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Abstract

Multi-view partial multi-label learning (MVPML)
deals with training data where each example is
represented by multiple feature vectors and asso-
ciated with a set of candidate labels, only a sub-
set of which are correct. The diverse representa-
tion biases present in different views complicate
the annotation process in MVPML, leading to the
inclusion of incorrect labels in the candidate la-
bel set. Existing methods typically merge features
from different views to identify the correct labels
in the training data without addressing the repre-
sentation biases inherent in different views. In this
paper, we propose a novel MVPML method called
VADIS, which investigates view-aware represen-
tations for disambiguation and predictive model
learning. Specifically, we exploit the global com-
mon representation shared by all views, aligning it
with a local semantic similarity matrix to estimate
ground-truth labels via a low-rank mapping matrix.
Additionally, to identify incorrect labels, the view-
specific inconsistent representation is recovered by
leveraging the sparsity assumption. Experiments
on real-world datasets validate the superiority of
our approach over other state-of-the-art methods.

1 INTRODUCTION

Partial multi-label learning has gained significant research
attention as a means of modeling objects with imprecise
semantics Xie and Huang [2018]. In this paradigm, each
example is represented by a single feature vector associ-
ated with a candidate label set, of which only a subset is
deemed valid. In recent years, this framework has been
widely employed in many real-world scenarios with inac-
curate supervision Xie and Huang [2018], Yu et al. [2018],
Sun et al. [2019], Zhang and Fang [2020].
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Argentina

FIFA World Cup

Basketball

Portugal

France

Figure 1: An example multi-view partial multi-label sce-
nario. The news webpage can be represented from different
views such as text, audio, and video. Among the candidate
label set given by the crowdsourced annotators, only ‘Ar-
gentina’, ‘FIFA World Cup’, and ‘France’ are correct.

However, due to the intricate nature of real-world scenar-
ios, objects often encompass descriptions from multiple
perspectives, resulting in complex properties. Furthermore,
the intricate representations stemming from these diverse
viewpoints intensify the challenge of annotation, thereby el-
evating the likelihood of incorrect labeling. As illustrated in
Figure 1, a news webpage can contain multiple views, such
as text, audio, and video, each accompanied by numerous
candidate labels contributed by crowdsourced annotators.
Among these labels, only Argentina, FIFA World Cup, and
France are correct.

To deal with the task under these circumstances, multi-view
partial multi-label learning has emerged Chen et al. [2020],
where each example is represented by multiple feature vec-
tors associated with a candidate label set, of which only
a subset is correct. Several works have been proposed to
address the MVPML problem. One previous attempt Chen
et al. [2020] induces a predictive model by simply fusing
the similarity matrices over each view, followed by label
propagation to disambiguate the candidate label set. Another
method Wu et al. [2020] leverages the aggregated manifold
structure of each view, and then maps the manifold struc-
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ture to the label space for disambiguation. Furthermore, the
latent label distribution is also extracted from the candidate
labels by incorporating the graph-fusion-based topological
structure of the feature space to obtain a predictive model
Xu et al. [2022].

However, the aforementioned works simply fuse the fea-
tures from separate views to facilitate disambiguation, over-
looking the consideration of representation biases existing
across these views. Actually, the diverse representation bi-
ases from different views increase the annotation challenge
in MVPML, resulting in the fact that the incorrect labels are
selected into the candidate label set in the training data. As
the underlying cause of the generation of incorrect labels
in the candidate label set is the foundation of inferring the
true labels to train a reasonable classifier on MVPML data,
the representation biases across different views should be
considered for solving the MVPML problem.

To alleviate this issue, a novel approach named VADIS, i.e.,
View-Aware DISambiguation for multi-view partial multi-
label learning is proposed to explore the feature representa-
tion biases via leveraging the properties of different views
to identify the true labels, and induce the predictive model.
Specifically, we utilize a global common feature represen-
tation shared across all views. This representation, which
corresponds to the local similarity matrix in the semantic
space, is employed to estimate the ground-truth labels by
introducing a low-rank mapping matrix. Moreover, we re-
cover the view-specific feature representation influenced by
inconsistencies, to identify incorrect labels using the sparsity
assumption. Extensive experiments on real-world datasets
validate the superiority of VADIS over other state-of-the-art
methods for solving MVPML problem.

2 RELATED WORKS

In this section, two learning frameworks, namely partial
multi-label learning (PML) Xie and Huang [2018] and multi-
view multi-label learning (MVML) Luo et al. [2013] are
introduced, which are closely related to the multi-view par-
tial multi-label learning (MVPML).

MVPML can be seen as a specialized case of the well-
known PML problem when each instance is represented
by a single feature vector from the same view in the input
space. The PML problem aims to learn from the data where
each instance is associated with a set of candidate labels,
among which only a subset is considered correct. Several
approaches have been proposed in this domain, involving the
use of the confidence scores associated with each candidate
label to determine the correct labels Xie and Huang [2018],
Xu et al. [2020]. Additionally, the low-rank assumption is
employed to identify noise labels for disambiguation Sun
et al. [2019], Yu et al. [2018]. The credible label elicitation
method is used to construct the final prediction, with correct

labels being detected from each candidate label set Zhang
and Fang [2020]. Furthermore, noisy label identification Xie
and Huang [2021] is proposed to tackle the noise labels and
ground-truth labels simultaneously.

On the other hand, MVPML can degenerate into the MVML
problem Luo et al. [2013] when the interference of false-
positive labels is absent in the label space. MVML is aimed
to learn a multi-label classifier from the training data where
each example is represented with multiple feature vec-
tors and associated with multiple correct labels simulta-
neously. Previous works detect the informative subspaces
over different views to learn a predictive model. These low-
dimensional shared subspaces are designed to handle multi-
label image classification, using constraints like consistency
regularization Luo et al. [2013], Zhu et al. [2015], Liu et al.
[2015]. Additionally, some papers propose the co-training
framework Blum and Mitchell [1998], Zhou and Li [2010]
to explore the reliable labeling information communication
over different views by Confidence-rated filtering Xing et al.
[2018] and diversity maximization Zhan and Zhang [2017].
The Hilbert-Schmidt Independence Criterion Zhang et al.
[2018] and matrix factorization Zhu et al. [2018] based on
the measurement of multi-view correlations are used to dis-
cover the shared subspaces. Furthermore, the view-specific
information is also utilized to learn the classification model
Wu et al. [2019].

Both MVML and PML can be viewed as degenerated ver-
sions of MVPML, which makes the task of learning from
MVPML data more challenging to solve. One previous at-
tempt towards MVPML Chen et al. [2020] induces a pre-
dictive model by simply fusing the similarity matrices from
each view and employing label propagation to disambiguate
the candidate label set. Another approach Wu et al. [2020]
deploys the aggregated manifold structure of each view to
disambiguate the candidate label set by mapping the mani-
fold structure to the label space. The latent label distribution
is also learned from the candidate labels by graph-fusion-
based incorporation of the topological structure within the
feature space, to induce a predictive model Xu et al. [2022].
Nonetheless, these methods neglect the impact of the feature
representation biases in different views on the label space.

In the next section, a novel MVPML approach named VADIS
with strong generalization performance is proposed, where
the representation biases in different views are considered
to learn a predictive model.

3 THE PROPOSED APPROACH

3.1 PROBLEM FORMULATION

Formally, let X = Rd1 × Rd2 . . . × RdV denote the input
space consisting of V views, where each view v has a di-
mensionality of dv (1 ≤ v ≤ V ). Furthermore, let Y =



{y1, . . . , yc} denote the label space consisting of c possi-
ble class labels. Let D = {(xi, Yi) | 1 ≤ i ≤ n} denote the
MVPML training set, where xi =

[
x1
i ;x

2
i ; . . . ;x

V
i

]
∈ X is

the
(
d =

∑V
v=1 dv

)
-dimensional multi-view instance and

Yi ⊆ Y is the candidate label set associated with xi. Here,
the ground-truth label set Ỹi ⊆ Y for xi is concealed in
its candidate label set (i.e. Ỹi ⊆ Yi ) and thus not directly
accessible. Accordingly, the task of MVPML is to learn
a multi-label classification model h : X → 2Y from D
which is capable of predicting the proper labels for unseen
instances.

