing. Further-
more, recognizing the unordered nature of point cloud particles in dynamic modeling—i.e., the
invariance to the ordering of nodes in the adjacency or feature matrices—we also remove the Rotary
Embedding strategy originally used for node positional encoding in UniMP. To mitigate the over-
smoothing that often arises in full-graph modeling, we introduce Gated Residual Chen et al. (2020);
Li et al. (2019a):

g(l) = W(l)
g X̂(l) + b(l)

g (26)

β(l) = Sigmod
(
W

(l)
β

[
X̂(l); g(l); X̂(l) − g(l)

])
(27)

X(l+1) = max
(

LN
((

1− β(l)
)
X̂(l+1) + β(l)g(l)

))
(28)

B.3.3 DENSE 3D GAUSSIAN MOTION PREDICTION

We need to estimate the 3D rotation R∗,t ∈ RN∗×3 based on the key point translation motion M∗,t:

R∗,t
i = arg min

R∈SO(3)

∑
j∈N∗(i)

∥∥∥R (µ∗,t
j − µ∗,t

i

)
−
(
µ∗,t+1
j − µ∗,t+1

i

)∥∥∥2 (29)

where N ∗(i) is the local neighborhood of key point i. Next, we use Linear Blend Skinning
(LBS) Sumner et al. (2007); Huang et al. (2024) to interpolate the densified Gaussian kernel at
t+ 1, Gt+1 =

{
µt+1
i

}
0≤i≤N

, based on the 6-DoF transformation of key points at t (i.e., M∗,t and

R∗,t
i ). Specifically:

µt+1
i =

N∗∑
u=1

γt
iu

(
Rt

u

(
µt
i − µ∗,t

u

)
+ µ∗,t

u +M∗,t)
rt+1
i =

(
N∗∑
u=1

γt
iuf
(
R∗,t

u

))
⊙ rti

(30)

where f (R∗,t
u ) denotes the mapping from the rotation matrix of key point u at t to its quaternion

representation. µt+1
i and rt+1

i represent the center and rotation quaternion of the Gaussian kernel

i at t + 1, respectively. The weight γt
iu =

∥µt
i−µ∗,t

b ∥−1∑N∗
u=1∥µt

i−µ∗,t
u ∥−1 captures the relative influence of key

point u on Gaussian kernel i.

B.4 DATASET & BASELINES

Dataset. We evaluate DyG2T on Spring-Gaus synthetic & real-world dataset Zhong et al. (2024)
and Unity3D-Heterogeneous dataset. In the Spring-Gaus synthesis dataset, the initial 3D appear-
ance is derived from PAC-NeRF Li et al. (2023) and OmniObject3D Wu et al. (2023). Then, MPM
is used to simulate dynamics and obtain dynamic ground truth, followed by multi-view RGB video
rendering using Blender. For the Unity3D-Heterogeneous dataset, we first constructed a polyhe-
dron in Unity3D Wang et al. (2010) composed of heterogeneous elastic materials in a 1:1 ratio.
Subsequently, we strategically placed ten synchronized cameras across the upper hemisphere of the
scene to capture the motion of the polyhedron being released from midair and bouncing upon im-
pact with the ground. Unlike the Spring-Gaus synthetic dataset, which simulates 3D point clouds

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Quantitative results of dynamic reconstruction for DyG2T and baselines on Spring-Gaus
synthetic dataset.

Metrics Methods Torus Cross Cream Apple Paste Chess Banana Mean

CD↓

Dy-Gaus 579 773 479 727 2849 764 2963 1305
4D-Gaus 11.12 1.77 2.87 2.23 1.95 3.97 7.13 4.43

PAC-NeRF 4.92 1.10 0.77 1.11 3.14 0.96 2.77 2.11
Spring-Gaus 0.012 0.016 0.014 0.014 0.110 0.017 0.049 0.019

DyG2T(Ours) 0.008 0.010 0.012 0.011 0.008 0.010 0.007 0.010

EMD↓

Dy-Gaus 0.857 0.995 0.783 0.903 1.739 0.985 1.591 1.116
4D-Gaus 0.130 0.078 0.089 0.088 0.070 0.097 0.112 0.095

PAC-NeRF 0.056 0.052 0.041 0.045 0.054 0.052 0.062 0.052
Spring-Gaus 0.003 0.005 0.007 0.006 0.003 0.007 0.024 0.008

DyG2T(Ours) 0.001 0.002 0.005 0.003 0.002 0.002 0.002 0.003

before rendering videos, Unity3D directly simulates and renders the dynamics of the object based
on its heterogeneous material properties. Consequently, the Unity3D-Heterogeneous dataset does
not provide 3D point cloud data that could be used to evaluate trajectory consistency.

