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Recently, 1-bit Large Language Models (LLMs) have emerged, showcasing an im-
pressive combination of efficiency and performance that rivals traditional LLMs.
Research by Wang et al. [1], Ma et al. [2] indicates that the performance of these
1-bit LLMs progressively improves as the number of parameters increases, hint-
ing at the potential existence of a Scaling Law in 1-bit Neural Networks. This paper
presents the first theoretical result that rigorously establishes this scaling law for
1-bit models. Our analysis starts with initializing a 1-bit two-layer linear network.
We prove that, despite the constraint of weights restricted to {−1,+1}, its training
dynamics inevitably align with kernel behavior as the network width grows. This
theoretical breakthrough guarantees convergence of the 1-bit model to an arbitrarily
small loss as width increases. Furthermore, we introduce the concept of the gener-
alization difference, defined as the gap between the outputs of 1-bit networks and
their full-precision counterparts, and demonstrate that this difference maintains a
negligible level under the over-parameterization setting. Building on the work of
Kaplan et al. [3], we examine how the training loss scales as a power-law function
of the model size, dataset size, and computational resources utilized for training.
Our findings underscore the promising potential of scaling 1-bit neural networks,
suggesting that int1 could become the standard in future neural network precision.

1 Introduction
Large-scale neural networks, particularly Large Language Models (LLMs) [4, 5] and Large Multi-
model Models (LMMs) [6, 7], are becoming increasingly relevant to our day-to-day lives, finding a
huge variety of applications in both the workplace and at home [8, 9]. However, it is expensive to
deploy and run these models due to their substantial computational requirements, large memory
footprints, and energy consumption [10–12]. This is especially true for resource-constrained environ-
ments, such as mobile devices, edge computing, or companies with limited infrastructure [13–15]. To
make these models more efficient and accessible, quantization techniques are used, which reduce the
precision of the model’s parameters (such as weights and activations) from floating-point numbers
to lower-bit representations (e.g., 8-bit or even lower) [16–20]. Quantization reduces the memory
and computational costs of inference, enabling faster processing with less energy, while maintaining
a comparable level of performance. This optimization allows language models to be more practical,
scalable, and sustainable for widespread use across various platforms [21–23].
In particular, quantization techniques could be primarily divided into two methods: Post-Training
Quantization (PTQ) [24–26] and Quantization-Aware Training (QAT) [1, 2, 27]. PTQ methods,
including uniform and non-uniform quantization, conveniently convert pre-trained model weights
and activations to lower-bit representations post-training. However, this leads to accuracy loss,
especially in lower precision, as the model is not optimized for these quantized representations
and significant shifts in weight distribution occur [28]. The alternative, Quantization-Aware Train-
ing (QAT), incorporates quantization during training, allowing the model to fine-tune and adapt
its parameters to the quantized representation, compensating for quantization errors. Therefore,
compared to PTQ, QAT maintains higher accuracy and robustness even in lower precision.
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Recent studies [1, 2, 29, 30] have shown that 1-bit LLMs, most of which have matrix weights in the
range of {−1,+1}, can be trained from scratch to deliver performance that rivals that of standard
LLMs. Thesemodels exhibit remarkable efficiency, particularly in terms of scaling laws. Experimental
results indicate that the performance of the 1-bit model improves as the number of parameters
increases, a principle that mirrors the training approach utilized in standard LLMs [3]. Despite the
demonstrated efficiency of quantization methods, our understanding of the training mechanism for
quantization remains limited. Specifically, it remains unclear how and why the 1-bit QAT enhances
learning capability as the number of neurons in the model is scaled up. In addition, we are also
concerned about whether the quantization method damages the generalization ability compared to
full precision networks.
In this study, we initially apply the Neural Tangent Kernel (NTK) framework to delve into the
optimization and generalization issues associated with a two-layer linear network operating in 1-bit
(int1) precision, as detailed in Section 4. We introduce a 1-bit quantization method to the hidden-
layer weights W ∈ Rd×m of the conventional NTK linear network, where d represents the input
dimension andm indicates the model’s width. Our analysis reveals that the training dynamics of
the 1-bit model approximate kernel behavior as the model width m expands. This key finding paves
the way for an established relationship between the theoretically guaranteed loss and the model
width, endowing the model with robust learning capabilities akin to kernel regression. Ultimately,
the model achieves an insignificantly small training loss, contingent on setting a sufficiently large
model width, selecting an appropriate learning rate, and allowing an adequate training duration.
Moreover, Section 5 provides a theoretical confirmation that, within the scaling trend, the disparities
in predictions of the 1-bit model from those of the original linear network on identical inputs maintain
a negligible value. We assess the error between our 1-bit linear and standard linear networks on both
the training and test datasets. Our theorem demonstrates that for any input from these datasets,
the absolute error between the two network predictions can be denoted as ϵquant ≤ O(κd log(md/δ))
for scale coefficient κ ≤ 1, model width m, dimension d and failure probability δ ∈ (0, 0.1). This
indicates that the output behavior of the 1-bit linear model increasingly aligns with that of the
standard linear model. The observed similarity on the test dataset validates the generalization
similarity, suggesting the feasibility of approximating training neural networks with int1 precision
equivalent to full precision.
Finally, in Section 6, we verify our theoretical results by implementing training models to learn
complicated functions to compare the difference between 1-bit networks and full precision networks.
Firstly, we choose a combination of difficult functions across the exponential function, trigonometric
function, logarithmic function, the Lambert W function, the Gamma function, and their combination.
Therefore, we sample random data points and split train and test datasets. We next compare how
the training loss decreases as the model width m scales up. Besides, as shown in Section 6.3, in
the trend of a growing number of parameters, the error of predictions both on training and test
input likewise converge as the power-law in 1-bit networks optimization. In particular, we visualize
some 1-dimension function to see how the differences of outputs are. We demonstrate the results
complying with our theoretical guarantee with a negligible error.

2 Related Work

Efficient Training Methods for Quantized Networks Training large-scale neural networks with
quantization introduces significant computational and memory savings, but it also presents chal-
lenges in optimization, particularly when dealing with extremely low precision formats like 1-bit
or 8-bit. To address these challenges, several efficient training methods have been developed that
aim to maintain accuracy while leveraging the benefits of quantization. One key method is Gradient
Quantization, where the gradients during backpropagation are quantized to lower precision to
reduce memory overhead and bandwidth during distributed training. Techniques like stochastic
rounding are used to mitigate the impact of quantization noise, ensuring the training process remains
stable and converges effectively.
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Another important approach is Low-Rank Factorization [31, 32], which decomposes the large weight
matrices in neural networks into smaller matrices, reducing the number of parameters that need to
be updated during training. When combined with quantization, this method significantly reduces
both the memory footprint and computational complexity, allowing for faster training on hardware
with limited resources.
Quantization Techniques for Accelerating Language Models Beyond traditional weight and activa-
tion quantization, several advanced methods utilize quantization to enhance the efficiency of large
language models (LLMs). One key approach is KV cache quantization [33–36], which reduces the
memory footprint of transformer models during inference by quantizing the stored attention keys
and values. This method is particularly beneficial for tasks involving long sequences, significantly
speeding up inference and lowering memory consumption without a substantial loss in accuracy.
Another effective technique is mixed-precision quantization [37, 38], where different parts of the
model are quantized at varying precision levels based on their sensitivity. For example, attention
layers might use higher precision (e.g., 16-bit), while feedforward layers are quantized to 8-bit or
lower. This balances computational efficiency and model performance. These strategies, combined
with methods like activation pruning, showcase how targeted quantization can drastically accelerate
LLMs while maintaining their effectiveness in real-world applications.
Neural Tangent Kernel. The study of Neural Tangent Kernel (NTK) [39] focuses on the gradient
flow of neural networks during the training process, revealing that neural networks are equivalent
to Gaussian processes at initialization in the infinite-width limit. This equivalence has been explored
in numerous studies [40–54] that account for the robust performance and learning capabilities of
over-parameterized neural networks. The kernel-based analysis framework provided by NTK is
gaining popularity for its utility in elucidating the emerging abilities of large-scale neural networks.
In a remarkable stride, Arora et al. [55] introduced the first exact algorithm for computing the
Convolutional NTK (CNTK). This was followed by Alemohammad et al. [56] who proposed the
Recurrent NTK, and Hron et al. [57] who presented the concept of infinite attention via NNGP and
NTK for attention networks. These innovative works have showcased the enhanced performance
achievable with the application of NTK to various neural network architectures. In a specific study,
Malladi et al. [58] examined the training dynamics of fine-tuning Large Language Models (LLMs)
using NTK, affirming the efficiency of such approaches.

3 Preliminary
In this section, we give the basic setups of this paper, which includes the introduction of the quanti-
zation method in this paper (Section 3.1), our NTK-style problem setup that we aim to solve in this
paper (Section 3.2) and recalling the classical NTK setup for a two-layer linear network with ReLU
activation function (Section 3.3).

3.1 Quantization

We first show howwe reduce the computation of the inner product of two vectors frommultiplication
and addition operations to addition operations only, which is achieved by binarizing one of the vectors.
This method could be extended to matrix multiplication easily since the basic matrix multiplication
is to implement the inner product computation of two vectors in parallels. For a vector w ∈ Rd, we
define our quantization function as [1, 2]:

Quant(w) := Sign
(
Ln(w)

)
∈ {−1,+1}d,

where Ln(w) is the normalization method that is given by: Ln(w) := w−E(w)·1d√
V (w)

∈ Rd. Specially,
we use E(w) := 1

d

∑d
k=1 wk ∈ R to denote the computational expectation of vector w and use

V (w) := ∥w − E(w) · 1d∥22 ∈ R to denote the corresponding variance.
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Besides, the kth entry of signal function Sign(z) ∈ Rd for z ∈ Rd, k ∈ [d] is define by: Signk(z) :={
+1, zk ≥ 0

−1, zk < 0
. Hence, we have a binary vector Quant(w) where each entry of it is limited in the

range {−1,+1}, and we denote that w̃ := Quant(w) to simplify the notation. For any other vector
x ∈ Rd, addition operation∑d

k=1 ±xk is sufficient to compute ⟨w̃, x⟩. After that, we introduce the
dequantization function to recover the original computation result by showing:

Dequant(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨1, x⟩.

