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ABSTRACT

Since the advent of Large Language Models (LLMs), research has primarily fo-
cused on improving their instruction-following and deductive reasoning abilities.
Yet a central question remains: can these models truly discover new knowledge,
and how can we evaluate this ability? In this work, we address this gap by study-
ing abductive reasoning—the process of generating plausible hypotheses to ex-
plain observations. We introduce General Evaluation for Abductive Reasoning
(GEAR), a new general-purpose, fully automated, transparent, and label-free
evaluation paradigm that overcomes limitations of prior approaches. GEAR eval-
uates a set of hypotheses using three metrics: consistency (each hypothesis cor-
rectly explains the given observations), generalizability (consistent hypotheses
make meaningful predictions on unseen inputs), and diversity (the set of hypothe-
ses covers many distinct predictions and patterns). Built this way, GEAR is scal-
able (no human gold answers needed), reliable (transparent, deterministic scor-
ing aligned with classical abduction), and open-ended (scores improve only when
models produce new, plausible hypotheses, unlike existing static benchmarks that
saturate once accuracy is high). Using GEAR, we conduct a fine-grained study
of nine LLMs on four popular abduction benchmarks (1,500 problems), generat-
ing 50,340 candidate hypotheses. GEAR reveals model differences and insights
that are obscured by prior gold-answer–based or purely human evaluations. We
further propose a momentum-based curriculum training strategy that dynamically
adjusts GEAR-derived training data by learning velocity: it begins with what
the model learns faster and shifts toward harder objectives such as generating di-
verse hypotheses once the model is confident on foundational objectives (e.g.,
instruction following and consistency). Without gold-label supervision, this strat-
egy improves all three GEAR objectives—consistency, generalizability, and di-
versity—and these gains transfer to established abductive-reasoning benchmarks.
Taken together, GEAR provides a principled framework that not only evaluates
abduction but also supplies label-free, scalable training signals that help LLMs
produce more diverse and reliable hypotheses. We will release code and data
upon acceptance.

1 INTRODUCTION

In the current AI community, there are many competing definitions of abductive reasoning. The
most widely adopted one is Harman’s view of abduction as inference to the best explanation (IBE)
(Harman, 1965; Douven, 2021). Although this definition is simple and intuitive, it suffers from
key limitations when applied to real-world settings, making benchmarks and evaluations built on it
problematic.

First, IBE does not specify what counts as “best,” and the criteria vary across contexts. In some
cases, simplicity is prioritized; in others, novelty or explanatory power is preferred. As a result,
IBE-based benchmarks often select a single “gold” hypothesis according to annotators’ subjective
judgments, yielding heterogeneous and unreliable labels (Zhao et al., 2023; Okasha, 2000; Cabrera,
2023). Second, multiple plausible hypotheses typically coexist. Real-world observations can often
be explained in several ways, depending on how the data are conceptualized. This limitation appears
across popular abductive benchmarks such as MINI-ARC (Kim et al., 2022), ACRE (Zhang et al.,
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Figure 1: Underdetermination in abductive reasoning: a logically sound, observation-consistent hypothesis
need not coincide with the annotated “gold” hypothesis; both can fit the seen data yet disagree on held-out
predictions. Single-gold labeling can mask the plurality of valid explanations.

2021), LIST FUNCTIONS (Rule, 2020), and ARC-2025 (Chollet, 2019). For example, in Figure 1,
the annotated “gold” hypothesis and other valid alternatives may all be well supported by sound
abductive reasoning. However, existing evaluation usually excludes these alternatives by enforcing
agreement with a single annotated “gold” hypothesis under a vague “best” standard. Philosophical
accounts of abduction emphasize that hypotheses are often evidentially underdetermined: given
finite data and background assumptions, more than one hypothesis may be well supported (Quine,
2014; Stanford, 2023), the ability to generate other plausible, well-supported hypotheses should
also count as abductive success. Scientific progress relies on maintaining a diverse pool of feasible
hypotheses. Although many will ultimately be falsified, they guide the design of experiments to
discriminate, verify, or refute competing explanations, thereby enriching our knowledge. Even in
current mature fields, credible alternative hypotheses often remain.

To address these limitations, we use Peirce’s original definition of abduction, which frames it as
a more general task of generating hypotheses from given observations (Frankfurt, 1958; Burks,
1946; Minnameier, 2004; Peirce, 1974). Building on this foundation, we propose GEAR, a new
framework for systematically evaluating abductive reasoning. GEAR is grounded in three classical
criteria for good scientific hypotheses: (1) Consistency. A hypothesis must not contradict observed
facts, ensuring compatibility with existing evidence. (2) Generalizability. A good hypothesis ex-
tends beyond the observed data by making testable predictions on unseen cases. In Popper’s terms,
better hypotheses carry higher empirical content: they make riskier, more precise claims and thus
invite more opportunities for refutation (Popper, 2005; 2014). We operationalize generalizability as
the coverage of unseen inputs on which a hypothesis yields determinate predictions; larger coverage
indicates greater generality. Accordingly, when two hypotheses fit the observed data, we prefer the
broader (more falsifiable) one; if it withstands more severe tests, it is more strongly corroborated
and more robust. (3) Diversity. A hypothesis should contribute a genuinely new perspective rather
than echo existing ones, to avoid premature convergence on a single explanation. In the spirit of
Chamberlin’s multiple working hypotheses and Platt’s strong inference (Chamberlin, 1965; Platt,
1964), we favor sets of hypotheses that articulate competing mechanisms testable by critical evi-
dence. We quantify diversity with two complementary measures: γ-diversity, the average number
of unique predictions per input across the hypotheses set (set-level variety), and β-diversity, the
dissimilarity of prediction patterns between hypothesis pairs (dispersion). Higher diversity indi-
cates broader causal coverage and multiple viewpoints on the observations; points of disagreement
highlight decisive experiments and help accelerate scientific progress.

With GEAR, we re-examine four popularly used abduction benchmarks MINI-ARC, ACRE, LIST
FUNCTIONS, and ARC-2025 across nine LLMs—spanning API-access models (GPT-o1 (Ope-
nAI, 2024), GPT-4.1-mini (OpenAI, 2025a), GPT-o4-mini (OpenAI, 2025b)) and open-source mod-
els (LLAMA-3.3-70B, LLAMA-3.1-8B (Grattafiori et al., 2024), QWEN-2.5-72B, QWEN-2.5-
7B (Qwen et al., 2025), GEMMA-2-9B (Team et al., 2024), NEXTCODER-7B (Aggarwal* et al.,
2025))—and we find that— (1), Consistency remains hard, 70B-class models produce only 20%
consistent hypotheses; (2) Consistency shows no significant correlation with the size of the initial
observation set; (3), Model size is weakly related to abductive diversity—larger models do not nec-
essarily generate more diverse hypotheses; and (4)existing gold-answer evaluations overlook the
underdetermination inherent to abduction, around 80% of equally plausible hypotheses are labeled
incorrect, and even the “accepted” hypotheses can differ substantially. Unlike prior frameworks
that depend on gold answers or human raters, GEAR is label-free and fully automated, yielding
dense, scalable signals that directly train models to generate consistent, generalizable, and diverse
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hypothesis sets. We convert these signals into optimization targets for preference-based RL and
fine-tune base models with LoRA, so that improvements on GEAR ’s objectives are optimized end-
to-end without gold supervision. To stabilize learning and broaden coverage across objectives, we
introduce a momentum-based curriculum learning strategy that dynamically adjusts GEAR-derived
training data by learning velocity: training begins with fast-to-learn, foundational objectives (in-
struction following and consistency) and shifts toward harder reasoning objectives that foster diverse
hypothesis generation as competence increases. This procedure raises GEAR scores and transfers
as accuracy gains on standard abductive-reasoning benchmarks across multiple model families (e.g.,
Qwen-2.5-7B, Llama-3.1-8B, NextCoder-7B).