Baselines. Following previous works, we evaluate DyG2T from two perspectives. For dynamic
reconstruction, we compare against Spring-Gaus Zhong et al. (2024), which optimizes per-frame
geometry using a spring-mass model initialized from the first frame. Referring to the Spring-
Gaus Zhong et al. (2024), we also introduced Dy-Gaus Luiten et al. (2024), 4D-Gaus Wu et al.
(2024), and PAC-NeRF Li et al. (2023) to more comprehensively evaluate the dynamic reconstruc-
tion performance. For dynamics modeling, we adopt GS-Dynamics Zhang et al. (2025a), a pipeline
that combines Dyn3DGS with GNNs, and Spring-Gaus as baselines. All baselines are retrained
using the optimal hyperparameters recommended by the authors, and the best performances are
reported.

B.5 TRAINING SETUP

We train DyG2T for 1000 epochs, with each epoch comprising 100 iterations Zhang et al. (2025a).
We adopt the Adam optimizer with a learning rate of 0.001. The PointNet uses k = 16 (k = 8 in
Apple and Toothpaste), and the sharpness parameter ρ is set to half the minimum distance between
key points. We perform ϵ = 5 predictions in each training iteration and sum the MSE losses,
which are used for backpropagation. To meet training requirements, we augment each dynamic
reconstructed object trajectory to 30 instances via random translation and rotation, and split them
into training and validation sets at a 4:1 ratio.

B.6 CODE IMPLEMENTATION

The source codes and corresponding operation instructions are shown in code.zip. The results of the
submitted codes are achieved in the following environment:

cuda = 12.4

cudnn = 9.1.0

pytorch = 2.4.0

torchvision = 0.19.0

python = 3.10.16

(31)

The third-party library used in our study has also been attached to the package. Users are encouraged
to run the code in the same setting. For other possible environments, the performance reproduction
results may not be guaranteed to be the same.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p

ri
n

g
-G

au
s

(a) Banana (b) Toothpaste

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p

ri
n

g
-G

au
s

(c) Apple

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p

ri
n

g
-G

au
s

重建

Time

G
ro

u
n

d
 T

ru
th

D
y
G

2
T

(O
u

rs
)

S
p

ri
n

g
-G

au
s

(a) Banana (b) Toothpaste

Time

(c) Apple

Time

Figure 4: Qualitative results of dynamic reconstruction for DyG2T and baselines. (a), (b), and (c)
correspond to Banana, Toothpaste, and Apple, respectively.

Table 10: Quantitative results of dynamic reconstruction for DyG2T and its variants. “-” indicates
memory overflow during metric computation caused by the explosion of point cloud size. ”Num
PT” denotes the number of particles in the reconstructed point cloud.

Variants CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓ Num PT

Overweight 0.008 - 32.027 0.981 0.014 311198
Unequal 0.007 0.002 33.038 0.980 0.009 12691

Large Ner 0.008 0.001 33.744 0.985 0.007 7566
Small Ner 0.010 0.003 32.753 0.981 0.013 7564