In this paper, let X = [x1,x2, . . . ,xn] ∈ Rd×n denote
the feature matrix, where Xv = [xv

1,x
v
2, . . . ,x

v
n] ∈ Rdv×n

(1 ≤ v ≤ V ) is the feature matrix of the v-th view. Further-
more, let L = [l1, l2, . . . , ln]

⊤ denote the partial multi-label
matrix, where li = [ly1

i ; ly2

i ; . . . ; lyc

i ] ∈ {0, 1}c is the ob-
served label vector of xi, i.e., lyj

i = 1 if yj ∈ Yi, otherwise
l
yj

i = 0.

3.2 THE VADIS FRAMEWORK

In order to capture the view-aware feature representations
from diverse views, we employ the self-representation ap-
proach where an instance can be represented as a linear
combination of other instances. This enables us to learn the
following self-representation Zv of v-th (1 ≤ v ≤ V ) view:

Xv = XvZv +Ev, (1)

where Zv ∈ Rn×n is the learned self-representation matrix
and Ev ∈ Rdv×n is the error term. In Eq. (1), the feature
representation of each view is reconstructed to the same
dimension, which facilitates subsequent learning. Addition-
ally, the reconstruction objective effectively alleviates the
potential loss of representation associated with each view.

Due to the diverse properties inherent in different views,
biases arise in the representation of views, alongside the
shared common representation. These biases are caused by
inconsistencies from different views, prompting us to re-
cover the view-specific-inconsistent representation, denoted
as Ov . Subsequently, the view-aware self-representation Zv

can be decomposed into the global common representation
C shared by all views, and the view-specific-inconsistent
representation Ov .

Zv = C+Ov. (2)

In Eq. (2), the common feature representation matrix C
serves as a global representation, assumed to be related to
the local similarity among instances within each view in the
semantic space. The local similarity of the v-th view denoted
as Sv, is defined. Notably, as the feature representations of
distinct instances grow more alike, the common represen-
tation becomes richer in the specific view. Intuitively, the

common feature representation should exhibit greater sim-
ilarity to Sv

i,j when the i-th and j-th instances within the
v-th view share stronger correlations. Each element Sv

i,j can

be calculated by Sv
i,j = exp(−∥xv

i −xv
j∥2

2 ) if xi is among
K-nearest neighbors of xj , otherwise Sv

i,j = 0. Here, K
represents a preset parameter.

Furthermore, it is essential to note that inconsistent represen-
tations are inherently not universal, making it reasonable to
assume sparsity in the view-specific-inconsistent representa-
tion matrix Ov . Therefore, we can formulate the following
objective function:

min
C,Ov

V∑
v=1

∥Xv −Xv(C+Ov)∥2F + ∥Ov∥1 + ∥C− Sv∥2F

s.t. Xv = XvZv +Ev,Zv = C+Ov.
(3)

Here, the first part represents the self-representation loss,
the second part enforces a sparse constraint on the view-
specific-inconsistent representation, and the final term adds
a constraint based on local similarity.

The observed label matrix L can be divided into two distinct
parts: the ground-truth label matrix L̃ and the remaining
incorrect label matrix N.

L = L̃+N. (4)

To estimate the ground-truth labels from the observed labels,
a matrix P ∈ Rn×c is constructed to map the common
feature representation C to the label space. Furthermore, the
incorrect labels are influenced by representation biases from
different views, suggesting a certain connection between
the view-specific-inconsistent feature representation and the
incorrect labels. Therefore, we introduce a mapping matrix
Q ∈ Rn×c to identify the incorrect labels. As a result, we
obtain the following formula:

L̃ ≈ CP, N ≈ OQ. (5)

Here, O denotes the comprehensive inconsistent representa-
tion acquired through the fusion of view-specific representa-
tions from various views.

It is important to acknowledge that there are well-established
label correlations among different labels in multi-label learn-
ing Zhang and Zhou [2013], which leads to the assumption
that P is linearly dependent to effectively capture such la-
bel correlations, implying P is low-rank. Since the rank
function poses optimization challenges due to its discrete
nature, we opt for the nuclear norm as a replacement Sun
et al. [2019]. Furthermore, the incorrect labels in partial
multi-label learning tend to be sparse within the candidate
label set. To simplify the optimization, we impose a sparse
constraint on the mapping matrix Q. Consequently, we can



formulate the following objective function:

min
C,Ov,P,Q

∥L−CP−OQ∥2F + γ1∥P∥∗ + γ2∥Q∥1

s.t. Xv = XvZv +Ev

Zv = C+Ov,O =
1

V

∑V

v=1
Ov.

(6)

Here, the first part ensures that the learned labels match the
observed labels. The last two components represent low-
rank and sparse constraints applied to different mapping
matrices, where γ1 and γ2 are the trade-off parameters.

Subsequently, the candidate label set is disambiguated by
identifying the correct labels, and a linear predictive model
W is induced. The overall optimization problem can be
achieved as follows:

min
C,P,W,
Ov,Q

V∑
v=1

∥Xv −Xv(C+Ov)∥2F + ∥C− Sv∥2F

+ ∥Ov∥1 + ∥L−CP−OQ∥2F + γ1∥P∥∗
+ γ2∥Q∥1 + ∥L−OQ−X⊤W∥2F + ∥W∥2F

s.t. Xv = XvZv +Ev

Zv = C+Ov,O =
1

V

∑V

v=1
Ov.

(7)
Here, ∥W∥2F is a regularization term to control the model
complexity.

3.3 OPTIMIZATION

In this section, an iterative strategy is utilized to address the
final optimization problem in Eq. (7). When Ov,P,Q and
W are fixed, C could be updated by the following ordinary
least squares problem:

min
C

V∑
v=1

∥Xv −Xv(C+Ov)∥2F + ∥C− Sv∥2F

+ ∥L−CP−OQ∥2F .

(8)

When C,Ov,P and Q are fixed, W could be updated by
the following ridge regression problem:

min
W

∥Y −OQ−X⊤W∥2F + ∥W∥2F . (9)

Note that the computational complexity would be demand-
ing. Following Wang et al. [2019], we adopt an alternating
optimization strategy BFGS for large-scale data sets.

When C,Ov,Q and W are fixed, P could be updated by
the following problem:

min
P

∥L−CP−OQ∥2F + γ1∥P∥∗. (10)

To solve the Eq. (10), we introduce an auxiliary variable
Z ∈ Rn×c and reformulate it into the following equivalent

form:
min
P

∥L−CP−OQ∥2F + γ1∥Z∥∗

s.t. Z = P,

which can be solved by popular ADMM (Alternating Direc-
tion Method of Multiplier) techniques Boyd et al. [2011].
Firstly, an augmented Lagrange function is induced as fol-
lows:

L (P,Z,U; ρ) = ∥L−CP−OQ∥2F + γ1∥Z∥∗

+ ⟨U,P− Z⟩+ ρ

2
∥P− Z∥2F ,

(11)

where U is a Lagrange multiplier matrix, and ρ is a penalty
parameter. Then alternative optimization objectives are as
follows:

Pk+1 = argmin
P

∥L−CP−OQ∥2F +
ρ

2

∥∥∥∥P− Zk +
Uk

ρ

∥∥∥∥2
F

Zk+1 = argmin
Z

γ1∥Z∥∗ +
ρ

2

∥∥∥∥Z−Pk+1 − Uk

ρ

∥∥∥∥2
F

Uk+1 = Uk + ρ
(
Pk+1 − Zk+1

)
.

(12)
The optimization of Pk+1 is an ordinary least squares prob-
lem that is easily solved by Eq. (13). Furthermore, inspired
by Cai et al. [2010], the optimization of Zk+1 can be solved
by Singular Value Thresholding (SVT).

Pk+1 =
(
2C⊤C+ ρI

)−1
( 2C⊤(L−OQ) + ρZk −Uk )

(13)

Zk+1 = D γ1
ρ

(
Pk+1 +

Uk

ρ

)
. (14)

Specifically, Dτ (X) denotes the singular value threshold-
ing operator given by Dτ (X) = USτ (Σ)V∗, where X =
UΣV∗ is any singular value decomposition. Sτ : R → R
is the shrinkage operator Sτ [x] = sgn(x)max(|x| − τ, 0)
Zhuang et al. [2012].

