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Abstract

Causal inference seeks to estimate the effect given
a treatment such as a medicine or the dosage of
a medication. To reduce the confounding bias
caused by the non-randomized treatment assign-
ment, most existing methods reduce the shift be-
tween subpopulations receiving different treat-
ments. However, these methods split limited train-
ing samples into smaller groups, which cuts down
the number of samples in each group, while pre-
cise distribution estimation and alignment highly
rely on a sufficient number of training samples.
In this paper, we propose a distribution alignment
paradigm without data splitting, which can be nat-
urally applied in the settings of binary and contin-
uous treatments. To this end, we characterize the
confounding bias by considering different proba-
bility measures of the same set including all the
training samples, and exploit the optimal transport
theory to analyze the confounding bias and out-
come estimation error. Based on this, we propose
to learn balanced representations by reducing the
bias between the marginal distribution and the
conditional distribution of a treatment. As a re-
sult, data reduction caused by splitting is avoided,
and the outcome prediction model trained on one
treatment group can be generalized to the entire
population. The experiments on both binary and
continuous treatment settings demonstrate the ef-
fectiveness of our method.
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1. Introduction
Causal inference aims to estimate the causal effects of
treatments for supporting decision-making, where the treat-
ments are usually binary (Shalit et al., 2017) or continuous
(Schwab et al., 2020). The gold standard for estimating
causal effects is to conduct randomized control trials (RCTs)
(Fisher, 1936), in which the assignment of treatment for sam-
ples is completely random without relying on the covariates
of samples. However, it is usually infeasible to conduct
RCTs, and the effects are estimated from observational data
involving confounding bias, which means that the data dis-
tribution of a subpopulation receiving one value of treatment
differs from the distribution of the entire population (Ham-
merton & Munafò, 2021), i.e., p(x|t) ̸= p(x), where x is
the covariates and t is the treatment value.

To address the confounding bias, most existing machine
learning methods adopt a data-splitting strategy to split sam-
ples into smaller subpopulations according to the treatment
values, and then reduce the distribution shift between dif-
ferent subpopulations. For binary treatments, one usually
splits training samples to the treated group receiving treat-
ment and the control group without receiving treatment, and
then reduces the distribution shift between the two groups
(Kuang et al., 2017; Shalit et al., 2017). For continuous
treatments, the natural and widely used strategy is to split
samples into multiple groups based on their received treat-
ments. After that, the distribution shift reduction approach
for binary treatments can be applied by considering the shift
between each pair of groups (Wang et al., 2022). However,
data splitting cuts down the number of samples in each sub-
population, and only a part of the samples are leveraged
in distribution estimation and alignment. This decreases
the performance of distribution estimation and confounding
bias reduction, which highly relies on a sufficient number
of training samples (Wang et al., 2022).

In this paper, we propose a distribution alignment paradigm
involving all the training samples without data splitting,
which can be naturally applied to effect estimation of bi-
nary and continuous treatments. Rather than reducing the
distribution shift between subpopulations receiving differ-
ent treatment values in existing methods, we characterize
the distribution shift by different probability measures of
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the same set including all the samples. In other words, we
model the conditional distribution p(x|t) by all the sam-
ples, instead of only a subpopulation receiving t which is
widely used in existing works (Shalit et al., 2017; Wang
et al., 2022). By doing this, data splitting is avoided and all
the samples can be leveraged to improve the performance
of distribution alignment.

Specifically, we establish the connection between the treat-
ment effect estimation and optimal transport built on prob-
ability measures involving all the samples (Villani, 2008;
Peyré & Cuturi, 2017). We show that for the marginal co-
variate distribution and the conditional covariate distribution
given a treatment value, both the bias of covariates and the
bias of outcome estimation errors can be upper bounded by
the Wasserstein distances between these two distributions.
Motivated by our theoretical results, we propose a method
named Optimal transport for Reducing bIas in Causal in-
ference (ORIC), which learns balanced representations to
reduce the confounding bias and outcome estimation error
jointly. As a result, the outcome prediction model trained on
samples receiving one treatment value can be generalized
to the entire population. Our theoretical results and algo-
rithm can be naturally applied to both binary and continuous
treatments. We conduct experiments on synthetic and semi-
synthetic datasets under the binary and continuous treatment
settings, and the results demonstrate the effectiveness of our
proposed method compared with existing methods.

The principal contributions are summarized as follows:

• To address the confounding bias in causal inference,
we propose to characterize the distribution shift by
considering different probability measures of all the
training samples without data splitting.

• We construct the theoretical connection between the es-
timation error of treatment outcomes and optimal trans-
port, which measures the distribution shift between
the marginal covariate distribution and the conditional
covariate distribution given a treatment value.

• Motivated by our theoretical results, we propose a bal-
anced representation learning algorithm to reduce con-
founding bias and outcome estimation error jointly,
and conduct experiments under different settings to
demonstrate the effectiveness of the method.

2. Related Works
2.1. Causal Effect Estimation

Causal inference has been widely used in real-world appli-
cations, such as economics (Davis & Heller, 2020; Kreif
et al., 2021; Cockx et al., 2023), healthcare (Sanchez et al.,
2022; Karboub & Tabaa, 2022; Van Goethem et al., 2021),

and advertising (Chen et al., 2023; Liu et al., 2021; Wei
et al., 2021). In the last decades, various machine learning
methods have been applied to address the problem of causal
inference. Due to the confounding bias, the data distribution
of a subpopulation receiving one value of treatment differs
from the distribution of the entire population (Hammerton
& Munafò, 2021). For example, in the treatment of a dis-
ease, the group receiving surgery usually has more severe
conditions compared with the group receiving medication,
the patients receiving higher doses of drugs usually have
more severe conditions compared with the patients receiving
lower doses, resulting in a distribution discrepancy between
a subpopulation and the entire population.

Most existing works consider the binary and continuous
treatment settings. The binary setting only considers
whether the treatment is conducted or not (Shalit et al., 2017;
Shi et al., 2019; Zhang et al., 2020), and the continuous
treatment setting considers the outcome of the dosage of the
treatment to estimate the dose-response function (Schwab
et al., 2020; Nie et al., 2021; Wang et al., 2022).

Binary Treatment. Causal effect estimation of binary treat-
ments considers only two groups, i.e., the one receiving the
treatment and the one not receiving the treatment (Chip-
man et al., 2010; Dismuke & Lindrooth, 2006; Yoon et al.,
2018; Zhang et al., 2020). To address the confounding bias
between the two groups, one class of methods is to create
a pseudo-balanced group by learning weights for samples.
Kuang et al. (2017) proposed to reweight samples by re-
ducing the distribution discrepancy between the two groups,
where the discrepancy is measured by the difference of the
moments. The other class of methods is to learn balanced
representations for the two groups (Johansson et al., 2016).
Shalit et al. (2017) and Johansson et al. (2022) proposed to
learn representations with the minimized distribution dis-
crepancy between two groups, where the discrepancy is
measured by the integral probability metric, and a theoreti-
cal analysis regarding the effect estimation error is provided.

Our proposed learning model can be naturally applied in the
binary treatment setting. Actually, distribution alignment
between two groups splits training samples into two subsets,
also cutting down the number of samples in each group. By
modeling a distribution as a probability measure of all the
samples, we avoid data splitting and obtain more samples
for learning.

