
Unlocking the Theory Behind Scaling 1-Bit Neural
Networks

Majid Daliri1, Zhao Song2, Chiwun Yang3
1New York University, 2Simons Institute for the Theory of Computing. UC Berkeley, 3Sun Yat-sen

University
daliri.majid@nyu.edu, magic.linuxkde@gmail.com, christiannyang37@gmail.com

Recently, 1-bit Large Language Models (LLMs) have emerged, showcasing an im-
pressive combination of efficiency and performance that rivals traditional LLMs.
Research by Wang et al. [1], Ma et al. [2] indicates that the performance of these
1-bit LLMs progressively improves as the number of parameters increases, hint-
ing at the potential existence of a Scaling Law in 1-bit Neural Networks. This paper
presents the first theoretical result that rigorously establishes this scaling law for
1-bit models. Our analysis starts with initializing a 1-bit two-layer linear network.
We prove that, despite the constraint of weights restricted to {−1,+1}, its training
dynamics inevitably align with kernel behavior as the network width grows. This
theoretical breakthrough guarantees convergence of the 1-bit model to an arbitrarily
small loss as width increases. Furthermore, we introduce the concept of the gener-
alization difference, defined as the gap between the outputs of 1-bit networks and
their full-precision counterparts, and demonstrate that this difference maintains a
negligible level under the over-parameterization setting. Building on the work of
Kaplan et al. [3], we examine how the training loss scales as a power-law function
of the model size, dataset size, and computational resources utilized for training.
Our findings underscore the promising potential of scaling 1-bit neural networks,
suggesting that int1 could become the standard in future neural network precision.

1 Introduction
Large-scale neural networks, particularly Large Language Models (LLMs) [4, 5] and Large Multi-
model Models (LMMs) [6, 7], are becoming increasingly relevant to our day-to-day lives, finding a
huge variety of applications in both the workplace and at home [8, 9]. However, it is expensive to
deploy and run these models due to their substantial computational requirements, large memory
footprints, and energy consumption [10–12]. This is especially true for resource-constrained environ-
ments, such as mobile devices, edge computing, or companies with limited infrastructure [13–15]. To
make these models more efficient and accessible, quantization techniques are used, which reduce the
precision of the model’s parameters (such as weights and activations) from floating-point numbers
to lower-bit representations (e.g., 8-bit or even lower) [16–20]. Quantization reduces the memory
and computational costs of inference, enabling faster processing with less energy, while maintaining
a comparable level of performance. This optimization allows language models to be more practical,
scalable, and sustainable for widespread use across various platforms [21–23].
In particular, quantization techniques could be primarily divided into two methods: Post-Training
Quantization (PTQ) [24–26] and Quantization-Aware Training (QAT) [1, 2, 27]. PTQ methods,
including uniform and non-uniform quantization, conveniently convert pre-trained model weights
and activations to lower-bit representations post-training. However, this leads to accuracy loss,
especially in lower precision, as the model is not optimized for these quantized representations
and significant shifts in weight distribution occur [28]. The alternative, Quantization-Aware Train-
ing (QAT), incorporates quantization during training, allowing the model to fine-tune and adapt
its parameters to the quantized representation, compensating for quantization errors. Therefore,
compared to PTQ, QAT maintains higher accuracy and robustness even in lower precision.

Second Conference on Parsimony and Learning (CPAL 2025).

Recent studies [1, 2, 29, 30] have shown that 1-bit LLMs, most of which have matrix weights in the
range of {−1,+1}, can be trained from scratch to deliver performance that rivals that of standard
LLMs. Thesemodels exhibit remarkable efficiency, particularly in terms of scaling laws. Experimental
results indicate that the performance of the 1-bit model improves as the number of parameters
increases, a principle that mirrors the training approach utilized in standard LLMs [3]. Despite the
demonstrated efficiency of quantization methods, our understanding of the training mechanism for
quantization remains limited. Specifically, it remains unclear how and why the 1-bit QAT enhances
learning capability as the number of neurons in the model is scaled up. In addition, we are also
concerned about whether the quantization method damages the generalization ability compared to
full precision networks.
In this study, we initially apply the Neural Tangent Kernel (NTK) framework to delve into the
optimization and generalization issues associated with a two-layer linear network operating in 1-bit
(int1) precision, as detailed in Section 4. We introduce a 1-bit quantization method to the hidden-
layer weights W ∈ Rd×m of the conventional NTK linear network, where d represents the input
dimension andm indicates the model’s width. Our analysis reveals that the training dynamics of
the 1-bit model approximate kernel behavior as the model width m expands. This key finding paves
the way for an established relationship between the theoretically guaranteed loss and the model
width, endowing the model with robust learning capabilities akin to kernel regression. Ultimately,
the model achieves an insignificantly small training loss, contingent on setting a sufficiently large
model width, selecting an appropriate learning rate, and allowing an adequate training duration.
Moreover, Section 5 provides a theoretical confirmation that, within the scaling trend, the disparities
in predictions of the 1-bit model from those of the original linear network on identical inputs maintain
a negligible value. We assess the error between our 1-bit linear and standard linear networks on both
the training and test datasets. Our theorem demonstrates that for any input from these datasets,
the absolute error between the two network predictions can be denoted as ϵquant ≤ O(κd log(md/δ))
for scale coefficient κ ≤ 1, model width m, dimension d and failure probability δ ∈ (0, 0.1). This
indicates that the output behavior of the 1-bit linear model increasingly aligns with that of the
standard linear model. The observed similarity on the test dataset validates the generalization
similarity, suggesting the feasibility of approximating training neural networks with int1 precision
equivalent to full precision.
Finally, in Section 6, we verify our theoretical results by implementing training models to learn
complicated functions to compare the difference between 1-bit networks and full precision networks.
Firstly, we choose a combination of difficult functions across the exponential function, trigonometric
function, logarithmic function, the Lambert W function, the Gamma function, and their combination.
Therefore, we sample random data points and split train and test datasets. We next compare how
the training loss decreases as the model width m scales up. Besides, as shown in Section 6.3, in
the trend of a growing number of parameters, the error of predictions both on training and test
input likewise converge as the power-law in 1-bit networks optimization. In particular, we visualize
some 1-dimension function to see how the differences of outputs are. We demonstrate the results
complying with our theoretical guarantee with a negligible error.

2 Related Work

Efficient Training Methods for Quantized Networks Training large-scale neural networks with
quantization introduces significant computational and memory savings, but it also presents chal-
lenges in optimization, particularly when dealing with extremely low precision formats like 1-bit
or 8-bit. To address these challenges, several efficient training methods have been developed that
aim to maintain accuracy while leveraging the benefits of quantization. One key method is Gradient
Quantization, where the gradients during backpropagation are quantized to lower precision to
reduce memory overhead and bandwidth during distributed training. Techniques like stochastic
rounding are used to mitigate the impact of quantization noise, ensuring the training process remains
stable and converges effectively.

2

Another important approach is Low-Rank Factorization [31, 32], which decomposes the large weight
matrices in neural networks into smaller matrices, reducing the number of parameters that need to
be updated during training. When combined with quantization, this method significantly reduces
both the memory footprint and computational complexity, allowing for faster training on hardware
with limited resources.
Quantization Techniques for Accelerating Language Models Beyond traditional weight and activa-
tion quantization, several advanced methods utilize quantization to enhance the efficiency of large
language models (LLMs). One key approach is KV cache quantization [33–36], which reduces the
memory footprint of transformer models during inference by quantizing the stored attention keys
and values. This method is particularly beneficial for tasks involving long sequences, significantly
speeding up inference and lowering memory consumption without a substantial loss in accuracy.
Another effective technique is mixed-precision quantization [37, 38], where different parts of the
model are quantized at varying precision levels based on their sensitivity. For example, attention
layers might use higher precision (e.g., 16-bit), while feedforward layers are quantized to 8-bit or
lower. This balances computational efficiency and model performance. These strategies, combined
with methods like activation pruning, showcase how targeted quantization can drastically accelerate
LLMs while maintaining their effectiveness in real-world applications.
Neural Tangent Kernel. The study of Neural Tangent Kernel (NTK) [39] focuses on the gradient
flow of neural networks during the training process, revealing that neural networks are equivalent
to Gaussian processes at initialization in the infinite-width limit. This equivalence has been explored
in numerous studies [40–54] that account for the robust performance and learning capabilities of
over-parameterized neural networks. The kernel-based analysis framework provided by NTK is
gaining popularity for its utility in elucidating the emerging abilities of large-scale neural networks.
In a remarkable stride, Arora et al. [55] introduced the first exact algorithm for computing the
Convolutional NTK (CNTK). This was followed by Alemohammad et al. [56] who proposed the
Recurrent NTK, and Hron et al. [57] who presented the concept of infinite attention via NNGP and
NTK for attention networks. These innovative works have showcased the enhanced performance
achievable with the application of NTK to various neural network architectures. In a specific study,
Malladi et al. [58] examined the training dynamics of fine-tuning Large Language Models (LLMs)
using NTK, affirming the efficiency of such approaches.

3 Preliminary
In this section, we give the basic setups of this paper, which includes the introduction of the quanti-
zation method in this paper (Section 3.1), our NTK-style problem setup that we aim to solve in this
paper (Section 3.2) and recalling the classical NTK setup for a two-layer linear network with ReLU
activation function (Section 3.3).

3.1 Quantization

We first show howwe reduce the computation of the inner product of two vectors frommultiplication
and addition operations to addition operations only, which is achieved by binarizing one of the vectors.
This method could be extended to matrix multiplication easily since the basic matrix multiplication
is to implement the inner product computation of two vectors in parallels. For a vector w ∈ Rd, we
define our quantization function as [1, 2]:

Quant(w) := Sign
(
Ln(w)

)
∈ {−1,+1}d,

where Ln(w) is the normalization method that is given by: Ln(w) := w−E(w)·1d√
V (w)

∈ Rd. Specially,
we use E(w) := 1

d

∑d
k=1 wk ∈ R to denote the computational expectation of vector w and use

V (w) := ∥w − E(w) · 1d∥22 ∈ R to denote the corresponding variance.

3

Besides, the kth entry of signal function Sign(z) ∈ Rd for z ∈ Rd, k ∈ [d] is define by: Signk(z) :={
+1, zk ≥ 0

−1, zk < 0
. Hence, we have a binary vector Quant(w) where each entry of it is limited in the

range {−1,+1}, and we denote that w̃ := Quant(w) to simplify the notation. For any other vector
x ∈ Rd, addition operation∑d

k=1 ±xk is sufficient to compute ⟨w̃, x⟩. After that, we introduce the
dequantization function to recover the original computation result by showing:

Dequant(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨1, x⟩.