2 RELATED WORK

Reasoning: evolution from non-defeasible to defeasible. Non-defeasible (deductive) reasoning
preserves truth under added premises, whereas defeasible reasoning allows conclusions to be revised
when new evidence appears (Yu et al., 2024). Abduction belongs to the latter: following Peirce,
abduction proposes candidate hypotheses for observed facts, and deduction derives precise, testable
predictions from a hypothesis (Frankfurt, 1958; Burks, 1946; Minnameier, 2004; Peirce, 1974). A
key contrast with deduction is abduction’s reliance on broad background knowledge (commonsense
and domain-specific), which naturally yields multiple distinct yet plausible hypotheses for the same
observation (He & Chen, 2025). Early symbolic systems struggled here due to narrow knowledge
bases, whereas LLMs pretrained on large corpora make such abductive tasks more tractable (Yang
et al., 2023; He & Chen, 2025). Despite its central role in discovery, abduction remains under-
studied compared with the extensive focus on deduction in AI (Niu et al., 2024; Liu et al., 2025; Yu
et al., 2024; Huang & Chang, 2023; He & Chen, 2025).

Gold- and human-based evaluation for abductive reasoning. Current practice largely relies on
two strands. Gold answer-based evaluation compares model outputs to a single reference either
(i) at the hypothesis level using BLEU/ROUGE or embedding metrics such as BERTScore (Yang
et al., 2024a; Qi et al., 2024; Movva et al., 2025; Bowen et al., 2024; Hua et al., 2025; Young et al.,
2022), or (ii) at the behavior level by matching input–prediction pairs implied by the reference
hypothesis (Sinha et al., 2019; Weston et al., 2015; Balepur et al., 2024; Shi et al., 2023; Wang
et al., 2024; Rule, 2020; Chollet, 2019; Liu et al., 2024; Li et al., 2025; Chen et al., 2025; He
et al., 2025). Despite scalability, single-reference matching is ill-suited to abduction: it rejects many
plausible, logically sound alternatives that merely differ from the annotated answer; it is also costly
(expert labeling) and unstable due to non-monotonic judgments and low inter-annotator agreement
(Young et al., 2022). Complementarily, human evaluation is often used for qualities that are hard to
algorithmically quantify (e.g., novelty, excitement) (Zhao et al., 2024; Qi et al., 2024; Yang et al.,
2024b; Hu et al., 2024; Yang et al., 2025), but it is expensive, hard to reproduce or scale, and
inherently subjective—particularly acute for abduction, where outcomes depend on rater expertise,
instructions, and context, and small samples limit statistical power. In sum, both strands conflict with
the essence of abductive reasoning: instead of testing agreement with a single “gold” explanation or
subjective impressions, evaluations should assess a model’s capacity to propose multiple, novel, and
plausible explanatory hypotheses when underlying causes are unknown.

3 GEAR

We introduce the General Evaluation for Abductive Reasoning (GEAR), an evaluation paradigm
that scores hypotheses using reference-free, transparent criteria rather than agreement with a single
gold answer. Unlike existing benchmarks that evaluate only a single generated hypothesis at a
time, GEAR evaluates a set of hypotheses along three dimensions. An LLM exhibits stronger
abductive proficiency when it can produce a hypothesis set that (i) correctly explains the given
observations (Consistency), (ii) yields meaningful predictions on unseen inputs (Generalizability),
and (iii) offers non-redundant alternatives rather than superficial variants (Diversity). Basic notation
appears in Table 1.
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Table 1: Abductive reasoning begins with a set of observations O = {o1, o2, . . . }, where each oi := (ini, outi)
is an input–output pair (e.g., o1 = (floor,wet), o2 = (air, humid)). A hypothesis “it rained” can be represented
as a function frain mapping inputs to outputs, e.g., frain(floor) = wet, frain(sky) = cloudy. Each hypothesis f
has an input domain D; outside this domain, predictions may be undefined or uninformative (e.g., frain(Math)).

Symbol Meaning
O = {o1, o2, . . . } Set of observations to be explained
oi := (ini, outi) Observation as an input–output pair
f Hypothesis function
F A set of hypotheses
D (Effective) input domain of hypothesis f
M A set-size measure (e.g., cardinality | · |)
M(D) Size of the input domain D
f̃ Trivial hypothesis that memorizes all seen observations
S = {in1, in2, . . . } Problem-specific sample space of candidate inputs
Pf := {

(
in, f(in)

)
: in ∈ S} Prediction space of f on S

3.1 CONSISTENCY

Consistency is the most fundamental requirement of a hypothesis: it must not conflict with observed
facts. Formally, a generated hypothesis f is consistent with the observation set O if ∀(ini, outi) ∈
O, f(ini) = outi. This criterion guarantees agreement with all known observations and underlies
most existing evaluations of hypothesis generation, including gold answer–based evaluations.

3.2 GENERALIZABILITY

Given several consistent hypotheses, a more general hypothesis is one that yields predictions on a
broader set of unseen cases. A more general hypothesis confers two advantages: (1) it can be applied
in more future situations, increasing its practical utility; and (2) because it makes predictions for
more situations, it can be tested more extensively and—if it survives—becomes correspondingly
more robust (Popper, 2005; 2014). Formally, for two hypotheses f1 and f2 with respective input
domains D1 and D2 and a set-size measure M , if M(D1) > M(D2), then f1 is considered more
general than f2, with a simple example.

For example, given three observations o1 = (1, 1), o2 = (10, 1), and o3 = (100, 1), a trivial lookup-
table hypothesis f̃ that merely memorizes these pairs is consistent yet fails to generalize. In contrast,
f1(n) = rev(n) (digit-reversal on integers), f2(x) = x/x for x ̸= 0 (undefined at x = 0), and the
constant hypothesis f3(x) ≡ 1 are all consistent but differ in generalizability. Under the simple size
measure M(D) = |D|, we have: {1, 10, 100} ⊂ N0 ⊂ R \ {0} ⊂ R ⇒ f̃ ≺ f1 ≺ f2 ≺ f3.

The effective domain D and its size measurement M are not static but depend on the problem con-
text and representation. For instance, in arithmetic, f1 (reversal) is defined on integers, whereas in
programming tasks the same hypothesis applies to strings, lists, and other finite sequences, making
f1 more general than f2 in that setting. Since it is generally infeasible to determine a global do-
main D across all conceivable contexts, GEAR evaluates generalizability relative to a pre-defined
problem-specific sample space S shared across all hypotheses under comparison, together with its
associated measurement M . This sample space serves as the operational domain for evaluation and
provides the basis for comparing the generalizability of different hypotheses.

