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Abstract

Open genomic regions, being accessible to regulatory proteins, could act as the1

on/off switch or amplifier/attenuator of gene expression, and thus reflect the defin-2

ing characteristics of cell types. Many previous models make predictions from the3

sequence to the regulatory region, but the interaction between regulatory regions4

and genes could be complex and differ between cell types. Moreover, current5

models usually only perform well on the cell types in the training set, which are6

not generalizable to data-scarce scenarios. In this work, we propose a simple yet ef-7

fective approach for pre-training genome data in a multi-modal and self-supervised8

manner, which we call GeneBERT. Specifically, we simultaneously take the 1d9

sequence of genome data and a 2d matrix of (transcription factors × regions) as the10

input, where three pre-training tasks are proposed to improve the robustness and11

generalizability of our model. We pre-train our model on the ATAC-seq dataset with12

17 million gene sequences. We evaluate our GeneBERT on various downstream13

tasks, including promoter prediction, transaction factor binding sites prediction,14

disease risks estimation, and RNA-Splicing. Extensive experiments demonstrate15

the effectiveness of multi-modal and self-supervised pre-training for large-scale16

genome data.17

1 Introduction18

In recent years, some works [1, 2] have been proposed to explore the genome data, which only19

perform well on the cell types in the training set. Typically, Enformer [1] combines dilated CNN20

and transformer architecture as well as multi-head output for gene-related tasks, such as expression,21

epigenomic marks, etc. However, there is no objective term for unsupervised pre-training and thus is22

less transferable to data-scarce scenarios. More recently, DNABERT [2] is introduced to formulate23

the whole DNA sequence as a sentence of nucleotide k-mers and utilize BERT to model the sequence24

generatively. However, DNABERT is only applied to downstream tasks such as core promoter25

prediction or TFBS-prediction in a single cell type, where no cell-type specificity was considered.26

Furthermore, no pre-trained models have been developed to model the regulation mechanism across27

various cell types in the human body. Interactions between regulatory regions and genes are not well28

captured, and thus cannot generalize well to different cell types.29

Integration of genome data modalities across different cell types could help to build a more holistic30

model of gene expression regulation and benefit downstream applications such as mutation impact31

evaluation and disease risk prediction, as well as promoting our understanding of cell-type-specific32

regulatory programs and various development processes and disease etiology. Inspired by this fact, in33

this work, we present a simple yet effective method called GeneBERT, for pre-training large-scale34

genome data in a multi-modal and self-supervised manner. Specifically, we simultaneously take the 1d35

modality (i.e. sequence) and a 2d modality (i.e. regulatory region) of genome data as the input, where36

three pre-training tasks are proposed to improve the robustness and generalizability of our model. 1)37
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masked sequence modeling: we randomly mask some parts of the input k-mers with a special token38

(i.e., [MASK]), and the model is trained to predict the masked k-mer. 2) next sequence prediction:39

we train the model using the embedding [CLS] to classify whether a pair of given sequences are40

two consecutive sequences in a cell. 3) sequence-region matching: a sequence-region matching41

mechanism is proposed to capture the multi-modal alignment between sequence and regulatory region42

of genome data.43

We pre-train our GeneBERT on the ATAC-seq dataset with 17 million gene sequences. Furthermore,44

we conduct extensive experiments to evaluate our GeneBERT on four downstream tasks, including45

promoter prediction, transaction factor binding sites prediction, disease risks estimation, and RNA-46

Splicing. Comprehensive ablation studies demonstrate the effectiveness of multi-modal and self-47

supervised pre-training for large-scale genome data.48

The main contributions of this work are summarized as follows:49

• We propose a simple yet effective method named GeneBERT, for large-scale genome data50

pre-training in a multi-modal and self-supervised manner.51

• We are the first to incorporate different genome data modalities across various cell types52

into the pre-training for large-scale genome data.53

• Extensive experiments demonstrate the effectiveness of our model on four downstream54

tasks.55

2 Related Work56

Language/Vision Pre-training. Self-supervised pre-training models such as GPT [3], BERT [4],57