Continuous Treatment. Causal effect estimation of con-
tinuous treatments considers that the treatment lies in an
interval, e.g., the dosage of a medication (Imbens, 2000).
The natural strategy is to partition training samples into mul-
tiple groups, each of which receives a similar dose of the
treatment. By doing this, the existing methods for binary
treatments can be applied. Schwab et al. (2020) adopted a
multi-head architecture to deal with multiple intervals of
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treatment separately. Wang et al. (2022) calculated the dis-
crepancy between each pair of two groups and reduced the
largest discrepancy to learn balanced representations. The
strategy of data splitting cuts down the training samples in
each group, highly affecting the performance of distribu-
tion estimation and alignment. Different from them, we
characterize the distribution discrepancy by different proba-
bility measures of all the samples, avoiding data reduction
in splitting.

There are also a few works of continuous treatments without
data splitting. Nie et al. (2021) proposed a varying coeffi-
cient model to estimate the effects of continuous treatment
and apply a targeted regularization paradigm for estimation.
Different with it, we explicitly reduce the confounding bias
and theoretically reveal the connection between the con-
founding bias and the generalization error of the outcome
estimation, which are missing in (Nie et al., 2021). Kazemi
& Ester (2024) measured the distribution discrepancy based
on the Kullback-Leibler (KL) divergence and employed an
adversarial learning paradigm to learn the representations.
However, the KL divergence suffers from the issue of gra-
dient vanish when the distribution discrepancy is too large
(Arjovsky et al., 2017), and the adversarial architecture is
usually difficult to train (Gulrajani et al., 2017). Different
from it, we measure the discrepancy by the Wasserstein
distance to avoid the issue of gradient vanish, which can be
easily estimated by the Sinkhorn algorithm (Cuturi, 2013).

2.2. Optimal Transport

Optimal transport studies how to move mass from one dis-
tribution to another with a minimal transport cost (Monge,
1781; Kantorovitch, 1958; Villani, 2008). Beneficial from
the powerful ability to model probability distributions and
exploit geometry, optimal transport has been widely ap-
plied in many applications (Peyré & Cuturi, 2017), such as
computer vision (Rubner et al., 2000), domain adaptation
(Courty et al., 2014; 2017), data generation (Arjovsky et al.,
2017; Tolstikhin et al., 2018), graph data analysis (Peyré
et al., 2016; Titouan et al., 2019), etc.

Optimal transport has also been introduced into causal ef-
fect estimation of binary treatments recently (Yan et al.,
2024a;b; Wang et al., 2024). Li et al. (2021) proposed to
transport the factual distribution to the counterfactual distri-
bution for estimating counterfactual outcomes. Dunipace
(2021) employed optimal transport to learn an intermediate
distribution by reweighting samples. Shalit et al. (2017)
and Wang et al. (2024) learned balanced representations
between the control and treated groups by measuring the
discrepancy via the Wasserstein distance. Different from
the above studies that only consider binary treatments, we
address the confounding bias in the setting of continuous
treatments. Besides, in the above methods, a distribution

usually considers only a subpopulation, while our model
represents a distribution by involving all the training sam-
ples and a probability measure, improving the number of
training samples for distribution estimation and alignment.

3. Problem Statement
We assume a dataset of the form {(xi, ti, yi)}ni=1, where
(x, t, y) is a realization of random vector (X,T, Y ). Here
xi ∈ X denotes the covariates of the i-th sample, ti ∈ T is
the treatment value that the sample i received which can be
binary or continuous, and yi ∈ Y denotes the outcome of
interest for the sample i after receiving treatment ti. Under
the Neyman-Rubin potential outcome framework (Rubin,
1974; Rosenbaum & Rubin, 1983), the observed outcome Y
is the potential outcome Y (t) corresponding to the actually
received treatment T = t.

Given the input covariates X = x and the treatment T = t,
our goal is to derive an estimator h(x, t) for the ground-truth
individual response function µ(x, t) as follow:

µ(x, t) = E[Y (t)|X = x]. (1)

For simplicity, we will use the shorthand µt(x) = µ(x, t)
and ht(x) = h(x, t). The following assumptions have been
made to ensure that µt(x) is identifiable from observational
data.
Assumption 3.1 (Stable Unit Treatment Value Assumption).
The potential outcomes for any sample do not vary with the
treatments assigned to other samples, and for each sample,
there are no different forms or versions of each treatment
value which leads to different potential outcomes.
Assumption 3.2 (Ignorability). Conditional on covariates,
the treatment assignment is independent of potential out-
comes: T ⊥⊥ Y (t)|X .
Assumption 3.3 (Positivity). Conditional on covariates,
the treatment assignment is not deterministic: 0 < p(T =
t|X = x) < 1.

With these assumptions, µt(x) can be rewritten as follows,
and we can estimate it as :

µt(x) = E[Y (t)|X = x] = E[Y |X = x, T = t]. (2)

Without ambiguity, we omit the random variables to write
p(X = x) as p(x) for simplicity.

4. Methodology
In this section, we first characterize the confounding bias
by considering different probability measures of all the sam-
ples, in which data will not be split into subpopulations.
After that, we provide theoretical results regarding the con-
founding bias and the generalization error of the outcome
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estimation from the perspective of optimal transport, which
is built on probability measures of all the samples. Based on
the theoretical analysis, we propose a balanced representa-
tion learning algorithm to reduce the confounding bias and
outcome estimation error jointly.

4.1. Confounding Bias in Causal Effect Estimation

Given the set of Radon measures M(X ), let the marginal co-
variate distribution be the probability measure q ∈ M(X ),
and the conditional covariate distribution given a treatment
value t ∈ T be the probability measure qt ∈ M(X ). The
corresponding probability density functions can be written
as q(x) = p(x), qt(x) = p(x|t). According to Assump-
tion 3.3, for each sample x and treatment value t, we have
qt(x) = p(x|t) = p(x)p(t|x)/p(t) > 0, which means all
the samples could be drawn from the distribution qt. Moti-
vated by this, we model qt as a probability measure involv-
ing all the training samples, which is different from data
splitting that only samples receiving t are involved (Shalit
et al., 2017; Wang et al., 2022).

Specifically, for the treatment value t, based on the loss
function ℓ : Y×Y → R+, we aim to minimize the following
estimation error on the marginal distribution q(x)

εq(ht) = εq(ht, µt) = Ex∼qℓ(ht(x), µt(x))

=

∫
X
ℓ(ht(x), µt(x))q(x)dx, (3)

and achieve a small average outcome error considering all
the possible values of treatment which is defined as

E = Et∼p(t)εq(ht) =
∫
T
εq(ht)p(t)dt. (4)

Nevertheless, given the observational data, we can only
minimize the following factual error on the conditional dis-
tribution qt(x)

εqt(ht) = εqt(ht, µt) = Ex∼qt(x)ℓ(ht(x), µt(x))

=

∫
X
ℓ(ht(x), µt(x))qt(x)dx. (5)

The principal challenge in causal effect estimation comes
from the confounding bias, i.e., q(x) ̸= qt(x),∀t ∈ T .
As a result, the model trained to minimize εqt cannot be
well generalized to minimize εq. To measure the level of
confounding bias between qt(x) and q(x), given a function
(e.g., balancing score) m(·) and a norm ∥ · ∥, we define the
balancing error between these two distributions as

ξ(m, t) = ∥Ex∼qt(x)m(x)− Ex∼q(x)m(x)∥

=
∥∥∥∫

X
qt(x)m(x)dx−

∫
X
q(x)m(x)dx

∥∥∥. (6)

We consider all the possible treatment values t ∈ T , and
define the total balancing error as follows

ξ(m) =

∫
T
ξ(m, t)p(t)dt

=

∫
T

∥∥∥∫
X
qt(x)m(x)dx−

∫
X
q(x)m(x)dx

∥∥∥p(t)dt.
(7)

We do not restrict the specific form of the function m(·) as
long as it can capture information from samples, enabling
the balancing error ξ(·) to characterize the degree of con-
founding bias.