3.2 NTK Problem Setup
Data Points. We consider a supervised learning task with a training dataset D = {(xi, yi)}ni=1 ⊂
Rd × R, where each data point is under a mild assumption that ∥xi∥2 = 1 and yi ≤ 1, ∀i ∈ [n]
[41]. Moreover, we are also concerned about the problem of the generalization of 1-bit mod-
els, we define the test dataset to compare 1-bit networks with standard networks, that is Dtest :=
{(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and ytest,i ≤ 1, ∀i ∈ [n].
Model. Here, we use hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer weights
a = [a1, a2, . . . , am]⊤ ∈ Rm. We consider a two-layer linear model f , which is defined as follows:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
,

where ReLU(z) :=

{
z, z ≥ 0

0, z < 0
, for all z ∈ R, dq : R → R is a omitted version of dequantization

function Dequant : R → R, and w̃r := Quant(wr) as we denoted in previous section, κ ∈ (0, 1] is
a scale coefficient. Especially, we initialize each weight vector wr, ∀r ∈ [m] by sampling wr(0) ∼
N (0, σ ·Id)with σ = 1. For output-layer a, we randomly sample ar ∼ Uniform{−1,+1} independently
for r ∈ [m]. Additionally, output-layer weight a is fixed during the training.
Training and Straight-Through Estimator (STE). The training loss is measured by quadratic ℓ2
norm of the difference between model prediction f(xi,W, a) and ideal output vector yi. Formally,
we consider to trainW (t) = [w1(t), w2(t), . . . , wm(t)] ∈ Rd×m for t ≥ 0 utilizing the following loss:

L(t) :=
1

2
·

n∑

i=1

∥f(xi,W (t), a)− yi∥22. (1)

Moreover, since the signal function Sign is not differentiable, we use Straight-Through Estimator (STE)
to skip the signal function in back-propagation [1, 2, 59, 60], thus updating the trainable weights
W (t). For t ≥ 0 and denote η as the learning rate, we omit fi(t) := f(xi,W (t), a) ∈ R,∀i ∈ [n], the
formulation to update rth column ofW (t) for all r ∈ [m] is given by:

wr(t+ 1) := wr(t)− η

n∑

i=1

(fi(t)− yi) · κar1dq(⟨w̃r,xi⟩)≥0xi.

3.3 Recalling Classic NTK Setup
We now recall the classic NTK setup for the two-layer ReLU linear regression [61–64]. The function
is given by: f ′(x,W, a) := κ 1√

m

∑m
r=1 ar · ReLU

(
⟨wr, x⟩

)
.

We define thatW ′(0) := W (0) ∈ Rd×m to denote the trainable parameter for classic NTK setup, these
two matrices are equal at initialization. For t ≥ 0, we define the loss of training f ′ as follows: L′(t) :=
1
2 ·∑n

i=1 ∥f ′(xi,W
′(t), a)− yi∥22. Then the update ofW ′(t) is: W ′(t+ 1) := W ′(t)− η · ∇W ′(t)L

′(t).

4 Kernel Behavior and Training Convergence
We give our convergence analysis for training 1-bit model within the framework of Neural Tangent
Kernel (NTK) in this section. First, we state our theoretical results that define the kernel function

4

in training and show how it converges to NTK and maintains the PD (Positive Definite) property
in Section 4.1. Then we demonstrate the arbitrary small loss convergence guarantee of training
1-bit model (Eq. (1)) in Section 4.2. Finally, we give a general version of our theoretical scaling law
analysis in Section 4.3.

4.1 Neural Tangent Kernel
Here, we utilize the NTK to describe the training dynamic of the 1-bit model. Following pre-
conditions in the previous section, we define a kernel function, that denotes H(t) ∈ Rn×n (Gram
matrix). Especially, the (i, j)-th entry of H(t) is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥01dq(⟨w̃r(t),xj⟩)≥0. (2)

We define the formal NTK as H∗ := H(0) ∈ Rn×n. Additionally, there’s a commonly introduced
assumption in NTK analysis: we denote the minimum value of eigenvalues ofAwith λmin(A) for any
A ∈ Rn×n. In our work’s context, we presuppose that H is a Positive-definite (PD) matrix, meaning
that λmin(H

∗) > 0 [41].
1-Bit ReLU Pattern. The pattern of the Rectified Linear Unit (ReLU) function is determined by the
indicator of function activation. As illustrated by Du et al. [41], in the settings of Section 3.3, the
event 1⟨wr(0),x⟩≥0 ̸= 1⟨w,x⟩≥0 happens infrequently for any w, x ∈ Rd that satisfies ∥w−wr(0)∥2 ≤ R.
Notably,R := maxr∈[m] ∥wr(t)−wr(0)∥2 = η∥∑t

τ=1 ∆wr(τ)∥2. In our analysis, for Eq. (2), the event
1dq(⟨w̃r(0),x⟩)≥0 ̸= 1dq(⟨w̃r(t),x⟩)≥0 is also unlikely to occur during training.
The convergence ofH(t) towardsH∗, as well as the property ofH(t) being a PD matrix for any t ≥ 0,
can be validated by the following lemma:
Lemma 4.1 (NTK convergence and PD property during the training, informal version of Lemma G.5).
Assume λmin(H

∗) > 0. δ ∈ (0, 1), define D := max{
√
log(md/δ), 1}. Let R ≤ O(λδ/(κ2n2dD)), then

for any t ≥ 0, with probability at least 1− δ, we have: Part 1. ∥H(t)−H∗∥F ≤ O(κ2n2dRD/δ). Part 2.
λmin(H(t)) ≥ λ/2.

Proof of Lemma 4.1. The proof of Part 1 of this Lemma follows from the pattern 1dq(⟨w̃r(t),xi⟩)≥0 for
i ∈ [n] and r ∈ [m] is rarely changed during the training, this habit is similar to the regular ReLU
pattern 1⟨wr(t),xi⟩≥0 [41]. The proof of Part 2 of this Lemma can be obtained by plugging R ≤
O(λδ/(κ2n2dD)). Please refer to Lemma G.5 for the detailed proof.

4.2 Training Convergence
Having confirmed the convergence of the kernel function of the 1-bit linear network during training
in Lemma 4.1, we can transform the dynamics of the loss function L(t) into the following kernel
behavior:

L(t+ 1)− L(t) = − (F(t)− y)⊤H(t)(F(t)− y) + C2 + C3 + C4

≈ − (F(t)− y)⊤H(t)(F(t)− y),

In this equation, F(t) = [f(x1,W (t), a), · · · , f(xn,W (t), a)]⊤ ∈ Rn and y = [y1, · · · , yn]⊤ ∈ Rn, while
C2, C3, C4 are negligible terms (please refer to Appendix I for a rigorous proof).
Further, by λmin(H(t)) > 0 (as per Part 2 of Lemma 4.1), for each optimization step t ≥ 0, we find
that L(t+1) ≤ (1−ηλ/2)L(t), thus ensuring a non-increase in loss. Given sufficient training iterations
and an appropriately chosen learning rate, we can achieve training convergence, the confirmation of
which is provided in the following section.
Theorem 4.2 (Training convergence guarantee, informal version of Theorem I.1). Given an ex-
pected error ϵ > 0. Assume λmin(H

∗) > 0. δ ∈ (0, 0.1), define D :=
√
log(md/δ). Choose

m ≥ Ω(λ−8n12d8/(δϵ)4), η ≤ O(λδ/(κ2n2dD)). Then let T ≥ Ω((ηλ)−1 log(ndD2/ϵ)), with proba-
bility at least 1− δ, we have: L(T) ≤ ϵ.

5

Proof sketch of Theorem 4.2. We first combine L(0) = O(
√
ndD2) (Lemma I.3) and L(t + 1) ≤ (1 −

ηλ/2)L(t) (Lemma I.2), then we choose a sufficient large T ≥ Ω((ηλ)−1 log(ndD2/ϵ)) to achieve
L(T) ≤ ϵ. For the complete proof, please see Theorem I.1.

Scaling Law for 1-Bit Neural Networks. Theorem 4.2 primarily illustrates a fact for any dataset with
n data points. After initializing the hidden-layer weightsW ∈ Rd×m from a normal distribution, and
assuming the minimum eigenvalue of NTK λ > 0, we set m to be a large enough value to ensure
the network is sufficiently over-parameterized. With an appropriate learning rate, the loss can be
minimized in finite training time to an arbitrarily small error ϵ. This offers a crucial insight that
confirms the existence of a scaling law for 1-bit neural networks, which is strictly bounded by the model
widthm and training steps T . Consequently, we present the following Proposition that elucidates the
principle of training 1-bit linear networks from scratch. This proposition is built upon Theorem 4.2
and the principle of training loss that scales as a power-law with model size, dataset size, and the
amount of compute used for training [3, 65].
Proposition 4.3 (Scaling Law for 1-Bit Neural Networks). δ ∈ (0, 0.1). Define N := O(md) as the
number of parameters, D := O(n) as the size of training dataset, C := O(NDT) as the total compute cost.
Especially, we denote the scale coefficients as α := Dd log(md/δ), and we then choose η ≤ O(λδ/(mκ2n2dD))
and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)). Thus, the training loss, denoted as Lscale, satisfies:

Lscale ≈ max{D
3 · d2.25
λ2N0.25

,
α

exp(ηλC)
}.

Proof of Proposition 4.3. This proof follows from the definitions of N, D, C and α. Then, by choosing
η ≤ O(λδ/(mn2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)), we utilize Theorem 4.2 to obtain
our proposition.

Proposition 4.3 demonstrates that the training loss of the prefix learning converges exponentially as
we increase the computational cost C, which primarily depends on the number of parameters and
the training time in prefix learning. This further suggests a potential relationship for formulating a
scaling law for 1-bit neural networks.

4.3 Extensibility
We now bridge our theoretical framework to a real-world application involving a multi-layer 1-bit
transformer trained on large-scale datasets. Let the full dataset be denoted asDmat = {(Xi, Yi)}ni=1 ⊂
RK×d, where Xi ∈ RK×d represents a sequence ofK tokens with d-dimensional embeddings, and
Yi denotes the corresponding target sequence. Here, K is the input context length.
The standard transformer architecture [10] interleaves multi-head self-attention and position-wise
feed-forward layers. For an input sequence X ∈ RK×d (compactly representing K token embed-
dings), an N -layer transformer is defined recursively as:

F(X) := TF(N)

(
TF(N−1)

(
· · ·TF(1)(X + E) · · ·

))
,

whereE ∈ RK×d is the positional embedding matrix, and TF(ν) : RK×d → RK×d for ν ∈ [N] denotes
the ν-th transformer block. For brevity, we omit layer indices when describing a single transformer
block TF, which consists of:

Attn(X) := X +

h∑

ξ=1

dq

(
softmax

(
dq(XW̃ξ,QW̃

⊤
ξ,KX⊤)

√
d

)
XW̃ξ,V W̃

⊤
ξ,O

)
,

FF(X) := X + dq
(
ReLU

(
dq(XW̃1) + 1Kb⊤1

)
W̃⊤

2

)
+ 1Kb⊤2 ,

TF(X) := FF(Attn(X)),

where: - h is the number of attention heads. - W̃ denotes 1-bit quantized weights, with dq(·) as
the dequantization operator. - For each head ξ ∈ [h], W̃ξ,Q, W̃ξ,K , W̃ξ,V ∈ Rd×d′ and W̃ξ,O ∈ Rd′×d

6

are query, key, value, and output projection matrices, respectively. - In the feed-forward network,
W̃1 ∈ Rd×m and W̃2 ∈ Rm×d are projection matrices, withm as the hidden dimension, while b1 ∈ Rm

and b2 ∈ Rd are bias terms.
The full parameters of the model is denoted as θ(d′,h,m) := {Wν,ξ,Q,Wν,ξ,K ,Wν,ξ,V ,Wν,ξ,O,

Wν,2,Wν,2, bν,1, bν,2}(ν,ξ)∈[L]×[h] + {E}. Given a loss metric ℓ(Ŷ , Y) := 1
2∥Ŷ − Y ∥2F , we define the

training objective as follows:
L(θ(d′,h,m)) :=

n∑

i=1

ℓ(F(Xi), Yi). (3)

Thus, we establish a general version of our theory:
Proposition 4.4. Given an expected error ϵ > 0 and denote the failure probability δ ∈ (0, 0.1). Given a
dataset Dmat = {(Xi, Yi)}ni=1 ⊂ RK×d and a model function F : RK×d → RK×d with parameters set
θ(d′,h,m). Assuming each NTK of F is PD, denoted H∗

k,j for (k, j) ∈ [K] × [d], λmin(H
∗
k,j) > 0. Define

λ := min(k,j)∈[K]×[d]{λmin(H
∗
k,j)}, we choose m ≥ Ω(λ−8n12K12d20/(δϵ)4). Then with a probability at

least 1− δ, there exists at least one first-order algorithm that minimizes Eq. (3) to ϵ.