3.2 NTK Problem Setup
Data Points. We consider a supervised learning task with a training dataset D = {(xi, yi)}ni=1 ⊂
Rd × R, where each data point is under a mild assumption that ∥xi∥2 = 1 and yi ≤ 1, ∀i ∈ [n]
[41]. Moreover, we are also concerned about the problem of the generalization of 1-bit mod-
els, we define the test dataset to compare 1-bit networks with standard networks, that is Dtest :=
{(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and ytest,i ≤ 1, ∀i ∈ [n].
Model. Here, we use hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer weights
a = [a1, a2, . . . , am]⊤ ∈ Rm. We consider a two-layer linear model f , which is defined as follows:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
,

where ReLU(z) :=

{
z, z ≥ 0

0, z < 0
, for all z ∈ R, dq : R → R is a omitted version of dequantization

function Dequant : R → R, and w̃r := Quant(wr) as we denoted in previous section, κ ∈ (0, 1] is
a scale coefficient. Especially, we initialize each weight vector wr, ∀r ∈ [m] by sampling wr(0) ∼
N (0, σ ·Id)with σ = 1. For output-layer a, we randomly sample ar ∼ Uniform{−1,+1} independently
for r ∈ [m]. Additionally, output-layer weight a is fixed during the training.
Training and Straight-Through Estimator (STE). The training loss is measured by quadratic ℓ2
norm of the difference between model prediction f(xi,W, a) and ideal output vector yi. Formally,
we consider to trainW (t) = [w1(t), w2(t), . . . , wm(t)] ∈ Rd×m for t ≥ 0 utilizing the following loss:

L(t) :=
1

2
·

n∑

i=1

∥f(xi,W (t), a)− yi∥22. (1)

Moreover, since the signal function Sign is not differentiable, we use Straight-Through Estimator (STE)
to skip the signal function in back-propagation [1, 2, 59, 60], thus updating the trainable weights
W (t). For t ≥ 0 and denote η as the learning rate, we omit fi(t) := f(xi,W (t), a) ∈ R,∀i ∈ [n], the
formulation to update rth column ofW (t) for all r ∈ [m] is given by:

wr(t+ 1) := wr(t)− η

n∑

i=1

(fi(t)− yi) · κar1dq(⟨w̃r,xi⟩)≥0xi.

3.3 Recalling Classic NTK Setup
We now recall the classic NTK setup for the two-layer ReLU linear regression [61–64]. The function
is given by: f ′(x,W, a) := κ 1√

m

∑m
r=1 ar · ReLU

(
⟨wr, x⟩

)
.

We define thatW ′(0) := W (0) ∈ Rd×m to denote the trainable parameter for classic NTK setup, these
two matrices are equal at initialization. For t ≥ 0, we define the loss of training f ′ as follows: L′(t) :=
1
2 ·∑n

i=1 ∥f ′(xi,W
′(t), a)− yi∥22. Then the update ofW ′(t) is: W ′(t+ 1) := W ′(t)− η · ∇W ′(t)L

′(t).

4 Kernel Behavior and Training Convergence
We give our convergence analysis for training 1-bit model within the framework of Neural Tangent
Kernel (NTK) in this section. First, we state our theoretical results that define the kernel function
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in training and show how it converges to NTK and maintains the PD (Positive Definite) property
in Section 4.1. Then we demonstrate the arbitrary small loss convergence guarantee of training
1-bit model (Eq. (1)) in Section 4.2. Finally, we give a general version of our theoretical scaling law
analysis in Section 4.3.

4.1 Neural Tangent Kernel
Here, we utilize the NTK to describe the training dynamic of the 1-bit model. Following pre-
conditions in the previous section, we define a kernel function, that denotes H(t) ∈ Rn×n (Gram
matrix). Especially, the (i, j)-th entry of H(t) is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥01dq(⟨w̃r(t),xj⟩)≥0. (2)

We define the formal NTK as H∗ := H(0) ∈ Rn×n. Additionally, there’s a commonly introduced
assumption in NTK analysis: we denote the minimum value of eigenvalues ofAwith λmin(A) for any
A ∈ Rn×n. In our work’s context, we presuppose that H is a Positive-definite (PD) matrix, meaning
that λmin(H

∗) > 0 [41].
1-Bit ReLU Pattern. The pattern of the Rectified Linear Unit (ReLU) function is determined by the
indicator of function activation. As illustrated by Du et al. [41], in the settings of Section 3.3, the
event 1⟨wr(0),x⟩≥0 ̸= 1⟨w,x⟩≥0 happens infrequently for any w, x ∈ Rd that satisfies ∥w−wr(0)∥2 ≤ R.
Notably,R := maxr∈[m] ∥wr(t)−wr(0)∥2 = η∥∑t

τ=1 ∆wr(τ)∥2. In our analysis, for Eq. (2), the event
1dq(⟨w̃r(0),x⟩)≥0 ̸= 1dq(⟨w̃r(t),x⟩)≥0 is also unlikely to occur during training.
The convergence ofH(t) towardsH∗, as well as the property ofH(t) being a PD matrix for any t ≥ 0,
can be validated by the following lemma:
Lemma 4.1 (NTK convergence and PD property during the training, informal version of Lemma G.5).
Assume λmin(H

∗) > 0. δ ∈ (0, 1), define D := max{
√
log(md/δ), 1}. Let R ≤ O(λδ/(κ2n2dD)), then

for any t ≥ 0, with probability at least 1− δ, we have: Part 1. ∥H(t)−H∗∥F ≤ O(κ2n2dRD/δ). Part 2.
λmin(H(t)) ≥ λ/2.

Proof of Lemma 4.1. The proof of Part 1 of this Lemma follows from the pattern 1dq(⟨w̃r(t),xi⟩)≥0 for
i ∈ [n] and r ∈ [m] is rarely changed during the training, this habit is similar to the regular ReLU
pattern 1⟨wr(t),xi⟩≥0 [41]. The proof of Part 2 of this Lemma can be obtained by plugging R ≤
O(λδ/(κ2n2dD)). Please refer to Lemma G.5 for the detailed proof.

4.2 Training Convergence
Having confirmed the convergence of the kernel function of the 1-bit linear network during training
in Lemma 4.1, we can transform the dynamics of the loss function L(t) into the following kernel
behavior:

L(t+ 1)− L(t) = − (F(t)− y)⊤H(t)(F(t)− y) + C2 + C3 + C4

≈ − (F(t)− y)⊤H(t)(F(t)− y),

In this equation, F(t) = [f(x1,W (t), a), · · · , f(xn,W (t), a)]⊤ ∈ Rn and y = [y1, · · · , yn]⊤ ∈ Rn, while
C2, C3, C4 are negligible terms (please refer to Appendix I for a rigorous proof).
Further, by λmin(H(t)) > 0 (as per Part 2 of Lemma 4.1), for each optimization step t ≥ 0, we find
that L(t+1) ≤ (1−ηλ/2)L(t), thus ensuring a non-increase in loss. Given sufficient training iterations
and an appropriately chosen learning rate, we can achieve training convergence, the confirmation of
which is provided in the following section.
Theorem 4.2 (Training convergence guarantee, informal version of Theorem I.1). Given an ex-
pected error ϵ > 0. Assume λmin(H

∗) > 0. δ ∈ (0, 0.1), define D :=
√
log(md/δ). Choose

m ≥ Ω(λ−8n12d8/(δϵ)4), η ≤ O(λδ/(κ2n2dD)). Then let T ≥ Ω((ηλ)−1 log(ndD2/ϵ)), with proba-
bility at least 1− δ, we have: L(T ) ≤ ϵ.

5



Proof sketch of Theorem 4.2. We first combine L(0) = O(
√
ndD2) (Lemma I.3) and L(t + 1) ≤ (1 −

ηλ/2)L(t) (Lemma I.2), then we choose a sufficient large T ≥ Ω((ηλ)−1 log(ndD2/ϵ)) to achieve
L(T ) ≤ ϵ. For the complete proof, please see Theorem I.1.

Scaling Law for 1-Bit Neural Networks. Theorem 4.2 primarily illustrates a fact for any dataset with
n data points. After initializing the hidden-layer weightsW ∈ Rd×m from a normal distribution, and
assuming the minimum eigenvalue of NTK λ > 0, we set m to be a large enough value to ensure
the network is sufficiently over-parameterized. With an appropriate learning rate, the loss can be
minimized in finite training time to an arbitrarily small error ϵ. This offers a crucial insight that
confirms the existence of a scaling law for 1-bit neural networks, which is strictly bounded by the model
widthm and training steps T . Consequently, we present the following Proposition that elucidates the
principle of training 1-bit linear networks from scratch. This proposition is built upon Theorem 4.2
and the principle of training loss that scales as a power-law with model size, dataset size, and the
amount of compute used for training [3, 65].
Proposition 4.3 (Scaling Law for 1-Bit Neural Networks). δ ∈ (0, 0.1). Define N := O(md) as the
number of parameters, D := O(n) as the size of training dataset, C := O(NDT ) as the total compute cost.
Especially, we denote the scale coefficients as α := Dd log(md/δ), and we then choose η ≤ O(λδ/(mκ2n2dD))
and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)). Thus, the training loss, denoted as Lscale, satisfies:

Lscale ≈ max{D
3 · d2.25
λ2N0.25

,
α

exp(ηλC)
}.