When C,Ov,P and W are fixed, Q could be reformulated
as follows:

min
Q

∥L−CP−OQ∥2F + γ2∥Q∥1 + ∥L−OQ−X⊤W∥2F ,
(15)

Which can also be solved by ADMM. The difference is that
the optimization for Zk+1

1 can be achieved by employing
the shrinkage operator Zhuang et al. [2012].

Zk+1
1 = S γ2

ρ1

(
Qk+1 +

Uk
1

ρ1

)
, (16)

where Z1 is an auxiliary variable, U1 is a Lagrange multi-
plier matrix, and ρ1 is a penalty parameter.

When C,P,Q and W are fixed, Ov could be updated by



Table 1: Characteristics of the multi-view partial multi-label datasets.

DataSets |S| V (S) V Dim(S) CL(S) LCard(S) Domain Description Controlling Parameters
Emotions 593 2 8 / 64 6 1.869 Music Rhythm, Timbre

p ∈ {0.3, 0.7}
r ∈ {1, 2, 3}

Yeast 2,417 2 24 / 79 14 4.237 Biology Genetic Expression, Phylogenetic Profile
Pascal 9,963 5 42 / 100 / 196 / 370 / 310 20 1.465 Images DenseHue, Gist, DenseSift, HSV, Tag

EspGame5k 5,192 4 48 / 91 / 519 / 368 268 4.679 Images DenseHue, Gist, DenseSift, HSV
Mirflickr5k 5,000 5 48 / 93 / 112 / 359 / 318 38 4.711 Images DenseHue, Gist, DenseSift, HSV, Tag

the following problem:

min
Ov

V∑
v=1

∥Xv −Xv(C+Ov)∥2F + ∥C− Sv∥2F

+ ∥Ov∥1 + ∥L−CP−OQ∥2F
+ ∥L−OQ−X⊤W∥2F

s.t. O =
1

V

∑V

v=1
Ov,

(17)

which can also be solved by the ADMM techniques.

Due to page limitations, the complete pseudo-code of the
algorithm can be found in the Appendix. In addition, we
also analyse the time complexity of the VADIS algorithm,
which can be viewed in the Supplementary Material.

3.4 PREDICTION

To predict the appropriate label set for a new instance x,
we employ a virtual label bipartition. Specifically, an ad-
ditional virtual label y0 is introduced as a threshold to cat-
egorize the labels as either relevant or irrelevant. Conse-
quently, the label space Y is expanded to Y ′ = Y ∪ {y0} =
{y0, y1, . . . , yc}. In this paper, ly0

x is set to be 0.5. Let
W∗ = [w∗

0,w
∗
1, . . . ,w

∗
c ] be the final predictive model, pro-

viding the following outputs for each class yj(0 < j < c):

∀cj=0 : f (yj | x) = x⊤w∗
j . (18)

Then, the predicted labels for x are obtained via splitting
the outputs:

ζ(x) = {yj | f (yj | x) > f (y0 | x) , 1 ≤ j ≤ c} . (19)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: Following Chen et al. [2020], Wu et al. [2020],
Xu et al. [2022], five popular real-world multi-view multi-
label datasets from different domains for experiments are
selected, i.e., Emotions Trohidis et al. [2008], Yeast
Elisseeff and Weston [2001], Pascal Everingham et al.
[2010], EspGame5k Von Ahn and Dabbish [2004] and
Mirflickr5k Huiskes and Lew [2008]. Table 1 summa-
rizes the characteristics of the multi-view partial multi-label

datasets. More details on the datasets can be found in Ap-
pendix.

This paper employs a widely-used approach Cour et al.
[2011], Liu and Dietterich [2012], Yu and Zhang [2016]
to construct MVPML examples through the introduction
of candidate labels. The generation process, as shown in
Table 1, relies on two controlling parameters, p and r. Here,
p ∈ (0, 1) is responsible for controlling the proportion of
partially labeled samples within the dataset, while r ∈ N
is employed to regulate the quantity of false-positive labels
in the candidate label set. Let (x, Ỹ ) represent a multi-view
multi-label sample, where Ỹ denotes the ground-truth label
set. To construct an MVPML sample (x, Y ), r false-positive
labels ∆r ⊆ Y \ Ỹ are randomly inserted into Ỹ , i.e.,
Y = Ỹ ∪∆r. This construction process is executed using
six distinct parameter control settings, with p ∈ {0.3, 0.7}
and r ∈ {1, 2, 3} for each real-world dataset in Table 1.

Comparing Algorithms: The performance evaluation of
VADIS involves a comprehensive comparison with various
state-of-the-art approaches. This comparative analysis con-
siders multiple methodologies, each meticulously selected
based on recommendations provided in the pertinent litera-
ture:

• GLADE Xu et al. [2022] where the latent label distribution
is exploited from the candidate labels via the graph-fusion-
based incorporation of the topological structure in the
feature space to induce a predictive model [recommended
configuration: λ = 0.001, γ1 = 5, γ2 = 20].

• FIMAN Wu et al. [2020] where the aggregated manifold
structure is learned to disambiguate the candidate label set
[recommended configuration: td = 0.4, tp = 0.6, k = 10,
and η = 1].

• GRADIS Chen et al. [2020] where the graph-based label
propagation is adopted to learn multi-view representa-
tion and disambiguate candidate label set [recommended
configuration: η = 0.1, α = 0.95, k = 10].

• PML-LRS Sun et al. [2019] where the sparse and low-
rank decomposition strategy are employed to learn from
partial multi-label examples [recommended configuration:
β = 1, γ = 0.1, η = 1].

• LSAMML Zhang et al. [2018] where the Hilbert-Schmidt
Independence Criterion is used for multi-view representa-
tion [recommended configuration: grid search for γ, β ∈{
10−2, 10−1, . . . , 102

}]
.



Table 2: Predictive performance of each comparing method on five datasets in terms of Ranking Loss (mean ± std). The best
performance is marked in bold (the smaller the better).

Datasets Controlling
Parameters

Comparing Approaches

VADIS GLADE F2L2IF FIMAN FPML GRADIS PML-LRS LSAMML

Emotions

r = 1, p = 0.3 0.143±0.027 0.162±0.020 0.232±0.032 0.175±0.022 0.217±0.031 0.184±0.025 0.218±0.030 0.178±0.028
r = 1, p = 0.7 0.153±0.030 0.167±0.025 0.233±0.019 0.186±0.025 0.217±0.027 0.231±0.032 0.217±0.026 0.213±0.047
r = 2, p = 0.3 0.149±0.027 0.173±0.027 0.238±0.027 0.179±0.023 0.224±0.031 0.204±0.025 0.228±0.030 0.194±0.023
r = 2, p = 0.7 0.172±0.033 0.189±0.027 0.254±0.028 0.194±0.016 0.237±0.021 0.298±0.034 0.250±0.035 0.217±0.033
r = 3, p = 0.3 0.144±0.026 0.174±0.027 0.240±0.031 0.176±0.024 0.230±0.028 0.207±0.041 0.227±0.030 0.189±0.024
r = 3, p = 0.7 0.186±0.030 0.189±0.033 0.285±0.036 0.188±0.026 0.267±0.024 0.333±0.043 0.316±0.029 0.229±0.030

Yeast

r = 1, p = 0.3 0.164±0.008 0.167±0.009 0.362±0.015 0.183±0.011 0.212±0.011 0.183±0.008 0.214±0.011 0.502±0.020
r = 1, p = 0.7 0.167±0.008 0.170±0.009 0.366±0.014 0.186±0.011 0.212±0.011 0.214±0.008 0.213±0.011 0.500±0.030
r = 2, p = 0.3 0.168±0.009 0.168±0.008 0.364±0.014 0.185±0.012 0.211±0.011 0.198±0.010 0.213±0.011 0.505±0.022
r = 2, p = 0.7 0.168±0.011 0.171±0.008 0.370±0.014 0.186±0.013 0.212±0.011 0.244±0.012 0.214±0.011 0.499±0.021
r = 3, p = 0.3 0.169±0.010 0.169±0.008 0.365±0.014 0.185±0.011 0.211±0.011 0.208±0.013 0.214±0.011 0.501±0.025
r = 3, p = 0.7 0.170±0.010 0.170±0.010 0.367±0.014 0.187±0.013 0.213±0.011 0.266±0.011 0.213±0.011 0.505±0.020