Proof. We consider a special case that only optimizes one feed-forward layer of the model, then
solving L(θ(d′,h,m)) is just letting n = Kdn′ where n′ represents the data size in Theorem 4.2.

217 219 221

10−4

10−2

100

lo
ss

f1

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221
10−18

10−14

10−10

10−6

10−2

f2

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221
10−6

10−5

10−4

10−3

10−2

f3

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−9

10−6

10−3

100

lo
ss

f4

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−18

10−14

10−10

10−6

10−2

f5

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−5

10−3

10−1

f6

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

Figure 1: Verification experiment for scaling law for 1-bit neural networks. Minimum training loss of
scaling number of parameters for MLP model to learn complicated functions f1, f2, f3, f4, f5 and f6,
and these function is defined in Section 6.1.

5 Generalization Similarity
In this section, we present our theoretical analysis that proves that training large-scale 1-bit neural
networks is equivalent to training standard large-scale neural networks. In Section 5.1, we explain how
the difference between the outputs of our 1-bit model and outputs of the standard NTK-style linear
network for the same input at initialization, which is defined as function difference at initialization,
will be kept in a small error while the model width (denoted as m) increase. Next, in Section 5.2, we
confirm that in the trend of scaling up the model width, during the training, the predictions of 1-bit
model and full precision model are also similar to a very slight error on both the training dataset
and the test dataset.

5.1 Function Difference at Initialization
To begin with, at initialization, the boundary on |f(x,W (0), a)− f ′(x,W ′(0), a)| is stated as follows:

7

Lemma 5.1 (Function difference at initialization, informal version of LemmaK.4). δ ∈ (0, 0.1). Denote
D :=

√
log(md/δ). ∀x ∈ Rd that satisfies ∥x∥2 = 1, for any initial quantization error ϵinit > 0, we choose

κ ≤ O(ϵinit/(
√
dD2)). Then with a probability 1− δ, we have: |f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit.

Proof sketch of Lemma 5.1. Due to the initialization ofW (0) andW ′(0), we then have the tail bound
of the Gaussian distribution. Hence, the difference could be bounded by Hoeffding bound, we then
get the result. Please refer to Lemma K.4 for the formal proof of this Lemma.

5.2 Generalization Similarity
We now address whether using 1-bit precision compromises the generalization ability of standard
neural networks. Specifically, we use the test dataset to evaluate the generalization similarity - a
measure of the similarity between two functions on out-of-distribution (OOD) data. This measure
is designed to assess the equivalence between two functions. If, during each step of training two
networks, these two training processes are deemed equivalent, then we assert that the generalization
similarity is valid.
Addressing the above concern, we demonstrate that the predictions of two functions on both training
and test datasets can be bounded to an arbitrarily small quantization error, provided that m is
sufficiently large. Theoretically, asm scales towards infinity, the quantization error converges to 0.
This finding confirms the validity of our generalization similarity measure and asserts that 1-bit
precision does not compromise the generalization ability of standard neural networks.
Theorem 5.2 (Training and generalization similarity, informal version of Theorem K.1). Let all pre-
conditions in Theorem 4.2 satisfy. For any quantization error ϵquant > 0, we choose κ ≤ O(ϵquant/(dD

2)).
Integer ∀t ≥ 0. For any training input xi ∈ Rd in D and any test input xtest,i ∈ Rd in Dtest, with a
probability at least 1− δ, we have:

• Part 1. |f(xi,W (t), a)− f(xi,W (t), a)| ≤ ϵquant.

• Part 2. |f(xtest,i,W (t), a)− f(xtest,i,W (t), a)| ≤ ϵquant.

Proof. Proof sketch of Theorem 5.2 Since we proved |f(x,W (0), a) − f ′(x,W ′(0), a)| ≤ ϵinit in
Lemma 5.1, then as we choose appropriate R and learning rate η, the equations in Part 1 and
Part 2 of this Theorem would be bounded by scalingm to be sufficiently large. We state the complete
proof in Theorem K.1.

Training Equivalence. Here, we say training f and f ′ are equivalent since we achieve the predictions
that these two functions are extremely similar by plugging an appropriate value of κ. Besides, as we
proved in Theorem 4.2, this implementation would not harm the optimization of 1-bit networks. This
further explains why 1-bit precision even processes better when the scales of networks are increasing,
instead of turning to a training collapse. Therefore, we believe it is the theory unlocking the potential
of 1-bit neural networks from the perspective of kernel-based analysis.

−2 0 2
x

−0.25

0.00

0.25

0.50

0.75

1.00

y

1-bit MLP

FP32 MLP

f(x) = J0(20x)

−2 0 2
x

−0.5

0.0

0.5

1.0

1.5
1-bit MLP

FP32 MLP

f(x) = e−0.5|x| · sin(5x) +H(x− 1)

−2 0 2
x

−1.0

−0.5

0.0

0.5

1.0

1.5
1-bit MLP

FP32 MLP

f(x) = log(1 + |x|) · sin(10x) + 10 tan
(
x
6

)
· e−x2

Figure 2: This plot shows the difference between the predicted and actual values of the functions on
the test dataset. We tested three complex functions, as seen in the images, and the performance of
the 1-bit model is nearly identical to that of the standard 32-bit floating-point model.

8

6 Experiments
In this section, we aim to verify our theory by evaluating how well our quantization works for
learning rigorous functions and comparing it to the standard model. We designed our experiment to
1) validate the scaling law (Section 6.1), 2) visually demonstrate that the performance difference is
minimal compared to the standard model, which uses full-bit precision, through visualizations of
single-variable input functions (Section 6.2), and 3) show how the test and train losses decrease as
the model’s parameter size increases and as the epochs progress (Section 6.3).

6.1 Verification on Scaling Law
Experiment Setup. In this experiment, we aimed to learn rigorous functions using a Multi-Layer
Perceptron (MLP) with varying depths of 3 and 5 layers. The MLP models had different sizes for the
hidden layers, and we measured the minimum loss achieved throughout the training process. Each
model was trained for 100,000 steps. We experimented with various parameter sizes and plotted the
corresponding loss functions. Additionally, we compared our method with the standard training
approach using 32-bit floating-point precision.
We experimentedwith a variety of target functions, and for each function, the inputs xi were randomly
chosen within the range [−1, 1]. Specifically, each xi was sampled from a uniform distribution over
this interval to ensure that the network could handle input values across the entire domain of interest.
We sampled 100 data points and trained our model over this set.
The functions we aimed to learn during the experiment are listed below:

1. f1(x1, x2, x3, x4, x5) = exp
(

1
5

∑5
i=1 sin

2
(
πxi

2

)), This function takes five inputs and applies
a sinusoidal transformation followed by an exponential operation.

2. f2(x1, x2, x3, x4) = ln(1+|x1|)+
(
x2
2 − x2

)
+sin(x3)−ex4 , the function combines logarithmic,

polynomial, trigonometric, and exponential components over four input variables.
3. f3(x1, x2, x3) = x1 × x2 − x3, This is a simple linear function over three inputs, involving

multiplication and subtraction.
4. f4(x1, x2, x3, x4) = x0 ·sin(x1)+cos(x2)−0.5·x3, A four-input functionmixing trigonometric

and linear terms, with coefficients applied to the terms.
5. f5(x1, x2, x3, x4) =

x2
0

1+|x1| −ex2 +tanh(x3)+
√
|x0 · x2|, This function incorporates nonlinear

operations like exponentials, hyperbolic tangents, and square roots.
6. f6(x1, x2, x3, x4) = LambertW(x0 · x1) +

x2

log(1+ex3) − Γ(x1)
1+|x0| , The most complex function

we tested, which includes special functions like the Lambert W function and the Gamma
function, alongside logarithmic and exponential components.

We compare our quantized model (using INT1, 32× smaller) to a standard non-quantized model
(using 32-bit precision). For all functions (f1 to f6), we observe (in) that as the number of parameters
increases, the loss decreases, supporting our theoretical claim that larger models lead to convergence.
Although the standardmethod generally performs better due to its 32-bit precision, the gap decreases
as the number of parameters grows. This shows that while our method has a slightly higher loss, it
remains competitive, offering significant memory and computational efficiency.

6.2 Comparison on 1-D Functions
In this experiment, we aimed to visually demonstrate the performance on highly complex functions
with sharp spikes between [−π, π]. We sampled 100 uniformly spaced points and trained a 2-layer
MLP with 20M parameters to learn the function. Additionally, we sampled 100 random points
uniformly from this interval as the test dataset.
The first observation from the plot is that both the standard and 1-bit methods learn all the functions
almost perfectly, with minimal difference between them. Secondly, both methods perform similarly

9

on these functions, which can be easily observed by comparing the scatter plots of the 1-bit and
standard models. The 1-bit model requires 32× less energy and computation.

0 20 40
number of epochs

0

1

2

3

lo
ss

f (x) = J0(20x)
2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

0 20 40
number of epochs

0

1

2

3

lo
ss

f (x) = e−0.5|x| · sin(5x) + H(x− 1)
2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

0 20 40
number of epochs

0.0

2.5

5.0

7.5

10.0

12.5

lo
ss

f (x) = log(1 + |x|) · sin(10x) + 10
tan(x6)
ex2

2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

Figure 3: This plot shows the ℓ2 difference between both the training and test points and the predicted
points throughout the training phase for different model sizes and parameter counts. Each plot
demonstrates how the error decreases as training progresses, highlighting the impact of model size
on both training and test performance.

6.3 Evaluation on Training and Generalization Similarity

For the same set of functions, we show how the loss functions for both the train and test datasets
decrease as the number of epochs increases. As the training progresses, the loss converges towards
zero for models with a higher number of parameters. We experimented with models containing
2.4k, 204k, and 20M parameters, each consisting of only 2 layers.
Across all three functions, the loss decreases rapidly in the early epochs and stabilizes for both
the training and test sets. Larger models with 20M parameters consistently achieve lower final
losses compared to smaller models with 2.4k and 204k parameters, demonstrating the benefit of
increased model size. The gap between training and test losses remains minimal, indicating strong
generalization across different parameter sizes. More importantly, the key observation is that the
models predict similarly on both the training and test datasets, a behavior we refer to as generalization
similarity. This means that the models, regardless of size, behave similarly across both datasets,
supporting the scaling law that increasing model size leads to better convergence and generalization,
but also highlighting the consistent similarity in performance between training and testing across
different functions.

7 Conclusion

In conclusion, our theoretical results confirm the scaling law for 1-bit neural networks. We demon-
strated that the model achieves a small loss as the number of parameters increases. Despite the
constraint of binary weights, 1-bit models show similar behavior to full-precision models as their
width grows. Our experiments support this theory, showing that 1-bit networks perform nearly as
well as standard models on complex functions. As the number of parameters grows, the performance
gap between 1-bit and full-precision models reduces. These findings highlight that 1-bit networks
are both efficient and effective, providing a strong alternative to traditional models.