RoBERTa [5], and ERNIE [6] have led to dramatic improvement on a variety of natural language58

processing tasks in the past few years, significantly surpassing the traditional context-independent59

language model such as Word2Vec. RoBERTa [5] uses dynamic MLM and discards NSP, spends a60

long time to train the model. ERNIE [6] masks entities and phrases, this method expects to learn more61

context relations. Multi-modal pre-training has recently addressed researchers’ attention to learning62

meaningful representations. Typically, Previous methods [7, 8] learn visual representations from text63

paired with images in unsupervised, self-supervised, weakly supervised, and supervised ways. Since64

language and vision can share a similar semantic meaning, CLIP [7] is a commonly-used neural65

network trained on a variety of (image, text) pairs for learning transferable visual representations66

from natural language supervision. Huo et al. [8] apply a cross-modal contrastive learning framework67

called BriVL for image-text pre-training. However, in this work, we leverage the multi-modal68

self-supervised pre-training on the genome data to improve the robustness and generalizability of69

pre-trained models used for data-scarce scenarios.70

Genome data pre-training. Transformer models have been recently established to better understand71

the genotype-phenotype relationships [1, 2]. DNABERT uses the human genome to pre-train a72

BERT-based model, trying to decipher the regulatory code related to gene expression [2]. In order to73

adapt the DNA scenario, sequences are split into 5 to 510 base-pair long and tokenized to 3- to 6-mers74

representations. After the pre-training, the model was fine-tuned on three downstream tasks related to75

gene regulation: prediction of promoters, transcription factor binding sites (TFBSs), and splice sites.76

Furthermore, by analyzing the attention maps, DNABERT could visualize the important regions77

contributing to the model decision, which improved the interpretability of the model. Different78

from DNABERT, we incorporate different genome data modalities across various cell types into the79

pre-training for large-scale genome data.80

3 Method81

3.1 Preliminary: BERT82

Masked language model (MLM) and next sentence prediction (NSP) are two core self-supervised83

tasks of BERT, and BERT relies on them for pre-training. MLM is called a cloze task in the literature,84

where we select some percentage of random tokens in the sequence and replace them with masked85

tokens to predict the masked tokens. BERT randomly selects 15% of the input tokens as possible86

objects. Among the selected tokens, 80% are replaced by mask, 10% with randomly selected tokens,87

and 10% left unchanged. NSP is used for binary classification of context relationship between88

sequences, which predicts whether two fragments in the original sequence are related to each other.89

2



3.2 GeneBERT90

In this section, we propose a simple yet effective approach for pre-training genome data in a multi-91

modal and self-supervised manner, as shown in Figure 1.92
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Figure 1: The overall framework of our proposed GeneBERT model.

Sequence Pre-training. For sequence embeddings in the pre-training, we input three types of93

embeddings: 1) a k-mer embedding et for each k-mer in a sequence; 2) a segment embedding es94

indicating which part of the sequence the k-mer is from; 3) a position embedding ep for the position95

of the k-mer in the sequence. The k-mer refers to a sequence with length k, i.e., for a sequence96

AGTCAG, the 3-mers are {AGT, GTC, TCA, CAG}, and the 4-mers are {AGTC, GTCA, TCAG}.97

Then we sum up all three embeddings in a contextual representation en, n ∈ {1, 2, ..., N}, where N98

denotes the number of k-mers in the sequence. After being fed into a BERT-based transformer, those99

contextual embeddings become Eseq. We adopt two similar objectives as BERT, including masked100

language modeling (MLM) Lmlm and next sentence prediction (NSP) Lnsp. For the former objective,101

we randomly mask some parts of the input k-mers with a special token (i.e., [MASK]), and the model102

is trained to predict the masked kmer. As for NSP, we train the model using the embedding [CLS] to103

classify whether a pair of given sequences are consecutive in a cell.104

Region Pre-training. For the region features in the pre-training, we consider a strong backbone105

(i.e. Swin [9]) transformer as the encoder to extract representations Ereg. Specifically, we apply the106

Swin transformer pre-trained on ImageNet to the region input directly to generate Ereg. During the107

pre-training, we do not fix the parameters of Swin transformer and update them for learning better108

regional representations. In the pre-training setting, each region input corresponds to each sequence109

such that we can capture the multi-modal alignment between sequence and region of genome data.110

Sequence-Region Matching. In order to learn the alignments between sequence and region of111

genome data, we propose a sequence-region matching mechanism to sequence embeddings Eseq112

and region embeddings Ereg. Specifically, we calculate the cosine similarity between each pair of113

linguistic embeddings Ei
seq and visual embeddings Ei

reg in a batch of size b, where i ∈ 1, 2, ..., b. Then,114

those similarities are jointly learned for alignments between the whole sequence and each region in115

the same batch, where we maximize the cosine similarity of the sequential and regional embeddings116

of the b correct pairs in the batch while minimizing the cosine similarity of the embeddings of the117

b2b false pairings. We apply a sequence-region matching loss over these similarities scores for118

optimization, and the loss is defined as:119

Lsrm = − log

∑b
i=1 E

i
seq ·Ei

reg∑b
i=1

∑b
j=1 E

i
seq ·E

j
reg

(1)

where b is the batch size. In this way, we maximize the cosine similarity of sequential and regional120

embeddings from correct pairs while minimizing the cosine similarity of embeddings of false pairs.121