EspGame5k

r = 1, p = 0.3 0.182±0.005 0.185±0.007 0.234±0.007 0.225±0.007 0.289±0.011 0.234±0.010 0.254±0.007 0.232±0.005
r = 1, p = 0.7 0.185±0.004 0.188±0.005 0.241±0.007 0.229±0.007 0.289±0.011 0.272±0.008 0.259±0.008 0.233±0.005
r = 2, p = 0.3 0.184±0.005 0.188±0.006 0.238±0.008 0.229±0.007 0.289±0.012 0.253±0.006 0.259±0.010 0.235±0.007
r = 2, p = 0.7 0.191±0.006 0.194±0.006 0.253±0.008 0.241±0.009 0.290±0.012 0.314±0.005 0.272±0.011 0.241±0.006
r = 3, p = 0.3 0.188±0.004 0.191±0.006 0.243±0.006 0.233±0.006 0.289±0.010 0.265±0.005 0.265±0.009 0.236±0.004
r = 3, p = 0.7 0.196±0.006 0.198±0.008 0.256±0.009 0.243±0.009 0.289±0.012 0.336±0.008 0.272±0.010 0.242±0.006

Pascal

r = 1, p = 0.3 0.085±0.004 0.089±0.003 0.217±0.008 0.116±0.005 0.267±0.010 0.102±0.008 0.329±0.006 0.244±0.008
r = 1, p = 0.7 0.089±0.004 0.091±0.004 0.237±0.007 0.131±0.007 0.268±0.013 0.113±0.007 0.330±0.010 0.253±0.009
r = 2, p = 0.3 0.087±0.004 0.090±0.003 0.229±0.010 0.124±0.005 0.264±0.012 0.112±0.008 0.328±0.008 0.249±0.008
r = 2, p = 0.7 0.096±0.005 0.096±0.004 0.258±0.008 0.145±0.006 0.275±0.013 0.130±0.005 0.326±0.009 0.264±0.007
r = 3, p = 0.3 0.089±0.004 0.091±0.004 0.242±0.009 0.128±0.005 0.268±0.012 0.114±0.007 0.329±0.008 0.253±0.007
r = 3, p = 0.7 0.101±0.001 0.101±0.005 0.278±0.009 0.159±0.007 0.279±0.013 0.142±0.010 0.318±0.008 0.270±0.009

Mirfickr5k

r = 1, p = 0.3 0.102±0.007 0.113±0.009 0.140±0.010 0.138±0.007 0.193±0.008 0.148±0.007 0.225±0.009 0.189±0.010
r = 1, p = 0.7 0.104±0.008 0.116±0.009 0.142±0.010 0.139±0.007 0.194±0.007 0.190±0.007 0.224±0.009 0.191±0.010
r = 2, p = 0.3 0.104±0.007 0.116±0.009 0.142±0.009 0.140±0.007 0.193±0.008 0.167±0.009 0.224±0.009 0.191±0.010
r = 2, p = 0.7 0.108±0.008 0.124±0.009 0.149±0.009 0.142±0.007 0.194±0.008 0.227±0.006 0.223±0.009 0.196±0.010
r = 3, p = 0.3 0.105±0.008 0.118±0.009 0.144±0.009 0.142±0.007 0.194±0.007 0.176±0.008 0.223±0.009 0.192±0.009
r = 3, p = 0.7 0.110±0.007 0.135±0.009 0.155±0.010 0.145±0.008 0.193±0.007 0.250±0.009 0.216±0.010 0.200±0.010

• FPML Yu et al. [2018] where the noisy labels estimation is
utilized to learn from partial multi-label samples via low-
rank approximation [recommended configuration: λ1 =
1, λ2 = 1, λ3 = 10].

• F2L2IF Zhu et al. [2015] where the block-row sparse
regularization is adopted to learn a shared subspace
[recommended configuration: grid search for λ1, λ2 ∈{
10−2, 10−1, . . . , 102

}]
.

we employ five popular multi-label metrics Zhang and Zhou
[2013] for performance evaluation, i.e., Ranking Loss, Cov-
erage, Average Precision, Hamming Loss and One Error.
Specifically, for Average Precision, the greater, the better,
while for others the opposite. Ten-fold cross-validation is
performed on every dataset, and the mean ± std values are
cataloged for each comparative approach. Details on the
experimental settings can be found in Appendix.

4.2 EXPERIMENTAL RESULTS

The experimental results are displayed in Tables 2, 3. For
the Ranking Loss, VADIS demonstrates outstanding perfor-
mance across all datasets. Regarding Average Precision, our
method achieves the best performance in 27 out of 30 set-
tings. Specifically, for Average Precision, it outperforms oth-
ers in datasets EspGame5k, Pascal and Mirfickr5k.
More results on other metrics can be found in Appendix.

To analyze the relative performance among the compar-

ing approaches in a systematic way, Friedman test Demšar
[2006] is employed for the test of performance comparison.
Table 4 reports the Friedman statistics FF and the corre-
sponding critical value in terms of each evaluation metric.
It is obvious that the null hypothesis of equal performance
is rejected at the significance level of 0.05. Accordingly,
posthoc Boferroni-Dunn test Demšar [2006] is performed
to compare the relative performance among the comparing
approaches. Here, VADIS is treated as the control approach
where the difference of average rank (over all data sets)
between VADIS and one comparing approach is calibrated
with critical difference (CD). The critical difference (CD)
diagrams Demšar [2006] are presented in Figure 2, where
the average rank of each approach is marked along the axis
(the smaller the better). Based on the results, it is obvious to
observe that:

• As illustrated in Figure 2, VADIS demonstrates superior
performance compared to other comparative approaches.
Furthermore, VADIS achieves the lowest average rank
across all evaluation metrics.

• When comparing VADIS to the MVPML approach
GRADIS, VADIS exhibits superior performance in terms
of Ranking Loss, Hamming Loss, Average Precision, and
Coverage. Similarly, when compared to the MVPML ap-
proach FIMAN, VADIS achieves superior results in Av-
erage Precision, Hamming Loss, and Coverage. Further-
more, in comparison to the MVPML approach GLADE,
VADIS outperforms MVPML approach GLADE in terms



Table 3: Predictive performance of each comparing method on five datasets in terms of Average Precision (mean ± std). The
best performance is marked in bold (the larger the better).

Datasets Controlling
Parameters

Comparing Approaches

VADIS GLADE F2L2IF FIMAN FPML GRADIS PML-LRS LSAMML

Emotions

r = 1, p = 0.3 0.821±0.032 0.800±0.031 0.725±0.030 0.792±0.028 0.748±0.027 0.806±0.027 0.739±0.028 0.785±0.034
r = 1, p = 0.7 0.810±0.041 0.786±0.030 0.725±0.022 0.786±0.032 0.748±0.025 0.801±0.033 0.742±0.019 0.753±0.046
r = 2, p = 0.3 0.819±0.032 0.784±0.032 0.721±0.024 0.792±0.028 0.743±0.025 0.817±0.033 0.739±0.024 0.771±0.029
r = 2, p = 0.7 0.802±0.032 0.775±0.033 0.720±0.027 0.775±0.018 0.737±0.019 0.815±0.026 0.729±0.025 0.752±0.031
r = 3, p = 0.3 0.819±0.031 0.784±0.028 0.724±0.027 0.792±0.024 0.734±0.027 0.807±0.038 0.744±0.022 0.780±0.028
r = 3, p = 0.7 0.779±0.035 0.769±0.043 0.684±0.033 0.772±0.027 0.703±0.027 0.730±0.042 0.654±0.030 0.734±0.034