Proof of Proposition 4.3. This proof follows from the definitions of N, D, C and α. Then, by choosing
η ≤ O(λδ/(mn2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)), we utilize Theorem 4.2 to obtain
our proposition.

Proposition 4.3 demonstrates that the training loss of the prefix learning converges exponentially as
we increase the computational cost C, which primarily depends on the number of parameters and
the training time in prefix learning. This further suggests a potential relationship for formulating a
scaling law for 1-bit neural networks.

4.3 Extensibility
We now bridge our theoretical framework to a real-world application involving a multi-layer 1-bit
transformer trained on large-scale datasets. Let the full dataset be denoted asDmat = {(Xi, Yi)}ni=1 ⊂
RK×d, where Xi ∈ RK×d represents a sequence ofK tokens with d-dimensional embeddings, and
Yi denotes the corresponding target sequence. Here, K is the input context length.
The standard transformer architecture [10] interleaves multi-head self-attention and position-wise
feed-forward layers. For an input sequence X ∈ RK×d (compactly representing K token embed-
dings), an N -layer transformer is defined recursively as:

F(X) := TF(N)

(
TF(N−1)

(
· · ·TF(1)(X + E) · · ·

))
,

whereE ∈ RK×d is the positional embedding matrix, and TF(ν) : RK×d → RK×d for ν ∈ [N ] denotes
the ν-th transformer block. For brevity, we omit layer indices when describing a single transformer
block TF, which consists of:

Attn(X) := X +

h∑

ξ=1

dq

(
softmax

(
dq(XW̃ξ,QW̃

⊤
ξ,KX⊤)

√
d

)
XW̃ξ,V W̃

⊤
ξ,O

)
,

FF(X) := X + dq
(
ReLU

(
dq(XW̃1) + 1Kb⊤1

)
W̃⊤

2

)
+ 1Kb⊤2 ,

TF(X) := FF(Attn(X)),

where: - h is the number of attention heads. - W̃ denotes 1-bit quantized weights, with dq(·) as
the dequantization operator. - For each head ξ ∈ [h], W̃ξ,Q, W̃ξ,K , W̃ξ,V ∈ Rd×d′ and W̃ξ,O ∈ Rd′×d
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are query, key, value, and output projection matrices, respectively. - In the feed-forward network,
W̃1 ∈ Rd×m and W̃2 ∈ Rm×d are projection matrices, withm as the hidden dimension, while b1 ∈ Rm

and b2 ∈ Rd are bias terms.
The full parameters of the model is denoted as θ(d′,h,m) := {Wν,ξ,Q,Wν,ξ,K ,Wν,ξ,V ,Wν,ξ,O,

Wν,2,Wν,2, bν,1, bν,2}(ν,ξ)∈[L]×[h] + {E}. Given a loss metric ℓ(Ŷ , Y ) := 1
2∥Ŷ − Y ∥2F , we define the

training objective as follows:
L(θ(d′,h,m)) :=

n∑

i=1

ℓ(F(Xi), Yi). (3)

Thus, we establish a general version of our theory:
Proposition 4.4. Given an expected error ϵ > 0 and denote the failure probability δ ∈ (0, 0.1). Given a
dataset Dmat = {(Xi, Yi)}ni=1 ⊂ RK×d and a model function F : RK×d → RK×d with parameters set
θ(d′,h,m). Assuming each NTK of F is PD, denoted H∗

k,j for (k, j) ∈ [K] × [d], λmin(H
∗
k,j) > 0. Define

λ := min(k,j)∈[K]×[d]{λmin(H
∗
k,j)}, we choose m ≥ Ω(λ−8n12K12d20/(δϵ)4). Then with a probability at

least 1− δ, there exists at least one first-order algorithm that minimizes Eq. (3) to ϵ.

Proof. We consider a special case that only optimizes one feed-forward layer of the model, then
solving L(θ(d′,h,m)) is just letting n = Kdn′ where n′ represents the data size in Theorem 4.2.
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Figure 1: Verification experiment for scaling law for 1-bit neural networks. Minimum training loss of
scaling number of parameters for MLP model to learn complicated functions f1, f2, f3, f4, f5 and f6,
and these function is defined in Section 6.1.

5 Generalization Similarity
In this section, we present our theoretical analysis that proves that training large-scale 1-bit neural
networks is equivalent to training standard large-scale neural networks. In Section 5.1, we explain how
the difference between the outputs of our 1-bit model and outputs of the standard NTK-style linear
network for the same input at initialization, which is defined as function difference at initialization,
will be kept in a small error while the model width (denoted as m) increase. Next, in Section 5.2, we
confirm that in the trend of scaling up the model width, during the training, the predictions of 1-bit
model and full precision model are also similar to a very slight error on both the training dataset
and the test dataset.

5.1 Function Difference at Initialization
To begin with, at initialization, the boundary on |f(x,W (0), a)− f ′(x,W ′(0), a)| is stated as follows:
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Lemma 5.1 (Function difference at initialization, informal version of LemmaK.4). δ ∈ (0, 0.1). Denote
D :=

√
log(md/δ). ∀x ∈ Rd that satisfies ∥x∥2 = 1, for any initial quantization error ϵinit > 0, we choose

κ ≤ O(ϵinit/(
√
dD2)). Then with a probability 1− δ, we have: |f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit.

Proof sketch of Lemma 5.1. Due to the initialization ofW (0) andW ′(0), we then have the tail bound
of the Gaussian distribution. Hence, the difference could be bounded by Hoeffding bound, we then
get the result. Please refer to Lemma K.4 for the formal proof of this Lemma.

5.2 Generalization Similarity
We now address whether using 1-bit precision compromises the generalization ability of standard
neural networks. Specifically, we use the test dataset to evaluate the generalization similarity - a
measure of the similarity between two functions on out-of-distribution (OOD) data. This measure
is designed to assess the equivalence between two functions. If, during each step of training two
networks, these two training processes are deemed equivalent, then we assert that the generalization
similarity is valid.
Addressing the above concern, we demonstrate that the predictions of two functions on both training
and test datasets can be bounded to an arbitrarily small quantization error, provided that m is
sufficiently large. Theoretically, asm scales towards infinity, the quantization error converges to 0.
This finding confirms the validity of our generalization similarity measure and asserts that 1-bit
precision does not compromise the generalization ability of standard neural networks.
Theorem 5.2 (Training and generalization similarity, informal version of Theorem K.1). Let all pre-
conditions in Theorem 4.2 satisfy. For any quantization error ϵquant > 0, we choose κ ≤ O(ϵquant/(dD

2)).
Integer ∀t ≥ 0. For any training input xi ∈ Rd in D and any test input xtest,i ∈ Rd in Dtest, with a
probability at least 1− δ, we have:

• Part 1. |f(xi,W (t), a)− f(xi,W (t), a)| ≤ ϵquant.

• Part 2. |f(xtest,i,W (t), a)− f(xtest,i,W (t), a)| ≤ ϵquant.

Proof. Proof sketch of Theorem 5.2 Since we proved |f(x,W (0), a) − f ′(x,W ′(0), a)| ≤ ϵinit in
Lemma 5.1, then as we choose appropriate R and learning rate η, the equations in Part 1 and
Part 2 of this Theorem would be bounded by scalingm to be sufficiently large. We state the complete
proof in Theorem K.1.

Training Equivalence. Here, we say training f and f ′ are equivalent since we achieve the predictions
that these two functions are extremely similar by plugging an appropriate value of κ. Besides, as we
proved in Theorem 4.2, this implementation would not harm the optimization of 1-bit networks. This
further explains why 1-bit precision even processes better when the scales of networks are increasing,
instead of turning to a training collapse. Therefore, we believe it is the theory unlocking the potential
of 1-bit neural networks from the perspective of kernel-based analysis.
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Figure 2: This plot shows the difference between the predicted and actual values of the functions on
the test dataset. We tested three complex functions, as seen in the images, and the performance of
the 1-bit model is nearly identical to that of the standard 32-bit floating-point model.
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6 Experiments
In this section, we aim to verify our theory by evaluating how well our quantization works for
learning rigorous functions and comparing it to the standard model. We designed our experiment to
1) validate the scaling law (Section 6.1), 2) visually demonstrate that the performance difference is
minimal compared to the standard model, which uses full-bit precision, through visualizations of
single-variable input functions (Section 6.2), and 3) show how the test and train losses decrease as
the model’s parameter size increases and as the epochs progress (Section 6.3).

6.1 Verification on Scaling Law
Experiment Setup. In this experiment, we aimed to learn rigorous functions using a Multi-Layer
Perceptron (MLP) with varying depths of 3 and 5 layers. The MLP models had different sizes for the
hidden layers, and we measured the minimum loss achieved throughout the training process. Each
model was trained for 100,000 steps. We experimented with various parameter sizes and plotted the
corresponding loss functions. Additionally, we compared our method with the standard training
approach using 32-bit floating-point precision.
We experimentedwith a variety of target functions, and for each function, the inputs xi were randomly
chosen within the range [−1, 1]. Specifically, each xi was sampled from a uniform distribution over
this interval to ensure that the network could handle input values across the entire domain of interest.
We sampled 100 data points and trained our model over this set.
The functions we aimed to learn during the experiment are listed below:

1. f1(x1, x2, x3, x4, x5) = exp
(

1
5

∑5
i=1 sin

2
(
πxi

2

)), This function takes five inputs and applies
a sinusoidal transformation followed by an exponential operation.