3.3 DIVERSITY

Prior work typically measures hypothesis diversity with black-box text similarity metrics such as
BERTScore (Zhang et al., 2019)—which capture surface-level semantic overlap rather than underly-
ing explanatory mechanisms—or with subjective, annotator-based judgments. In contrast, following
the Multiple Working Hypotheses view (Chamberlin, 1965; Platt, 1964), we define diversity directly
from prediction patterns: distinct hypotheses should be separable by some input in S. Concretely,
for two consistent hypotheses f1, f2 and an unseen input inx ∈ S, if f1(inx) ̸= f2(inx), then f1 and
f2 are separable on inx; the more such inputs exist, the more diverse the hypotheses are.

In light of classical ecological diversity theory—specifically β- and γ-diversity (Whittaker,
1960)—we adapt set-based diversity ideas to hypothesis sets, not as a one-to-one import from ecol-
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Figure 2: GEAR with a live example with |F| = 2, |S| = 3.

ogy but as a structural analogy over prediction patterns. Concretely, we define γ as the average
number of unique predictions per input over a set of hypotheses F and β as the mean pairwise
Jaccard dissimilarity between prediction sets on a shared sample space.

γ-diversity (average unique predictions per input). Let Pf = {(in, f(in)) : in ∈ S}. Define

γ(F;S) :=
1

M1(S)
M2

( ⋃
f∈F

Pf

)
=

1

|S|
∑
in∈S

∣∣∣{ (in, f(in)) : f ∈ F }
∣∣∣,

Under cardinality M1 = M2 = | · | and |F| = m, γ ∈ [1,m], A hypothesis proposer that generates
near-duplicate hypotheses will yield γ ≈ 1 because most hypotheses agree on almost all inputs.
Conversely, a proposer that views the observations from diverse perspectives and produces genuinely
novel hypotheses will achieve a larger γ, approaching γ ≈ m when predictions are mutually distinct
for every input. Notably, M1 is the size measure on the sample (input) space, whereas M2 is the size
measure on the prediction space; the two need not be identical.

β-diversity (prediction-pattern dispersion). Measure pairwise dispersion via the Jaccard dissimi-
larity between prediction sets, and then average across all pairs:

dJ(fi, fj) := 1−
M
(
Pfi ∩ Pfj

)
M
(
Pfi ∪ Pfj

) , β(F;S) :=
2

n(n− 1)

∑
1≤i<j≤m

dJ(fi, fj).

Example. Let S = {0, 1, 2}, Pf1 = {(0, 1), (1, 2), (2, 3)}, Pf2 = {(0, 1), (1, 2), (2, 2)}, and M =
| · |. Generalizability: for each f , G(f) = |Pf |/|S|. Thus G(f1) = G(f2) = 3/3 = 1. Set coverage:⋃

i Pfi = {(0, 1), (1, 2), (2, 2), (2, 3)}, so γ =
∣∣ ∪i Pfi

∣∣/|S| = 4/3. Diversity: the intersection size
is 2 and the union size is 4, hence the Jaccard distance dJ(f1, f2) = 1 − 2

4 = 1
2 ; with a single

pair, β = 1
2 . (If fewer than two consistent hypotheses are generated, we set β = 0.) An additional

example from LIST FUNCTIONS is shown in Fig. 2.

While γ and β are mathematically related, neither uniquely determines the other. The formal rela-
tionship and proofs are provided in Appendix F.

Because Consistency, Generalizability, and Diversity have precise mathematical definitions, they
can be computed directly—without human labor or auxiliary black-box models—at evaluation time.
Consequently, GEAR is (1) scalable: it runs automatically on any newly generated hypotheses;
(2) reliable: all metrics are transparently defined and computed, including Diversity, which GEAR
measures by underlying mechanisms rather than via black-box proxies; and (3) open-ended: GEAR
evaluates how many genuinely different explanatory perspectives a model can produce and, because
the hypothesis space is in principle unbounded, it imposes no upper limit on valid hypotheses.

4 LLM EVALUATION SETTINGS

Benchmarks. We use four widely used abductive benchmarks: MINI-ARC (Kim et al., 2022),
ACRE (Zhang et al., 2021), LIST FUNCTIONS (Rule, 2020), and ARC-2025 (Chollet, 2019).
These gold-answer benchmarks split observations into Otrain and Otest. Unlike the traditional set-
ting—where models see only Otrain and are judged on Otest—GEAR measures how many con-
sistent hypotheses a model can produce and how diverse they are. Because several datasets pro-
vide only a few observations per problem (e.g., 2–3 train and 1 test), we pool all observations into
Oall := Otrain ∪Otest to enable broader analyses. We choose these datasets because (i) hypotheses
are expressible in formal languages (e.g., executable programs), allowing deterministic evaluation
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without extra adaptation; and (ii) each dataset provides sufficiently diverse observations to seed
abduction.

Sampling initial observations. We study the effect of observation size by using n ∈ {1, 2, 3, 4}
observations. For ACRE, outputs are Boolean (on/off); with a single observation, label semantics
may be ambiguous, so we use n ∈ {2, 3, 4} and ensure at least one on and one off. When
n observations are required, we sample n pairs from Oall without replacement to form On. We
randomly select 100 problems per dataset. For three datasets we use n = 4 (total 3 × 100 × 4 =
1200), and for ACRE we use n = 3 (total 1× 100× 3 = 300), yielding 1,500 problems overall.

Generation protocol. Given On, we prompt with a dataset-agnostic template Pinit to obtain the
first hypothesis f1. We then iterate with Piter, which lists previously generated hypotheses Ft−1 =
{f1, . . . , ft−1} and requests a new ft that is (i) consistent with On and (ii) distinct from all f ∈ Ft−1.
Both Pinit and Piter are shared across datasets (see Pinit and Piter in the Appendix G).

Stopping rule. Since it is infeasible to enumerate all hypotheses an LLM could generate for a
given problem, we use a quality-triggered early stop: generation for a problem halts once the model
emits three “bad” hypotheses—unparseable, inconsistent with On, or non-novel w.r.t. Ft−1. This
keeps runs finite and comparable while allowing stronger models to produce more consistent, novel
hypotheses before stopping. Formal criteria and thresholds are in Appendix B.

Sample space S. We assess generalizability and diversity on a fixed, dataset-specific S. Since ex-
haustive coverage is infeasible, we construct S via simple, reproducible rules with a fixed seed. For
LIST FUNCTIONS and ACRE, whose input domains are explicit (lists; entity triples), we stratify
by input size: include the empty case, include all singletons, and uniformly subsample the remain-
der. For MINI-ARC/ARC-2025, naive enumeration of visual grids mostly yields noise; thus S is
the set of unique input grids from the official splits after canonicalization and deduplication. Full
construction details and cardinalities are in Appendix A.

5 ANALYSIS OF LLM EVALUATIONS

5.1 MAIN ANALYSIS: LLM PERFORMANCE UNDER GEAR

Across nine LLMs we collect 50,340 hypotheses, with 17,835 consistent and 32,505 inconsistent;
of the latter, 4,346 fail format/parseability (e.g., non-executable) and 28,159 contradict at least one
observation (Fig. 3).