In the following, we establish the connection between the
treatment effect estimation and optimal transport, which
motivates us to propose a balanced representation learn-
ing algorithm for reducing confounding bias and outcome
estimation error.

4.2. Theoretical Analysis

To analyze the confounding bias and outcome estimation
error, we exploit the theory of optimal transport built on
probability measures. Optimal transport aims to find the
optimal plan to move mass from one distribution to another
with a minimal transport cost (Villani, 2008; Peyré & Cuturi,
2017). Formally, for the samples from two spaces a ∈ A,
b ∈ B, let M(A) and M(B) be the sets of Radon measures.
Consider two distributions α ∈ M(A), β ∈ M(B), and a
distance function c : A× B → R+ with the corresponding
norm ∥ · ∥, the Wasserstein distance between two distribu-
tions W(c, α, β) is defined by the following Kantorovich
Problem

W(c, α, β) = KP (α, β)

= inf
π∈Π(α,β)

∫
A×B

c(a, b)dπ(a, b), (8)

where π is a transport plan, and Π(α, β) is the set of all joint
probability couplings whose marginal distributions are α
and β, respectively. π(a, b) indicates how many masses are
moved from a to b, and the transport cost between them is
measured by the distance c(a, b). The minimized transport
cost calculated by the optimal plan is the Wasserstein dis-
tance to measure the discrepancy between two distributions.

Given the pair of continuous functions (f, g) satisfying the
constraint f(a) + g(b) ≤ c(a, b), the above Kantorovich
problem admits the following Dual Problem (Villani, 2021)

DP (α, β) = sup
f,g

∫
A
f(a)dα(a) +

∫
B
g(b)dβ(b),

s.t. f(a) + g(b) ≤ c(a, b). (9)

The following theorem shows that the confounding bias can
be upper bounded by the Wasserstein distances between the

4



Reducing Confounding Bias without Data Splitting for Causal Inference via Optimal Transport

marginal covariate distribution and the conditional covariate
distributions given a value of treatment.

Theorem 4.1. Let q be the marginal covariate distribution,
and qt be the conditional covariate distribution given the
treatment value t, i.e., q(x) = p(x) and qt(x) = p(x|t).
Given a pair of the functions (m, c) satisfying the condition
m(xi)−m(xj) ≤ c(xi, xj). We have the following result

ξ(m) ≤
∫
T
W(c, qt, q)p(t)dt. (10)

This theorem presents that the confounding bias character-
ized by the balancing error can be upper bounded by the
Wasserstein distances based on an underlying cost function
c(·, ·) and the probability measures qt and q, where the cost
function c(·, ·) can be implemented by a distance measured
on a representation space.

However, only focusing on confounding bias reduction may
lead to a trivial solution that loses outcome information,
i.e., mapping all samples to a single point, which hampers
the performance of outcome prediction. For the outcome
estimation error, we can only train a prediction model ht on
the training data to minimize εqt(ht) in Eq. (5), while the
objective is to minimize εq(ht) in Eq. (3). The bias of the
outcome estimation errors εqt(ht) and εq(ht) is character-
ized by the following theorem.

Theorem 4.2. Assume that the cost function c(x, x′) =
∥ϕ(x)−ϕ(x′)∥H, where H is a Reproducing Kernel Hilbert
Space (RKHS) induced by ϕ : X → H. Assume further that
ht, µt ∈ F where F is a unit ball in the RKHS H, and the
loss function ℓ(ht(x), µt(x)) is convex, symmetric, bounded,
obeys the triangular inequality and has the parametric form
|ht(x)− µt(x)|χ for some χ > 0. Assume also that kernel
k in the RKHS H is square-root integrable with respect
to X and 0 ≤ k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ ≤ K. Then the
following holds∫

T
εq(ht)p(t)dt−

∫
T
εqt(ht)p(t)dt

≤
∫
T
W(c, qt, q)p(t)dt. (11)

This theorem shows that given an outcome prediction model
ht, the Wasserstein distances between the distributions q
and qt provide an upper bound for the bias between the
outcome estimation errors of ht on q and qt. The theorem
also indicates that it is not sufficient to reduce W(c, qt, q)
only, since a small W(c, qt, q) cannot guarantee to obtain
a model ht with good performance. Even a model ht with
poor prediction performance can perform similarly on qt and
q, which happens when the information about the outcome
is missing during distribution alignment. Therefore, in order
to minimize E that is the estimation error on q defined in

Eq. (4), we propose to minimize the estimation error on the
conditional distributions qt and the Wasserstein distances
between q and qt simultaneously, as shown in the following

E =

∫
T
εq(ht)p(t)dt ≤

∫
T
εqt(ht)p(t)dt

+

∫
T
W(c, qt, q)p(t)dt, (12)

which can be obtained from Eq. (11) immediately.

For the probability measures qt and q, a convenient property
of optimal transport is that either continuous or discrete
measures can be handled within the same framework, and
the probabilities qt(x) and q(x) can be easily represented
as the sample weights for empirical distributions (Peyré &
Cuturi, 2017). In practice, given training samples {xi}ni=1,
let δxi

be the Dirac function at the location xi, q̂t(xi) and
q̂(xi) are the probability masses of the sample xi in the
distributions qt and q, respectively, which satisfy the simplex
constraints

n∑
i=1

q̂t(xi) = 1,

n∑
i=1

q̂(xi) = 1. (13)

The corresponding empirical distributions q̂t and q̂ can be
represented as

q̂t =

n∑
i=1

q̂t(xi)δxi
, q̂ =

n∑
i=1

q̂(xi)δxi
. (14)

Here, all the training samples are involved in the empirical
distributions, which avoids the issue of data splitting and
enhances the performance of distribution estimation.

Based on this, the relation between the outcome estimation
error and the Wasserstein distances measured on the em-
pirical discrete distributions is provided in the following
theorem.

Theorem 4.3. Let n be the number of samples, q̂, q̂t be
the empirical distributions of q, qt, respectively. With the
probability of at least 1− δ, we have:

E ≤
∫
T
εqt(ht)p(t)dt+

∫
T
W(c, q̂t, q̂)p(t)dt

+O
(
1/
√
δn
)
. (15)

Note that in (Shalit et al., 2017), the discrepancy between
the subpopulations of treated and control groups is reduced.
Different from it, we reduce the discrepancy between the
marginal distribution q̂ and the conditional distribution q̂t,
both of which are modeled by all the samples equipped with
the propensity scores.
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4.3. Algorithm

According to the above theoretical analysis, we propose to
minimize the outcome prediction error on the observational
distribution qt and the Wasserstein distances between the
empirical distributions q̂t and q̂ with t ∈ T . The first part
of the right side of Inequality (15) is defined as

L =

∫
T
εqt(ht)p(t)dt

=

∫
X×T

ℓ(ht(x), µt(x))p(t)p(x|t)dxdt

=

∫
X×T

ℓ(ht(x), µt(x))p(x, t)dxdt. (16)

By implementing the hypothesis as ht(x) = ψ(ϕ(x), t),
where ϕ(·) is a model for representation learning, and ψ(·)
is for outcome prediction, the above loss can be written
based on the empirical distribution of training samples by
the following

L̂ =
1

n

n∑
i=1

(
yi − ψ(ϕ(xi), ti)

)2
. (17)

The second part of the right side of Inequality (15) is to
minimize the Wasserstein distances on the empirical dis-
tributions W(c, q̂t, q̂), where the cost function is measured
in the embedding space, i.e., c(xi, xj) = cϕ(xi, xj) =
∥ϕ(xi)− ϕ(xj)∥, and the Wasserstein distance is estimated
by the following

W(cϕ, q̂t, q̂) =

n∑
i=1

n∑
j=1

cϕ(xi, xj)π̃
t
ij , (18)

where π̃t is the solution of the following optimization prob-
lem

π̃t = arg min
πt∈Πt

n∑
i=1

n∑
j=1

cϕ(xi, xj)π
t
ij + γΩ(πt), (19)

the set Πt is defined as

Πt = {πt ∈ Rn×n+ |
n∑
j=1

πtij = q̂t(xi) ∀ i,

n∑
i=1

πtij = q̂(xj) ∀ j}, (20)

γ is the trade-off parameter, the entropic regularization
Ω(πt) =

∑n
i=1

∑n
j=1 π

t
ij log π

t
ij is the negative entropy,

and the Sinkhorn algorithm can be applied to solve the prob-
lem efficiently (Cuturi, 2013).