Acknowledgement

The authors sincerely thank Bo Chen, Xiaoyu Li, Zhizhou Sha, Jing Xiong, Junwei Yu and Yufa Zhou
for their helpful suggestions and discussion. The authors also would like to thank all anonymous
reviewers for their constructive reviews that enhanced the contribution of this work.

10

References
[1] HongyuWang, ShumingMa, Li Dong, Shaohan Huang, Huaijie Wang, LingxiaoMa, Fan Yang,

Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

[2] ShumingMa, HongyuWang, LingxiaoMa, LeiWang,WenhuiWang, ShaohanHuang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are
in 1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

[3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[4] Tom Brown, BenjaminMann, Nick Ryder, Melanie Subbiah, Jared DKaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[5] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

[6] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey
on multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

[7] Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and S Yu Philip. Multimodal large
language models: A survey. In 2023 IEEE International Conference on Big Data (BigData), pages
2247–2256. IEEE, 2023.

[8] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu,
Xiangyang Li, Chenxu Zhu, et al. How can recommender systems benefit from large language
models: A survey. arXiv preprint arXiv:2306.05817, 2023.

[9] Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi Yan. A survey of large language models
for autonomous driving. arXiv preprint arXiv:2311.01043, 2023.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[11] Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

[12] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[14] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022.

[15] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary
Chan. Run, don’t walk: chasing higher flops for faster neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 12021–12031, 2023.

11

[16] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

[17] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[18] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantizationmethods for efficient neural network inference. In Low-Power Computer
Vision, pages 291–326. Chapman and Hall/CRC, 2022.

[19] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-ChenWang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

[20] Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen Gou, Phil
Blunsom, Ahmet Üstün, and Sara Hooker. Intriguing properties of quantization at scale.
Advances in Neural Information Processing Systems, 36:34278–34294, 2023.

[21] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming
the challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

[22] Shigang Li, Kazuki Osawa, and Torsten Hoefler. Efficient quantized sparse matrix operations
on tensor cores. In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15. IEEE, 2022.

[23] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu,
Minyi Guo, and Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly
outlier-victim pair quantization. In Proceedings of the 50th Annual International Symposium on
Computer Architecture, pages 1–15, 2023.

[24] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training
quantization for vision transformer. Advances in Neural Information Processing Systems, 34:
28092–28103, 2021.

[25] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models. In
International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[26] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

[27] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad,
Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quanti-
zation aware training for large language models, 2023. URL https://arxiv.org/abs/2305.
17888.

[28] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL https:
//arxiv.org/abs/2106.08295.

[29] Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott Yih, Meng Li, Raghuraman Krish-
namoorthi, and Yashar Mehdad. Bit: Robustly binarized multi-distilled transformer. Advances
in neural information processing systems, 35:14303–14316, 2022.

[30] Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024.

12

https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295

[31] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran.
Low-rank matrix factorization for deep neural network training with high-dimensional output
targets. In 2013 IEEE international conference on acoustics, speech and signal processing, pages
6655–6659. IEEE, 2013.

[32] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization, 2022. URL https://arxiv.org/
abs/2207.00112.

[33] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079.

[34] Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
channel: Efficient large language model inference with coupled quantization, 2024. URL
https://arxiv.org/abs/2405.03917.

[35] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv
preprint arXiv:2402.02750, 2024.

[36] Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache
quantization with zero overhead, 2024. URL https://arxiv.org/abs/2406.03482.

[37] Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tijmen
Blankevoort. A practical mixed precision algorithm for post-training quantization, 2023. URL
https://arxiv.org/abs/2302.05397.

[38] Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and Wenwu Zhu.
Mixed-precision neural network quantization via learned layer-wise importance, 2023. URL
https://arxiv.org/abs/2203.08368.

[39] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

[40] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. Advances in neural information processing systems, 31, 2018.

[41] Simon SDu, XiyuZhai, Barnabas Poczos, andAarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[42] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff
bound. arXiv preprint arXiv:1906.03593, 2019.

[43] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International conference on machine learning, pages 242–252. PMLR,
2019.

[44] ColinWei, JasonDLee, Qiang Liu, and TengyuMa. Regularizationmatters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

[45] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in
Neural Information Processing Systems, 32, 2019.

[46] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

13

https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2406.03482
https://arxiv.org/abs/2302.05397
https://arxiv.org/abs/2203.08368

[47] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on learning theory, pages 1305–1338. PMLR,
2020.

[48] Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in
neural networks: Emergence from inputs and advantage over fixed features. In International
Conference on Learning Representations, 2021.

[49] Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized
two-layer neural network. In Conference on Learning Theory, pages 4577–4632. PMLR, 2021.

[50] Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit:
Effects of depth and initialization. In International Conference on Machine Learning, pages
19522–19560. PMLR, 2022.

[51] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023.

[52] Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of soft-
max: Provable optimization, applications in diffusion model, and beyond. arXiv preprint
arXiv:2405.03251, 2024.

[53] Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via
gradient feature learning. Advances in Neural Information Processing Systems, 36, 2024.

[54] Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in
transformer. arXiv preprint arXiv:2406.14036, 2024.

[55] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in neural information
processing systems, 32, 2019.

[56] Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent
neural tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

[57] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp
and ntk for deep attention networks. In International Conference on Machine Learning, pages
4376–4386. PMLR, 2020.

[58] SadhikaMalladi, AlexanderWettig, Dingli Yu, Danqi Chen, and SanjeevArora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pages
23610–23641. PMLR, 2023.

[59] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[60] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Un-
derstanding straight-through estimator in training activation quantized neural nets. arXiv
preprint arXiv:1903.05662, 2019.

[61] Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable
feature learning in neural networks beyond kernels. Advances in Neural Information Processing
Systems, 34:24883–24897, 2021.

[62] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation
and self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

[63] Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs
robust deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 977–988. IEEE, 2022.

14

[64] Tianren Zhang, Chujie Zhao, Guanyu Chen, Yizhou Jiang, and Feng Chen. Feature contam-
ination: Neural networks learn uncorrelated features and fail to generalize. arXiv preprint
arXiv:2406.03345, 2024.

[65] Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff,
Mansheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for
precision. arXiv preprint arXiv:2411.04330, 2024.

[66] Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression.
arXiv preprint arXiv:2304.10411, 2023.

[67] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Advancing the under-
standing of fixed point iterations in deep neural networks: A detailed analytical study. arXiv
preprint arXiv:2410.11279, 2024.

[68] Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural
Information Processing Systems, 36:9422–9457, 2023.

[69] Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and
Yi Ma. Emergence of segmentation with minimalistic white-box transformers. arXiv preprint
arXiv:2308.16271, 2023.

[70] Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the
inner workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

[71] Druv Pai, Sam Buchanan, Ziyang Wu, Yaodong Yu, and Yi Ma. Masked completion via
structured diffusion with white-box transformers. In The Twelfth International Conference on
Learning Representations, 2024.

[72] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[73] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar.
arXiv preprint arXiv:2305.13673, 2023.

[74] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipu-
lation. arXiv preprint arXiv:2309.14402, 2023.

[75] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage
and extraction. arXiv preprint arXiv:2309.14316, 2023.

[76] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

[77] DennisWu, Jerry Yao-ChiehHu,Weijian Li, Bo-YuChen, andHan Liu. Stanhop: Sparse tandem
hopfield model for memory-enhanced time series prediction. arXiv preprint arXiv:2312.17346,
2023.

[78] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On
sparse modern hopfield model. Advances in Neural Information Processing Systems, 36, 2023.

[79] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of
modern hopfield models: A fine-grained complexity analysis. arXiv preprint arXiv:2402.04520,
2024.

[80] Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Robin Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. arXiv
preprint arXiv:2404.03828, 2024.

15

[81] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized
sparse modern hopfield model. arXiv preprint arXiv:2404.03830, 2024.

[82] Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval
with larger capacity for modern hopfield models. arXiv preprint arXiv:2404.03827, 2024.

[83] Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric
modern hopfield models. arXiv preprint arXiv:2404.03900, 2024.

[84] Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training
large language models. arXiv preprint arXiv:2402.04497, 2024.

[85] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024.

[86] InsuHan, Rajesh Jayaram, AminKarbasi, VahabMirrokni, DavidWoodruff, andAmir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=Eh0Od2BJIM.

[87] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers
via sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

[88] Raghav Addanki, Chenyang Li, Zhao Song, and Chiwun Yang. One pass streaming al-
gorithm for super long token attention approximation in sublinear space. arXiv preprint
arXiv:2311.14652, 2023.

[89] Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian
distributed input. arXiv preprint arXiv:2404.02690, 2024.

[90] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the
gems in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

[91] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential
dependency: Looped transformers efficiently learn in-context by multi-step gradient descent.
arXiv preprint arXiv:2410.11268, 2024.

[92] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear ap-
proximations: A novel pruning approach for attention matrix. arXiv preprint arXiv:2410.11261,
2024.

[93] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse
attention acceleration. arXiv preprint arXiv:2410.10165, 2024.

[94] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may
be all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024.

[95] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

[96] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The
collected works of Wassily Hoeffding, pages 409–426, 1994.

[97] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of
laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[98] Aleksandr Khintchine. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

16

https://openreview.net/forum?id=Eh0Od2BJIM

[99] Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):
231–283, 1981.

[100] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms
in independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

[101] Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concen-
tration. 2013.

[102] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of statistics, pages 1302–1338, 2000.

[103] Sergey Foss, Dmitry Korshunov, Stan Zachary, et al. An introduction to heavy-tailed and subexpo-
nential distributions, volume 6. Springer, 2011.

[104] Joel ATropp. Improved analysis of the subsampled randomized hadamard transform. Advances
in Adaptive Data Analysis, 3(01n02):115–126, 2011.

[105] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via
the subsampled randomized hadamard transform. Advances in neural information processing
systems, 26, 2013.

17

Appendix

Contents

1 Introduction 1

2 Related Work 2

3 Preliminary 3

3.1 Quantization . 3
3.2 NTK Problem Setup . 4
3.3 Recalling Classic NTK Setup . 4

4 Kernel Behavior and Training Convergence 4

4.1 Neural Tangent Kernel . 5
4.2 Training Convergence . 5
4.3 Extensibility . 6

5 Generalization Similarity 7

5.1 Function Difference at Initialization . 7
5.2 Generalization Similarity . 8

6 Experiments 9

6.1 Verification on Scaling Law . 9
6.2 Comparison on 1-D Functions . 9
6.3 Evaluation on Training and Generalization Similarity 10

7 Conclusion 10

A More Related Work 21

B Preliminary 21

B.1 Notations . 21
B.2 Basic Facts . 21
B.3 Probability Tools . 22
B.4 Basic Bound . 23

C NTK Problem Setup 23

C.1 Dataset . 23
C.2 Model . 23
C.3 Training . 25

18

D Quantization 26

D.1 Quantization Functions . 26
D.2 Dequantization Functions . 27
D.3 Quantization Error . 27

E Patterns 28

E.1 ReLU Pattern . 28
E.2 Sign Pattern . 29

F Straight-Through Estimator (STE) 29

F.1 STE Functions . 29
F.2 Gradient Computation . 29

G Neural Tangent Kernel 30

G.1 Kernel Function . 30
G.2 Assumption: H∗ is Positive Definite . 31
G.3 Kernel Convergence and PD Property . 31

H Training Dynamic 33

H.1 Decompose Loss . 33
H.2 Bounding C1 . 35
H.3 Bounding C2 . 37
H.4 Bounding C3 . 38
H.5 Bounding C4 . 41

I Inductions 43

I.1 Main Result 1: Training Convergence Guarantee . 43
I.2 Induction for Loss . 44
I.3 Induction for STE Gradient . 47
I.4 Induction for Weights . 48

J Supplementary Setup for Classical Linear Regression 49

J.1 Model Function . 49
J.2 Loss and Training . 50
J.3 Induction for Weights . 50
J.4 Induction for Loss . 51

K Similarities 52

K.1 Main Result 2: Training Similarity . 52
K.2 Test Dataset for Generalization Evaluation . 53

19

K.3 Function Similarity at Initialization . 53

20

Roadmap
We initially introduce the intention of each section in the appendix here. In Appendix A, we
review more prior works that relate to our work. In Appendix B, we provide the preliminary for
our theoretical analysis. In Appendix C, we give the formal definition of the NTK-style problem
setup we aim to solve in this paper. In Appendix D, we strictly define the quantization method we
utilize for our approach. We discuss the potential pattern changing of ReLU and signal function in
Appendix E. For optimizing 1-bit neural network, we state the Straight-Through Estimator method
(STE) definitions in Appendix F. In Appendix G, we define NTK for our optimization problem and
discuss its properties. In Appendix I, we prove the convergence guarantee of training 1-bit neural
networks. In Appendix J, we review the classical setup of solving the NTK-style linear regression.
We confirm the generalization similarity in Appendix K.