Overall volume and consistency. Under the quality-triggered early stop, the hypotheses-per-
problem reflect overall generation capacity. GPT-O4-MINI and GPT-O1 produce the most con-
sistent hypotheses and the highest consistency rates, yielding ∼ 2–4 more hypotheses per problem
than the next tier (panel (a)) and correspondingly higher consistency (panel (c)).

Effect of initial observation size. Increasing I/O pairs from 1 to 4 tightens constraints: both β and
γ diversity decline (panels (d)–(e)), while the consistency rate remains comparatively stable (panel
(c)). Early stopping is increasingly triggered by the novelty threshold rather than inconsistency.

Instruction following. Most models adhere to the required format (panel (b)); LLAMA-3.1-8B is
an outlier, often appending free-form text or violating the code template, harming parseability. (§6
shows RL substantially closes this gap.)

Model size vs. abductive diversity. Among open-source models, parameter count correlates weakly
with abductive diversity: LLAMA-3.3-70B trails GEMMA-2-9B and QWEN-2.5-7B on β-diversity
(panel (d)), and QWEN-2.5-72B is only on par with these smaller models—suggesting data and
training procedure may matter more than raw size for abductive reasoning.

Generalizability. Because S pertains to each dataset’s distribution, consistent hypotheses achieve
high coverage (≈ 95% on average; panel (f)). Corner cases remain in MINI-ARC/ARC-2025 (e.g.,
infinite loops). Since GPT-O1 and GPT-O4-MINI contribute a large share of consistent hypotheses
on these harder datasets, their macro-averaged coverage appears lower—not due to intrinsically
weaker generality, but because the solved problems are more challenging.
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Figure 3: Model performance under GEAR. Metrics are macro-averaged per problem: compute the value per
problem, then take the unweighted mean. Panels (a)–(c) use all generated hypotheses; panels (d)–(f) restrict to
consistent hypotheses, since diversity and generalizability are only meaningful for consistent sets.

5.2 SIMULATION STUDY 1: ABDUCTIVE REASONING IS DEFEASIBLE

As noted in § 2, abduction is defeasible: a hypothesis generated by logical and sound abductive rea-
soning need not coincide with the “gold answer.” Benchmarks that enforce a single gold hypothesis
thus reward label matching rather than generating alternative, plausible explanations; and we also
show that without extensive test cases previous benchmarks cannot even explicitly distinguish an
alternative hypothesis from the gold-labeled one as intended.

Empirical illustration. We previously generated 17,835 hypotheses consistent with initial obser-
vations On (n ∈ {1, 2, 3, 4}, sampled from Oall). For each problem, fixing On and its consistent
hypotheses set F, we sample m ∈ {1, 2, 3, 4} hidden test pairs Om ⊂ Oall \On and repeat each
(n,m) five times. A hypothesis passes if it agrees with all test cases in Om. We report (a) pass rate
and (b) γ-diversity of survivors, averaged over problems (Fig. 4a–b).

Pass rates decline as m increases but do not collapse; even at m=4, a nontrivial fraction remains
valid. Survivors also retain diversity—for example, on ACRE at m=4 the passed set has γ ≈ 1.5,
i.e., roughly 1.5 distinct predictions per input on the shared sample space. Because all candidates
are LLM-generated, this is a conservative lower bound on plausible explanations. As available ob-
servations and background knowledge broaden, underdetermination grows, and single-gold-answer
metrics increasingly misclassify reasonable alternatives.

5.3 SIMULATION STUDY 2: GEAR IS GENERAL

In this section, we show that GEAR is general rather than task-specific. Across varied abductive
datasets, higher GEAR scores predict a greater chance that the set contains a hypothesis explaining
unseen (hidden) observations, thereby aligning with existing evaluations of good abduction and
indicating cross-task applicability.

For each problem, we sample m ∈ {1, 2, 3, 4} hidden cases Om ⊂ Oall \ On and draw a context
Fc of size c ∈ {0, 1, 2} from hypotheses consistent with On; we discard any context with a mem-
ber already passing Om. Let Fconsistent be the full set of hypotheses consistent with On and from
the remaining consistent pool Fconsistent \ Fc, we enumerate unordered pairs (fa, fb) and, for each
f ∈ {fa, fb}, compute marginal diversity gain for ρ∈{γ, β} as ∆ρ(f) = ρ(Fc∪{f};S)− ρ(Fc;S),
define generalizability as g(f) =

|Pf |
|S| , the coverage of f over the sample space S, and an av-

erage GEAR score: Score(f) = 1
3

(
g(f) + ∆γ(f) + ∆β(f)

)
. We label (fchosen, frejected) so

that Score(fchosen) > Score(frejected). We then test both on Om, declare a pass when a hypothe-
sis explains all hidden cases, and aggregate over problems/contexts/pairs to report the odds ratio
ORm = Pr(pass | fchosen)/Pr(pass | frejected).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4
# Test Cases

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

a) Pass rate vs. # test cases

1 2 3 4
# Test Cases

1.5

2.0

2.5

 D
iv

er
sit

y

b)  diversity vs. # test cases

1 2 3 4
# Test Cases

1.0

1.5

2.0

Od
ds

 R
at

io

c) Odds ratio vs. # test cases

ACRE MINI-ARC List Function ARC-2025
Figure 4: Simulation Study Results

Figure 4(c) shows that ORm tends toward 1 as m increases, yet in most settings ORm > 1: the
higher-GEAR-score candidate is more likely to pass the hidden cases, aligning with the idea that a
more diverse prediction space on S increases the chance of covering the unseen evidence Om.

6 REINFORCEMENT LEARNING WITH GEAR

6.1 TRAINING DATA PREPARATION

Building on the simulation study above, we posit that learning better abduction—operationalized as
generating a hypothesis set that aligns better with GEAR —which naturally improves the chance
that at least one hypothesis fits unseen observations and thereby generalizes to downstream tasks,
without requiring any gold hypotheses as supervision.

Training data are constructed from the previously generated 50,340 hypotheses (§5.1). Within each
dataset (100 problems), we sample 50 for training, 10 for validation, and hold out 40 for final eval-
uation. Similar to the preference-pair construction in § 5.3, for each training problem, let Fall be the
set of hypotheses generated by nine LLMs (including both inconsistent and consistent hypotheses),
and let Fc ⊆ F be a small hypothesis context of size c ∈ {0, 1, 2} sampled from Fc ⊆ Fconsistent. We
then enumerate all unordered hypothesis pairs (fa, fb) from Fall \ Fc. For each f ∈ {fa, fb}, we
assign a preference in three stages: (1) instruction following / format compliance (prefer parsable
over non-parsable outputs; 159,981 pairs); (2) consistency (among parsable candidates, prefer those
consistent with On; 429,980 pairs); (3) when both are parsable and consistent, GEAR score, where
we score each candidate by the same score function Score(f) in § 5.3. We prefer the candidate with
the higher Score(f) (249,561 pairs). In total, this yields 839,522 training preference pairs. We fine-
tune the base models with Direct Preference Optimization (DPO) using LoRA (rank 128, α = 256)
under 4-bit quantization with bfloat16 compute. For DPO, we randomly sample 51,200 pairs with a
fixed 1:1:1 ratio across Parsing, Consistency, and GEAR preferences.