2. f2(x1, x2, x3, x4) = ln(1+|x1|)+
(
x2
2 − x2

)
+sin(x3)−ex4 , the function combines logarithmic,

polynomial, trigonometric, and exponential components over four input variables.
3. f3(x1, x2, x3) = x1 × x2 − x3, This is a simple linear function over three inputs, involving

multiplication and subtraction.
4. f4(x1, x2, x3, x4) = x0 ·sin(x1)+cos(x2)−0.5·x3, A four-input functionmixing trigonometric

and linear terms, with coefficients applied to the terms.
5. f5(x1, x2, x3, x4) =

x2
0

1+|x1| −ex2 +tanh(x3)+
√
|x0 · x2|, This function incorporates nonlinear

operations like exponentials, hyperbolic tangents, and square roots.
6. f6(x1, x2, x3, x4) = LambertW(x0 · x1) +

x2

log(1+ex3 ) − Γ(x1)
1+|x0| , The most complex function

we tested, which includes special functions like the Lambert W function and the Gamma
function, alongside logarithmic and exponential components.

We compare our quantized model (using INT1, 32× smaller) to a standard non-quantized model
(using 32-bit precision). For all functions (f1 to f6), we observe (in ) that as the number of parameters
increases, the loss decreases, supporting our theoretical claim that larger models lead to convergence.
Although the standardmethod generally performs better due to its 32-bit precision, the gap decreases
as the number of parameters grows. This shows that while our method has a slightly higher loss, it
remains competitive, offering significant memory and computational efficiency.

6.2 Comparison on 1-D Functions
In this experiment, we aimed to visually demonstrate the performance on highly complex functions
with sharp spikes between [−π, π]. We sampled 100 uniformly spaced points and trained a 2-layer
MLP with 20M parameters to learn the function. Additionally, we sampled 100 random points
uniformly from this interval as the test dataset.
The first observation from the plot is that both the standard and 1-bit methods learn all the functions
almost perfectly, with minimal difference between them. Secondly, both methods perform similarly
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on these functions, which can be easily observed by comparing the scatter plots of the 1-bit and
standard models. The 1-bit model requires 32× less energy and computation.
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Figure 3: This plot shows the ℓ2 difference between both the training and test points and the predicted
points throughout the training phase for different model sizes and parameter counts. Each plot
demonstrates how the error decreases as training progresses, highlighting the impact of model size
on both training and test performance.

6.3 Evaluation on Training and Generalization Similarity

For the same set of functions, we show how the loss functions for both the train and test datasets
decrease as the number of epochs increases. As the training progresses, the loss converges towards
zero for models with a higher number of parameters. We experimented with models containing
2.4k, 204k, and 20M parameters, each consisting of only 2 layers.
Across all three functions, the loss decreases rapidly in the early epochs and stabilizes for both
the training and test sets. Larger models with 20M parameters consistently achieve lower final
losses compared to smaller models with 2.4k and 204k parameters, demonstrating the benefit of
increased model size. The gap between training and test losses remains minimal, indicating strong
generalization across different parameter sizes. More importantly, the key observation is that the
models predict similarly on both the training and test datasets, a behavior we refer to as generalization
similarity. This means that the models, regardless of size, behave similarly across both datasets,
supporting the scaling law that increasing model size leads to better convergence and generalization,
but also highlighting the consistent similarity in performance between training and testing across
different functions.

7 Conclusion

In conclusion, our theoretical results confirm the scaling law for 1-bit neural networks. We demon-
strated that the model achieves a small loss as the number of parameters increases. Despite the
constraint of binary weights, 1-bit models show similar behavior to full-precision models as their
width grows. Our experiments support this theory, showing that 1-bit networks perform nearly as
well as standard models on complex functions. As the number of parameters grows, the performance
gap between 1-bit and full-precision models reduces. These findings highlight that 1-bit networks
are both efficient and effective, providing a strong alternative to traditional models.
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Roadmap
We initially introduce the intention of each section in the appendix here. In Appendix A, we
review more prior works that relate to our work. In Appendix B, we provide the preliminary for
our theoretical analysis. In Appendix C, we give the formal definition of the NTK-style problem
setup we aim to solve in this paper. In Appendix D, we strictly define the quantization method we
utilize for our approach. We discuss the potential pattern changing of ReLU and signal function in
Appendix E. For optimizing 1-bit neural network, we state the Straight-Through Estimator method
(STE) definitions in Appendix F. In Appendix G, we define NTK for our optimization problem and
discuss its properties. In Appendix I, we prove the convergence guarantee of training 1-bit neural
networks. In Appendix J, we review the classical setup of solving the NTK-style linear regression.
We confirm the generalization similarity in Appendix K.

A More Related Work
Theoretical Approach for Understanding Modern Neural Networks. The intricate architecture
of transformer-based models, coupled with the stochastic nature of their optimization processes,
presents a formidable challenge in comprehending the behaviors of large language models (LLMs).
However, delving into these complexities through a theoretical lens can illuminate pathways for
enhancing and innovating future AI systems. This exploration encompasses various facets, including
the optimization strategies for LLMs [52, 66, 67], the intricacies of white-box transformers [68–71],
and the analysis of emergent capabilities that arise within these models [4, 72–76]. Additionally,
themodern Hopfield model [77–83] offers a rich terrain for investigation, revealing the nuanced
dynamics that govern these advanced neural networks.
Efficient Neural Networks. As the principles of scaling laws come to the forefront, contemporary
neural networks are increasingly trained on expansive datasets, necessitating substantial computa-
tional resources [11, 84–94]. This demand for efficiency has spurred research into algorithms that
optimize computational complexity, minimize memory usage, and enhance alignment with GPU
architectures. Such advancements are crucial in navigating the challenges posed by the ever-growing
scale of data and the intricate demands of modern AI applications, ensuring that these powerful
tools remain accessible and effective in their deployment.

B Preliminary

B.1 Notations
In this paper, we use integer m > 0 to denote the width of neural networks, in particular, m is
sufficiently large. We use integer d > 0 to denote the dimension of neural networks. We use integer
n > 0 to denote the size of the training dataset.

B.2 Basic Facts
Fact B.1. For a variable x ∼ N (0, σ2), then with probability at least 1− δ, we have:

|x| ≤ Cσ
√
log(1/δ)

Fact B.2. For an 1-Lipschitz function f(·), we have:
|f(x)− f(y)| ≤ |x− y|,∀x, y ∈ Rd

Fact B.3. For a Gaussian variable x ∼ N (0, σ2 · Id) where σ ∈ R, then for any t > 0, we have:

Pr[x ≤ t] ≤ 2t√
2πσ

Fact B.4. For a Gaussian vector w ∼ N (0, σ2 · Id) where σ ∈ R, and a fixed vector x ∈ Rd, we have:
w⊤x ∼ N (0, σ2∥x∥22 · Id)
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Fact B.5. For two matrices H, H̃ ∈ Rn×n, we have:

λmin(H̃) ≥ λmin(H)− ∥H − H̃∥F
Fact B.6. For x ∈ (0, 1), integer t ≥ 0, we have:

t∑

τ=1

(1− x)τ ≤ − 1

log(1− x)
≤ 2

x

B.3 Probability Tools
Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in [95] below.
Lemma B.7 (Chernoff bound, [95]). Let X =

∑n
i=1 Xi, where Xi = 1 with probability pi and Xi = 0

with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in [96].
Lemma B.8 (Hoeffding bound, [96]). Let X1, · · · , Xn denote n independent bounded variables in [ai, bi]
for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as [97].
Lemma B.9 (Bernstein inequality, [97]). Let X1, · · · , Xn denote n independent zero-mean random vari-
ables. Suppose |Xi| ≤ M almost surely for all i. Then, for all positive t,

Pr[

n∑

i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j ] +Mt/3
)

Then, we give the Khintchine’s inequality in [98, 99] as follows:
Lemma B.10 (Khintchine’s inequality, [98, 99]). Let σ1, · · · , σn be i.i.d sign random variables, and let
z1 · · · , zn be real numbers. Then there are constants C > 0 so that for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2)

We give Hason-wright inequality from [100, 101] below.
Lemma B.11 (Hason-wright inequality, [100, 101]). Let x ∈ Rn denote a random vector with independent
entries xi with E[xi] = 0 and |xi| ≤ K Let A be an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F ), t/(K2∥A∥)})

We state Lemma 1 on page 1325 of Laurent and Massart [102].
Lemma B.12 (Lemma 1 on page 1325 of Laurent and Massart, [102]). Let X ∼ X 2

k be a chi-squared
distributed random variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t)

Here, we provide a tail bound for sub-exponential distribution [103].
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Lemma B.13 (Tail bound for sub-exponential distribution, [103]). We say X ∈ SE(σ2, α) with
parameters σ > 0, α > 0, if

E[eλX ] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α})

In the following, we show the helpful lemma of matrix Chernoff bound as in [104, 105].
Lemma B.14 (Matrix Chernoff bound, [104, 105]). Let X be a finite set of positive-semidefinite matrices
with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random fromX without replacement. We define µmin and µmax as follows:

µmin := n · λmin( E
X∈X

(X))

µmax := n · λmax( E
X∈X

(X)).

Then

Pr[λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

Finally, we state Markov’s inequality as below.
Lemma B.15 (Markov’s inequality). IfX is a non-negative random variable and a > 0, then the probability
that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E[X]

a

B.4 Basic Bound
Definition B.16. For δ ∈ (0, 0.1) and a sufficiently large constant C > 0, we define:

D := max{C
√

log(md/δ), 1}

C NTK Problem Setup

C.1 Dataset
We consider a dataset where each data point is a tuple that includes a vector input and a scalar
output. In particular, we assume that ℓ2 norm of each input equals 1 and the absolute value of each
target is not bigger than 1. We give the formal definition as follows:
Definition C.1 (Data Points). We define dataset D := {(xi, yi)}ni=1 ⊂ Rd × R, where ∥xi∥2 = 1 and
|yi| ≤ 1 for any i ∈ [n].