The probability mass q̂(xi) is approximated as 1
n to avoid

density estimation (Courty et al., 2017). For the probabil-
ity mass q̂t(xi), since qt(xi) = p(xi|t) = p(xi)

p(t) p(t|xi) ∝

p(t|xi), we approximate p(t|xi) by p̂(t|xi) = θ(ϕ(xi)),
which is estimated by the generalized propensity score
(GPS) (Imbens, 2000) based on the model θ(·). As a
result, q̂t(xi) is approximated by the normalized value
q̂t(xi) = 1

Z θ(ϕ(xi)), where Z =
∑n
i=1 θ(ϕ(xi)) is the

normalized factor, so that the simplex constraint in Eq. (13)
is satisfied. Please refer to Appendix A for model details of
the implementation of θ(·).

In practice, similar to q̂t and q̂ that only consider the empiri-
cal discrete samples, we consider a set T̂ including discrete
values of the treatment. For binary treatments, we have
T̂ = {0, 1}. For continuous treatments, it brings a high
computational cost to consider all the discrete treatments
received by the samples. To alleviate this, we adopt some
sampled values evenly distributed in T to construct the set T̂ .
It is worth mentioning that for each t ∈ T̂ , all the samples
are assigned by the weights q̂t(x) and taken into consider-
ation for distribution alignment, avoiding the issue of data
splitting. Finally, we achieve the following optimization
problem

min
ϕ,ψ

L̂+ λ
∑
t∈T̂

W(cϕ, q̂t, q̂), (21)

where λ is the trade-off hyperparameter between the out-
come prediction loss and the distribution discrepancies, ϕ
and ψ are implemented by neural networks. Figure 1 il-
lustrates the framework of our propose method ORIC, and
Algorithm 1 summarizes the major procedure of ORIC.

For each t ∈ T̂ , we apply the Sinkhorn algorithm to com-
pute the Wasserstein distance. Let n and d be the numbers
of samples and features, the time complexity is in O(n2d),
and the space complexity is in O(n2 + nd). We evaluate
the time efficiency of our method in Section 5.3.
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Figure 1. Overview of our proposed method ORIC.
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Methods
Synthetic

IHDP News
β = 0.25 β = 0.5 β = 0.75 β = 1

KNN 0.2339± 0.0294 0.2234± 0.0296 0.2211± 0.0235 0.2361± 0.0209 0.8364± 0.0917 0.6104± 0.4117

BART 0.2205± 0.0248 0.2108± 0.0312 0.2177± 0.0259 0.2238± 0.0212 0.6825± 0.0715 0.5639± 0.3125

GPS 0.2103± 0.0319 0.2056± 0.0345 0.2063± 0.0264 0.2219± 0.0238 0.7247± 0.0582 0.4422± 0.2033

MLP 0.2083± 0.0275 0.2042± 0.0311 0.2044± 0.0252 0.2185± 0.0202 0.6566± 0.0710 0.4355± 0.2098

MLP+GPS 0.2077± 0.0238 0.2028± 0.0203 0.2022± 0.0210 0.2161± 0.0157 0.6303± 0.0826 0.4255± 0.2115

DRNet 0.1992± 0.0303 0.2033± 0.0226 0.1967± 0.0172 0.2046± 0.0195 0.5714± 0.0211 0.2380± 0.0141

ADMIT 0.1542± 0.0325 0.1729± 0.0467 0.1856± 0.0345 0.1645± 0.0279 0.5222± 0.0375 0.1832± 0.0394

ACFR 0.1428± 0.0259 0.1651± 0.0325 0.1654± 0.0334 0.1567± 0.0248 0.5134± 0.0523 0.1719± 0.0767

VCNet 0.1233± 0.0328 0.1577± 0.0460 0.1543± 0.0536 0.1395± 0.0369 0.4656± 0.0476 0.1905± 0.1072

VCNet+TR 0.1155± 0.0305 0.1361± 0.0439 0.1442± 0.0512 0.1257± 0.0381 0.3712± 0.0465 0.1675± 0.0566

ORIC 0.1098 ± 0.0273 0.1234 ± 0.0388 0.1313 ± 0.0464 0.1168 ± 0.0316 0.3595 ± 0.0304 0.1507 ± 0.0406

Table 1. Comparison of ORIC with baseline algorithms of related networks. The ± denotes the mean and standard deviation of
√
AMSE.

Algorithm 1 Optimal transport for Reducing bIas in Causal
inference (ORIC).

Input: Training samples {xi, ti, yi}ni=1.
Initialize: Representation learning model ϕ, potential out-

come prediction model ψ, generalized propensity score
estimator θ.

1: repeat
2: Calculate the cost cϕ(xi, xj) = ∥ϕ(xi)− ϕ(xj)∥2.
3: for all t ∈ T̂ do
4: Calculate the outcome prediction loss according

to Eq. (17).
5: Estimate q̂t(xi) based on the normalized general-

ized propensity scores θ(ϕ(xi)).
6: Obtain the optimal transport plans π̃t by solving

Problem (19).
7: Calculate the Wasserstein discrepancies based on

π̃t according to Eq. (18).
8: end for
9: Update ϕ and ψ based on the gradient in Problem

(21).
10: until Convergence.

5. Experiments
In this section, we present experimental settings and results
of continuous and binary treatments. The detailed experi-
ments are provided in Appendix E and F.

5.1. Continuous Treatments

Dataset. For the experiments of continuous treatments, we
evaluate the performance of the proposed method using one
synthetic dataset and two semi-synthetic datasets: IHDP
(Hill, 2011) and News (Newman, 2008). The synthetic
dataset consists of 500 training samples and 200 testing

samples, with the parameter β adjusted to simulate various
confounding biases. IHDP contains 747 subjects, with 25
covariates for each sample to capture the aspects of chil-
dren and their mothers. News contains 3,000 news items
randomly sampled from Newman (2008), which simulates
the opinions of a media consumer when exposed to multi-
ple news items. We follow a similar approach in Nie et al.
(2021) to generate continuous treatments and outcomes, and
randomly divide the samples into a training set (67%) and a
testing set (33%). The detailed synthesis protocols can be
found in Appendix E.

Compared methods. We conduct comparison of our
ORIC model with several compared methods, including
the traditional statistical and machine learning method
BART (Chipman et al., 2010), KNN (Peterson, 2009), GPS
(Imbens, 2000), and modern neural network based meth-
ods MLP, DRNet (Schwab et al., 2020), ADMIT (Wang
et al., 2022), ACFR (Kazemi & Ester, 2024), and VCNet
(Nie et al., 2021). Specifically, for GPS, in order to en-
hance the traditional statistical learning approach, we incor-
porate a Multilayer Perceptron Network for optimization
(GPS+MLP). For VCNet, we consider the naive version of
VCNet (VCNet) and VCNet with the target regularization
(VCNet+TR).