Intuitively, alignments between the whole sequence and each region are learned via our Gene-BERT122

in the pre-training process. Thus, the overall objective is defined as L = Lmlm + Lnsp + λ · Lsrm.123

We set λ = [0.01, 1] to perform the parameter study for λ, and observe that the performance of our124

model is stable when λ = [0.5, 1]. In our experiments, we set λ = 0.5.125
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4 Experiments126

4.1 Pre-training Data & Settings127

For pre-training data, we process public human fetal cerebrum single-cell chromatin accessibility128

data in the Descartes database [10] to generate pseudo-bulk accessibility tracks for each cell type129

(Seurat cell clustering provided by the original paper). Specifically, we take the provided ’Peak130

Count Sparse Matrices’ and summed up columns (cells) according to cell type definition, producing131

a regions × cell-types matrix. Then we binarize the matrix and use only non-zero entries (accessible132

regions) for each cell type. The corresponding sequence for each region is then retrieved from hg19133

human reference genome. While the motif scanning for each region is either retrieved from the134

Descartes database or scanned following the same approach using JASPAR 2018 [11] vertebrate135

transcription factor binding site motifs. In total, we use 17 cell types and the union of all accessibility136

track includes 1,000,029 accessible regions across the genome, covering 504,657,456 base pairs. For137

the 1D modality, we group 10 consecutive accessible regions into one sample, which corresponds to138

a (10 × number of TFs) matrix for the 2D modality. Following previous works [2], we pre-train the139

model for 120k steps with a warm-up learning rate of 4e-4 and batch size of 2000. 15% of k-mers in140

each sequence are masked in the first 100k steps, and 20% for the last 20k steps.141

4.2 Downstream Tasks142

We evaluate our GeneBERT on four downstream tasks: promoter classification, Transcription Factor143

Binding Sites (TFBS) classification, splicing, and disease-related regions identification. See more144

experimental results in the Appendix.145

Promoter Classification. Promoters are the elements responsible for regulating the initial transcrip-146

tion of the gene, which is located near the transcription start site (TSS). As the promoters play an147

important role in gene regulation, using machine learning methods to predict promoter sites accurately148

is one of the most popular problems in bioinformatics. Here we first used the promoter core dataset149

from [2], which are the 70bp sequences centered around TSS. Promoter core is the key part of the150

promoter flanking region which is sufficient to direct accurate initiation of transcription [12]. Here we151

fine-tune our GeneBERT model to predict the promoter core sequences. We report the experimental152

results in Table 1. From the results, we can see that our model can predict promoter core accurately.153

Table 1: Comparison results on promoter and TFBS classification.

Task Method Precision Recall AUC

Promoter DNABERT 0.675 0.637 0.693
GeneBERT (ours) 0.805 0.803 0.894

CTCF_A549_CTCF_UW DNABERT 0.250 0.500 0.542
GeneBERT (ours) 0.925 0.921 0.983

CTCF_AG04450_CTCF_UW DNABERT 0.250 0.500 0.501
GeneBERT (ours) 0.929 0.925 0.987

TFBS Classification. Predicting TFBS is an important step in studying gene regulation. Sequencing154

technologies like ChIP-seq can provide information on the in vivo binding sequences, which improve155

the identification of gene regulatory regions. There are several previous studies that tried to predict156

TFBSs using traditional machine learning [13] and deep learning methods [14]. By incorporating157

the multi-modal pre-training, the prediction of TFBSs can be further improved. Although we utilize158

the motif information during the region pre-training, we do not provide any matching information159

to the model, which avoids leaking information about the actual motif of a specific TF. Here we160

fine-tune our model for predicting TFBSs from the ChIP-seq data, using 497 TF ChIP-seq uniform161

peak profiles from ENCODE Consortium [15]. We take the peak sequences of each TF as the positive162

set and generated a corresponding negative set by randomly shuffling the nucleotides in each positive163

sequence while preserving dinucleotide frequencies. Table 1 reports the comparison results and those164

results demonstrate the advantage of our GeneBERT over DNABERT.165

5 Conclusion166

In this work, we present the GeneBERT, a multi-modal self-supervised framework for large-scale167

genome data pre-training. Specifically, we leverage sequence pre-training, region pre-training and168

sequence-region matching together to improve the robustness and generalizability of our model. Ex-169

tensive experiments on four main downstream tasks demonstrate the effectiveness of our GeneBERT170

via multi-modal and self-supervised pre-training for large-scale genome data.171
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A Appendix224

In this appendix, we provide more experimental results on TFBS Classification, disease risks estima-225

tion, and RNA-Splicing.226

TFBS Classification. We report the comparison results in Table 2. We can observe that our227

GeneBERT outperforms DNABERT by a large margin in terms of all protein types TFBSs classifica-228

tion. This further demonstrates the effectiveness of our GeneBERT in boosting the performance via229

incorporating the multi-modal pre-training.230

Table 2: Comparison results on Transcription Factor Binding Sites classification.