C.2 Model
Weights and Initialization.
Definition C.2. We give the following definitions:

• Hidden-layer weightsW ∈ Rd×m. We define the hidden-layer weightsW := [w1, w2, · · · , wm] ∈
Rd×m where wr ∈ Rd,∀r ∈ [m].
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• Output-layer weights a ∈ Rm. We define the output-layer weights a := [a1, a2, · · · , am]
⊤ ∈ Rm,

especially, vector a is fixed during the training.
Definition C.3. We give the following initializations:

• Initialization of hidden-layer weights W ∈ Rd×m. We randomly initialize W (0) :=
[w1(0), w2(0), · · · , wm(0)] ∈ Rd×m, where its r-th column for r ∈ [m] is sampled by wr(0) ∼
N (0, σ2 · Id) with σ2 = 1.

• Initialization of output-layer weights a ∈ Rm. We randomly initialize a ∈ Rm where its r-th
entry for r ∈ [m] is sampled by ar ∼ Uniorm{−1,+1}.

Model.
Definition C.4. For a scalar x ∈ R, we define:

ReLU(x) = max{0, x} ∈ R

Definition C.5. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

• For κ ∈ (0, 1].

We define:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
∈ R

Lemma C.6. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weightsW ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

• Let u : Rd → Rd be defined as Definition D.6.

• For κ ∈ (0, 1].

Then we have:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)
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Proof. We have

f(x,W, a) = κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)

= κ
1√
m

m∑

r=1

ar · ReLU
(√

V (w) · (⟨w̃, x⟩+ E(w) · ⟨x,1d⟩)
)

= κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

where the first step follows from Definition C.5, the second step follows from Definition D.5, the last
step follows from Definition D.6.

C.3 Training
Training.
Definition C.7. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

We define:

L(W (t)) :=
1

2
·

n∑

i=1

(f(xi,W (t), a)− yi)
2

Definition C.8. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition C.7.

• Denote η > 0 as the learning rate.

• Let ∆W (t) ∈ Rd×m be defined as Definition F.2.

We update:

W (t+ 1) := W (t)− η ·∆W (t)

Compact Form.
Definition C.9. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.
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• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition C.7.

• Let W (t) be updated by Definition C.8.

We give the following compact form of defined variables and functions:

• Compact form of model function. We define:

F(t) := [f(x1,W (t), a), f(x2,W (t), a), · · · , f(xn,W (t), a)]
⊤ ∈ Rn

• Compact form of the input vector in the training dataset. We define:

X := [x1, x2, · · · , xn]
⊤ ∈ Rn×d

• Compact form of the targets in the training dataset. We define:

y := [y1, y2, · · · , yn]⊤ ∈ Rn

• Compact form of the training objective. We define:

L(t) :=
1

2
· ∥F(t)− y∥22

Especially, we have L(t) = L(W (t)) by simple algebras.

D Quantization
D.1 Quantization Functions
Definition D.1. For a vector w ∈ Rd, we define Sign(w) ∈ {−1,+1}d where its k-th entry for k ∈ [d] is
given by:

Signk(w) :=

{−1, if wk < 0

+1, if wk ≥ 0
∈ {−1,+1}

Definition D.2. For a vector w ∈ Rd, we define expectation function as follows:

E(w) :=
⟨w,1d⟩

d
∈ R

Definition D.3. Let E : Rd → R be defined as Definition D.2. For a vector w ∈ Rd, we define variance
function as follows:

V (w) :=
1

d
· ∥w − E(w) · 1d∥22 ∈ R

Definition D.4. If the following conditions hold:

• Let Sign : Rd → {−1,+1}d be defined as Definition D.1.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

We define the quantization function as follows:

q(w) := Sign(
w − E(w) · 1d√

V (w)
) ∈ {−1,+1}d
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D.2 Dequantization Functions
Definition D.5. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd.

We define the dequantization function as follows:

dq(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨x,1d⟩ ∈ R

D.3 Quantization Error
Definition D.6. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd.

We define the quantization difference vector as follows:

u(w) :=
√
V (w)w̃ + E(w) · 1d − w ∈ Rd

Lemma D.7. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.
• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let u : Rd → Rd be defined as Definition D.6.

Then we have:
⟨u(w), x⟩ ≤ O

(
d(D +R)

)

Proof. We define:

Ln(w) =
w − E(w)1d√

V (w)
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Then by simple algebras, we can show that:

1

d
∥Ln(w)∥22 =

1

d

∥∥∥∥∥
w − E(w)1d√

V (w)

∥∥∥∥∥

2

2

<
1

d

∥w − E(w)1d∥22
V (w)

< 1 (4)

Thus, we obtain:
∥Ln(w)∥∞ ≤ ∥Ln(w)∥2

= (∥Ln(w)∥22)
1
2

<
√
d

where these steps follow from simple algebras and Eq. (4).
Finally, we can get that

|⟨u(w), x⟩| =
√

V (w) · |⟨w̃ − Ln(w), x⟩|
= O(D +R) · |⟨w̃ − Ln(w), x⟩|
≤ O(D +R) · ∥w̃ − Ln(w)∥2

= O(D +R) ·
( d∑

k=1

(w̃k − Lnk(w))
2
) 1

2

≤ O(D +R) ·
( d∑

k=1

(max{
√
d− 1, 1})2

) 1
2

≤ O
(
d(D +R)

)

where the first step follows from Definition D.6, the second step follows from Part 7 of Lemma I.6,
the third step follows from Cauchy-Schwarz inequality and ∥x∥2 = 1, the fourth step follows from
the definition of ℓ2 norm, the fifth step follows from Definition D.1 and simple algebras, the last step
follows from simple algebras.

E Patterns

E.1 ReLU Pattern
Definition E.1. If the following conditions hold:

• For any w ∈ Rd.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• For R > 0.

• For i ∈ [n] and r ∈ [m].

We define:

Ai,r := {∃w ∈ Rd : ∥w − wr(0)∥2 ≤ R,1dq(⟨wr(0),xi⟩)≥0 ̸= 1dq(⟨w,xi⟩)≥0}
Definition E.2. Let event Ai,r for i ∈ [n] and r ∈ [m] be defined as Definition E.1. We define:

Si := {r ∈ [m] : I{Ai,r} = 0}
S⊥
i := [m]/Si
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E.2 Sign Pattern
Definition E.3. If the following conditions hold:

• For any w ∈ Rd.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• For R > 0.

• For k ∈ [d] and r ∈ [m].

We define:

Br,k := {∃w ∈ Rd : |wk − wr,k(0)| ≤ R,1wr,k(0)−E(wr(0))≥0 ̸= 1wk−E(w)≥0}

F Straight-Through Estimator (STE)

F.1 STE Functions
Definition F.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition C.4.

We define:

fste(x,W, a) := κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r,x⟩)≥0 · ⟨wr, x⟩ ∈ R

Then its compact form is given by

Fste(t) := [fste(x1,W (t), a), fste(x2,W (t), a), · · · , fste(xn,W (t), a)]
⊤ ∈ Rn

Definition F.2. LetW (0) ∈ Rd×m be initialized as Definition C.3. For any t ≥ 0. We define:

∆W (t) :=

n∑

i=1

(Fi(t)− yi) ·
dFste,i(t)

dW (t)

F.2 Gradient Computation
Lemma F.3. If the following conditions hold:

• For i ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let Fste(t) be defined as Definition F.1.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.
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• Denote w̃r = q(wr) ∈ {−1,+1}d.
• For κ ∈ (0, 1].

Then we have:
dFste,i(t)

dwr(t)
= κ

1√
m
ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi

Proof. This proof follows from simple calculations.

G Neural Tangent Kernel

G.1 Kernel Function
Definition G.1. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• For κ ∈ (0, 1].

We define the kernel function as H(t) ∈ Rn×n, where its (i, j)-th entry is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

Claim G.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let H(t) ∈ Rn×n be defined as Definition G.1.

• For κ ∈ (0, 1].

We first define the neural tangent network as H∗ := H(0) ∈ Rn×n, where its (i, j)-th entry is given by:

H∗
i,j := Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0
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≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

Proof. We have
H∗

i,j = Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

where the first step follows from the definition ofH∗, the second step follows from Definition G.1,
the third step holds since m → +∞.
Definition G.3. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let S⊥
i be defined as Definition E.2.

We the pattern-changing kernel function as H⊥(t) ∈ Rn×n, where its (i, j)-th entry is given by:

H⊥
i,j(t) := κ2 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

G.2 Assumption: H∗ is Positive Definite
Assumption G.4. Let H∗ ∈ Rn×n be defined as Definition G.1. We assume that H∗ is positive definite
(PD), where its minimum eigenvalue is given by:

λ := λmin(H
∗) > 0

G.3 Kernel Convergence and PD Property
Lemma G.5. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Denote λ = λmin(H
∗) > 0 as Assumption G.4.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let H(t) ∈ Rn×n be defined as Definition G.1.
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• Let H∗ ∈ Rn×n be defined as Claim G.2.

• R ≤ O( λδ
κ2n2dD ).

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

• Part 1.

∥H(t)−H∗∥F ≤ O
(
n2dRδ−1D

)

• Part 2.