Evaluation Metrics. Following Nie et al. (2021), we adopt
the Average Dose-Response Function (ADRF) curve and√
AMSE as metrics. ADRF curve is the expected potential

outcome under the treatment value t, which is defined as
µt = E[Y (t)]. We repeatedly carry out 100 trials on the
simulated and the IHDP datasets, 20 trials on the News
dataset, and report the mean and standard deviation of the
results on the test set. The computational details are given
in Appendix D.

Results and Discussions. Table 1 presents the results of
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Methods
IHDP News

√
PEHE MAE

√
AMSE

√
PEHE MAE

√
AMSE

BART 13.8853± 9.3630 9.1204± 3.0154 10.0374± 7.2281 7.3663± 2.2189 5.6858± 1.7925 5.6355± 1.6655

OLS 14.3736± 11.3114 8.8191± 2.5947 9.7246± 6.9604 8.0871± 2.3580 5.7820± 1.6172 6.3790± 1.8565

KNN 3.1108± 3.8114 0.4104± 0.6477 9.7638± 7.4574 7.0048± 2.3408 5.1976± 2.0301 5.5409± 1.7343

MLP 15.3081± 11.2789 8.9105± 3.1171 11.0619± 8.5434 8.2535± 2.4681 5.3473± 1.6470 6.0092± 1.7761

CFRNet 1.2809± 1.7304 0.1582 ± 0.1986 1.2739± 1.7038 2.0527± 0.6464 0.3080± 0.2224 2.4187± 0.6538

Dragonnet 1.4305± 1.8883 0.2672± 0.4576 1.3229± 1.7893 1.7916± 0.5652 0.3531± 0.1724 3.8169± 1.6722

GANITE 5.0500± 1.3205 4.2490± 0.6251 13.4438± 6.7216 2.6473± 0.6873 2.6375± 0.6867 6.1070± 1.1409

DKLite 5.3315± 7.0602 0.5472± 0.7026 5.7984± 7.1115 1.8172± 0.5182 0.2328± 0.1272 1.9610 ± 0.5701
ESCFR 1.2443± 2.1300 0.4112± 0.5902 1.3498± 2.1298 2.7671± 0.8924 0.8651± 0.6514 2.9547± 0.8822

CausalOT 13.8269± 13.5417 2.4498± 0.8065 7.3281± 6.2416 9.1213± 2.0943 2.3308± 0.4832 4.1533± 1.0084

ORIC 1.1129 ± 1.4290 0.2134± 0.3488 1.1976 ± 1.3822 1.7183 ± 0.5488 0.1624 ± 0.1587 2.3972± 0.5678

Table 2. Comparison of ORIC with baseline algorithms on the semi-synthetic dataset. Specifically, we perform over 100 trials on the
IHDP dataset, and 50 trials on the News dataset.

ORIC and the compared algorithms. Overall, the results
indicate that ORIC consistently outperforms other methods
on both synthetic and semi-synthetic datasets, showing the
effectiveness of the proposed method. Typically, compared
with traditional statistical methods (i.e., KNN, BART, GPS),
neural network-based methods usually achieve performance
improvement across a variety of datasets. Among the neural
network methods, we observe that VCNet+TR outperforms
other methods, showing the advantage the doubly robust
property obtained by the targeted regularization. However,
it lacks an explicit mechanism of distribution alignment to
address confounding bias. ADMIT and DRNet split training
samples into multiple smaller groups for training, suffering
from the issue of data reduction for distribution alignment.
Compared with them, ORIC involves all the training sam-
ples without data splitting for distribution alignment, and
reduces the confounding bias and the outcome estimation
error jointly, achieving the best performance in different
kinds of datasets. In addition, ORIC obtains promising per-
formance with different values of β, which demonstrates
the robustness of the proposed method for different levels
of confounding bias. Furthermore, from the ADRF curve
in Figure 2, we observe that compared to VCNet, which
achieves the best

√
AMSE performance among other mod-

els, ORIC exhibits a performance improvement on synthetic
(β = 0.25), IHDP, and News datasets.

5.2. Binary Treatments

Dataset. We conduct experiments on two semi-synthetic
datasets, IHDP (Brooks-Gunn et al., 1992) and News (Jo-
hansson et al., 2016). For the IHDP dataset, we randomly
select 100 datasets from the IHDP-1000 version and follow
(Shalit et al., 2017) to split training and testing sets. In
the News dataset, we assign the first 3,500 samples to the
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Figure 2. The figures from left to right are the ADRF results for
the Synthetic, IHDP, and News datasets. The yellow line illustrates
the ground-truth results, the blue points represent the predicted
results of VCNet, and the red points correspond to the predicted
results produced by ORIC.

training set and 1,000 samples to the test set (Johansson
et al., 2016). Furthermore, experiments on synthetic data
are provided in Appendix F.

Compared methods. We evaluate the proposed method in
the binary treatment setting with several baselines, including
non-neural network methods BART, OLS, KNN, and neural
network methods MLP, CFR (Shalit et al., 2017), Dragonnet
(Shi et al., 2019), GANITE (Yoon et al., 2018), DKLite
(Zhang et al., 2020), ESCFR (Wang et al., 2024), CausalOT
(Li et al., 2021).

Evaluation Metrics. For the synthetic dataset, we adopt
mean absolute errors(MAE) (Dehejia & Wahba, 1999) as
the metric. For semi-synthetic datasets, besides MAE, we
adopt

√
PEHE (Hill, 2011) and

√
AMSE to evaluate the

conducted methods. The computational details are given in
Appendix D.

Results and Discussions. Tables 2 demonstrate the result
across two semi-synthetic datasets in the binary setting. We
draw similar observations from the results of the binary
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Method KNN BART GPS MLP MLP+GPS DRNet ADMIT ACFR VCNet VCNet+TR ORIC

Time 8 7 9 18 25 26 47 24 17 23 135

Table 3. Running time results (in seconds) of different methods in the continuous treatment setting.

Method BART OLS KNN MLP CFRNet DragonNet GANITE DKLITE ESCFR CausalOT ORIC

Time 0.2 0.2 0.3 14 47 41 4 4s 165 4 76

Table 4. Running time results (in seconds) of different methods in the binary treatment setting.

treatment setting to the continuous treatment setting. Ben-
efit from the mechanism that involves all the samples for
training to avoid data splitting, ORIC achives the best or
highly competitive performance compared with other meth-
ods. This observation demonstrates that ORIC not only can
handle continuous treatment, but also obtain promising per-
formance in binary treatment, indicating the capability of
generalization in different kinds of treatment settings.

5.3. Running Time Results

Table 3 reports the running time results on the continuous
treatment setting (synthetic data with β = 0.25), and Table
4 reports the running time results on the binary treatment
setting (the IHDP dataset). We observe that our method
achieves moderate time efficiency.

6. Conclusion
In this paper, we estimate the effect of binary and contin-
uous treatments by reducing the confounding bias from
non-RCTs. We characterize the confounding bias by differ-
ent probability measures of the same set of all the samples,
and analyze the confounding bias and outcome prediction
error based on optimal transport built on probability mea-
sures. Motivated by this, we propose to learn balanced
representations to reduce the outcome estimation error and
the confounding bias simultaneously. By doing this, we
avoid data splitting commonly used in existing methods and
enhance the generalization ability of the model. We con-
duct experiments in both binary and continuous settings to
evaluate the performance of our method.