6.2 MOMENTUM-BASED CURRICULUM LEARNING

During fine-tuning we observed that the mixture of preference data materially affects outcomes, and
different base models favor different mixtures (some benefit from earlier emphasis on format/con-
sistency, others from earlier diversity). This led us to a momentum-based curriculum method. The
intuition is to learn what improves fastest and is easiest first, then shift weight toward harder signals.
We did an ablation study on the effect of each preference category (See in Appendix E). This adap-
tively reweights based on measured learning progress, avoiding hand-tuned fixed ratios and letting
each base model gravitate to its preferred mixture.

Adaptive reweighting preferences. Unlike existing curriculum learning methods that either pre-
scribe a static training curriculum—thereby overlooking model-specific competence differences
(Bengio et al., 2009; Wang et al., 2019)—or adopt dynamic schemes that operate at the sample
level (Zhou et al., 2021; Jiang et al., 2015; Sow et al., 2025), which are computationally expensive
and often misaligned with the higher-level objective of producing diverse hypotheses, our approach
is simple yet efficient: it dynamically delivers a skill-level curriculum—i.e., a goal-aligned schedule
over preference types (Parsing/Format, Consistency, and GEAR/diversity) rather than over individ-
ual instances—aligned with GEAR objectives.

For each preference type r, keep an Exponential Weighted Moving Average (EWMA) of its probe
loss and convert recent improvement into sampling weight:

E(t)
r = (1− α)E(t−1)

r + αL(t)
r , m(t)

r = clip
(
E(t−1)

r − E(t)
r , 0, mmax

)
, p(t)r ∝ ε+m(t)

r

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Aggregated results across nine settings.
GEAR performance improvement

Instruction Following Rate Consistency Generalizability β γ

Llama-3.1-8b 0.149 0.002 1.000 0.000 1.000
Llama-3.1-8b-dpo-fixed-ratio 0.968 0.014 1.000 0.000 1.000
Llama-3.1-8b-dpo-momentum-curriculum 0.970 0.020 1.000 0.196 1.179
qwen-2.5-7b 0.988 0.037 0.987 0.032 1.001
qwen-2.5-7b-dpo-fixed-ratio 0.996 0.042 0.987 0.044 1.046
qwen-2.5-7b-dpo-momentum-curriculum 0.997 0.041 1.000 0.073 1.052
nextcoder-7b 0.863 0.013 1.000 0.140 1.081
nextcoder-7b-dpo-fixed-ratio 0.965 0.028 1.000 0.078 1.066
nextcoder-7b-momentum-curriculum 0.991 0.030 0.991 0.182 1.151

Cross-task generalization with GEAR
Avg Train Pass Rate Avg Test Pass Rate Top-1 Acc. Top-2 Acc. Top-3 Acc.

Llama-3.1-8b 0.011 0.009 0.000 0.003 0.004
Llama-3.1-8b-dpo-fixed-ratio 0.096 0.076 0.028 0.043 0.049
Llama-3.1-8b-dpo-momentum-curriculum 0.129 0.101 0.035 0.052 0.065
qwen-2.5-7b 0.198 0.154 0.035 0.059 0.068
qwen-2.5-7b-dpo-fixed-ratio 0.205 0.160 0.054 0.064 0.077
qwen-2.5-7b-dpo-momentum-curriculum 0.203 0.163 0.066 0.083 0.095
nextcoder-7b 0.151 0.121 0.025 0.044 0.055
nextcoder-7b-dpo-fixed-ratio 0.173 0.136 0.051 0.065 0.074
nextcoder-7b-momentum-curriculum 0.189 0.149 0.065 0.080 0.092

Where r ∈ R indexes preference types; L(t)
r is the probe loss on the validation subset at epoch t;

E
(t)
r is its EWMA; α∈ (0, 1) is the smoothing factor; m(t)

r is the clipped improvement (capped by
mmax > 0); p(t)r is the per-type sampling weight (normalized across r); ε>0 prevents zero weight;
and p

(t)
r is then normalized across r and clipped to [wmin, wmax].

Experimental settings. We use α = 0.1, ε = 0.1, mmax = 0.03, wmin = 0.8, wmax = 1.2,
and update the sampling weights every 1,280 training examples. The same hyperparameters and
schedule were used for all three fine-tuned models (no per-model tuning).

For evaluation, we use the original (non-sampled) splits with Otrain and Otest from held-out prob-
lems, asking each model to generate three hypotheses per problem. As shown in Table 2, models
trained from these GEAR-derived preferences—despite never seeing held out problems—achieve
higher diversity scores (β, γ) and improved Top-1/2/3 (T3) accuracies, with the momentum-based
curriculum consistently outperforming the fixed-ratio baseline across the reported settings.

7 CONCLUSION & DISCUSSION

We present GEAR, a general evaluation framework for abduction that scores hypotheses by con-
sistency, generalizability, and diversity. Across nine LLMs on four abduction benchmarks, GEAR
reveals differences that gold- or human-centric evaluations miss; simulation study confirms abduc-
tion is defeasible and shows that more diverse hypothesis sets are more likely to predict hidden
observations. We convert GEAR into label-free training signals and propose a momentum-based
DPO curriculum that adapts preference weights with learning progress, improving hypothesis diver-
sity and downstream accuracy without gold supervision.

Although our experiments use programmable domains, GEAR is not limited to them. The frame-
work hinges on four ingredients: (i) a size measure M , (ii) a sample space S, (iii) a deduction/exe-
cution oracle, and (iv) a semantic equivalence predicate. In natural-language (NL) settings these re-
main the same but grow harder: M should capture semantic coverage (e.g., topical/diversity weight-
ings) rather than raw cardinality; S can be unlabeled yet must include many diverse probes to reveal
prediction patterns; the deduction step becomes model- or tool-mediated and thus stochastic, mit-
igated by calibrated decoding, tool use, and repeated sampling; and equivalence must be judged
semantically or via canonicalization to executable meaning representations to curb polysemy. The
primary bottleneck is therefore foundational NL tooling for reliable execution and equivalence un-
der ambiguity. GEAR ’s applicability to NL tasks scales with the quality of these primitives; as
they improve, the framework transfers with minimal changes—largely a swap of stronger semantic
metrics and oracles.
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APIs; it does not involve human subjects, personally identifiable information, or sensitive attributes.
To minimize potential harms, we restrict experiments to benign, programmable tasks. Dataset li-
censes and usage follow their original terms; no proprietary or private data are redistributed. There
are no known conflicts of interest or third-party sponsorships that influenced results; any such re-
lationships will be disclosed upon de-anonymization. Code and data used for evaluation will be
released to facilitate auditing and responsible reuse.

REPRODUCIBILITY STATEMENT

We aim for full reproducibility. Datasets, problem sampling, and the construction of the evaluation
sample spaces S are defined by simple, deterministic rules with fixed seeds; prompts for hypothe-
sis generation (initial/iterative) are provided; and all scoring criteria (Consistency, Generalizability,
β/γ Diversity) are formally specified. Training details (preference construction, DPO with LoRA,
quantization, and the momentum-based curriculum schedule with hyperparameters) are described
alongside exact settings. We will release code, prompts, and configuration files enabling end-to-
end replication—from hypothesis generation to metric computation and fine-tuning—together with
random seeds and logs upon acceptance.
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A SAMPLE SPACE S

The sample space S is central to GEAR: a broader S exposes more inputs on which prediction
patterns can be compared, thus providing a sharper lens for assessing generalizability and diversity.
In practice, however, S must balance breadth with computational cost and with the effort required
to construct valid, meaningful inputs. We therefore define S per dataset using simple, reproducible
rules and a fixed random seed. And for simplicity, we use cardinality (| · |) as set-size measurement
in our evaluation.