λmin(H(t)) ≥ λ/2

Proof. Proof of Part 1. Let Ai,r be defined as Definition E.1, we first show that when ⟨wr(0), x⟩ ≥
R+O

(
d(D +R)

)

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0)) · ⟨w̃r(0), xi⟩+ ⟨E(wr(0)) · 1d, xi⟩

= ⟨wr(0), xi⟩+ ⟨u(wr(0)), xi⟩
≥ ⟨wr(0), xi⟩ − |⟨u(wr(0)), xi⟩|
≥ R

where the first step follows from Definition D.5, the second step follows from Definition D.6. the
third step follows from simple algebras, the last step follows from ⟨wr(0), x⟩ ≥ R+O

(
d(D +R)

)

and Lemma D.7.
Thus, for any w ∈ Rd that satisfies ∥w − wr(0)∥2 ≤ R, we have:

dq(⟨w̃, xi⟩) =
√

V (w) · ⟨w̃, xi⟩+ ⟨E(w) · 1d, xi⟩
= ⟨w, xi⟩+ ⟨u(w), xi⟩
≥ ⟨w, xi⟩ − |⟨u(w), xi⟩|
≥ ⟨wr(0), xi⟩ − ∥w − wr(0)∥2 − |⟨u(w), xi⟩|
≥ 0

where the first step follows from Definition D.5, the second step follows from Definition D.6. the
third step follows from simple algebras, the fourth step follows from Cauchy-Schwarz inequality
and ∥xi∥ = 1, the last step follows from ∥w − wr(0)∥2 ≤ R, ⟨wr(0), x⟩ ≥ R + O

(
d(D + R)

)
and

Lemma D.7.
The above situation says:

Pr
[
I{Ai,r} = 1] ≤ Pr[⟨wr(0), x⟩ < R+O

(
d(D +R)

)]

≤
4R+O

(
d(D +R)

)

√
2π

≤ O
(
dR(D +R)

)

≤ O
(
dRD

)
(5)

where the second step follows from anti-concentration of Gaussian (Fact B.3) and Fact B.4, the third
step follows from simple algebras and the last step follows from plugging R ≤ D.
For i, j ∈ [n], we have

E[|Hi,j(t)−H∗
i,j |]
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= E
[∣∣∣κ2 1

m
x⊤
i xj

m∑

r=1

(1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0)
∣∣∣
]

= κ2 1

m

m∑

r=1

E
[
1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

]

≤ κ2 1

m

m∑

r=1

E
[
I{Ai,r ∪Aj,r}

]

≤ O
(
κ2dRD

)
(6)

where the first step follows from Definition G.1 and Claim G.2, the second and third step follows
from simple algebras, the last step follows from Eq. (5).
Then we have:

E[
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |] =

n∑

i=1

n∑

j=1

E[|Hi,j(t)−H∗
i,j |]

≤ O
(
κ2n2dRD

)

where the first step follows from simple algebras, the second step follows from Eq. (6).
Hence, by Markov’s inequality (Lemma B.15), with probability at least 1− δ, we have:

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j | ≤

E[
∑n

i=1

∑n
j=1 |Hi,j(t)−H∗

i,j |]
δ

≤ O
(
κ2n2dRδ−1(D +R)

)

We obtain:
∥H(t)−H∗∥F ≤ ∥H(t)−H∗∥1

=

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |

≤ O
(
κ2n2dRδ−1D

)

Now following Fact B.5, we have:
λmin(H(t)) ≥ λmin(H

∗)− ∥H(t)−H∗∥F
≥ λ−O

(
κ2n2dRδ−1D

)

≥ λ/2

where the last step follows from choosing R ≤ O( λδ
κ2n2dD ).

H Training Dynamic

H.1 Decompose Loss
Definition H.1. Let W (0) ∈ Rd×m be initialized as Definition C.3. For any t ≥ 0. Let u : Rd → Rd be
defined as Definition D.6. For r ∈ [m]. We define:

ur(t) := u(wr(t))

Then the Fi(t),∀i ∈ [n] can be given by:

Fi(t) = κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)
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Claim H.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• For κ ∈ (0, 1].

Then we have:

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

Proof. We have

L(t+ 1) =
1

2
· ∥F(t+ 1)− y∥22

=
1

2
· ∥(F(t)− y)− (F(t)− F(t+ 1))∥22

=
1

2
· (∥F(t)− y∥22 − 2⟨F(t)− y,F(t)− F(t+ 1)⟩+ ∥F(t)− F(t+ 1)∥22)
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= L(t)− ⟨F(t)− y,F(t)− F(t+ 1)⟩+ 1

2
∥F(t)− F(t+ 1)∥22

these steps follow from simple algebras and Definition C.9.
Then for i ∈ [n]

Fi(t)− Fi(t+ 1)

= κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

)

= κ
1√
m

m∑

r=1

ar ·
(
1dq(⟨w̃r(t),xi⟩)≥0 ·

(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

))

= M1,i +M2,i +M3,i

where these steps follows from simple algebras and defining:

M1,i := κ
1√
m

∑

r∈Si

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M2,i := κ
1√
m

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M3,i := κ
1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨ur(t+ 1), xi⟩

)

Thus, by the definitions in Lemma conditions, we can show that
L(t+ 1) = L(t) + C1 + C2 + C3 + C4

H.2 Bounding C1

Lemma H.3. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.
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• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• For κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C1 ≤
(
− ηκλ+O(ηκ

n2dRD

δ
)
)
· L(t)

Proof. We have:

C1 = − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ
1√
m

n∑

i=1

∑

r∈Si

ar(⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ2η
1

m

n∑

i=1

∑

r∈Si

(Fi(t)− yi) · (
n∑

j=1

x⊤
i xj · 1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 · (Fj(t)− yj))

= − η(F(t)− y)⊤ · (H(t)−H⊥(t)) · (F(t)− y)

= − η(F(t)− y)⊤ ·H(t) · (F(t)− y) + η(F(t)− y)⊤ ·H⊥(t) · (F(t)− y)

≤ − ηλ/2 · ∥F(t)− y∥22 + η∥H⊥(t)∥F · ∥F(t)− y∥2
= (−ηλ+ ∥H⊥(t)∥F ) · L(t)

where the first step follows from definition of C1, the second step follows from the definition of Si

(Definition E.2), the third step follows from Definition C.8 and Definition F.2, the fourth step follows
from Definition G.1, Definition G.3 and simple algebras, the fifth step follows from simple algebras,
the sixth step follows from Lemma G.5 and simple algebras, the last step follows from Definition C.9.
Besides, we have

|H⊥
i,j | = | 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0|

≤ | 1
m
x⊤
i xj · |S⊥

i ||

≤ 1

m
|S⊥

i | (7)

where the first step follows from Definition G.3, the second step follows from simple algebras, the
third step follows from ∥x∥i = 1.
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We give that

E[
n∑

i=1

|S⊥
i |] =

n∑

i=1

m∑

r=1

Pr[I{Ai,r} = 1]

≤ O(mndRD)

where the first step follows from simple algebras, the second step follows from Eq. (5).
Hence, by Markov’s inequality (Lemma B.15), we have

n∑

i=1

|S⊥
i | ≤ O(

mndRD

δ
) (8)

Thus,

∥H⊥∥F ≤
n∑

i=1

n∑

j=1

|H⊥
i,j |

≤ 1

m

n∑

i=1

n∑

j=1

|S⊥
i |

≤ O(
n2dRD

δ
)

where the first step follows from simple algebras, the second step follows from Eq. (7), the last step
follows from simple algebras and Eq. (8).
Finally, we conclude all the results, we have:

C1 ≤
(
− ηλ+O(η

n2dRD

δ
)
)
· L(t)

H.3 Bounding C2

Lemma H.4. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.
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• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

|C2| ≤ O(ηκ
n1.5dRD

δ
) · L(t)

Proof. We have:

|C2| = |κ 1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · |⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩| · (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2 · (Fi(t)− yi)|

≤ κ
1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2∥F(t)− y∥2

≤ ηκ

√
n

m

n∑

i=1

|Si⊥ | · ∥F(t)− y∥22

≤ O(ηκ
n1.5dRD

δ
) · L(t)

where the first step follows from the definition of C2, the second step follows from Fact B.2 and
Definition E.2 (S⊥

i ), the third step follows from simple algebras and Definition C.8, the fourth step
follows from simple algebras, the fifth step follows from Lemma I.4, last step follows from Eq. (8)
and Definition C.9.

H.4 Bounding C3

Lemma H.5. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.
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• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C3 ≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

Proof. We have:
|ur,k(t)− ur,k(t+ 1)|

= |
√

V (wr(t)) · w̃r,k(t) + E(wr(t))− wr,k(t)

−
√

V (wr(t+ 1)) · w̃r,k(t+ 1)− E(wr(t+ 1)) + wr,k(t+ 1)|
≤ |w̃r,k(t)

√
V (wr(t))− w̃r,k(t+ 1)

√
V (wr(t+ 1))|

+ |ηE(∆wr(t))|+ |η∆wr,k(t)|
≤
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

+
∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣+ |ηE(∆wr(t))|+ |η∆wr,k(t)|

= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k (9)
where the first step follows from Definition H.1, the second step follows from triangle inequality and
Definition C.8, the third step follows from simple algebras, the last step follows from defining:

Q1,r,k :=
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

Q2,r,k :=
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣
Q3,r,k := |ηE(∆wr(t))|
Q4,r,k := |η∆wr,k(t)|

Bounding Q1,r,k.
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We have:
Q1,r,k =

∣∣∣w̃r,k(t+ 1)(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

=
∣∣∣(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣
≤ ∥wr(t)− E(wr(t))1d − wr(t+ 1) + E(wr(t+ 1))1d∥2
≤ ∥η∆wr(t)∥2 +

√
d · |ηE(∆wr(t))|

≤ η
(1 +

√
d)
√
n√

m
∥F(t)− y∥2

where the first step follows from the definition of Q1,r,k, the second step follows from w̃r,k(t+ 1) ∈
{−1,+1}, the third step follows from Definition D.3 and reverse triangle inequality, the fourth step
follows from ∥1d∥2 =

√
d and Definition C.8, the last step follows from Lemma I.4.

Bounding Q2,r,k.