A More Related Work
Theoretical Approach for Understanding Modern Neural Networks. The intricate architecture
of transformer-based models, coupled with the stochastic nature of their optimization processes,
presents a formidable challenge in comprehending the behaviors of large language models (LLMs).
However, delving into these complexities through a theoretical lens can illuminate pathways for
enhancing and innovating future AI systems. This exploration encompasses various facets, including
the optimization strategies for LLMs [52, 66, 67], the intricacies of white-box transformers [68–71],
and the analysis of emergent capabilities that arise within these models [4, 72–76]. Additionally,
themodern Hopfield model [77–83] offers a rich terrain for investigation, revealing the nuanced
dynamics that govern these advanced neural networks.
Efficient Neural Networks. As the principles of scaling laws come to the forefront, contemporary
neural networks are increasingly trained on expansive datasets, necessitating substantial computa-
tional resources [11, 84–94]. This demand for efficiency has spurred research into algorithms that
optimize computational complexity, minimize memory usage, and enhance alignment with GPU
architectures. Such advancements are crucial in navigating the challenges posed by the ever-growing
scale of data and the intricate demands of modern AI applications, ensuring that these powerful
tools remain accessible and effective in their deployment.

B Preliminary

B.1 Notations
In this paper, we use integer m > 0 to denote the width of neural networks, in particular, m is
sufficiently large. We use integer d > 0 to denote the dimension of neural networks. We use integer
n > 0 to denote the size of the training dataset.

B.2 Basic Facts
Fact B.1. For a variable x ∼ N (0, σ2), then with probability at least 1− δ, we have:

|x| ≤ Cσ
√
log(1/δ)

Fact B.2. For an 1-Lipschitz function f(·), we have:
|f(x)− f(y)| ≤ |x− y|,∀x, y ∈ Rd

Fact B.3. For a Gaussian variable x ∼ N (0, σ2 · Id) where σ ∈ R, then for any t > 0, we have:

Pr[x ≤ t] ≤ 2t√
2πσ

Fact B.4. For a Gaussian vector w ∼ N (0, σ2 · Id) where σ ∈ R, and a fixed vector x ∈ Rd, we have:
w⊤x ∼ N (0, σ2∥x∥22 · Id)

21

Fact B.5. For two matrices H, H̃ ∈ Rn×n, we have:

λmin(H̃) ≥ λmin(H)− ∥H − H̃∥F
Fact B.6. For x ∈ (0, 1), integer t ≥ 0, we have:

t∑

τ=1

(1− x)τ ≤ − 1

log(1− x)
≤ 2

x

B.3 Probability Tools
Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in [95] below.
Lemma B.7 (Chernoff bound, [95]). Let X =

∑n
i=1 Xi, where Xi = 1 with probability pi and Xi = 0

with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in [96].
Lemma B.8 (Hoeffding bound, [96]). Let X1, · · · , Xn denote n independent bounded variables in [ai, bi]
for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as [97].
Lemma B.9 (Bernstein inequality, [97]). Let X1, · · · , Xn denote n independent zero-mean random vari-
ables. Suppose |Xi| ≤ M almost surely for all i. Then, for all positive t,

Pr[

n∑

i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
)

Then, we give the Khintchine’s inequality in [98, 99] as follows:
Lemma B.10 (Khintchine’s inequality, [98, 99]). Let σ1, · · · , σn be i.i.d sign random variables, and let
z1 · · · , zn be real numbers. Then there are constants C > 0 so that for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2)

We give Hason-wright inequality from [100, 101] below.
Lemma B.11 (Hason-wright inequality, [100, 101]). Let x ∈ Rn denote a random vector with independent
entries xi with E[xi] = 0 and |xi| ≤ K Let A be an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)})

We state Lemma 1 on page 1325 of Laurent and Massart [102].
Lemma B.12 (Lemma 1 on page 1325 of Laurent and Massart, [102]). Let X ∼ X 2

k be a chi-squared
distributed random variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t)

Here, we provide a tail bound for sub-exponential distribution [103].

22

Lemma B.13 (Tail bound for sub-exponential distribution, [103]). We say X ∈ SE(σ2, α) with
parameters σ > 0, α > 0, if

E[eλX] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α})

In the following, we show the helpful lemma of matrix Chernoff bound as in [104, 105].
Lemma B.14 (Matrix Chernoff bound, [104, 105]). Let X be a finite set of positive-semidefinite matrices
with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random fromX without replacement. We define µmin and µmax as follows:

µmin := n · λmin(E
X∈X

(X))

µmax := n · λmax(E
X∈X

(X)).

Then

Pr[λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

Finally, we state Markov’s inequality as below.
Lemma B.15 (Markov’s inequality). IfX is a non-negative random variable and a > 0, then the probability
that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E[X]

a

B.4 Basic Bound
Definition B.16. For δ ∈ (0, 0.1) and a sufficiently large constant C > 0, we define:

D := max{C
√

log(md/δ), 1}

C NTK Problem Setup

C.1 Dataset
We consider a dataset where each data point is a tuple that includes a vector input and a scalar
output. In particular, we assume that ℓ2 norm of each input equals 1 and the absolute value of each
target is not bigger than 1. We give the formal definition as follows:
Definition C.1 (Data Points). We define dataset D := {(xi, yi)}ni=1 ⊂ Rd × R, where ∥xi∥2 = 1 and
|yi| ≤ 1 for any i ∈ [n].

C.2 Model
Weights and Initialization.
Definition C.2. We give the following definitions:

• Hidden-layer weightsW ∈ Rd×m. We define the hidden-layer weightsW := [w1, w2, · · · , wm] ∈
Rd×m where wr ∈ Rd,∀r ∈ [m].

23

• Output-layer weights a ∈ Rm. We define the output-layer weights a := [a1, a2, · · · , am]
⊤ ∈ Rm,

especially, vector a is fixed during the training.
Definition C.3. We give the following initializations:

• Initialization of hidden-layer weights W ∈ Rd×m. We randomly initialize W (0) :=
[w1(0), w2(0), · · · , wm(0)] ∈ Rd×m, where its r-th column for r ∈ [m] is sampled by wr(0) ∼
N (0, σ2 · Id) with σ2 = 1.

• Initialization of output-layer weights a ∈ Rm. We randomly initialize a ∈ Rm where its r-th
entry for r ∈ [m] is sampled by ar ∼ Uniorm{−1,+1}.

Model.
Definition C.4. For a scalar x ∈ R, we define:

ReLU(x) = max{0, x} ∈ R

Definition C.5. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

• For κ ∈ (0, 1].

We define:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
∈ R

Lemma C.6. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weightsW ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

• Let u : Rd → Rd be defined as Definition D.6.

• For κ ∈ (0, 1].

Then we have:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

24

Proof. We have

f(x,W, a) = κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)

= κ
1√
m

m∑

r=1

ar · ReLU
(√

V (w) · (⟨w̃, x⟩+ E(w) · ⟨x,1d⟩)
)

= κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

where the first step follows from Definition C.5, the second step follows from Definition D.5, the last
step follows from Definition D.6.

C.3 Training
Training.
Definition C.7. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

We define:

L(W (t)) :=
1

2
·

n∑

i=1

(f(xi,W (t), a)− yi)
2

Definition C.8. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition C.7.

• Denote η > 0 as the learning rate.

• Let ∆W (t) ∈ Rd×m be defined as Definition F.2.

We update:

W (t+ 1) := W (t)− η ·∆W (t)

Compact Form.
Definition C.9. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

25

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition C.7.

• Let W (t) be updated by Definition C.8.

We give the following compact form of defined variables and functions:

• Compact form of model function. We define:

F(t) := [f(x1,W (t), a), f(x2,W (t), a), · · · , f(xn,W (t), a)]
⊤ ∈ Rn

• Compact form of the input vector in the training dataset. We define:

X := [x1, x2, · · · , xn]
⊤ ∈ Rn×d

• Compact form of the targets in the training dataset. We define:

y := [y1, y2, · · · , yn]⊤ ∈ Rn

• Compact form of the training objective. We define:

L(t) :=
1

2
· ∥F(t)− y∥22

Especially, we have L(t) = L(W (t)) by simple algebras.

D Quantization
D.1 Quantization Functions
Definition D.1. For a vector w ∈ Rd, we define Sign(w) ∈ {−1,+1}d where its k-th entry for k ∈ [d] is
given by:

Signk(w) :=

{−1, if wk < 0

+1, if wk ≥ 0
∈ {−1,+1}

Definition D.2. For a vector w ∈ Rd, we define expectation function as follows:

E(w) :=
⟨w,1d⟩

d
∈ R

Definition D.3. Let E : Rd → R be defined as Definition D.2. For a vector w ∈ Rd, we define variance
function as follows:

V (w) :=
1

d
· ∥w − E(w) · 1d∥22 ∈ R

Definition D.4. If the following conditions hold:

• Let Sign : Rd → {−1,+1}d be defined as Definition D.1.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

We define the quantization function as follows:

q(w) := Sign(
w − E(w) · 1d√

V (w)
) ∈ {−1,+1}d

26

D.2 Dequantization Functions
Definition D.5. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd.

We define the dequantization function as follows:

dq(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨x,1d⟩ ∈ R

D.3 Quantization Error
Definition D.6. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd.

We define the quantization difference vector as follows:

u(w) :=
√
V (w)w̃ + E(w) · 1d − w ∈ Rd

Lemma D.7. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let u : Rd → Rd be defined as Definition D.6.

Then we have:
⟨u(w), x⟩ ≤ O

(
d(D +R)

)

Proof. We define:

Ln(w) =
w − E(w)1d√

V (w)

27

Then by simple algebras, we can show that:

1

d
∥Ln(w)∥22 =

1

d

∥∥∥∥∥
w − E(w)1d√

V (w)

∥∥∥∥∥

2

2

<
1

d

∥w − E(w)1d∥22
V (w)

< 1 (4)

Thus, we obtain:
∥Ln(w)∥∞ ≤ ∥Ln(w)∥2

= (∥Ln(w)∥22)
1
2

<
√
d

where these steps follow from simple algebras and Eq. (4).
Finally, we can get that

|⟨u(w), x⟩| =
√

V (w) · |⟨w̃ − Ln(w), x⟩|
= O(D +R) · |⟨w̃ − Ln(w), x⟩|
≤ O(D +R) · ∥w̃ − Ln(w)∥2

= O(D +R) ·
(d∑

k=1

(w̃k − Lnk(w))
2
) 1

2

≤ O(D +R) ·
(d∑

k=1

(max{
√
d− 1, 1})2

) 1
2

≤ O
(
d(D +R)

)

where the first step follows from Definition D.6, the second step follows from Part 7 of Lemma I.6,
the third step follows from Cauchy-Schwarz inequality and ∥x∥2 = 1, the fourth step follows from
the definition of ℓ2 norm, the fifth step follows from Definition D.1 and simple algebras, the last step
follows from simple algebras.