Ours 0.008 0.001 34.001 0.985 0.007 7307

C ADDITIONAL RESULTS

C.1 TRACKABLE PARTICLE-BASED REPRESENTATION BY DYNAMIC RECONSTRUCTION

C.1.1 QUALITATIVE AND QUANTITATIVE RESULTS OF DYNAMIC RECONSTRUCTION

In Section 4.2 of the main text, we present the quantitative results of dynamic reconstruction for
DyG2T and the baselines on the synthetic Spring-Gaus dataset Zhong et al. (2024). The complete
quantitative results compared with more baselines are shown in Table 9. Some results are cited
from Spring-Gaus Zhong et al. (2024). Furthermore, we present the qualitative results of this task
in Figure 4. As shown in Figure 4(a), Spring-Gaus Zhong et al. (2024) exhibits significant spa-
tial mismatch during dynamic reconstruction under the supervision of visible frames. Figure 4(c)
shows another manifestation of reconstruction error: inaccurate motion estimation leads to incor-
rect judgments about the object’s contact timing and rebound amplitude, resulting in biased object
appearances. The reconstruction deviations shown in Figures 4(a) and (c) may mislead dynamics
modeling and cause severe error accumulation. Moreover, as shown in Figure 4(b), Spring-Gaus per-
forms relatively well on the Cross object, suggesting that its reconstruction performance is sensitive
to object appearance and attributes, revealing a limitation in generalization compatibility.

C.1.2 PHYSICAL PRIORS ON THE DYNAMIC RECONSTRUCTION

To further investigate the impact of different physical priors on the dynamic reconstruction per-
formance of DyG2T, we design four variants: Overweight, which applies overly strong physical
constraint weights inspired by GS-Dynamics Zhang et al. (2025a); Unequal, which assigns imbal-
anced weights to 2D rendered images and semantic segmentation maps; and Large/Small Ner, where
the number of Gaussian neighbors kPh is set to 20 and 3, respectively. The quantitative results are
reported in Table 10.

In our experiments, the optimal dynamic tracking parameters achieve the best description of object
motion with the smallest point cloud scale. Although the Unequal and Large Ner variants achieve
comparable point cloud quality (CD & EMD) to our full model, they suffer from noisy outlier
points in the reconstructed clouds (as shown in Figure 5), which directly degrade the 2D rendering
performance—PSNR for Large Ner; PSNR, SSIM, and LPIPS for Unequal. We attribute this to
two factors: the imbalanced weighting of semantic segmentation maps (Unequal), and the overly

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Ours Overweight Unequal

Large Ner Small Ner

Figure 5: Visualization of dynamic reconstruction point clouds generated by DyG2T and its variants.
Zoomed-in views are provided to highlight the fine-grained structural details of the reconstructed
point clouds. The background planes composed of blue, red, and green points represent the planes
z = 0, x = 0, and y = 0, respectively.

Table 11: Ablation study on using different frames as the alignment reference. ”Align Refer” indi-
cates the index of the selected reference frame.

Align Refer CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

t-2 0.250 0.125 16.810 0.882 0.211
t-1 (Ours) 0.055 0.029 17.904 0.919 0.122

t 0.131 0.068 16.964 0.893 0.175

broad Gaussian neighborhoods (Large Ner), both of which introduce excessive noise into dynamic
reconstruction.

In contrast, the Overweight variant produces an excessively large point cloud (311,198 particles)
due to overly strong physical constraints. This results in distorted and deformed point clouds that
are difficult to evaluate quantitatively (EMD computation leads to out-of-memory errors), and also
exhibit degraded 2D rendering quality. The Small Ner variant, which considers only 3 Gaussian
neighbors, yields the worst point cloud quality; the visualizations in Figure 5 further support this
finding. We believe that enforcing physical constraints within such a limited local neighborhood
leads to a disconnect between local and global structures, ultimately hampering coherent dynamic
reconstruction.

C.2 SPATIAL-TEMPORAL FEATURE COMPLETION AND AGGREGATION

In the Object-level Dynamic Temporal Aggregation module, we adopt the Motion Align Net to
achieve flexible alignment of cross-frame motion, reducing trajectory prediction errors. In practice,
Motion Align Net requires selecting a reference frame to compute relative motion offsets. To inves-
tigate the impact of different reference frames on dynamics modeling, we conduct ablation studies
by varying the reference frame used for alignment.