Yeast

r = 1, p = 0.3 0.767±0.012 0.763±0.011 0.597±0.014 0.756±0.013 0.703±0.012 0.764±0.011 0.701±0.012 0.437±0.025
r = 1, p = 0.7 0.762±0.008 0.760±0.012 0.592±0.012 0.753±0.013 0.703±0.013 0.749±0.011 0.702±0.013 0.435±0.029
r = 2, p = 0.3 0.767±0.011 0.763±0.012 0.595±0.011 0.754±0.013 0.703±0.013 0.763±0.013 0.702±0.013 0.440±0.019
r = 2, p = 0.7 0.761±0.015 0.761±0.012 0.588±0.012 0.754±0.013 0.702±0.012 0.749±0.012 0.701±0.012 0.427±0.013
r = 3, p = 0.3 0.764±0.014 0.761±0.011 0.592±0.012 0.754±0.014 0.703±0.013 0.768±0.013 0.702±0.012 0.441±0.027
r = 3, p = 0.7 0.759±0.011 0.762±0.011 0.588±0.012 0.752±0.013 0.703±0.013 0.758±0.010 0.702±0.013 0.417±0.021

EspGame5k

r = 1, p = 0.3 0.425±0.011 0.415±0.010 0.387±0.007 0.397±0.008 0.267±0.011 0.375±0.008 0.346±0.007 0.378±0.008
r = 1, p = 0.7 0.424±0.010 0.415±0.010 0.379±0.008 0.391±0.006 0.267±0.011 0.349±0.008 0.332±0.011 0.376±0.008
r = 2, p = 0.3 0.423±0.012 0.414±0.010 0.381±0.005 0.393±0.006 0.267±0.011 0.365±0.007 0.332±0.010 0.376±0.009
r = 2, p = 0.7 0.420±0.104 0.412±0.008 0.367±0.007 0.380±0.007 0.266±0.010 0.324±0.005 0.302±0.010 0.371±0.008
r = 3, p = 0.3 0.422±0.010 0.412±0.008 0.375±0.005 0.389±0.007 0.267±0.010 0.358±0.008 0.325±0.011 0.373±0.008
r = 3, p = 0.7 0.415±0.011 0.408±0.011 0.353±0.009 0.371±0.009 0.266±0.011 0.315±0.008 0.295±0.011 0.368±0.007

Pascal

r = 1, p = 0.3 0.746±0.009 0.700±0.008 0.548±0.013 0.726±0.009 0.487±0.013 0.719±0.011 0.437±0.010 0.471±0.011
r = 1, p = 0.7 0.741±0.010 0.698±0.009 0.507±0.008 0.700±0.010 0.486±0.019 0.704±0.012 0.429±0.011 0.466±0.010
r = 2, p = 0.3 0.742±0.009 0.698±0.010 0.521±0.011 0.713±0.012 0.495±0.013 0.702±0.013 0.433±0.010 0.469±0.011
r = 2, p = 0.7 0.734±0.009 0.693±0.009 0.476±0.009 0.676±0.010 0.476±0.015 0.683±0.010 0.428±0.010 0.458±0.009
r = 3, p = 0.3 0.743±0.010 0.698±0.009 0.505±0.011 0.705±0.011 0.481±0.011 0.697±0.009 0.431±0.009 0.465±0.010
r = 3, p = 0.7 0.725±0.007 0.688±0.009 0.443±0.011 0.644±0.010 0.461±0.012 0.661±0.013 0.429±0.010 0.452±0.010

Mirfickr5k

r = 1, p = 0.3 0.694±0.015 0.649±0.014 0.617±0.014 0.654±0.014 0.444±0.010 0.617±0.011 0.417±0.013 0.524±0.016
r = 1, p = 0.7 0.692±0.015 0.649±0.013 0.613±0.014 0.653±0.012 0.441±0.010 0.581±0.013 0.417±0.013 0.522±0.015
r = 2, p = 0.3 0.692±0.016 0.650±0.013 0.614±0.013 0.649±0.013 0.444±0.009 0.605±0.013 0.417±0.013 0.523±0.014
r = 2, p = 0.7 0.688±0.015 0.647±0.013 0.606±0.014 0.646±0.012 0.442±0.010 0.555±0.010 0.418±0.012 0.517±0.017
r = 3, p = 0.3 0.690±0.017 0.649±0.013 0.611±0.013 0.647±0.013 0.444±0.011 0.598±0.011 0.418±0.013 0.522±0.016
r = 3, p = 0.7 0.683±0.013 0.646±0.012 0.598±0.015 0.638±0.012 0.441±0.011 0.543±0.010 0.419±0.013 0.513±0.015

Table 4: Friedman statistics FF according to each evaluation
metric and the critical value at the significance level of 0.05.

Evaluation metric FF Critical value

Ranking Loss 54.3549

2.0549
Coverage 61.9823

Average Precision 95.7738
Hamming Loss 23.8863

One Error 117.9339

of Hamming Loss and One Error.

• When compared to the two degenerated MVML ap-
proaches, LSAMML and F2L2IF, VADIS consistently
achieves superior performance across all evaluation met-
rics. Moreover, VADIS surpasses both PML-LRS and
FPML in terms of all evaluation metrics, which are two
degenerated PML approaches.

• As indicated in Tables 2, 3, the performance of VADIS over
competing techniques remains consistent across various
controlling parameter choices for p and r.

4.3 SENSITIVITY ANALYSIS

In this section, we delve into an analysis of VADIS’s per-
formance sensitivity concerning its parameters. Figure 3
serves as a visual representation of VADIS’s performance

Table 5: The reliability of the inconsistent representations
(with controlling configuration: p = 0.7, r = 3) on
Emotions and Yeast. The best performance is marked
in bold (↓ / ↑ indicates the smaller / larger, the better).

Evaluation metric Emotions Yeast

VADIS VADIS-C VADIS VADIS-C

Ranking Loss ↓ 0.186 0.220 0.176 0.246
Coverage ↓ 0.319 0.351 0.472 0.564

Average Precision ↑ 0.779 0.744 0.759 0.670
Hamming Loss ↓ 0.300 0.349 0.226 0.306

One Error ↓ 0.230 0.248 0.206 0.240

across different parameter settings on Emotions and Yeast
datasets, specifically measured in terms of Average Preci-
sion. It’s worth noting that similar patterns of performance
are observed across other datasets as well.

One notable observation is the consistent stability of
VADIS’s performance across a broad spectrum of param-
eter values. This stability is a crucial feature as it enables
the robust application of VADIS without the necessity for
fine-tuning its parameters. Consequently, this characteristic
ensures the delivery of reliable classification results, en-
hancing the utility and effectiveness of VADIS in practical
applications.
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Figure 2: Comparison of VADIS (control algorithm) with other comparative approaches using Bonferroni-Dunn test. In
the CD diagrams, approaches not connected to VADIS are regarded to perform substantially differently than the control
algorithm (CD=1.7013 at the significance level of 0.05).
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Figure 3: Performance sensitivity analysis on Emotions
and Yeast (with controlling configuration: p = 0.3, r =
1): (a) Performance of VADIS changes as γ1 increases from
0.001 to 1000 (γ2 is fixed as 15); (b) Performance of VADIS
changes as γ2 increases from 10 to 70 (γ1 is fixed as 5).

4.4 ABLATION STUDY

VADIS leverages the feature representation biases that under-
lie the generation of incorrect labels in the candidate label
set, enabling the identification of true labels through the
learning of view-specific-inconsistent representations for
disambiguation. To show the reliability of the inconsistent
representations, a variant of VADIS-C is investigated. Ta-
ble 5 reports the detailed results of VADIS and VADIS-C in
terms of each evaluation metric on Emotions and Yeast.
These results substantiate the efficacy of the view-specific-
inconsistent representations in VADIS.

In addition, we have used the local semantic similarity for
aligning with the global consistency representations. so we
have added more ablation experiments to explain the effects.
VADIS-S refers to the model performance after removing
the use of the local similarity matrix for aligning global
consistency representations. The detailed experimental re-
sults on Emotions and Yeast in terms of five metrics are
reported in Table 6.

Additionally, for the learning of false-positive labels, we
analyze the false-positive -label learning by comparing the
estimated false-positive label OQ with the generated false-

Table 6: The effect of local semantic similarity align-
ing (with controlling configuration: p = 0.7, r = 3) on
Emotions and Yeast. The best performance is marked
in bold (↓ / ↑ indicates the smaller / larger, the better).