In the future, we plan to investigate the situations involv-
ing complex treatments or unobserved confounders. For
complex treatments such as bundle or graph treatments, it is
feasible to aggregate the treatment into a continuous treat-
ment value, so that the proposed method can be employed.
The situation with unobserved confounders is more chal-
lenging since the ignorability assumption does not hold,
and the confounding bias cannot be fully captured by the
observed covariates. This issue may be addressed by incor-

porating additional information or assumptions, such as the
existence of proxy variables.

Impact Statement
This paper presents a balanced representation learning
method without data splitting to reduce confounding bias in
causal inference. We exploit the tool of optimal transport
to analyze the confounding bias and outcome estimation
error, and propose a novel method based on our theoretical
analysis. The proposed method can be applied to a wide
range of applications, such as decision-making in marketing
and healthcare.
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A. Implementation of θ
The implementation of θ is based on (Hirano & Imbens, 2004) and is described as follows. Assuming that the conditional
distribution of treatment given covariates is Gaussian, i.e., P (t | xi) ∼ N (θ(ϕ(xi)), σ

2). We can estimate the parameters
by maximizing the likelihood:

max
θ,σ

L(θ̂, σ̂; t, x) :=

n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(ti − θ(ϕ(xi)))

2

)
. (22)

After that, the estimated generalized propensity score is given by:

p̂(t | xi) =
1√
2πσ̂2

exp

(
− 1

2σ̂2
(t− θ̂(ϕ(xi)))

2

)
. (23)

B. Theoretical Analysis regarding Effect Estimation Error
The effect estimation error captures the bias between the ground-truth causal effect and the estimated causal effect. The
following theorem shows that our theoretical results can be applied not only to the outcome estimation error E , but also to
the effect estimation error in the binary and continuous treatment settings. Let q be the marginal covariate distribution, and
qt be the conditional covariate distribution given the treatment value t, i.e., q(x) = p(x) and qt(x) = p(x|t), we have the
following results.

Theorem B.1 (Binary Treatment Error Bound). Define the binary treatment effect estimation error E(b)
τ =

Ex∼q(x)
[
ℓ
(
h1(x)− h0(x), µ1(x)− µ0(x)

)]
. Under the assumptions of Theorem 4.2, this error satisfies

E(b)
τ ≤ εq1(h1) + εq0(h0) +W

(
c, q1, q

)
+W

(
c, q0, q

)
. (24)

Proof. Based on the assumptions in Theorem 4.2, we first decompose the effect estimation error for the true causal effect
τ(x) = µ1(x)− µ0(x) as follows:

E(b)
τ = Ex∼q(x)[ℓ(h1(x)− h0(x), µ1(x)− µ0(x))]

≤ Ex∼q(x)[ℓ(h1(x), µ1(x))] + Ex∼q(x)[ℓ(h0(x), µ0(x))]

= εq(h1) + εq(h0), (25)

where ℓ is the Lp-norm based loss function and has the triangle inequality property.

We define the estimation error of the potential outcome function µ1(x) and µ0(x) in treatment and control groups,
respectively:

εq1(h1) = Ex∼q1(x)ℓ(h1(x), µ1(x)), (26)

εq0(h0) = Ex∼q0(x)ℓ(h0(x), µ0(x)). (27)

According to Eq. (12), we have

E(b)
τ ≤ εq(h1) + εq(h0)

≤ εq1(h1) + εq0(h0) +W(c, q1, q) +W(c, q0, q). (28)

Theorem B.2 (Continuous Treatment Error Bound). Define the continuous treatment effect estimation error E(c)
τ =

Et∼p(t|t ̸=0) Ex∼q(x)
[
ℓ
(
ht(x)− h0(x), µt(x)− µ0(x)

)]
. Under the same assumptions of Theorem 4.2, we have

E(c)
τ ≤

∫
T
εqt(ht) p(t) dt +

∫
T
W
(
c, qt, q

)
p(t) dt. (29)
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Proof. Based on the triangle inequality property, we have:

E(c)
τ = Et∼p(t|t ̸=0)Ex∼q(x)[l(ht(x)− h0(x), µt(x)− µ0(x))]

≤ Et∼p(t|t ̸=0)[Ex∼q(x)[l(ht(x), µt(x))] + Ex∼q(x)[l(h0(x), µ0(x))]]

= Et∼p(t|t ̸=0)[εq(ht) + εq(h0)]

= Et∼p(t)[εq(ht)]
(30)

Then according to Eq. (12), we have:

E(c)
τ ≤ Et∼p(t)[εq(ht)]

≤
∫
T
εqt(ht)p(t)dt+

∫
T
W(c, qt, q)p(t)dt. (31)

C. Proofs of Theorems
C.1. Proof of Theorem 4.1

Theorem 4.1. Let q be the marginal covariate distribution, and qt be the conditional covariate distribution given the
treatment value t, i.e., q(x) = p(x) and qt(x) = p(x|t). Given a pair of the functions (m, c) satisfying the condition
m(xi)−m(xj) ≤ c(xi, xj). We have the following result

ξ(m) ≤
∫
T
W(c, qt, q)p(t)dt. (32)

Proof. According to the definition of ξ(m, t), we have:

ξ(m, t) = ∥Ex∼qt(x)m(x)− Ex∼q(x)m(x)∥

=
∥∥∥∫

X
m(x)dqt(x)−

∫
X
m(x)dq(x)

∥∥∥ (33)

≤ sup
m(x)−m(x′)≤c(x,x′)

∫
X
m(x)dqt(x)−

∫
X
m(x)dq(x) (34)

≤ inf
π∈Π(qt,q)

∫
X×X

c(x, x′)dπ(x, x′) (35)

= W(c, qt, q). (36)

Under the assumption of Theorem 4.1, Eq. (34) is the the worst-case of Eq. (33), and Eq. (35) holds because of the
property of the dual problem, which just corresponds to the definition of the Wasserstein distance. As a result, we obtain
ξ(m, t) ≤ W(c, qt, q), which finishes the proof by integrating p(t) on both sides of the inequality.

C.2. Proof of Theorem 4.2

Theorem 4.2. Assume that the cost function c(x, x′) = ∥ϕ(x) − ϕ(x′)∥H, where H is a Reproducing Kernel Hilbert
Space (RKHS) induced by ϕ : X → H. Assume further that ht, µt ∈ F where F is a unit ball in the RKHS H, and the
loss function ℓ(ht(x), µt(x)) is convex, symmetric, bounded, obeys the triangular inequality and has the parametric form
|ht(x)− µt(x)|χ for some χ > 0. Assume also that kernel k in the RKHS H is square-root integrable with respect to X and
0 ≤ k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ ≤ K. Then the following holds∫

T
εq(ht)p(t)dt−

∫
T
εqt(ht)p(t)dt

≤
∫
T
W(c, qt, q)p(t)dt. (37)
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Proof. According to (Saitoh, 2020), ℓ(ht(x), µt(x)) also belongs to the RKHS H since it is a convex loss-function defined
on ht, µt ∈ F . As a result, ℓ has the reproducing property and the norn ∥ℓ∥ is bounded. For simplicity, we assume that ∥ℓ∥
is bounded by 1, which is easily extendable to the case when ∥ℓ∥ ≤M by scaling (Redko et al., 2017). Now, the estimation
error can be expressed in terms of the inner product in the corresponding Hilbert space,

εq(ht) = Ex∼q(x)ℓ(ht(x), µt(x)) = Ex∼q(x)[⟨ϕ(x), ℓ⟩H], (38)
εqt(ht) = Ex∼qt(x)ℓ(ht(x), µt(x)) = Ex∼qt(x)[⟨ϕ(x), ℓ⟩H]. (39)

With εq(ht) = εq(ht) + εqt(ht)− εqt(ht) and the above definitions, we have :