Protein Method Precision Recall AUC

CTCF_A549_CTCF_UT-A DNABERT 0.250 0.500 0.501
GeneBERT (ours) 0.908 0.899 0.983

CTCF_A549_CTCF_UW DNABERT 0.250 0.500 0.542
GeneBERT (ours) 0.925 0.921 0.983

CTCF_AG04449_CTCF_UW DNABERT 0.250 0.500 0.523
GeneBERT (ours) 0.907 0.894 0.983

CTCF_AG04450_CTCF_UW DNABERT 0.250 0.500 0.501
GeneBERT (ours) 0.929 0.925 0.987

CTCF_AG09309_CTCF_UW DNABERT 0.250 0.500 0.545
GeneBERT (ours) 0.931 0.927 0.987

CTCF_AG09319_CTCF_UW DNABERT 0.250 0.500 0.529
GeneBERT (ours) 0.924 0.919 0.983

CTCF_AG10803_CTCF_UW DNABERT 0.250 0.500 0.535
GeneBERT (ours) 0.944 0.942 0.991

CTCF_AoAF_CTCF_UW DNABERT 0.250 0.500 0.531
GeneBERT (ours) 0.917 0.913 0.982

CTCF_BE(2)-C_CTCF_UW DNABERT 0.250 0.500 0.540
GeneBERT (ours) 0.937 0.935 0.989

Disease Risks Estimation. GeneBERT could provide more interpretations of complex genetic231

diseases. On the one hand, while the disease status and genomic mutations were available, by232

integrating the 2D-data, the relationships among regulatory regions of genes could be captured,233

which allowed us to estimate the disease risk more accurately. As shown in Table 3, GeneBERT can234

precisely predict Hirschsprung Disease (HSCR), which is known as a genetic disorder with complex235

patterns of inheritance. On the other hand, similar to DNABERT, by comparing the attention maps of236

mutant and wild-type, disease-related regions could be identified and ranked based on the attention237

scores, which could be seen as the candidates of treatment target sites and proceeded to the medical238

experimental validation.239

Table 3: Comparison results on disease risks estimation.

Data Method Precision Recall AUC

HSCR-RET DNABERT 0.265 0.500 0.500
GeneBERT (ours) 0.770 0.519 0.562

HSCR-RET-Long DNABERT 0.252 0.500 0.462
GeneBERT (ours) 0.768 0.513 0.541

Table 4: Comparison results on Splicing datasets.

Data Method Top-k Accuracy PR-AUC

SpliceAI-80nt dilated CNN 0.57 0.60
GeneBERT (ours) 0.83 0.89

SpliceAI-256nt dilated CNN - -
GeneBERT (ours) 0.93 0.95

SpliceAI-400nt dilated CNN 0.90 0.95
GeneBERT (ours) 0.95 0.98

SpliceAI-2k dilated CNN 0.93 0.97
GeneBERT (ours) 0.97 0.99

RNA-Splicing Sites Prediction. RNA Splicing is an important post-transcription processing to240

remove introns from pre-mRNA sequences and generate mature mRNA for protein translation.241

Previously, dilated CNN models have been used to predict splice junction across the genome and242

evaluate the impact of genomics variants on splicing sites [16]. In particular, for each nucleotide in a243

given sequence for splicing site prediction, we follow the previous approach and include a context244

sequence around the nucleotide, which could potentially capture the sequence specificity features245
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of RNA-binding proteins and splicing machinery. Since open chromatin regions and splicing sites246

does not always overlap with each other, among all 548,000 splicing sites in the GTEx pre-mRNA247

transcripts data, our pre-training sequence only fully covers the entire (in the 256nt context setting)248

sequence of 72,500 sites. In total, 26.7% of nucleotides in context and splicing site sequence where249

included in the open chromatin region we used for pre-training. Following the same training/testing250

split scheme and classification metric as in the SpliceAI study [16], we are able to achieve similar or251

better results in different context settings without including a extremely long context sequence. This252

task clearly demonstrated the capacity and generalizablilty of our pre-training model. By integrating253

sequence binding features of RNA binding proteins, we might be able to further extended our model254

to enable cell-type specific splicing junction prediction in the future.255
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