As shown in Table 11, variants that use either the t − 2 or t frame as the alignment reference fail
to achieve accurate trajectory prediction. These two frames represent the endpoints of the visible
motion observation window. When using either as the reference, alignment must span across the
intermediate frame. For instance, if the t − 2 frame is selected as the reference, aligning the t
frame requires skipping over the t− 1 frame. We argue that this skip-frame alignment increases the
difficulty of computing reliable cross-frame offsets, making motion compensation more challenging.
Therefore, in practice, we adopt the t− 1 frame as the reference frame to balance observability and
alignment stability.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Quantitative results of DyG2T and its GNN variants on the dynamics modeling of the
Heterogeneous Torus.

Methods CD↓ EMD↓ PSNR↑ SSIM↑ LPIPS↓

DyG2T-GNN 0.021 0.008 13.995 0.891 0.143
DyG2T(Ours) 0.015 0.000 14.080 0.893 0.129

Time
G

ro
u

n
d

 T
ru

th
D

y
G

2
T

(O
u

rs
)

D
y
G

2
T

-G
N

N

DyG2T(Ours)

DyG2T-GNN

(a) (b)

Figure 6: (a) Qualitative results of DyG2T and its GNN variants on the dynamics modeling of the
Heterogeneous Torus. (b) Local zoom-in views for evaluating the fine-grained details of dynamics
modeling.

C.3 DYNAMICS MODELING AND REASONING OF MOVING OBJECTS

We further present the dynamics modeling results of DyG2T and its GNN-based variant on the
Heterogeneous Torus. In the DyG2T-GNN variant, we retain the Spatial-Temporal Features Com-
pletion and Aggregation mechanism while replacing the Particle Graph Transformer module with a
GNN. The quantitative results are shown in Table 12. Although DyG2T-GNN benefits from suffi-
cient spatiotemporal semantic information via the hierarchical attention mechanism, it struggles to
accurately capture the complex internal force propagation patterns of heterogeneous materials due
to limitations such as over-smoothing Sun et al. (2022; 2025); Li et al. (2019a). This significantly
hampers dynamics reasoning, leading to degraded performance in both 3D point cloud reconstruc-
tion (as measured by CD and EMD) and 2D rendering (PSNR, SSIM, and LPIPS), compared to
DyG2T.

The qualitative results in Figure 6 further support these observations. The heterogeneous mate-
rial properties of the Torus increase the difficulty of dynamics modeling. Without the capacity to
globally capture multi-scale force propagation, DyG2T-GNN exhibits noticeable error accumulation
during the later stages of dynamics reasoning (Figure 6(a)). This results in evident artifacts in the
inferred appearance of the Heterogeneous Torus, as shown in Figure 6(b).

20


	Introduction
	Related Work
	Dynamic 3D Scene Reconstruction
	Physics-based Dynamics Modeling and Reasoning

	Method
	Trackable Particle-based Representation by Dynamic Reconstruction
	Spatial-Temporal Feature Completion and Aggregation
	Particle-level Spatial Semantic Completion
	Object-level Dynamic Temporal Aggregation

	Dynamics Modeling Based on Particle Graph Transformer

	Experiment
	Experiment Settings
	Dynamic Reconstruction of Moving Objects
	Dynamics Modeling and Reasoning of Moving Objects
	Ablation Studies

	Conclusion
	Overview
	Implementation Details
	Trackable Particle-based Representations by Dynamic Reconstruction
	Preliminary: 3D Gaussian Spaltting
	First Frame Point Cloud Initialization Strategy
	Physical Constraints for Dynamic Reconstruction
	Dynamic Reconstruction Configs

	Spatial-Temporal Features Completion and Aggregation
	Raw Point Cloud Construction
	k-nearest-neighbor Spatial Semantic Encoding

	Dynamics Modeling Based on Particle Graph Transformer
	Particle Graph Construction
	Force Propagation Based on Particle Graph Transformer
	Dense 3D Gaussian Motion Prediction

	Dataset & Baselines
	Training Setup
	Code Implementation

	Additional Results
	Trackable Particle-based Representation by Dynamic Reconstruction
	Qualitative and Quantitative Results of Dynamic Reconstruction
	Physical Priors on the Dynamic Reconstruction

	Spatial-Temporal Feature Completion and Aggregation
	Dynamics Modeling and Reasoning of Moving Objects