LIST FUNCTIONS: In the original dataset, Inputs are lists of integers with element domain
{0, . . . , 99} and length k ∈ {0, . . . , 15}. After expansion, the full combinatorial space has size∑15

k=0 100
k, which is infeasible to exhaust at evaluation time. We adopt stratified sampling by

length: (i) include the unique empty list for k=0; (ii) include all 100 singletons for k=1; (iii) for
each k ∈ {2, . . . , 15}, uniformly sample (without replacement) up to 1,000 lists from the 100k pos-
sibilities. This yields |SLISTFUNC| = 1 + 100 + 14× 1,000 = 14,101. (One could broaden the
input domain beyond the original dataset—for example by allowing negative or floating-point val-
ues, or even arbitrary real numbers—but we retain the original integer domain; in our experiments
this range is already sufficient to probe diverse hypothesis behaviors.)

ACRE: In the original dataset, each primitive entity is a triple ⟨color, shape,material⟩ with
color ∈ {blue, brown, cyan, gray, green, purple, red, yellow} (8), shape ∈ {cube, cylinder, sphere}
(3), material ∈ {metal, rubber} (2), so the vocabulary has 8 × 3 × 2 = 48 distinct entity types. An
input is an ordered list (repetitions allowed) of c entities with c ∈ {0, . . . , 8} since in the original
dataset at most 8 entities are seen in one observation. We again use stratified sampling by c: include
the empty list for c=0; include all 48 singletons for c=1; for each c ∈ {2, . . . , 7}, uniformly sample
up to 1,000 lists without replacement. This gives |SACRE| = 1 + 48 + 7 × 1,000 = 7,049.
(Broader stress tests are possible by extending the vocabulary with new colors, shapes, or materials,
but we restrict ourselves to the original schema here; empirically this space is already rich enough
to discriminate among hypotheses.)

MINI-ARC and ARC-2025: Unlike the previous two datasets, these benchmarks encode inputs
as small integer grids (values in a fixed palette) that carry visual semantics. Naively enumerating
grids within a size range produces overwhelmingly non-meaningful noise and is therefore counter-
productive for abductive reasoning. Instead, we define S as the set of all unique input grids already
present in the official splits (train/validation/test), after canonical serialization and deduplication of
exact matches. This pragmatic choice keeps inputs semantically meaningful while avoiding sam-
pling artifacts. It yields |SMINIARC| = 767, |SARC2025| = 4,826.

Reproducibility: All sampling steps use a fixed random seed and uniform sampling without re-
placement within each stratum; we publish the materialized S for each dataset to ensure exact repro-
ducibility of scores.

B STOPPING RULE AND “BAD” HYPOTHESES.

Enumerating all potential hypotheses a model could generate is infeasible. To keep generation finite
and comparable across models, we adopt a quality-triggered early-stopping rule: generation for a
problem stops once the model accumulates three “bad” hypotheses. A hypothesis is bad if it satisfies
any of the following: (i) it cannot be parsed into executable code (format or syntax error); (ii) it is
inconsistent with On (violates at least one given observation); or (iii) it lacks novelty relative to prior
hypotheses. For (iii), let the shared sample space be S and define:

cov
(
f
∣∣Ft−1

)
:=

1

|S|
∣∣{in ∈ S : ∃g ∈ Ft−1 s.t. g(in) = f(in)}

∣∣
We mark f as non-novel if cov(f |Ft−1) ≥ 0.8 (i.e., at least 80% of its predictions on S are duplicate
relative to Ft−1). Compared with a hard quota on the number of hypotheses, this early-stopping rule
(i) prevents unbounded generation and degenerate cycling; (ii) allows stronger models to produce
more consistent and novel hypotheses before stopping; and (iii) reduces the chance that a fixed quota
artificially limits performance.
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C TABLES

Table 3: Per-dataset GEAR scores of nine LLMs (Instruction Following, Consistency, γ, β, Gener-
alizability).

Model Dataset IF Cons. Norm-γ (q=0) β-Struct Gen.

o4-mini-2025-04-16

Avg 0.9972 0.6708 2.3330 0.5036 0.9398
ACRE 1.0000 0.9771 1.6718 0.4774 0.9816
MINI-ARC 0.9958 0.4489 2.1715 0.4850 0.9472
List Fns 0.9978 0.9449 3.4245 0.4850 0.9727
ARC-2025 0.9951 0.3121 2.0644 0.5670 0.8577

gpt-4.1-mini-2025-04-14

Avg 0.9911 0.2263 1.3320 0.3457 0.9824
ACRE 0.9926 0.5298 1.2754 0.3402 0.9863
MINI-ARC 0.9877 0.0622 1.3708 0.3710 1.0000
List Fns 0.9917 0.2827 1.4464 0.3001 0.9859
ARC-2025 0.9925 0.0304 1.2355 0.3716 0.9575

o1-2024-12-17

Avg 0.9924 0.7165 2.2677 0.4892 0.9538
ACRE 0.9888 0.9679 1.6813 0.4702 0.9998
MINI-ARC 0.9953 0.5984 1.9939 0.4367 0.9737
List Fns 0.9964 0.9542 3.3586 0.4962 0.9740
ARC-2025 0.9892 0.3456 2.0372 0.5536 0.8676

Llama-3.3-70B-Instruct

Avg 0.9660 0.2469 1.1862 0.2245 0.9645
ACRE 0.9332 0.5930 1.1729 0.2008 0.9854
MINI-ARC 0.9772 0.0569 1.1977 0.2352 1.0000
List Fns 0.9695 0.3095 1.2279 0.1622 0.9858
ARC-2025 0.9842 0.0282 1.1460 0.2997 0.8867

Qwen2.5-72B-Instruct

Avg 0.9990 0.1848 1.3988 0.3996 0.9865
ACRE 0.9987 0.4770 1.3119 0.3847 0.9998
MINI-ARC 0.9983 0.0319 1.5144 0.5793 0.9784
List Fns 1.0000 0.2086 1.4646 0.3511 0.9798
ARC-2025 0.9992 0.0215 1.3042 0.2835 0.9881

gemma-2-9b-it

Avg 0.9718 0.0522 1.0715 0.1857 0.9960
ACRE 0.9893 0.1272 1.1661 0.4065 0.9999
MINI-ARC 0.9892 0.0063 1.0000 0.0000 1.0000
List Fns 0.9912 0.0729 1.1218 0.1507 0.9862
ARC-2025 0.9175 0.0025 0.9980 – 0.9980

Qwen2.5-7B-Instruct

Avg 0.9807 0.1036 1.1801 0.2714 0.9992
ACRE 0.9597 0.3149 1.2475 0.3737 0.9971
MINI-ARC 0.9885 0.0107 1.2061 0.3835 1.0000
List Fns 0.9854 0.0861 1.2667 0.3285 0.9997
ARC-2025 0.9892 0.0029 0.9999 0.0000 0.9999