Evaluation metric Emotions Yeast

VADIS VADIS-S VADIS VADIS-S

Ranking Loss ↓ 0.186 0.214 0.176 0.218
Coverage ↓ 0.319 0.339 0.472 0.502

Average Precision ↑ 0.779 0.757 0.759 0.734
Hamming Loss ↓ 0.300 0.310 0.226 0.254

One Error ↓ 0.230 0.242 0.206 0.222

Table 7: The estimation of false-positive labels on
Emotions during iterations (with controlling configura-
tion: p = 0.7, r = 3) on Emotions.

Method Metrics Iteration

1 5 10 15 20 25 30 35 40

VADIS
Hamming loss 0.265 0.263 0.268 0.266 0.265 0.265 0.263 0.261 0.261

Average precision 0.543 0.547 0.571 0.580 0.588 0.592 0.595 0.596 0.596

VADIS-O
Hamming loss 0.294 0.277 0.278 0.273 0.271 0.270 0.269 0.270 0.269

Average precision 0.589 0.573 0.571 0.570 0.572 0.570 0.571 0.570 0.570

positive label in the emotions. We use a vanilla variant of
VADIS (dubbed VADIS-O) that eliminates the regularizer of
Q and performs the estimation of OQ in Table 7.

5 CONCLUSION

In this paper, we introduce a novel approach called VADIS
to investigate feature representation biases by leveraging the
characteristics of various views for identifying true labels.
Specifically, we employ the global common representation,
corresponding to the local similarity matrix in the seman-
tic space, to estimate true labels using a low-rank mapping
matrix. Additionally, for identifying incorrect labels, we
recover the view-specific inconsistent representation based
on the sparsity assumption. A substantial number of experi-
ments have demonstrated the effectiveness of VADIS.
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A APPENDIX

In this section, we will add some content from the main text section.

A.1 DETAILS OF DATASETS

In this paper, details of the dataset are as follows: For the Emotions dataset, the two views per sample equivalent
to the rhythm features and timbre features of a piece of music; For the EspGame5k dataset, the four views of each
sample equivalent to the DenseHue, Gist, DenseSift, and HSV features of an image; In addition to the four views used by
EspGame5k, the Pascal and Mirflickr5k datasets adopt the tag features to represent each sample; For the Yeast
dataset, the two views of each sample equivalent to the genetic expression and phylogeny profile of a gene.

Furthermore, the specific symbols are explained below:

• |S|: shows the number of samples in each dataset.

• V (S): shows the number and the details of views in each dataset.

• V Dim(S): shows the dimensionality of each view in each dataset.

• CL(S): shows the number of class labels in each dataset.

• LCard(S): shows the average number of ground-truth labels corresponding to each sample (i.e. label cardinality) in each
dataset.

• Domain: shows the domain associated with each view in each dataset.

• Description: shows the feature description associated with each view in each dataset.

A.2 PSEUDO-CODE OF VADIS

The complete pseudo-code of the algorithm is shown in Algorithm 1.

A.3 DETAILS OF EXPERIMENTAL SETTINGS

The code implementation is based on PyTorch, and all the experiments are conducted on NVIDIA RTX 3090. In the
experiments, we set the value of the K-nearest neighbor parameter, K, to 10. As for the control parameters γ1 and γ2, we
consistently fix them at 5 and 15, respectively, across all experiments. Moreover, the number of iterations for optimization in
the experiments is fixed at 200 times. The stopping threshold for the optimization algorithm is set to 1e-4. The pseudo-code
for VADIS is shown in Algorithm 1, where the initialization of P and Q employs torch.rand, while the initialization of W
and C adopts torch.zeros. Ten-fold cross-validation is conducted on each dataset, and the mean and the standard deviation
(mean ± std) values are recorded for each comparative approach.
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Algorithm 1 The pseudo-code of VADIS

Input: the multi-view partial multi-label training set D, the trade-off parameters γ1, γ2 in objective function Eq. (7), the
local similarity of the v-th view Sv (1 ≤ v ≤ V ), the unseen instance x;

1: Calculate the self-representation matrix Zv by Eq. (1) and initialize C(0),Ov(0),P(0),Q(0) and W(0);
2: repeat
3: Update C(t+1) by solving problem Eq. (8) with the BFGS strategy;
4: Update W(t+1) by solving problem Eq. (9) with the ridge regression problem;
5: Update P(t+1) by solving problem Eq. (12) with the Alternating Direction Method of Multiplier;
6: Update Q(t+1) by solving problem Eq. (15) with the Alternating Direction Method of Multiplier;
7: Update Ov(t+1) by solving problem Eq. (17) with the Alternating Direction Method of Multiplier;
8: t = t+ 1;
9: until convergence

10: The final predictive model is obtained by setting W∗ =W(t);
11: Return a proper label set Y according to Eq. (19).
Output: the predicted label set Y for x

A.4 MORE RESULTS OF MVPML DATASETS

Tables 8 ,9 and 10 below show the predictive performance of VADIS with other comparing methods on five datasets in terms
of other evaluation metrics (i.e, Hamming Loss, Coverage and One Error). The best performance is marked in bold (the
smaller the better).

Compared to the comparative methods in terms of Hamming Loss, our approach has delivered comparable performance
across all datasets. Similarly, in the CD Figures (b) and (d) in our paper, both Coverage and Hamming Loss metrics reflect the
excellent performance of VADIS. Regarding One-error, VADIS exhibits strong performance on the EspGame5k, Pascal,
and Mirflickr5k datasets, and in CD Figure (e) in the paper, our method is positioned furthest to the right, indicating
overall superior performance compared to other approaches.

A.5 TIME COMPLEXITY ANALYSIS

What’s more, we discuss the time complexity of our method, which encompasses two aspects: the initiation procedure and the
optimization procedure. The cost of initializing C(0), P(0), Q(0), W(0), and O(0) is O

(
n2 + 2nc+ c

∑V
v=1 dv + V n2

)
.

Then the time consumption of updating C is O
(
T1

(
n2c +

∑V
v=1 dv n2

))
,where T1 is the iteration number of BFGS

in this step. The time consumption of updating W is O
(
T2

(
nc

∑V
v=1 dv

))
, where T2 is the iteration number of ridge

regression problem in this step. The time consumption of updating P,Q, andOv are O
(
T3

(
n2c

))
, O

(
T4

(
n2c

))
, and

O
(
T5

(∑V
v=1 dvn

2 + n2c
))

respectively, where T3, T4, and T5 are the iteration number of Alternating Direction
Method of Multiplier in this step. Therefore, the total time complexity is the merging of the above components.



Table 8: Predictive performance of each comparing method on five datasets in terms of Hamming Loss (mean ± std). The
best performance is marked in bold (the smaller the better).

Datasets Controlling
Parameters

Comparing Approaches

VADIS GLADE F2L2IF FIMAN FPML GRADIS PML-LRS LSAMML

Emotions

r = 1, p = 0.3 0.195±0.018 0.207±0.017 0.422±0.024 0.228±0.019 0.244±0.013 0.218±0.016 0.256±0.018 0.214±0.022
r = 1, p = 0.7 0.204±0.027 0.208±0.018 0.425±0.017 0.235±0.016 0.236±0.015 0.272±0.021 0.237±0.018 0.264±0.035
r = 2, p = 0.3 0.193±0.022 0.206±0.022 0.428±0.022 0.227±0.017 0.233±0.016 0.258±0.019 0.243±0.017 0.235±0.024
r = 2, p = 0.7 0.214±0.018 0.227±0.015 0.440±0.024 0.238±0.011 0.404±0.033 0.358±0.022 0.400±0.024 0.333±0.026
r = 3, p = 0.3 0.199±0.017 0.212±0.016 0.430±0.025 0.233±0.019 0.250±0.017 0.290±0.037 0.236±0.018 0.263±0.020
r = 3, p = 0.7 0.230±0.017 0.236±0.019 0.450±0.030 0.248±0.015 0.679±0.012 0.353±0.025 0.675±0.012 0.536±0.026