We have:
Q2,r,k =

∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣

= |
√
V (wr(t))| · |w̃r,k(t)− w̃r,k(t+ 1)|

≤ ∥wr(t)− E(wr(t))1d∥ · |w̃r,k(t)− w̃r,k(t+ 1)|
≤ O(

√
dD +R) · |w̃r,k(t)− w̃r,k(t+ 1)| (10)

where the first step follows from the definition ofQ2,r,k, the second step follows from simple algebras,
the third step follows from Definition D.3, the last step follows from Part 2 of Lemma I.6.
At the same time, we can show that

E[|w̃r,k(t)− w̃r,k(t+ 1)|]
≤ 2(1− Pr[I{Br,k} = 0 ∩ I{|wr,k(t)− E(wr(t))| ≥ |η∆wr,k(t)− ηE(∆wr(t))|}])

≤ 2(1− Pr[z ≥ 2R+ 2η

√
n√
m
∥F(t)− y∥2])

= 2Pr[z ≤ 2R+ 2η

√
n√
m
∥F(t)− y∥2]

≤ O(η

√
n√
m
)∥F(t)− y∥2 +O(1)R

≤ O(η
R
√
n

ϵ
√
m

)∥F(t)− y∥2

where the first step follows from Definition E.3 and simple algebras, the second step follows from
defining:

z := wr,k(0)− E(wr(0))

=
d− 1

d
wr,k − 1

d

∑

k′∈[d]/{k}
wr,k′(0)

∼ N
(
0, σ2

√
d− 1

d
· Id
)

and the last steps follow from the anti-concentration of the Gaussian variable (Fact B.3) and ∥F(t)−
y∥2 ≥ ϵ by Lemma condition.
Following Markov’s inequality, we get:

|w̃r,k(t)− w̃r,k(t+ 1)| ≤ O(η
R
√
n

δϵ
√
m
)∥F(t)− y∥2 (11)
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Hence,

Q2,r,k ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

where this step follows from Eq. (11) and Eq. (10).
Bounding Q3,r,k and Q4,r,k.

We can show thatQ3,r,k ≤ η
√
n√
m

· ∥F(t)− y∥2 andQ4,r,k ≤ η
√
n√
m

· ∥F(t)− y∥2 by following Lemma I.4.
Combination. We have:

E[C3] = 0

where this step follows from the symmetry of a.
Also

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩

)

≤ |⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k

≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2 (12)

where the first step follows from ReLU is a 1-Lipschitz function (Fact B.2), the last step follows from
simple algebras and the combination of these terms.
By Hoeffding’s inequality (Lemma B.8), with a probability at least 1− δ, we have:

|C3| ≤ O
(
ηκ

R2n1.5
√
d

δϵ ·m
√
mD

)
∥F(t)− y∥22

≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

H.5 Bounding C4

Lemma H.6. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.
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• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let Si,S⊥

i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

Then with probability at least 1− δ, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

Proof. We have:
|1dq(⟨w̃r(t),xi⟩)≥0(⟨wr(t), xi⟩+ ⟨ur(t), xi⟩)
− 1dq(⟨w̃r(t+1),xi⟩)≥0(⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩)|

≤ |⟨η∆wr(t), xi⟩+ ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
≤ U1,i,r + U2,i,r

where the first step follows from Fact B.2, the fifth step follows from Definition C.8, and the last step
follows from defining:

U1,i,r := ⟨η∆wr(t), xi⟩
U2,i,r := ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩

For the first term U1,i,r, we have:

|U1,i,r| ≤ η

√
n√
m
∥F(t)− y∥2

this step holds since Part 2 of Lemma I.4.
For the second term U2,i,r, we have:

|U2,i,r| ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

this step follows from Eq. (12) and Eq. (9).
Thus, we have:

C4 =
1

2
∥F(t)− F(t+ 1)∥22

=
1

2

n∑

i=1

(Fi(t)− Fi(t+ 1))2

=
1

2

n∑

i=1

(
κ

1√
m

m∑

r=1

ar(U1,i,r + U2,i,r)
)2

Combining two terms, then by Hoeffing inequality (Lemma B.8), with a probability at least 1− δ,
E[
∑m

r=1 ar(U1,i,r + U2,i,r)] = 1, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
∥F(t)− y∥22 ≤ O

(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)
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I Inductions

I.1 Main Result 1: Training Convergence Guarantee
Theorem I.1. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Given a expected error ϵ > 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• δ ∈ (0, 0.1), κ ∈ (0, 1].

• Choosem ≥ Ω
(
λ−8 n12d8

δ4ϵ4

)
.

• Choose η ≤ O
(
λ δ

κ2n2dD

)
.

• Choose T ≥ Ω
(

1
ηλ log(ϵ−1ndD2)

)
.

Then with probability at least 1− δ, we have:
L(T ) ≤ ϵ

Proof. Choice of m.

Following Lemma I.2, we have

m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

Particularly, following Claim I.5, we have:

R ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

≤ 4
√
n

λ
√
m

·O
(√

ndD2
)

≤ O
( nd

λ
√
m
D2
)

where the first step follows from Claim I.5, the second step follows from Lemma I.3, the third step
follows from simple algebras.
Besides, by Lemma I.2, we need that

R ≤ O(
λδ

κ2n2dD
)

where the second step follows from Definition B.16.
Thus, showing that D3 ≤ O(m

1
4 ) and κ ≤ 1, we plugm as follows:

m ≥ Ω
(
λ−8n

12d8

δ4ϵ4

)
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Choice of η. We have

∥η∆wr(0)∥2 ≤ η

√
n√
m
∥F(0)− y∥2

≤ η

√
n√
m
O
(√

ndD2
)

≤ R

where the first step follows from Part 2 of Lemma I.4, the second step follows from Lemma I.3, the
third step follows from plugging η ≤ O

(
λ δ

κn2dD

)
andm ≥ Ω

(
λ−8 n12d8

δ4ϵ4

)
.

Choice of T . We have:
L(T ) ≤ ϵ ⇐⇒ (1− ηλ/2)TL(0) ≤ ϵ

⇐⇒ (1− ηλ/2)TO
(√

ndD2
)
≤ ϵ

⇐⇒ (1− ηλ/2)T ≤ O
( ϵ√

ndD2

)

⇐⇒ T ≥ Ω
(
log(

ϵ√
ndD2

)/ log(1− ηλ/2)
)

⇐⇒ T ≥ Ω
(
− 1

ηλ
log(

ϵ√
ndD2

)
)

⇐⇒ T ≥ Ω
( 1

ηλ
log(ϵ−1ndD2)

)

where the first step follows from Lemma I.2, the second step follows from Lemma I.3, the third and
fourth steps follow from simple algebras, the fifth step follows from Fact B.6, the sixth step follows
from simple algebras.

I.2 Induction for Loss
Lemma I.2. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition G.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition G.3.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.
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• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• m ≥ Ω
(
λ−4κ4R8n6d2

δ4ϵ4

)
.

• R ≤ O( λδ
κ2n2dD ).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• δ ∈ (0, 1].

Then with probability at least 1− δ, we have:

L(t+ 1) ≤ (1− λ/2η) · L(t)

Moreover, we can show that:

L(t) ≤ (1− λ/2η)t · L(0)

Proof. We have:

L(t+ 1) ≤ L(t) +
(
− ηλ+O(η

n2dRD

δ
) +O(ηκ

n1.5dRD

δ
)

+O(ηκ
R2n1.5

√
d

δϵ
√
m

D) +O(η2κ2R
4n2d

δ2ϵ2m
D2
)
· L(t)

≤ L(t) +
(
− ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ
)
· L(t)

≤ (1− ηλ/2)L(t)

where the first step follows from Claim H.2, Lemma H.3, Lemma H.4, Lemma H.5, Lemma H.6
and ηλ ≤ 1, the second step follows from the choice of R andm, the last step follows from simple
algebras.
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Choice of R. We have:

R ≤ O(
λδ

κ2n2dD
) (13)

where this step is following the combination of Lemma G.5 and O(η κ2n2dRD
δ ≤ 1

8ηλ).
Choice of m. We have:

√
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
D
)

⇐⇒ √
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
m

1
4

)

⇐⇒ m
1
4 ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ

)

⇐⇒ m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

where the first step follows from plugging O(ηκR2n1.5
√
d

δϵ
√
m

D) ≤ 1
8ηλ, the last three steps follow from

simple algebras.
Lemma I.3. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

∥F(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:
∥F(0)− y∥2 ≤ ∥F(0)∥2 + ∥y∥2

≤ ∥F(0)∥2 +
√
n

≤ (

n∑

i=1

|Fi(0)|2)
1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+

√
n
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≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n] and
simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Definition C.9 and Definition C.5, the last two steps follow by Hoeffding’s inequality (Lemma B.8),
Definition C.1 and simple algebras, and we can show that:

E[
m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
] = 0

also,
dq(⟨w̃r(0), xi⟩) =

√
V (wr(0) · ⟨w̃r(0), xi⟩+ E(wr(0))⟨1d, xi⟩

≤ O(
√
dD) ·

√
d+O(D) ·

√
d

≤ O(dD)

where these steps follow from Definition D.5, Lemma I.6 and simple algebras.

I.3 Induction for STE Gradient
Lemma I.4. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

• Part 1. ∀k ∈ [d]

|∆wr,k(t)| ≤
√

n

m
· ∥F(t)− y∥2

• Part 2.

∥∆wr(t)∥2 ≤
√

n

m
· ∥F(t)− y∥2

Proof. Proof of Part 1. We have:

|∆wr,k(t)| = |κ 1√
m

n∑

i=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k · (Fi(t)− yi)|
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≤ κ
1√
m

( n∑

i=1

(ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k)
2
) 1

2 · ∥F(t)− y∥2

≤
√

n

m
· ∥F(t)− y∥2

where the first step follows from Definition F.2, the second step follows from Cauchy-Schwarz
inequality, the third step follows from

max
r∈[m],i∈[n],k∈[d]

|1dq(⟨w̃r(t),xi⟩)≥0 · xi,k| ≤ 1

the above equation follows from simple algebras and ∥xi∥i = 1.
Proof of Part 2.