E Patterns

E.1 ReLU Pattern
Definition E.1. If the following conditions hold:

• For any w ∈ Rd.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• For R > 0.

• For i ∈ [n] and r ∈ [m].

We define:

Ai,r := {∃w ∈ Rd : ∥w − wr(0)∥2 ≤ R,1dq(⟨wr(0),xi⟩)≥0 ̸= 1dq(⟨w,xi⟩)≥0}
Definition E.2. Let event Ai,r for i ∈ [n] and r ∈ [m] be defined as Definition E.1. We define:

Si := {r ∈ [m] : I{Ai,r} = 0}
S⊥
i := [m]/Si

28

E.2 Sign Pattern
Definition E.3. If the following conditions hold:

• For any w ∈ Rd.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• For R > 0.

• For k ∈ [d] and r ∈ [m].

We define:

Br,k := {∃w ∈ Rd : |wk − wr,k(0)| ≤ R,1wr,k(0)−E(wr(0))≥0 ̸= 1wk−E(w)≥0}

F Straight-Through Estimator (STE)

F.1 STE Functions
Definition F.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

We define:

fste(x,W, a) := κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r,x⟩)≥0 · ⟨wr, x⟩ ∈ R

Then its compact form is given by

Fste(t) := [fste(x1,W (t), a), fste(x2,W (t), a), · · · , fste(xn,W (t), a)]
⊤ ∈ Rn

Definition F.2. LetW (0) ∈ Rd×m be initialized as Definition C.3. For any t ≥ 0. We define:

∆W (t) :=

n∑

i=1

(Fi(t)− yi) ·
dFste,i(t)

dW (t)

F.2 Gradient Computation
Lemma F.3. If the following conditions hold:

• For i ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let Fste(t) be defined as Definition F.1.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

29

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• For κ ∈ (0, 1].

Then we have:
dFste,i(t)

dwr(t)
= κ

1√
m
ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi

Proof. This proof follows from simple calculations.

G Neural Tangent Kernel

G.1 Kernel Function
Definition G.1. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• For κ ∈ (0, 1].

We define the kernel function as H(t) ∈ Rn×n, where its (i, j)-th entry is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

Claim G.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let H(t) ∈ Rn×n be defined as Definition G.1.

• For κ ∈ (0, 1].

We first define the neural tangent network as H∗ := H(0) ∈ Rn×n, where its (i, j)-th entry is given by:

H∗
i,j := Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

30

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

Proof. We have
H∗

i,j = Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

where the first step follows from the definition ofH∗, the second step follows from Definition G.1,
the third step holds since m → +∞.
Definition G.3. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let S⊥
i be defined as Definition E.2.

We the pattern-changing kernel function as H⊥(t) ∈ Rn×n, where its (i, j)-th entry is given by:

H⊥
i,j(t) := κ2 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

G.2 Assumption: H∗ is Positive Definite
Assumption G.4. Let H∗ ∈ Rn×n be defined as Definition G.1. We assume that H∗ is positive definite
(PD), where its minimum eigenvalue is given by:

λ := λmin(H
∗) > 0

G.3 Kernel Convergence and PD Property
Lemma G.5. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Denote λ = λmin(H
∗) > 0 as Assumption G.4.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

31

• Let H∗ ∈ Rn×n be defined as Claim G.2.

• R ≤ O(λδ
κ2n2dD).

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

• Part 1.

∥H(t)−H∗∥F ≤ O
(
n2dRδ−1D

)

• Part 2.

λmin(H(t)) ≥ λ/2

Proof. Proof of Part 1. Let Ai,r be defined as Definition E.1, we first show that when ⟨wr(0), x⟩ ≥
R+O

(
d(D +R)

)

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0)) · ⟨w̃r(0), xi⟩+ ⟨E(wr(0)) · 1d, xi⟩

= ⟨wr(0), xi⟩+ ⟨u(wr(0)), xi⟩
≥ ⟨wr(0), xi⟩ − |⟨u(wr(0)), xi⟩|
≥ R

where the first step follows from Definition D.5, the second step follows from Definition D.6. the
third step follows from simple algebras, the last step follows from ⟨wr(0), x⟩ ≥ R+O

(
d(D +R)

)

and Lemma D.7.
Thus, for any w ∈ Rd that satisfies ∥w − wr(0)∥2 ≤ R, we have:

dq(⟨w̃, xi⟩) =
√

V (w) · ⟨w̃, xi⟩+ ⟨E(w) · 1d, xi⟩
= ⟨w, xi⟩+ ⟨u(w), xi⟩
≥ ⟨w, xi⟩ − |⟨u(w), xi⟩|
≥ ⟨wr(0), xi⟩ − ∥w − wr(0)∥2 − |⟨u(w), xi⟩|
≥ 0

where the first step follows from Definition D.5, the second step follows from Definition D.6. the
third step follows from simple algebras, the fourth step follows from Cauchy-Schwarz inequality
and ∥xi∥ = 1, the last step follows from ∥w − wr(0)∥2 ≤ R, ⟨wr(0), x⟩ ≥ R + O

(
d(D + R)

)
and

Lemma D.7.
The above situation says:

Pr
[
I{Ai,r} = 1] ≤ Pr[⟨wr(0), x⟩ < R+O

(
d(D +R)

)]

≤
4R+O

(
d(D +R)

)

√
2π

≤ O
(
dR(D +R)

)

≤ O
(
dRD

)
(5)

where the second step follows from anti-concentration of Gaussian (Fact B.3) and Fact B.4, the third
step follows from simple algebras and the last step follows from plugging R ≤ D.
For i, j ∈ [n], we have

E[|Hi,j(t)−H∗
i,j |]

32

= E
[∣∣∣κ2 1

m
x⊤
i xj

m∑

r=1

(1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0)
∣∣∣
]

= κ2 1

m

m∑

r=1

E
[
1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

]

≤ κ2 1

m

m∑

r=1

E
[
I{Ai,r ∪Aj,r}

]

≤ O
(
κ2dRD

)
(6)

where the first step follows from Definition G.1 and Claim G.2, the second and third step follows
from simple algebras, the last step follows from Eq. (5).
Then we have:

E[
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |] =

n∑

i=1

n∑

j=1

E[|Hi,j(t)−H∗
i,j |]

≤ O
(
κ2n2dRD

)

where the first step follows from simple algebras, the second step follows from Eq. (6).
Hence, by Markov’s inequality (Lemma B.15), with probability at least 1− δ, we have:

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j | ≤

E[
∑n

i=1

∑n
j=1 |Hi,j(t)−H∗

i,j |]
δ

≤ O
(
κ2n2dRδ−1(D +R)

)

We obtain:
∥H(t)−H∗∥F ≤ ∥H(t)−H∗∥1

=

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |

≤ O
(
κ2n2dRδ−1D

)

Now following Fact B.5, we have:
λmin(H(t)) ≥ λmin(H

∗)− ∥H(t)−H∗∥F
≥ λ−O

(
κ2n2dRδ−1D

)

≥ λ/2

where the last step follows from choosing R ≤ O(λδ
κ2n2dD).

H Training Dynamic

H.1 Decompose Loss
Definition H.1. Let W (0) ∈ Rd×m be initialized as Definition C.3. For any t ≥ 0. Let u : Rd → Rd be
defined as Definition D.6. For r ∈ [m]. We define:

ur(t) := u(wr(t))

Then the Fi(t),∀i ∈ [n] can be given by:

Fi(t) = κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

33

Claim H.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• For κ ∈ (0, 1].

Then we have:

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

Proof. We have

L(t+ 1) =
1

2
· ∥F(t+ 1)− y∥22

=
1

2
· ∥(F(t)− y)− (F(t)− F(t+ 1))∥22

=
1

2
· (∥F(t)− y∥22 − 2⟨F(t)− y,F(t)− F(t+ 1)⟩+ ∥F(t)− F(t+ 1)∥22)

34

= L(t)− ⟨F(t)− y,F(t)− F(t+ 1)⟩+ 1

2
∥F(t)− F(t+ 1)∥22

these steps follow from simple algebras and Definition C.9.
Then for i ∈ [n]

Fi(t)− Fi(t+ 1)

= κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

)

= κ
1√
m

m∑

r=1

ar ·
(
1dq(⟨w̃r(t),xi⟩)≥0 ·

(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

))

= M1,i +M2,i +M3,i

where these steps follows from simple algebras and defining:

M1,i := κ
1√
m

∑

r∈Si

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M2,i := κ
1√
m

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M3,i := κ
1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨ur(t+ 1), xi⟩

)

Thus, by the definitions in Lemma conditions, we can show that
L(t+ 1) = L(t) + C1 + C2 + C3 + C4

H.2 Bounding C1

Lemma H.3. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

35

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• For κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C1 ≤
(
− ηκλ+O(ηκ

n2dRD

δ
)
)
· L(t)

Proof. We have:

C1 = − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ
1√
m

n∑

i=1

∑

r∈Si

ar(⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ2η
1

m

n∑

i=1

∑

r∈Si

(Fi(t)− yi) · (
n∑

j=1

x⊤
i xj · 1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 · (Fj(t)− yj))

= − η(F(t)− y)⊤ · (H(t)−H⊥(t)) · (F(t)− y)

= − η(F(t)− y)⊤ ·H(t) · (F(t)− y) + η(F(t)− y)⊤ ·H⊥(t) · (F(t)− y)

≤ − ηλ/2 · ∥F(t)− y∥22 + η∥H⊥(t)∥F · ∥F(t)− y∥2
= (−ηλ+ ∥H⊥(t)∥F) · L(t)

where the first step follows from definition of C1, the second step follows from the definition of Si

(Definition E.2), the third step follows from Definition C.8 and Definition F.2, the fourth step follows
from Definition G.1, Definition G.3 and simple algebras, the fifth step follows from simple algebras,
the sixth step follows from Lemma G.5 and simple algebras, the last step follows from Definition C.9.
Besides, we have

|H⊥
i,j | = | 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0|

≤ | 1
m
x⊤
i xj · |S⊥

i ||

≤ 1

m
|S⊥

i | (7)

where the first step follows from Definition G.3, the second step follows from simple algebras, the
third step follows from ∥x∥i = 1.