Yeast

r = 1, p = 0.3 0.203±0.010 0.229±0.012 0.310±0.009 0.211±0.008 0.232±0.008 0.209±0.007 0.236±0.007 0.303±0.005
r = 1, p = 0.7 0.204±0.010 0.234±0.010 0.314±0.010 0.211±0.007 0.232±0.008 0.235±0.007 0.253±0.007 0.303±0.004
r = 2, p = 0.3 0.204±0.010 0.230±0.009 0.315±0.009 0.213±0.008 0.232±0.008 0.224±0.010 0.250±0.007 0.303±0.005
r = 2, p = 0.7 0.206±0.009 0.233±0.012 0.317±0.008 0.211±0.008 0.236±0.011 0.273±0.011 0.377±0.008 0.303±0.005
r = 3, p = 0.3 0.203±0.008 0.228±0.011 0.313±0.009 0.209±0.007 0.232±0.008 0.244±0.011 0.279±0.010 0.303±0.004
r = 3, p = 0.7 0.206±0.011 0.239±0.009 0.317±0.009 0.211±0.008 0.254±0.010 0.312±0.009 0.590±0.007 0.303±0.004

EspGame5k

r = 1, p = 0.3 0.053±0.001 0.053±0.001 0.081±0.001 0.111±0.002 0.053±0.001 0.057±0.001 0.053±0.001 0.056±0.002
r = 1, p = 0.7 0.053±0.001 0.053±0.001 0.082±0.001 0.119±0.003 0.053±0.001 0.063±0.001 0.053±0.001 0.056±0.002
r = 2, p = 0.3 0.053±0.001 0.053±0.001 0.082±0.001 0.116±0.003 0.053±0.001 0.061±0.001 0.053±0.001 0.056±0.002
r = 2, p = 0.7 0.053±0.001 0.053±0.001 0.083±0.002 0.130±0.004 0.053±0.001 0.075±0.001 0.053±0.001 0.057±0.002
r = 3, p = 0.3 0.053±0.001 0.053±0.001 0.083±0.001 0.118±0.003 0.053±0.001 0.067±0.001 0.053±0.001 0.056±0.002
r = 3, p = 0.7 0.053±0.001 0.053±0.001 0.085±0.001 0.141±0.004 0.053±0.001 0.087±0.002 0.053±0.001 0.058±0.002

Pascal

r = 1, p = 0.3 0.051±0.002 0.121±0.004 0.174±0.003 0.109±0.004 0.067±0.001 0.051±0.001 0.083±0.007 0.074±0.001
r = 1, p = 0.7 0.052±0.002 0.129±0.005 0.176±0.002 0.132±0.003 0.067±0.002 0.052±0.002 0.082±0.007 0.075±0.001
r = 2, p = 0.3 0.052±0.002 0.126±0.005 0.175±0.002 0.121±0.005 0.067±0.001 0.052±0.001 0.083±0.007 0.075±0.001
r = 2, p = 0.7 0.053±0.002 0.143±0.005 0.177±0.002 0.161±0.005 0.068±0.001 0.053±0.001 0.087±0.007 0.077±0.001
r = 3, p = 0.3 0.053±0.002 0.131±0.004 0.176±0.002 0.127±0.005 0.067±0.001 0.053±0.001 0.084±0.006 0.076±0.001
r = 3, p = 0.7 0.055±0.002 0.155±0.005 0.178±0.002 0.191±0.009 0.069±0.001 0.055±0.001 0.108±0.009 0.080±0.001

Mirfickr5k

r = 1, p = 0.3 0.107±0.003 0.163±0.006 0.121±0.002 0.112±0.003 0.124±0.004 0.111±0.004 0.186±0.004 0.125±0.004
r = 1, p = 0.7 0.108±0.004 0.167±0.006 0.122±0.003 0.114±0.003 0.124±0.004 0.122±0.003 0.214±0.003 0.126±0.004
r = 2, p = 0.3 0.107±0.003 0.166±0.006 0.121±0.002 0.113±0.003 0.124±0.004 0.120±0.004 0.208±0.003 0.125±0.004
r = 2, p = 0.7 0.110±0.004 0.170±0.006 0.122±0.002 0.117±0.003 0.124±0.004 0.142±0.004 0.271±0.003 0.127±0.004
r = 3, p = 0.3 0.109±0.003 0.166±0.006 0.122±0.003 0.114±0.003 0.124±0.004 0.129±0.005 0.231±0.002 0.126±0.004
r = 3, p = 0.7 0.112±0.004 0.174±0.006 0.124±0.002 0.120±0.003 0.124±0.004 0.162±0.003 0.353±0.006 0.129±0.004

Table 9: Predictive performance of each comparing method on five datasets in terms of Coverage (mean ± std). The best
performance is marked in bold (the smaller the better).

Datasets Controlling
Parameters

Comparing Approaches

VADIS GLADE F2L2IF FIMAN FPML GRADIS PML-LRS LSAMML

Emotions

r = 1, p = 0.3 0.284±0.023 0.300±0.023 0.357±0.029 0.314±0.026 0.350±0.031 0.372±0.032 0.346±0.028 0.311±0.024
r = 1, p = 0.7 0.291±0.022 0.300±0.023 0.358±0.021 0.323±0.021 0.350±0.027 0.494±0.030 0.345±0.025 0.340±0.043
r = 2, p = 0.3 0.288±0.023 0.308±0.025 0.364±0.027 0.315±0.026 0.356±0.032 0.405±0.022 0.356±0.028 0.323±0.025
r = 2, p = 0.7 0.313±0.030 0.324±0.028 0.385±0.024 0.335±0.020 0.370±0.026 0.593±0.029 0.384±0.034 0.344±0.030
r = 3, p = 0.3 0.284±0.025 0.307±0.027 0.363±0.030 0.313±0.026 0.359±0.029 0.432±0.047 0.356±0.031 0.323±0.025
r = 3, p = 0.7 0.319±0.024 0.320±0.019 0.400±0.025 0.321±0.023 0.394±0.018 0.655±0.030 0.430±0.020 0.352±0.025

Yeast

r = 1, p = 0.3 0.451±0.014 0.455±0.013 0.644±0.012 0.481±0.016 0.485±0.012 0.516±0.014 0.492±0.012 0.747±0.016
r = 1, p = 0.7 0.460±0.015 0.460±0.013 0.648±0.013 0.489±0.016 0.486±0.013 0.606±0.008 0.492±0.012 0.748±0.023
r = 2, p = 0.3 0.458±0.014 0.461±0.013 0.646±0.012 0.486±0.016 0.485±0.013 0.545±0.018 0.492±0.012 0.750±0.020
r = 2, p = 0.7 0.471±0.013 0.460±0.012 0.655±0.012 0.489±0.020 0.487±0.013 0.671±0.013 0.494±0.012 0.748±0.018
r = 3, p = 0.3 0.462±0.015 0.462±0.014 0.646±0.013 0.484±0.018 0.484±0.013 0.561±0.021 0.490±0.012 0.745±0.015
r = 3, p = 0.7 0.472±0.014 0.472±0.013 0.649±0.013 0.488±0.017 0.486±0.013 0.708±0.015 0.487±0.012 0.752±0.018

EspGame5k

r = 1, p = 0.3 0.379±0.008 0.380±0.010 0.456±0.011 0.446±0.011 0.526±0.012 0.482±0.011 0.462±0.012 0.444±0.007
r = 1, p = 0.7 0.383±0.007 0.387±0.009 0.464±0.010 0.453±0.009 0.527±0.012 0.569±0.010 0.472±0.013 0.445±0.005
r = 2, p = 0.3 0.381±0.008 0.385±0.010 0.461±0.011 0.453±0.009 0.527±0.013 0.521±0.012 0.469±0.015 0.450±0.009
r = 2, p = 0.7 0.396±0.009 0.400±0.009 0.481±0.012 0.470±0.014 0.527±0.013 0.657±0.004 0.484±0.013 0.460±0.009
r = 3, p = 0.3 0.387±0.011 0.391±0.011 0.468±0.012 0.456±0.011 0.526±0.012 0.544±0.008 0.477±0.011 0.449±0.004
r = 3, p = 0.7 0.403±0.012 0.405±0.011 0.482±0.013 0.471±0.015 0.527±0.016 0.698±0.013 0.486±0.012 0.459±0.008