By ∥x∥i = 1,∀i ∈ [n], this proof is trivially the same as Proof of Part 1.

I.4 Induction for Weights
Claim I.5. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition C.9.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• Let a ∈ Rm be initialized as Definition C.3.

• Let dq : R → R be defined as Definition D.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
• Let Si,S⊥

i be defined as Definition E.2.

• Let ur(t) be defined as Definition H.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

R := max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2 ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

Proof. We have
R = max

t≥0
max
r∈[m]

∥wr(0)− wr(t)∥2

≤ max
t≥0

max
r∈[m]

∥
t∑

τ=1

η∆wr(τ)∥2

≤ ηmax
t≥0

max
r∈[m]

t∑

τ=1

∥∆wr(τ)∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

∥F(τ)− y∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

(1− ηλ/2)τ∥F(0)− y∥2
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≤ 4
√
n

λ
√
m
∥F(0)− y∥2

where the first step follows from the definition of R, the second step follows from Definition C.8, the
third step follows from triangle inequality, the fourth step follows from Part 2 of Lemma I.4, the fifth
step follows from Lemma I.2, the last step follows from Fact B.6.
Lemma I.6. Let δ ∈ (0, 0.1). Let D > 0 be defined as Definition B.16. Let E : Rd → R be defined
as Definition D.2. Let V : Rd → R be defined as Definition D.3. Let W (0) ∈ Rd×m be initialized as
Definition C.3, denoteW := [w1, w2, · · · , wm] ∈ Rd×m satisfying ∥wr − wr(0)∥2 ≤ R where R ≥ 0, then
with a probability at least 1− δ, we have

• Part 1. |wr,k(0)| ≤ O(D), ∀r ∈ [m], k ∈ [d].

• Part 2. ∥wr(0)∥2 ≤ O(
√
dD), ∀r ∈ [m].

• Part 3. ∥wr∥2 ≤ O(
√
dD +R), ∀r ∈ [m].

• Part 4. E(wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 5.
√
V (wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 6. E(wr) ≤ O(D +R), ∀r ∈ [m].

• Part 7.
√

V (wr) ≤ O(D +R), ∀r ∈ [m].

Proof. This proof follows from the union bound of the Gaussian tail bound (Fact B.1) and some
simple algebras.

J Supplementary Setup for Classical Linear Regression

J.1 Model Function
Definition J.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weightsW ∈ Rd×m as Definition C.2.

• For a output-layer weights a ∈ Rm as Definition C.2.

• Let ReLU : R → R be defined as Definition C.4.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition C.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• κ ∈ (0, 1].

We define:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU(⟨wr, x⟩) ∈ R

Then we define the compact form of f(x,W ′t), a), we define:

F′(t) = [f(x1,W
′(t), a), f(x2,W

′(t), a), · · · , f(xn,W
′t), a)]

⊤ ∈ Rn

49



J.2 Loss and Training
Definition J.2. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• For any t ≥ 0.

We define:

L′(t) :=
1

2
∥F′(t)− y∥22

Claim J.3. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let L′(t) be defined as Definition J.2.

• For any t ≥ 0.

• Denote η > 0 aa the learning rate.

We define:

W ′(t+ 1) := W ′(t)− η ·∆W ′(t)

Here, we also define that:

W ′(t) :=
d

dW ′(t)
L′(t)

=

n∑

i=1

(F′
i(t)− yi) · κ

[
a1 · 1⟨w′

1(t),xi⟩≥0xi · · · am · 1⟨w′
m(t),xi⟩≥0xi

]
∈ Rd×m

Proof. This proof follows from simple algebras.

J.3 Induction for Weights
Lemma J.4 (See Corollary 4.1 and the fifth equation of page 6 in Du et al. [41]). If the following
conditions hold:

• t ≥ 0, letW (0) ∈ Rd×m and a ∈ Rm be initialized as Definition C.3.

• W ′(0) := W (0).

• LetW ′(t) ∈ Rd×m be updated as Claim J.3.

• R ≤ O( λδ
κ2n2dD ).

Then we have

∥w′
r(t)− w′

r(0)∥ ≤ R
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Proof. Following Corollary 4.1 in Du et al. [41], we can show that:

∥w′
r(t)− w′

r(0)∥ ≤ 4
√
n√

mλ
∥F′(0)− y∥2

Then we can complete this proof by combining the equation above with Lemma J.5 andR ≤ O( λδ
n2dD )

in Lemma conditions.

J.4 Induction for Loss
Lemma J.5. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition C.1.

• LetW (0) ∈ Rd×m be initialized as Definition C.3.

• Let a ∈ Rm be initialized as Definition C.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• For any t ≥ 0.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

∥F′(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:
∥F′(0)− y∥2 ≤ ∥F′(0)∥2 + ∥y∥2

≤ ∥F′(0)∥2 +
√
n

≤ (

n∑

i=1

|F′
i(0)|2)

1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨w′

r(0), xi⟩
)
|2) 1

2 +
√
n

= (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+
√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows
from Definition C.9 and Definition C.5, the fifth step follows fromW ′(0) = W (0), the last two steps
follow by Hoeffding’s inequality (Lemma B.8), Definition C.1, κ ≤ 1 and simple algebras, and we
can show that:

E[
m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
] = 0

also,
⟨wr(0), xi⟩ = ⟨wr(0), xi⟩

≤ O(
√
dD) ≤ O(dD)

where this step follows from Lemma I.6 and simple algebras.
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K Similarities

K.1 Main Result 2: Training Similarity

Theorem K.1. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Given a expected error ϵ > 0.

• Let H∗ ∈ Rn×n be defined as Claim G.2. Assume λmin(H
∗) > 0 as Assumption G.4.

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition K.2.

• Let F′(t) ∈ Rn be defined as Definition J.1.

• Let F(t) ∈ Rn be defined as Definition C.9.

• Let F′
test(t) ∈ Rn be defined as Definition K.3.

• Let Ftest(t) ∈ Rn be defined as Definition K.3.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

• For any error ϵquant > 0.

• δ ∈ (0, 0.1).

• Choose κ ≤ O(
ϵquant

dD2 ).

Then with probability at least 1− δ, we have:

• Part 1. |Ftest,i(t)− F′
test,i(t)| ≤ ϵquant.

• Part 2. |Fi(t)− F′
i(t)| ≤ ϵquant.

Proof. Proof of Part 1. We have:
|1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

≤ |⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(t), xtest,i⟩|

= |⟨wr(0)− η

t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(0)− η

t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

= | − ⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩+ ⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

≤ |⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩|+ |⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|+ |⟨ur(t), xtest,i⟩|

≤ R+R+ |⟨ur(t), xtest,i⟩|
≤ O

(
d(D +R)

)
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where the first step follows from Fact B.2, the second step follows from Definition C.8 and Claim J.3,
the third step follows from w′

r(0) = wr(0), the fourth step follows from triangle inequality, the fifth
step follows from Claim I.5 and Lemma J.4, the last step follows from Lemma D.7 and δ ∈ (0, 0.1).
Then we have:

|Ftest,i(t)− F′
test,i(t)| ≤

∣∣∣κ 1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)

− 1⟨w′
r(t),xtest,i⟩≥0⟨w′

r(t), xtest,i⟩
)∣∣∣

≤ κ
√
log(m/δ) ·O

(
d(D +R)

)

≤ ϵquant

where the first step follows from Definition K.3, the second step follows from Hoeffding’s inequality
(Lemma B.8), E[∑m

r=1 arσi,r] = 0, σi,r ≤ O
(√

n
m (D +R) +R/δ

)
and defining:

σi,r := |1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

and the last step follows from choosing

κ ≤ O(
ϵquant

dD2 + dDR
) ≤ O(

ϵquant
dD2

)

Proof of Part 2. This part can be proved in the same way as Proof of Part 1.

K.2 Test Dataset for Generalization Evaluation
Definition K.2. We define test dataset Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and
ytest,i ≤ 1 for any i ∈ [n].
Definition K.3. If the following conditions hold:

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition K.2.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition C.3 and be updated by Definition C.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim J.3.

We define:

F′
test(t) := [f ′(xtest,1,W

′(t), a), f ′(xtest,2,W
′(t), a), · · · , f ′(xtest,n,W

′(t), a)]
⊤

Ftest(t) := [f(xtest,1,W (t), a), f(xtest,2,W (t), a), · · · , f(xtest,n,W (t), a)]
⊤

K.3 Function Similarity at Initialization
Lemma K.4. If the following conditions hold:

• Let D > 0 be defined as Definition B.16.

• Let q : Rd → {−1,+1}d be defined as Definition D.4.
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• Let E : Rd → R be defined as Definition D.2.

• Let V : Rd → R be defined as Definition D.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition J.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition C.5.

• Let W (0) ∈ Rd×m be initialized as Definition C.3.

• W ′(0) := W (0).

• δ ∈ (0, 0.1).

• For any error ϵinit > 0.

• We choose κ ≤ O(ϵinit/(
√
dD2))

Then with probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof. We have:
|1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)
− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩|

≤ |dq(⟨w̃r(0), x⟩)− ⟨wr(0), x⟩|
≤ |
√
V (wr(0))⟨w̃r(0), x⟩+ E(wr(0)) · ⟨1d, x⟩ − ⟨wr(0), x⟩|

≤ O(
√
dD)

where the first step follows from Fact B.2, the second step follows from Definition D.5, the last step
follows from Lemma I.6.
Then by Hoeffding inequality (Lemma B.8), with a probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ κ| 1√
m

m∑

r=1

arσ̂r|

≤ κO(
√
dD) ·

√
log(m/δ)

≤ O(κ
√
dD2)

where we have:
σ̂r := 1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩

E[
m∑

r=1

arσ̂r] = 1

|σ̂r| ≤ O(
√
dD)
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