36

We give that

E[
n∑

i=1

|S⊥
i |] =

n∑

i=1

m∑

r=1

Pr[I{Ai,r} = 1]

≤ O(mndRD)

where the first step follows from simple algebras, the second step follows from Eq. (5).
Hence, by Markov’s inequality (Lemma B.15), we have

n∑

i=1

|S⊥
i | ≤ O(

mndRD

δ
) (8)

Thus,

∥H⊥∥F ≤
n∑

i=1

n∑

j=1

|H⊥
i,j |

≤ 1

m

n∑

i=1

n∑

j=1

|S⊥
i |

≤ O(
n2dRD

δ
)

where the first step follows from simple algebras, the second step follows from Eq. (7), the last step
follows from simple algebras and Eq. (8).
Finally, we conclude all the results, we have:

C1 ≤
(
− ηλ+O(η

n2dRD

δ
)
)
· L(t)

H.3 Bounding C2

Lemma H.4. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

37

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

|C2| ≤ O(ηκ
n1.5dRD

δ
) · L(t)

Proof. We have:

|C2| = |κ 1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · |⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩| · (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2 · (Fi(t)− yi)|

≤ κ
1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2∥F(t)− y∥2

≤ ηκ

√
n

m

n∑

i=1

|Si⊥ | · ∥F(t)− y∥22

≤ O(ηκ
n1.5dRD

δ
) · L(t)

where the first step follows from the definition of C2, the second step follows from Fact B.2 and
Definition E.2 (S⊥

i), the third step follows from simple algebras and Definition C.8, the fourth step
follows from simple algebras, the fifth step follows from Lemma I.4, last step follows from Eq. (8)
and Definition C.9.

H.4 Bounding C3

Lemma H.5. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

38

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C3 ≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

Proof. We have:
|ur,k(t)− ur,k(t+ 1)|

= |
√

V (wr(t)) · w̃r,k(t) + E(wr(t))− wr,k(t)

−
√

V (wr(t+ 1)) · w̃r,k(t+ 1)− E(wr(t+ 1)) + wr,k(t+ 1)|
≤ |w̃r,k(t)

√
V (wr(t))− w̃r,k(t+ 1)

√
V (wr(t+ 1))|

+ |ηE(∆wr(t))|+ |η∆wr,k(t)|
≤
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

+
∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣+ |ηE(∆wr(t))|+ |η∆wr,k(t)|

= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k (9)
where the first step follows from Definition H.1, the second step follows from triangle inequality and
Definition C.8, the third step follows from simple algebras, the last step follows from defining:

Q1,r,k :=
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

Q2,r,k :=
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣
Q3,r,k := |ηE(∆wr(t))|
Q4,r,k := |η∆wr,k(t)|

Bounding Q1,r,k.

39

We have:
Q1,r,k =

∣∣∣w̃r,k(t+ 1)(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

=
∣∣∣(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣
≤ ∥wr(t)− E(wr(t))1d − wr(t+ 1) + E(wr(t+ 1))1d∥2
≤ ∥η∆wr(t)∥2 +

√
d · |ηE(∆wr(t))|

≤ η
(1 +

√
d)
√
n√

m
∥F(t)− y∥2

where the first step follows from the definition of Q1,r,k, the second step follows from w̃r,k(t+ 1) ∈
{−1,+1}, the third step follows from Definition D.3 and reverse triangle inequality, the fourth step
follows from ∥1d∥2 =

√
d and Definition C.8, the last step follows from Lemma I.4.

Bounding Q2,r,k.

We have:
Q2,r,k =

∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣

= |
√
V (wr(t))| · |w̃r,k(t)− w̃r,k(t+ 1)|

≤ ∥wr(t)− E(wr(t))1d∥ · |w̃r,k(t)− w̃r,k(t+ 1)|
≤ O(

√
dD +R) · |w̃r,k(t)− w̃r,k(t+ 1)| (10)

where the first step follows from the definition ofQ2,r,k, the second step follows from simple algebras,
the third step follows from Definition D.3, the last step follows from Part 2 of Lemma I.6.
At the same time, we can show that

E[|w̃r,k(t)− w̃r,k(t+ 1)|]
≤ 2(1− Pr[I{Br,k} = 0 ∩ I{|wr,k(t)− E(wr(t))| ≥ |η∆wr,k(t)− ηE(∆wr(t))|}])

≤ 2(1− Pr[z ≥ 2R+ 2η

√
n√
m
∥F(t)− y∥2])

= 2Pr[z ≤ 2R+ 2η

√
n√
m
∥F(t)− y∥2]

≤ O(η

√
n√
m
)∥F(t)− y∥2 +O(1)R

≤ O(η
R
√
n

ϵ
√
m

)∥F(t)− y∥2

where the first step follows from Definition E.3 and simple algebras, the second step follows from
defining:

z := wr,k(0)− E(wr(0))

=
d− 1

d
wr,k − 1

d

∑

k′∈[d]/{k}
wr,k′(0)

∼ N
(
0, σ2

√
d− 1

d
· Id
)

and the last steps follow from the anti-concentration of the Gaussian variable (Fact B.3) and ∥F(t)−
y∥2 ≥ ϵ by Lemma condition.
Following Markov’s inequality, we get:

|w̃r,k(t)− w̃r,k(t+ 1)| ≤ O(η
R
√
n

δϵ
√
m
)∥F(t)− y∥2 (11)

40

Hence,

Q2,r,k ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

where this step follows from Eq. (11) and Eq. (10).
Bounding Q3,r,k and Q4,r,k.

We can show thatQ3,r,k ≤ η
√
n√
m

· ∥F(t)− y∥2 andQ4,r,k ≤ η
√
n√
m

· ∥F(t)− y∥2 by following Lemma I.4.
Combination. We have:

E[C3] = 0

where this step follows from the symmetry of a.
Also

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩

)

≤ |⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k

≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2 (12)

where the first step follows from ReLU is a 1-Lipschitz function (Fact B.2), the last step follows from
simple algebras and the combination of these terms.
By Hoeffding’s inequality (Lemma B.8), with a probability at least 1− δ, we have:

|C3| ≤ O
(
ηκ

R2n1.5
√
d

δϵ ·m
√
mD

)
∥F(t)− y∥22

≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

H.5 Bounding C4

Lemma H.6. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

41

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let Si,S⊥

i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

Then with probability at least 1− δ, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

Proof. We have:
|1dq(⟨w̃r(t),xi⟩)≥0(⟨wr(t), xi⟩+ ⟨ur(t), xi⟩)
− 1dq(⟨w̃r(t+1),xi⟩)≥0(⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩)|

≤ |⟨η∆wr(t), xi⟩+ ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
≤ U1,i,r + U2,i,r

where the first step follows from Fact B.2, the fifth step follows from Definition C.8, and the last step
follows from defining:

U1,i,r := ⟨η∆wr(t), xi⟩
U2,i,r := ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩

For the first term U1,i,r, we have:

|U1,i,r| ≤ η

√
n√
m
∥F(t)− y∥2

this step holds since Part 2 of Lemma I.4.
For the second term U2,i,r, we have:

|U2,i,r| ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

this step follows from Eq. (12) and Eq. (9).
Thus, we have:

C4 =
1

2
∥F(t)− F(t+ 1)∥22

=
1

2

n∑

i=1

(Fi(t)− Fi(t+ 1))2

=
1

2

n∑

i=1

(
κ

1√
m

m∑

r=1

ar(U1,i,r + U2,i,r)
)2

Combining two terms, then by Hoeffing inequality (Lemma B.8), with a probability at least 1− δ,
E[
∑m

r=1 ar(U1,i,r + U2,i,r)] = 1, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
∥F(t)− y∥22 ≤ O

(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

42

I Inductions

I.1 Main Result 1: Training Convergence Guarantee
Theorem I.1. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Given a expected error ϵ > 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• δ ∈ (0, 0.1), κ ∈ (0, 1].

• Choosem ≥ Ω
(
λ−8 n12d8

δ4ϵ4

)
.

• Choose η ≤ O
(
λ δ

κ2n2dD

)
.

• Choose T ≥ Ω
(

1
ηλ log(ϵ−1ndD2)

)
.

Then with probability at least 1− δ, we have:
L(T) ≤ ϵ

Proof. Choice of m.

Following Lemma I.2, we have

m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

Particularly, following Claim I.5, we have:

R ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

≤ 4
√
n

λ
√
m

·O
(√

ndD2
)

≤ O
(nd

λ
√
m
D2
)

where the first step follows from Claim I.5, the second step follows from Lemma I.3, the third step
follows from simple algebras.
Besides, by Lemma I.2, we need that

R ≤ O(
λδ

κ2n2dD
)

where the second step follows from Definition B.16.
Thus, showing that D3 ≤ O(m

1
4) and κ ≤ 1, we plugm as follows:

m ≥ Ω
(
λ−8n

12d8

δ4ϵ4

)

43

Choice of η. We have

∥η∆wr(0)∥2 ≤ η

√
n√
m
∥F(0)− y∥2

≤ η

√
n√
m
O
(√

ndD2
)

≤ R

where the first step follows from Part 2 of Lemma I.4, the second step follows from Lemma I.3, the
third step follows from plugging η ≤ O

(
λ δ

κn2dD

)
andm ≥ Ω

(
λ−8 n12d8

δ4ϵ4

)
.

Choice of T . We have:
L(T) ≤ ϵ ⇐⇒ (1− ηλ/2)TL(0) ≤ ϵ

⇐⇒ (1− ηλ/2)TO
(√

ndD2
)
≤ ϵ

⇐⇒ (1− ηλ/2)T ≤ O
(ϵ√

ndD2

)

⇐⇒ T ≥ Ω
(
log(

ϵ√
ndD2

)/ log(1− ηλ/2)
)

⇐⇒ T ≥ Ω
(
− 1

ηλ
log(

ϵ√
ndD2

)
)

⇐⇒ T ≥ Ω
(1

ηλ
log(ϵ−1ndD2)

)

where the first step follows from Lemma I.2, the second step follows from Lemma I.3, the third and
fourth steps follow from simple algebras, the fifth step follows from Fact B.6, the sixth step follows
from simple algebras.

I.2 Induction for Loss
Lemma I.2. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

44

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• m ≥ Ω
(
λ−4κ4R8n6d2

δ4ϵ4

)
.

• R ≤ O(λδ
κ2n2dD).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• δ ∈ (0, 1].

Then with probability at least 1− δ, we have:

L(t+ 1) ≤ (1− λ/2η) · L(t)

Moreover, we can show that:

L(t) ≤ (1− λ/2η)t · L(0)

Proof. We have:

L(t+ 1) ≤ L(t) +
(
− ηλ+O(η

n2dRD

δ
) +O(ηκ

n1.5dRD

δ
)

+O(ηκ
R2n1.5

√
d

δϵ
√
m

D) +O(η2κ2R
4n2d

δ2ϵ2m
D2
)
· L(t)

≤ L(t) +
(
− ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ
)
· L(t)

≤ (1− ηλ/2)L(t)

where the first step follows from Claim H.2, Lemma H.3, Lemma H.4, Lemma H.5, Lemma H.6
and ηλ ≤ 1, the second step follows from the choice of R andm, the last step follows from simple
algebras.

45

Choice of R. We have:

R ≤ O(
λδ

κ2n2dD
) (13)

where this step is following the combination of Lemma G.5 and O(η κ2n2dRD
δ ≤ 1

8ηλ).
Choice of m. We have:

√
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
D
)

⇐⇒ √
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
m

1
4

)

⇐⇒ m
1
4 ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ

)

⇐⇒ m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

where the first step follows from plugging O(ηκR2n1.5
√
d

δϵ
√
m

D) ≤ 1
8ηλ, the last three steps follow from

simple algebras.
Lemma I.3. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

∥F(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:
∥F(0)− y∥2 ≤ ∥F(0)∥2 + ∥y∥2

≤ ∥F(0)∥2 +
√
n

≤ (

n∑

i=1

|Fi(0)|2)
1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+

√
n

46

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n] and
simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Definition C.9 and Definition C.5, the last two steps follow by Hoeffding’s inequality (Lemma B.8),
Definition C.1 and simple algebras, and we can show that:

E[
m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
] = 0

also,
dq(⟨w̃r(0), xi⟩) =

√
V (wr(0) · ⟨w̃r(0), xi⟩+ E(wr(0))⟨1d, xi⟩

≤ O(
√
dD) ·

√
d+O(D) ·

√
d

≤ O(dD)

where these steps follow from Definition D.5, Lemma I.6 and simple algebras.