Pascal

r = 1, p = 0.3 0.129±0.005 0.132±0.003 0.277±0.010 0.171±0.006 0.343±0.011 0.152±0.010 0.387±0.007 0.302±0.007
r = 1, p = 0.7 0.134±0.005 0.135±0.005 0.297±0.009 0.188±0.008 0.341±0.014 0.164±0.008 0.389±0.010 0.312±0.009
r = 2, p = 0.3 0.132±0.005 0.134±0.004 0.290±0.013 0.181±0.006 0.337±0.012 0.165±0.010 0.388±0.011 0.307±0.007
r = 2, p = 0.7 0.140±0.007 0.142±0.006 0.317±0.009 0.204±0.008 0.348±0.013 0.184±0.005 0.390±0.010 0.327±0.007
r = 3, p = 0.3 0.135±0.005 0.135±0.005 0.302±0.011 0.186±0.007 0.343±0.014 0.166±0.008 0.391±0.010 0.312±0.006
r = 3, p = 0.7 0.146±0.009 0.148±0.007 0.337±0.010 0.219±0.008 0.355±0.014 0.197±0.011 0.390±0.007 0.332±0.009

Mirfickr5k

r = 1, p = 0.3 0.304±0.016 0.310±0.016 0.356±0.016 0.396±0.020 0.419±0.015 0.412±0.015 0.438±0.015 0.418±0.018
r = 1, p = 0.7 0.310±0.016 0.314±0.017 0.363±0.014 0.397±0.019 0.421±0.014 0.534±0.008 0.436±0.015 0.423±0.017
r = 2, p = 0.3 0.310±0.014 0.313±0.015 0.362±0.015 0.401±0.018 0.420±0.015 0.458±0.016 0.437±0.015 0.423±0.017
r = 2, p = 0.7 0.319±0.017 0.319±0.016 0.378±0.014 0.405±0.017 0.421±0.015 0.621±0.015 0.437±0.014 0.434±0.017
r = 3, p = 0.3 0.322±0.016 0.316±0.016 0.367±0.014 0.405±0.020 0.420±0.014 0.478±0.022 0.436±0.015 0.426±0.015
r = 3, p = 0.7 0.326±0.015 0.323±0.015 0.389±0.016 0.408±0.021 0.422±0.014 0.663±0.018 0.435±0.015 0.441±0.016



Table 10: Predictive performance of each comparing method on five datasets in terms of One Error (mean ± std). The best
performance is marked in bold (the smaller the better).

Datasets Controlling
Parameters

Comparing Approaches

VADIS GLADE F2L2IF FIMAN FPML GRADIS PML-LRS LSAMML

Emotions

r = 1, p = 0.3 0.231±0.057 0.273±0.056 0.396±0.054 0.271±0.060 0.340±0.046 0.238±0.048 0.368±0.036 0.293±0.057
r = 1, p = 0.7 0.258±0.076 0.314±0.057 0.391±0.050 0.284±0.065 0.337±0.049 0.219±0.064 0.363±0.024 0.341±0.078
r = 2, p = 0.3 0.220±0.054 0.309±0.060 0.400±0.052 0.276±0.052 0.345±0.045 0.229±0.055 0.362±0.035 0.323±0.059
r = 2, p = 0.7 0.253±0.062 0.317±0.073 0.388±0.069 0.295±0.038 0.359±0.059 0.201±0.058 0.358±0.044 0.342±0.042
r = 3, p = 0.3 0.244±0.067 0.304±0.051 0.398±0.055 0.283±0.039 0.373±0.050 0.176±0.049 0.354±0.030 0.300±0.038
r = 3, p = 0.7 0.300±0.054 0.331±0.090 0.432±0.057 0.320±0.048 0.386±0.053 0.189±0.056 0.434±0.044 0.378±0.057

Yeast

r = 1, p = 0.3 0.211±0.028 0.223±0.016 0.386±0.028 0.216±0.025 0.249±0.022 0.214±0.019 0.249±0.022 0.685±0.056
r = 1, p = 0.7 0.213±0.019 0.224±0.017 0.395±0.026 0.218±0.024 0.251±0.022 0.209±0.016 0.249±0.022 0.694±0.068
r = 2, p = 0.3 0.205±0.031 0.220±0.021 0.383±0.018 0.220±0.026 0.250±0.022 0.206±0.023 0.250±0.022 0.677±0.039
r = 2, p = 0.7 0.231±0.030 0.224±0.018 0.401±0.025 0.223±0.025 0.250±0.021 0.201±0.024 0.249±0.022 0.705±0.033
r = 3, p = 0.3 0.224±0.029 0.224±0.022 0.386±0.025 0.220±0.027 0.249±0.021 0.198±0.023 0.249±0.022 0.681±0.062
r = 3, p = 0.7 0.226±0.018 0.220±0.019 0.401±0.031 0.222±0.022 0.249±0.022 0.192±0.016 0.249±0.022 0.736±0.047

EspGame5k

r = 1, p = 0.3 0.549±0.027 0.557±0.022 0.574±0.014 0.560±0.023 0.758±0.019 0.560±0.023 0.633±0.018 0.586±0.014
r = 1, p = 0.7 0.554±0.022 0.555±0.021 0.583±0.014 0.567±0.017 0.758±0.019 0.560±0.018 0.670±0.023 0.588±0.015
r = 2, p = 0.3 0.550±0.023 0.555±0.024 0.582±0.010 0.559±0.021 0.758±0.019 0.558±0.019 0.663±0.016 0.592±0.011
r = 2, p = 0.7 0.555±0.211 0.559±0.025 0.585±0.014 0.567±0.017 0.758±0.019 0.559±0.016 0.703±0.016 0.595±0.016
r = 3, p = 0.3 0.556±0.024 0.560±0.024 0.585±0.015 0.567±0.018 0.758±0.019 0.559±0.019 0.668±0.017 0.590±0.013
r = 3, p = 0.7 0.560±0.023 0.562±0.026 0.606±0.021 0.584±0.017 0.758±0.019 0.555±0.017 0.718±0.021 0.599±0.011

Pascal

r = 1, p = 0.3 0.302±0.014 0.390±0.015 0.528±0.017 0.302±0.014 0.550±0.018 0.325±0.015 0.575±0.021 0.594±0.017
r = 1, p = 0.7 0.306±0.014 0.390±0.016 0.577±0.010 0.328±0.014 0.553±0.024 0.338±0.018 0.585±0.021 0.597±0.017
r = 2, p = 0.3 0.308±0.012 0.389±0.016 0.561±0.010 0.314±0.018 0.540±0.017 0.342±0.015 0.583±0.021 0.594±0.018
r = 2, p = 0.7 0.310±0.012 0.389±0.018 0.615±0.012 0.354±0.012 0.570±0.023 0.358±0.017 0.584±0.022 0.599±0.015
r = 3, p = 0.3 0.305±0.016 0.388±0.012 0.576±0.011 0.321±0.016 0.559±0.013 0.351±0.014 0.582±0.021 0.597±0.017
r = 3, p = 0.7 0.317±0.009 0.391±0.013 0.654±0.012 0.397±0.014 0.585±0.016 0.384±0.021 0.583±0.021 0.605±0.016

Mirfickr5k

r = 1, p = 0.3 0.234±0.017 0.301±0.020 0.301±0.019 0.234±0.026 0.564±0.021 0.294±0.020 0.576±0.019 0.429±0.020
r = 1, p = 0.7 0.237±0.019 0.300±0.020 0.305±0.022 0.237±0.025 0.567±0.019 0.288±0.020 0.576±0.019 0.428±0.021
r = 2, p = 0.3 0.237±0.018 0.299±0.019 0.305±0.018 0.237±0.021 0.563±0.020 0.287±0.020 0.577±0.019 0.424±0.017
r = 2, p = 0.7 0.236±0.020 0.303±0.019 0.311±0.020 0.236±0.026 0.562±0.023 0.292±0.017 0.576±0.019 0.434±0.023
r = 3, p = 0.3 0.237±0.023 0.300±0.016 0.307±0.014 0.238±0.026 0.564±0.022 0.289±0.021 0.576±0.019 0.433±0.023
r = 3, p = 0.7 0.248±0.020 0.301±0.018 0.317±0.027 0.248±0.019 0.565±0.022 0.289±0.017 0.575±0.019 0.430±0.022
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