Llama-3.1-8B-Instruct

Avg 0.1505 0.0020 1.0735 0.5421 1.0000
ACRE 0.0578 0.0048 1.1469 0.5421 1.0000
MINI-ARC 0.2217 0.0000 – – –
List Fns 0.1917 0.0031 1.0000 – 1.0000
ARC-2025 0.1308 0.0000 – – –

NextCoder-7B

Avg 0.9891 0.0704 1.1351 0.4410 0.9930
ACRE 0.9911 0.2097 1.1562 0.3397 0.9999
MINI-ARC 0.9842 0.0100 1.1550 0.5363 1.0000
List Fns 0.9952 0.0612 1.2293 0.4470 0.9721
ARC-2025 0.9858 0.0006 1.0000 – 1.0000
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Table 4: Ablation results: GEAR score & T3 accuracy under different training settings.
GEAR Scores

Instruction Following Rate Consistency Generalizability β γ

Llama-3.1-8b 0.149 0.002 1.000 0.000 1.000
Llama-3.1-8b-dpo-fixed-ratio 0.968 0.014 1.000 0.000 1.000
Llama-3.1-8b-dpo-momentum-curriculum 0.970 0.020 1.000 0.196 1.179
Llama-3.1-8b-parsing-ablation 0.941 0.009 1.000 0.000 1.000
Llama-3.1-8b-consistent-ablation 0.322 0.009 1.000 0.014 1.011
Llama-3.1-8b-GEAR-ablation 0.258 0.005 1.000 0.000 1.000
qwen-2.5-7b 0.988 0.037 0.987 0.032 1.001
qwen-2.5-7b-dpo-fixed-ratio 0.996 0.042 0.987 0.044 1.046
qwen-2.5-7b-dpo-momentum-curriculum 0.997 0.041 1.000 0.073 1.052
qwen-2.5-7b-parsing-ablation 0.996 0.032 1.000 0.014 1.008
qwen-2.5-7b-consistent-ablation 0.988 0.047 0.975 0.015 1.010
qwen-2.5-7b-GEAR-ablation 0.981 0.034 1.000 0.023 1.012
nextcoder-7b 0.863 0.013 1.000 0.140 1.081
nextcoder-7b-dpo-fixed-ratio 0.965 0.028 1.000 0.078 1.066
nextcoder-7b-momentum-curriculum 0.991 0.030 0.991 0.182 1.151
nextcoder-7b-parsing-ablation 0.992 0.020 1.000 0.222 1.140
nextcoder-7b-consistent-ablation 0.945 0.034 1.000 0.054 1.040
nextcoder-7b-GEAR-ablation 0.980 0.015 0.976 0.202 1.145

T3 accuracies
Avg Train Pass Rate Avg Test Pass Rate Top-1 Acc. Top-2 Acc. Top-3 Acc.

Llama-3.1-8b 0.011 0.009 0.000 0.003 0.004
Llama-3.1-8b-dpo-fixed-ratio 0.096 0.076 0.028 0.043 0.049
Llama-3.1-8b-dpo-momentum-curriculum 0.129 0.101 0.035 0.052 0.065
Llama-3.1-8b-parsing-ablation 0.130 0.099 0.026 0.031 0.041
Llama-3.1-8b-consistent-ablation 0.084 0.066 0.018 0.022 0.028
Llama-3.1-8b-GEAR-ablation 0.039 0.030 0.011 0.016 0.020
qwen-2.5-7b 0.198 0.154 0.035 0.059 0.068
qwen-2.5-7b-dpo-fixed-ratio 0.205 0.160 0.054 0.064 0.077
qwen-2.5-7b-dpo-momentum-curriculum 0.203 0.163 0.066 0.083 0.095
qwen-2.5-7b-parsing-ablation 0.198 0.154 0.045 0.055 0.066
qwen-2.5-7b-consistent-ablation 0.224 0.176 0.059 0.075 0.086
qwen-2.5-7b-GEAR-ablation 0.183 0.141 0.039 0.056 0.065
nextcoder-7b 0.151 0.121 0.025 0.044 0.055
nextcoder-7b-dpo-fixed-ratio 0.173 0.136 0.051 0.065 0.074
nextcoder-7b-momentum-curriculum 0.189 0.149 0.065 0.080 0.092
nextcoder-7b-parsing-ablation 0.162 0.125 0.045 0.055 0.062
nextcoder-7b-consistent-ablation 0.200 0.153 0.060 0.074 0.080
nextcoder-7b-GEAR-ablation 0.150 0.118 0.033 0.043 0.049
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D FIGURES

Figure 5: Feasible region for (γ,β)
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Figure 6: Training log on single-preference DPO

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200 1400 1600
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ll
am

a-
3.

1-
8B

Fixed-ratio mix

0 200 400 600 800 1000 1200 1400 1600
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Momentum (probe acc)

0 200 400 600 800 1000 1200 1400 1600
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Q
w

en
-2

.5
-7

B

0 200 400 600 800 1000 1200 1400 1600
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 200 400 600 800 1000 1200 1400 1600
step

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
ex

tC
od

er
-7

B

0 200 400 600 800 1000 1200 1400 1600
step

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fixed-ratio vs. Momentum

train acc Parsing Consistency GEAR score

Figure 7: Training log on multi-preference DPO
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Figure 8: Momentum curriculum training log for Llama-3.1-8B
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Figure 9: Momentum curriculum training log for Qwen-2.5-7B
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Figure 10: Momentum curriculum training log for NextCoder-7B
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E TRAINING LOG ANALYSIS

Across our training signals, the three preferences exhibit a clear hierarchy: a hypothesis must first
be parsable to be eligible for consistency checking; only hypotheses that pass consistency check
can contribute to generalizability and diversity. This structure implies that optimizing for a single
preference in isolation is insufficient. As shown in Figure 6, training on only one preference can raise
the corresponding validation accuracy, but typically fails to improve—and often degrades—the other
two. For example, parsing-only training does not translate into higher consistency or GEAR gains.
Consistent with Table 4, parsing-only runs also do not yield a meaningful increase in the diversity
of generated hypotheses nor in downstream T-3 accuracy. Taken together, these results indicate that
leveraging all three preferences during training is necessary to realize balanced improvements across
GEAR.

Figure 7 further compares fixed-ratio mixing with our momentum curriculum. Although momentum-
trained models show slightly lower peak accuracy on parsing and consistency early on, they make
steadier progress on the GEAR preference and reach roughly 60% validation accuracy during train-
ing. This translates into the strongest diversity scores and the best downstream T-3 accuracy in
subsequent evaluations (see Table 4). The curriculum’s adaptive reweighting prioritizes what is
learning fastest while gradually shifting emphasis to harder signals, yielding a more stable training
trajectory and superior overall abduction quality.

F MATHEMATICAL RELATIONSHIP BETWEEN β & γ

Setup. Let S be the (finite) sample space of inputs with |S| = n, and let F = {f1, . . . , fk} be k
hypotheses. For each f ∈ F, recall the prediction set on S:

Pf := { (in, f(in)) : in ∈ S }
We work under the equal-size assumption (standard in our experiments): every f ∈ F produces
exactly one prediction per input in S, hence |Pf | = n.1 Define the union size

U :=
∣∣∣⋃
f∈F

Pf

∣∣∣, γ(F;S) =
U

|S|
=

U

n
∈ [1, k],

so γ is the average number of unique predictions per input.