I.3 Induction for STE Gradient
Lemma I.4. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

• Part 1. ∀k ∈ [d]

|∆wr,k(t)| ≤
√

n

m
· ∥F(t)− y∥2

• Part 2.

∥∆wr(t)∥2 ≤
√

n

m
· ∥F(t)− y∥2

Proof. Proof of Part 1. We have:

|∆wr,k(t)| = |κ 1√
m

n∑

i=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k · (Fi(t)− yi)|

47

≤ κ
1√
m

(n∑

i=1

(ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k)
2
) 1

2 · ∥F(t)− y∥2

≤
√

n

m
· ∥F(t)− y∥2

where the first step follows from Definition F.2, the second step follows from Cauchy-Schwarz
inequality, the third step follows from

max
r∈[m],i∈[n],k∈[d]

|1dq(⟨w̃r(t),xi⟩)≥0 · xi,k| ≤ 1

the above equation follows from simple algebras and ∥xi∥i = 1.
Proof of Part 2.

By ∥x∥i = 1,∀i ∈ [n], this proof is trivially the same as Proof of Part 1.

I.4 Induction for Weights
Claim I.5. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let Si,S⊥

i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

R := max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2 ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

Proof. We have
R = max

t≥0
max
r∈[m]

∥wr(0)− wr(t)∥2

≤ max
t≥0

max
r∈[m]

∥
t∑

τ=1

η∆wr(τ)∥2

≤ ηmax
t≥0

max
r∈[m]

t∑

τ=1

∥∆wr(τ)∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

∥F(τ)− y∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

(1− ηλ/2)τ∥F(0)− y∥2

48

≤ 4
√
n

λ
√
m
∥F(0)− y∥2

where the first step follows from the definition of R, the second step follows from Definition C.8, the
third step follows from triangle inequality, the fourth step follows from Part 2 of Lemma I.4, the fifth
step follows from Lemma I.2, the last step follows from Fact B.6.
Lemma I.6. Let δ ∈ (0, 0.1). Let D > 0 be defined as Definition B.16. Let E : Rd → R be defined
as Definition D.2. Let V : Rd → R be defined as Definition D.3. Let W (0) ∈ Rd×m be initialized as
Definition C.3, denoteW := [w1, w2, · · · , wm] ∈ Rd×m satisfying ∥wr − wr(0)∥2 ≤ R where R ≥ 0, then
with a probability at least 1− δ, we have

• Part 1. |wr,k(0)| ≤ O(D), ∀r ∈ [m], k ∈ [d].

• Part 2. ∥wr(0)∥2 ≤ O(
√
dD), ∀r ∈ [m].

• Part 3. ∥wr∥2 ≤ O(
√
dD +R), ∀r ∈ [m].

• Part 4. E(wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 5.
√
V (wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 6. E(wr) ≤ O(D +R), ∀r ∈ [m].

• Part 7.
√

V (wr) ≤ O(D +R), ∀r ∈ [m].

Proof. This proof follows from the union bound of the Gaussian tail bound (Fact B.1) and some
simple algebras.

J Supplementary Setup for Classical Linear Regression

J.1 Model Function
Definition J.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weightsW ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let ReLU : R → R be defined as Definition C.4.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition C.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• κ ∈ (0, 1].

We define:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU(⟨wr, x⟩) ∈ R

Then we define the compact form of f(x,W ′t), a), we define:

F′(t) = [f(x1,W
′(t), a), f(x2,W

′(t), a), · · · , f(xn,W
′t), a)]

⊤ ∈ Rn

49

J.2 Loss and Training
Definition J.2. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• For any t ≥ 0.

We define:

L′(t) :=
1

2
∥F′(t)− y∥22

Claim J.3. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let L′(t) be defined as Definition J.2.

• For any t ≥ 0.

• Denote η > 0 aa the learning rate.

We define:

W ′(t+ 1) := W ′(t)− η ·∆W ′(t)

Here, we also define that:

W ′(t) :=
d

dW ′(t)
L′(t)

=

n∑

i=1

(F′
i(t)− yi) · κ

[
a1 · 1⟨w′

1(t),xi⟩≥0xi · · · am · 1⟨w′
m(t),xi⟩≥0xi

]
∈ Rd×m

Proof. This proof follows from simple algebras.

J.3 Induction for Weights
Lemma J.4 (See Corollary 4.1 and the fifth equation of page 6 in Du et al. [41]). If the following
conditions hold:

• t ≥ 0, letW (0) ∈ Rd×m and a ∈ Rm be initialized as Definition C.3.

• W ′(0) := W (0).

• LetW ′(t) ∈ Rd×m be updated as Claim J.3.

• R ≤ O(λδ
κ2n2dD).

Then we have

∥w′
r(t)− w′

r(0)∥ ≤ R

50

Proof. Following Corollary 4.1 in Du et al. [41], we can show that:

∥w′
r(t)− w′

r(0)∥ ≤ 4
√
n√

mλ
∥F′(0)− y∥2

Then we can complete this proof by combining the equation above with Lemma J.5 andR ≤ O(λδ
n2dD)

in Lemma conditions.

J.4 Induction for Loss
Lemma J.5. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• For any t ≥ 0.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

∥F′(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:
∥F′(0)− y∥2 ≤ ∥F′(0)∥2 + ∥y∥2

≤ ∥F′(0)∥2 +
√
n

≤ (

n∑

i=1

|F′
i(0)|2)

1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨w′

r(0), xi⟩
)
|2) 1

2 +
√
n

= (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+
√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows
from Definition C.9 and Definition C.5, the fifth step follows fromW ′(0) = W (0), the last two steps
follow by Hoeffding’s inequality (Lemma B.8), Definition C.1, κ ≤ 1 and simple algebras, and we
can show that:

E[
m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
] = 0

also,
⟨wr(0), xi⟩ = ⟨wr(0), xi⟩

≤ O(
√
dD) ≤ O(dD)

where this step follows from Lemma I.6 and simple algebras.

51

K Similarities

K.1 Main Result 2: Training Similarity

Theorem K.1. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Given a expected error ϵ > 0.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition K.2.

• Let F′(t) ∈ Rn be defined as Definition J.1.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let F′
test(t) ∈ Rn be defined as Definition K.3.

• Let Ftest(t) ∈ Rn be defined as Definition K.3.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• For any error ϵquant > 0.

• δ ∈ (0, 0.1).

• Choose κ ≤ O(
ϵquant

dD2).

Then with probability at least 1− δ, we have:

• Part 1. |Ftest,i(t)− F′
test,i(t)| ≤ ϵquant.

• Part 2. |Fi(t)− F′
i(t)| ≤ ϵquant.

Proof. Proof of Part 1. We have:
|1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

≤ |⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(t), xtest,i⟩|

= |⟨wr(0)− η

t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(0)− η

t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

= | − ⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩+ ⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

≤ |⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩|+ |⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|+ |⟨ur(t), xtest,i⟩|

≤ R+R+ |⟨ur(t), xtest,i⟩|
≤ O

(
d(D +R)

)

52

where the first step follows from Fact B.2, the second step follows from Definition C.8 and Claim J.3,
the third step follows from w′

r(0) = wr(0), the fourth step follows from triangle inequality, the fifth
step follows from Claim I.5 and Lemma J.4, the last step follows from Lemma D.7 and δ ∈ (0, 0.1).
Then we have:

|Ftest,i(t)− F′
test,i(t)| ≤

∣∣∣κ 1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)

− 1⟨w′
r(t),xtest,i⟩≥0⟨w′

r(t), xtest,i⟩
)∣∣∣

≤ κ
√
log(m/δ) ·O

(
d(D +R)

)

≤ ϵquant

where the first step follows from Definition K.3, the second step follows from Hoeffding’s inequality
(Lemma B.8), E[∑m

r=1 arσi,r] = 0, σi,r ≤ O
(√

n
m (D +R) +R/δ

)
and defining:

σi,r := |1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

and the last step follows from choosing

κ ≤ O(
ϵquant

dD2 + dDR
) ≤ O(

ϵquant
dD2

)

Proof of Part 2. This part can be proved in the same way as Proof of Part 1.

K.2 Test Dataset for Generalization Evaluation
Definition K.2. We define test dataset Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and
ytest,i ≤ 1 for any i ∈ [n].
Definition K.3. If the following conditions hold:

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition K.2.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

We define:

F′
test(t) := [f ′(xtest,1,W

′(t), a), f ′(xtest,2,W
′(t), a), · · · , f ′(xtest,n,W

′(t), a)]
⊤

Ftest(t) := [f(xtest,1,W (t), a), f(xtest,2,W (t), a), · · · , f(xtest,n,W (t), a)]
⊤

K.3 Function Similarity at Initialization
Lemma K.4. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

53

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• W ′(0) := W (0).

• δ ∈ (0, 0.1).

• For any error ϵinit > 0.

• We choose κ ≤ O(ϵinit/(
√
dD2))

Then with probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof. We have:
|1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)
− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩|

≤ |dq(⟨w̃r(0), x⟩)− ⟨wr(0), x⟩|
≤ |
√
V (wr(0))⟨w̃r(0), x⟩+ E(wr(0)) · ⟨1d, x⟩ − ⟨wr(0), x⟩|

≤ O(
√
dD)

where the first step follows from Fact B.2, the second step follows from Definition D.5, the last step
follows from Lemma I.6.
Then by Hoeffding inequality (Lemma B.8), with a probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ κ| 1√
m

m∑

r=1

arσ̂r|

≤ κO(
√
dD) ·

√
log(m/δ)

≤ O(κ
√
dD2)

where we have:
σ̂r := 1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩

E[
m∑

r=1

arσ̂r] = 1

|σ̂r| ≤ O(
√
dD)

54

	Introduction
	Related Work
	Preliminary
	Quantization
	NTK Problem Setup
	Recalling Classic NTK Setup

	Kernel Behavior and Training Convergence
	Neural Tangent Kernel
	Training Convergence
	Extensibility

	Generalization Similarity
	Function Difference at Initialization
	Generalization Similarity

	Experiments
	Verification on Scaling Law
	Comparison on 1-D Functions
	Evaluation on Training and Generalization Similarity

	Conclusion
	More Related Work
	Preliminary
	Notations
	Basic Facts
	Probability Tools
	Basic Bound

	NTK Problem Setup
	Dataset
	Model
	Training

	Quantization
	Quantization Functions
	Dequantization Functions
	Quantization Error

	Patterns
	ReLU Pattern
	Sign Pattern

	Straight-Through Estimator (STE)
	STE Functions
	Gradient Computation

	Neural Tangent Kernel
	Kernel Function
	Assumption: is Positive Definite
	Kernel Convergence and PD Property

	Training Dynamic
	Decompose Loss
	Bounding
	Bounding
	Bounding
	Bounding

	Inductions
	Main Result 1: Training Convergence Guarantee
	Induction for Loss
	Induction for STE Gradient
	Induction for Weights

	Supplementary Setup for Classical Linear Regression
	Model Function
	Loss and Training
	Induction for Weights
	Induction for Loss

	Similarities
	Main Result 2: Training Similarity
	Test Dataset for Generalization Evaluation
	Function Similarity at Initialization