εq(ht)− εqt(ht) = Ex′∼q(x)[⟨ϕ(x′), ℓ⟩H]− Ex∼qt(x)[⟨ϕ(x), ℓ⟩H]

= ⟨Ex′∼q(x)[ϕ(x
′)]− Ex∼qt(x)[ϕ(x)], ℓ⟩H

≤ ∥ℓ∥H∥Ex′∼q(x)[ϕ(x
′)]− Ex∼qt(x)[ϕ(x)]∥H

≤ ∥
∫
X
ϕd(qt(x)− q(x))∥H. (40)

The first line is obtained by the reproducing property of ℓ, and the last line is due to ∥ℓ∥ ≤ 1. Now using the definition of
joint distribution, we have:

∥
∫
X
ϕd(qt(x)− q(x))∥H = ∥

∫
X×X

(ϕ(x)− ϕ(x′))dπ(x, x′)∥H

≤
∫
X×X

∥ϕ(x)− ϕ(x′)∥Hdπ(x, x′)

≤ inf
π∈Π(qt,q)

∫
X×X

∥ϕ(x)− ϕ(x′)∥Hdπ(x, x′) (41)

= W(c, qt, q), (42)

where x ∼ qt(x) and x′ ∼ q(x). As a result, we get εp(ht)− εqt(ht) ≤ W(c, qt, q), which finishes the proof by integrating
p(t) on both sides of the inequality.

C.3. Proof of Theorem 4.3

Theorem 4.3. Let n be the number of samples, q̂, q̂t be the empirical distributions of q, qt, respectively. With the probability
of at least 1− δ, we have:

E ≤
∫
T
εqt(ht)p(t)dt+

∫
T
W(c, q̂t, q̂)p(t)dt+O

(
1/
√
δn
)
. (43)

Proof. With the triangular inequality of the Wasserstein metric, we have:

W(c, qt, q) ≤ W(c, qt, q̂t) +W(c, q̂t, q)

≤ W(c, qt, q̂t) +W(c, q̂t, q̂) +W(c, p̂, q)

= W(c, qt, q̂t) +W(c, q, q̂) +W(c, q̂t, p̂) (44)

Next, we present Lemma 1 showing the convergence of the empirical measure µ̂ to its true µ w.r.t. the Wasserstein metric,
which allows us to propose a generalization bound based on the Wasserstein distance for finite samples rather than true
population measures:

Lemma 1. ((Bolley et al., 2007), Theorem 1.1). Let µ be a probability measure in Rd satisfying T1(zeta) inequality, and
µ̂ = 1

n

∑n
i=1 δxi

be its associated empirical measure with n units. Then for any d′ > d and ζ ′ < ζ, there exists some
constant n0 depending on d′ and some square exponential moment of µ such that for any ϵ > 0 and n ≥ n0 max(ϵ−(d′+2), 1)

P [W1(µ, µ̂) > ϵ] ≤ exp

(
−ζ

′nϵ2

2

)
, (45)

where d′, ζ ′ can be calculated explicitly.
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The Hoeffding inequality in Lemma 1 gives the following inequality which holds with the probability at least 1− δ:

W(c, qt, q̂t) ≤

√
2 log

(
1

δ

)
/ζ ′n,

W(c, q̂, q) ≤

√
2 log

(
1

δ

)
/ζ ′n. (46)

Combining Eq. (44) and Eq. (46) together, we have:

W(c, qt, p) ⩽

√
2 log

(
1

δ

)
/ζ ′n+

√
2 log

(
1

δ

)
/ζ ′n+W(c, q̂t, p̂)

= W(c, q̂t, p̂) + 2

√
2 log

(
1

δ

)
/ζ ′n

:= W(c, q̂t, p̂) +O
(
1/
√
δn
)
, (47)

which finishes the proof.

D. Evaluation Metrics
In the case of continuous treatment, we calculated AMSE as the evaluation metric:

AMSE =
1

N

N∑
i=1

∫
T
(µ̂t (xi)− µt (xi))

2
p(t)dt (48)

In the case of binary treatment, besides AMSE, we also calculated PEHE and MAE as the evaluation metrics:

MAE = |ÂTE −ATE|

= | 1
n

n∑
i=1

(h1(xi)− h0(xi))−
1

n

n∑
i=1

(µ1(xi)− µ0(xi))|

PEHE =
1

n

n∑
i=1

[(h1(xi)− h0(xi))− (µ1(xi)− µ0(xi))]
2 (49)

E. Experiments of Continuous Treatments
E.1. Experimental Settings

Synthetic. We synthesize data as follows: xj
i.i.d.∼ Unif [0, 1], where xj is the j-th dimension of x ∈ R6, and generate

treatment and outcome as:

t̃ | x =
10 sin (max (x1, x2, x3)) + max (x3, x4, x5)

3

1 + (x1 + x5)
2 + sin (βx3) (1 + exp (x4 − βx3))

+ x23 + 2 sin (x4) + 2x5 − 6.5 +N (0, 0.25)

y | x, t =cos(2π(t− β))

(
t2 +

4max (x1, x6)
3

1 + 2x23
sin (x4)

)
+N (0, 0.25)

where t = (1+exp(−t̃))−1,β = {0.25, 0.5, 0.75, 1}. It is noteworthy that π(t | x) only is contingent upon x1, x2, x3, x4, x5
while Q(t, x) only is contingent upon x1, x3, x4, x6.
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IHDP. The original semi-synthetic IHDP dataset from Hill (2011) includes binary treatments, comprising 747 observations
across 25 covariates. To facilitate comparisons using continuous treatments, we randomly synthesize both treatment and
response variables as follows:

t̃ | x =
2x1

(1 + x2)
+

2max (x3, x5, x6)

2 + min (x3, x5, x6)
+ 2 tanh

(
5

∑
i∈Sdis,2

(xi − c2)

|Sdis,2|

)
− 4 +N (0, 0.25)

y | x, t = sin(3πt)

1.2− t

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp (2 (x1 − x6))

0.5 + 5min (x2, x3, x5)

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1, Scon = {1, 2, 3, 5, 6} is the index set of continuous features, Sdis ,1 =
{4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, Sdis ,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and Sdis ,1 ∪ Sdis ,2 = [25] −Scon . Here

c1 = E
∑

i∈Sdis ,1
xi

|Sdis ,1| , c2 = E
∑

i∈Sdis ,2
xi

|Sdis ,2| . It is noteworthy that all continuous features are advantageous for π(t | x) and
Q(t, x) but only Sdis ,1 is advantageous for Q and only Sdis,2 is advantageous for π. Following Hill (2011), covariates are
standardized to have a mean of 0 and a standard deviation of 1, while the synthesized treatment values are normalized to the
range [0, 1]. Furthermore, we applied denoising techniques to the error data produced during the construction of the IHDP
dataset.

News. The News dataset comprises 3,000 randomly sampled news items from the NY Times corpus (?), originally
introduced as a benchmark for binary treatment settings (Johansson et al., 2016). We synthesize the treatment and outcome
variables similarly to the method outlined in Bica et al. (2020). We first synthesize v′1, v

′
2 and v′3 from N (0, 1) and then set

vi = v′i/ ∥v′i∥2 for i = {1, 2, 3}. Given x, we synthesize t from Beta
(
2,
∣∣∣ v⊤3 x2v⊤2 x

∣∣∣). And we synthesize the outcome by

y′ | x, t = exp

(
v⊤2 x

v⊤3 x
− 0.3

)
y | x, t = 2

(
max (−2,min (2, y′)) + 20v⊤1 x

)
∗
(
4(t− 0.5)2 ∗ sin

(π
2
t
))

+N (0, 0.5)

E.2. Sensitivity Analysis

To empirically study the effect of the hyper-parameter λ in Eq. (21) which trades off between the outcome prediction loss
and the Wasserstein discrepancies, we conduct experiments on the synthetic dataset (β = 0.25) with varying values of λ
in the range [0.5, 1.3], and present the results of

√
AMSE in Figure 3(a). We observe that ORIC is able to achieve good

performance with a wide range of the values of λ, which verifies the sensitivity of ORIC with respect to λ.