Multiplicity cx and the identity
∑

x cx = kn. For each element x in the union
⋃

f∈F Pf , define
its reuse multiplicity

cx := #{ f ∈ F : x ∈ Pf } ∈ {1, . . . , k}.
Intuitively, cx counts in how many hypotheses’ prediction sets the same prediction pair x = (in, out)
appears. By double counting,∑

x

cx =
∑
x

∑
f∈F

1{x ∈ Pf} =
∑
f∈F

∑
x

1{x ∈ Pf} =
∑
f∈F

|Pf | = kn.

The quantity

r :=
kn

U
=

k

γ
∈ [1, k]

is the average reuse multiplicity: on average, each distinct prediction pair in the union is reused by
r hypotheses.

Pairwise intersections and the definition of t. For a pair (fi, fj) with i < j, define

tij :=
∣∣Pfi ∩ Pfj

∣∣ ∈ [0, n],

namely, the number of inputs in S on which fi and fj make the same prediction pair
(
in, f(in)

)
. Let

the total and the average pairwise intersection sizes be

I :=
∑

1≤i<j≤k

tij =
∑
x

(
cx
2

)
=

1

2

(∑
x

c2x − kn
)
, t̄ :=

I(
k
2

) .
1If a hypothesis can be undefined on some inputs, one may attach a sentinel output ⊥; this preserves |Pf | =

n without changing the extremal structure below.
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Jaccard similarity sim(t) and why t/(2n− t). For two finite sets A,B, the Jaccard similarity is

Jacc(A,B) =
|A ∩B|
|A ∪B|

.

Here A = Pfi and B = Pfj satisfy |A| = |B| = n by assumption, so if we denote t = |A∩B| = tij ,
then |A ∪B| = |A|+ |B| − |A ∩B| = 2n− t, and

sim(t) := Jacc(Pfi ,Pfj ) =
t

2n− t
, t ∈ [0, n].

Our β-diversity is the average Jaccard dissimilarity across pairs, i.e.,

β(F;S) =
2

k(k − 1)

∑
i<j

(
1− sim(tij)

)
, so 1− β =

2

k(k − 1)

∑
i<j

sim(tij).

Step 1: Feasible range of the average intersection. By Cauchy–Schwarz,∑
x

c2x ≥
(
∑

x cx)
2

U
=

(kn)2

U
= kn r,

hence

t̄min =
n(r − 1)

k − 1
.

For a matching upper envelope, concentrate as many cx’s at k as possible and set the rest to 1. If t

elements have cx = k and all others have cx = 1, the constraint
∑

x cx = kn gives t =
kn− U

k − 1
=

kn(r − 1)

r(k − 1)
, and every pair shares exactly these t elements, so

t̄max =
kn(r − 1)

r(k − 1)
.

Clearly t̄min ≤ t̄max with equality only at r ∈ {1, k}.

Step 2: Bounds for the average similarity 1 − β. The map sim(t) =
t

2n− t
is increasing and

convex on [0, n]. By Jensen,

1− β =
2

k(k − 1)

∑
i<j

sim(tij) ≥ sim(t̄) ≥ sim(t̄min),

and the “k-shared-core + disjoint-uniques” construction achieves the upper envelope 1 − β =
sim(t̄max). Therefore,

r − 1

2(k − 1)− (r − 1)
≤ 1− β ≤ k(r − 1)

k(r + 1)− 2r
, r =

k

γ
.

Step 3: Bounds expressed purely via γ. Substituting r = k
γ and simplifying yields closed forms:

k − γ

2kγ − γ − k
≤ 1− β ≤ k − γ

k + γ − 2
, γ ∈ [1, k].

Equivalently, for the dissimilarity itself,

2(γ − 1)

k + γ − 2
≤ β ≤ 2k(γ − 1)

2kγ − γ − k
, γ ∈ [1, k].

See Figure 5 in Appendix D for a visualization of the feasible region for different values of k.
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Edge cases. At γ = 1 (all hypotheses make identical predictions on every input), both bounds
give β = 0. At γ = k (all predictions are pairwise disjoint on every input), both bounds give β = 1.
Thus the bounds are tight at the extremes.

Dropping the equal-size assumption |Pfi | = n requires replacing sim(t) by the general Jaccard
formula t/(ni + nj − t) and tracking per-pair sizes (ni, nj). The same extremal principles still
apply; small integrality effects only perturb the finite-sample envelopes by O(1/n).

G PROMPTS

Initialization prompt Pinit

You must return one tuple of two raw strings (no Markdown fences, no back-ticks).

element 0 = concise natural-language hypothesis

element 1 = FULL Python source of exactly one top-level "def"

Code rules (apply to the source string in element 1)

- built-ins only (do not import anything)

- spaces-only indentation (4 spaces), "\n" newlines (no "\r")

- every control-flow header (if/for/while/else/elif/with/try) must break onto

the next line; never place another statement after a colon

- at most 80 characters per line

- the file must compile with ast.parse() and execute with exec() unchanged

- do not add prints, tests, or extra defs; a return must appear in the function

- logic must generalize beyond the given pairs; no hard-coding

Task

- Below are (input, output) pairs \O_n .

- Infer one rule consistent with all pairs and write a function that follows it

on unseen inputs.

Pairs: {{OBS_PAIRS}}

Return only:

(

"My hypothesis in one sentence ...",

"def f(x):\n # your code\n return y"

)

Example format (strictly follow):

(

"Return 6 if 6 appears, else 0","

def f(x):\n

if 6 in x:\n

return [6]\n

return [0]"

)

Note: This template is dataset-agnostic; only \O_n is instantiated per task.
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Iterative prompt Piter

Return one tuple of two raw strings (no Markdown fences, no back-ticks).

element 0 = concise description of a new hypothesis

element 1 = FULL Python source of exactly one top-level "def"

Code rules (identical to P_init)

- built-ins only; spaces-only indentation (4); "\n" newlines

- control-flow headers must break onto the next line; no statements after colon

- <= 80 chars per line; must compile with ast.parse() and run with exec()

- no prints/tests/extra defs; the function must contain a return

- generalize beyond the pairs; no hard-coding

You have proposed the following hypotheses so far:

F_{t-1} = {f_1, ..., f_{t-1}} (summaries below)

{{PREVIOUS_HYPOTHESES}} # e.g., bullet list of brief natural-language hypotheses

Re-examine the (input, output) pairs \O_n :

{{OBS_PAIRS}}

Your goal

- Invent a brand-new hypothesis f_t that

(i) is consistent with all pairs in \O_n, and

(ii) is distinct in underlying principle from every f in F_{t-1}.

Return exactly:

(

"Concise description of the new hypothesis",

"def f(x):\n # your code\n return y"

)

Example format (strictly follow):

(

"Return 6 if 6 appears, else 0","

def f(x):\n

if 6 in x:\n

return [6]\n

return [0]"

)

Note: This template is shared across datasets; only \O_n and F_{t-1} vary.

H USE OF LARGE LANGUAGE MODELS

We used large language models solely for light language editing—polishing phrasing and detecting
grammar/spelling/typos. No ideas, analyses, algorithms, datasets, annotations, or paper results were
generated or modified by LLMs. All technical content was authored and verified by the authors, and
no non-public or personal data were shared with LLMs.
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