Figure 3(b) illustrates the impact of varying the entropy regularization hyperparameter γ within the range [0.0001, 0.1] on
the model’s performance, as measured by

√
AMSE. The results demonstrate the trade-off associated with different values

of γ, highlighting how the choice of this hyperparameter influences the balance between exploration and exploitation in the
model.

Besides, we conduct experiments on the synthetic dataset with different numbers of sampled treatment values in the discrete
set T̂ , and report the results of

√
AMSE in Figure 3(c). We observe that ORIC stably achieves promising performance when

the number of discrete values of the treatment is greater than 50, since more values of the treatment provide finer-grained
estimation for the conditional marginal distribution q̂t(x).

E.3. Ablation Study

Table 5 illustrates the ablation study on the loss function involving Wasserstein distances. ORIC outperforms the version
without the Wasserstein distances, which demonstrates the effect of the distance for balanced representation learning.

F. Experiments of Binary Treatments
F.1. Experiment settings

Synthetic. Following the similar protocols in (Yao et al., 2018; Hatt & Feuerriegel, 2021), we generate a synthetic dataset in
the binary treatment setting as follows:
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Figure 3. Figure (a) demonstrates the trade-off of the hyperparameter λ between the outcome prediction loss and the Wasserstein
discrepancies with the variation of λ values ranging from [0.5, 1.3], and presents the results of

√
AMSE. Figure (b) demonstrates the

trade-off of the entropy regularization hyperparameter γ values range from [0.0001, 0.1], and presents the results of
√
AMSE. Figure (c)

illustrates the experiment on the synthetic dataset with different numbers of sampled treatment values in the discrete set T̂ , and reports the
results of

√
AMSE.

Methods
Synthetic

IHDP News
β = 0.25 β = 0.5 β = 0.75 β = 1

ORIC without wass 0.2077± 0.0238 0.2028± 0.0203 0.2022± 0.0210 0.2161± 0.0157 0.6303± 0.0826 0.4255± 0.2115

ORIC 0.1098 ± 0.0273 0.1234 ± 0.0388 0.1313 ± 0.0464 0.1168 ± 0.0316 0.3595 ± 0.0304 0.1507 ± 0.0406

Table 5. Ablation study on the loss function involving Wasserstein distances. The results of the mean and standard deviation of
√
AMSE

are reported.

We employ a Gaussian mixture model consisting of two distributions: N1 = N
(
0.510×1, 0.5× Σ1Σ

T
1

)
,N2 =

N
(
110×1, 0.5× Σ2Σ

T
2

)
, where Σ1 ∼ U

(
(0, 0.5)10×10

)
,Σ2 ∼ U

(
(0, 1)10×10

)
. We then synthesize 1,500 treated and

control samples from xt ∼ αtN1 + (1− αt)N2, xc ∼ αcN1 + (1− αc)N2, fix αt to 0.5 and vary the value of αc to
simulate different confounding bias. The outcomes are defined as y = sin

(
w⊤

1 x
)
+ cos

(
w⊤

2 (x⊙ x)
)
+ t + ϵ, where

w. ∼ U
(
(0, 1)10×1

)
, ϵ ∼ N (0, 0.1).

F.2. Results and Discussions

Tables 6 illustrate the results of synthetic data in different bias situations. We draw a similar observation as in the continuous
setting. ORIC outperforms other methods and achieves the best results in different levels of confounding bias, indicating the
superior performance of robustness.

Besides, we compare our method with baselines of the in-sample experiments on the IHDP dataset in Table 7. Our method
also achieves promising performance in the in-sample setting.

We also compare the results using the ground-truth and estimated propensity scores on the IHDP dataset. Since the
ground-truth propensity score is unknown, we adjust the IHDP dataset to assign treatment accordingly. Table 8 shows
the results in terms of different metrics. Our method can achieve comparable results even with the estimation error in the
propensity score model, which demonstrates the robustness with respect to propensity scores.

F.3. Visualization Results

We conduct experiments on a simulation dataset to visualize the embeddings before and after representation learning
based on t-SNE. We generate covariates of the treated and control groups that are drawn from multivariate Gaussians:
xt ∼ N1 = N

(
0.520×1, 0.5× Σ1Σ

T
1

)
,xc ∼ N2 = N

(
120×1, 0.5× Σ2Σ

T
2

)
, where Σ1 ∼ U

(
(0, 0.8)20×20

)
,Σ2 ∼

U
(
(0, 1.2)20×20

)
. The visualization results are shown in Figure 4. Our method can learn balanced representations for the

treated and control groups.
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Methods
Synthetic

αc = 0.2 αc = 0.4 αc = 0.6 αc = 0.8

BART 0.0622± 0.0374 0.0484± 0.0194 0.0255± 0.0206 0.0397± 0.0207

OLS 0.0568± 0.0420 0.0471± 0.0361 0.0387± 0.0234 0.0412± 0.0259

MLP 0.0862± 0.0813 0.0803± 0.0600 0.4992± 0.0422 0.0621± 0.0388

KNN 0.0229± 0.0196 0.0276± 0.0198 0.0306± 0.0184 0.0296± 0.0259

CFRNet 0.0328± 0.0063 0.0326± 0.0065 0.0383± 0.0326 0.0475± 0.0345

Dragonnet 0.0351± 0.0104 0.0323± 0.0092 0.04778± 0.0061 0.0482± 0.0067

GANITE 0.1883± 0.0530 0.1779± 0.0672 0.3219± 0.0574 0.3916± 0.0581

DKLite 0.0599± 0.0338 0.0432± 0.0158 0.0302± 0.0344 0.0753± 0.0463

ORIC 0.0052 ± 0.0089 0.0282 ± 0.0048 0.0235 ± 0.0166 0.0291 ± 0.0186

Table 6. Comparison of ORIC with baseline algorithms on the synthetic dataset. Specifically, we conducted over 10 trials on a synthetic
dataset, adopting MAE as the evaluation metric.

Methods
√
PEHE MAE

√
AMSE

CFR 1.0462± 1.0905 0.4966± 0.4711 1.0437± 1.0215

GANITE 8.0017± 5.3730 5.3945± 1.0848 13.3972± 10.6536

DKLite 5.0756± 6.0795 0.2252± 0.2440 5.5372± 6.1226

CausalOT 10.2003± 4.5611 2.7824± 1.4760 8.2140± 9.1621

ESCFR 1.0019± 1.6507 0.4434± 0.5371 2.0842± 1.6892

ORIC 0.8463 ± 0.7730 0.3539 ± 0.3996 0.8173 ± 0.7391

Table 7. Performance of different methods on the IHDP (binary) dataset under the in-sample setting.

Methods
√
PEHE MAE

√
AMSE

Ground-truth PS 1.4624± 0.1222 0.1662± 0.1255 2.1058± 0.1526

Estimate PS 1.3400± 0.0800 0.2012± 0.1477 1.9894± 0.1329

Table 8. Results using ground-truth and estimated propensity scores.

Treated Group
Control Group

(a) before balance

Treated Group
Control Group

(b) after balance

Figure 4. (a) shows the distribution of original covariates, while Figure (b) displays the distribution of the learned embeddings, where the
t-SNE is used for projection. Samples receiving treatment are marked in red, and those in the control group are shown in blue.
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