
Under review as a conference paper at ICLR 2021

PROBABILISTIC META-LEARNING FOR
BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer and meta-learning algorithms leverage evaluations on related tasks in
order to significantly speed up learning or optimization on a new problem. For
applications that depend on uncertainty estimates, e.g., in Bayesian optimization,
recent probabilistic approaches have shown good performance at test time, but
either scale poorly with the number of data points or under-perform with little
data on the test task. In this paper, we propose a novel approach to probabilistic
transfer learning that uses a generative model for the underlying data distribution
and simultaneously learns a latent feature distribution to represent unknown task
properties. To enable fast and accurate inference at test-time, we introduce a novel
meta-loss that structures the latent space to match the prior used for inference.
Together, these contributions ensure that our probabilistic model exhibits high
sample-efficiency and provides well-calibrated uncertainty estimates. We evaluate
the proposed approach and compare its performance to probabilistic models from
the literature on a set of Bayesian optimization transfer-learning tasks.

1 INTRODUCTION

Bayesian optimization (BO) is arguably one of the most proven and widely used blackbox optimization
frameworks for expensive functions (Shahriari et al., 2015) with applications that include materials
design (Frazier & Wang, 2016), reinforcement learning (Metzen et al., 2015), and automated machine
learning (ML) (Hutter et al., 2019). In practical applications, BO is repeatedly used to solve variations
of similar tasks. In these cases, the sample efficiency can be further increased by not starting the
optimization from scratch, but rather leveraging previous runs to inform and accelerate the latest one.

Several approaches to this emerged under the name of transfer-learning (Weiss et al., 2016) and
meta-learning (Vanschoren, 2018). Compared to early work by Swersky et al. (2013); Golovin et al.
(2017), recent publications leverage the representative flexibility of neural networks, which allows
for more powerful models and impressive results (Gordon et al., 2019; Rusu et al., 2019; Garnelo
et al., 2018b;a; Zintgraf et al., 2019). Despite these significant advances, only a small subset of
algorithms offers the well-calibrated uncertainty estimates on which BO relies to guide its sampling
strategy efficiently. Additionally, BO benefits greatly from a meaningful prior over tasks that quickly
converges to the true function to provide the highest sample efficiency. Existing work mostly focuses
on deterministic models and, for those providing uncertainty estimates, sample-efficiency at test time
is often a challenge.

Contributions We set out to close this gap and introduce BAyesian optimization with Neural
Networks and Embedding Reasoning (BaNNER), a flexible meta-learning method for BO. We go
beyond previous work of Perrone et al. (2018) and introduce a generative regression model explicitly
conditioned on a low-dimensional latent representation for the tasks. This allows our model to (i)
encode a meaningful prior over tasks and (ii) remain highly sample-efficient, since each new task
only requires inference over a low-dimensional latent representation. To ensure robust training of
our model, we introduce a novel loss function to regularize the latent distribution and optimize our
model’s hyper-parameters using the available meta-data. We evaluate BaNNER on a set of synthetic
benchmarks and two meta-learning problems and compare with the state-of-the-art in the literature.

1

Under review as a conference paper at ICLR 2021

Parameters x

F
u

n
ct

io
n

va
lu

es

f(x, τt)

gθ(x) (BaNNER)

(a) Example tasks and meta-learned prior.

Parameters x

F
u

n
ct

io
n

va
lu

es f(x, τ)

gθ(x) (BaNNER)

(b) Meta-learned posterior after two observations.

Figure 1: Example application BaNNER. Fig. 1a shows functions f(·, τt) based on samples τt ∼ p(T) for a
parameterized Forrester function together with the 2σ confidence interval of the meta-learned prior. In Fig. 1b
we see the corresponding posterior distribution after two data points (blue circles) for a specific test-function
f(x, τ). The confidence intervals contain the true function and collapse quickly, which enables highly-efficient
Bayesian optimization. More plots in Fig. 6 (Appendix A.2).

2 PROBLEM STATEMENT AND BACKGROUND

Our goal is to efficiently optimize an unknown function f(x, τ) over a domain x ∈ X for some
unknown but fixed task parameters τ that are sampled from an unknown distribution τ ∼ p(T).
To this end, at each iteration n we can select function parameters xn and observe a noisy function
value yn = f(xn, τ) + εn, with εn drawn i.i.d. from some distribution pε. While our method can
handle arbitrary noise distributions, we assume a Gaussian distribution, i.e. pε = N (0, σ2), for the
remainder of the paper.

We assume that each evaluation of f is expensive either in terms of monetary cost or time, so that
we want to minimize the number of evaluations of f during the optimization process. The most
data-efficient class of algorithms for this setting are Bayesian optimization (BO) algorithms, which
use the observations collected up to iteration n, Dn = {xi, yi}n−1i=1 , in order to infer a posterior belief
over the function values f(x, τ). To select parameters xn that are informative about the optimum
maxx f(x, τ), BO algorithms define an acquisition function α(·) that uses the posterior belief to
select parameters as xn = argmaxx α(p(f(x, τ) | Dn).

While BO algorithms have been studied extensively, their performance crucially depends on the
properties of the statistical model used for f . The two key requirements for BO algorithms to be
data-efficient are i), that the prior belief over f concentrates quickly on the true function f as we
observe data in Dn and ii), that the posterior uncertainty estimates are calibrated, so that the model
always considers the true function f to be statistically plausible. The latter requirement means that
the true function f(·, τ) must always be contained in the model’s confidence intervals with high
probability. Since the task parameters τ are unknown, in general this requires a conservative model
that works well for all possible tasks τ .

We propose to use meta-learning in order to learn an effective prior (Fig. 1a) that can quickly adapt to
a new task τ (Fig. 1b). We are given data from T previous tasks τt ∼ p(T) with Nt observations
Dmeta
t = {(xn,t, yn,t}Nt

n=1 each. We show the resulting generative model on the left in Fig. 2. Meta-
learning aims to distill the information in Dmeta into a model gθ by optimizing the meta-parameters
θ. At test time, we then keep these parameters fixed and use the learned model gθ to speed up the
optimization of the new function f(·, τ).

3 RELATED WORK

There are several approaches to improve the sample efficiency of BO methods based on information
from related tasks. We refer to (Vanschoren, 2018) for a broad review of meta-learning in the context
of automated machine learning and focus on the most relevant approaches below.

One strategy to improve sample-efficiency is to initialize the BO algorithm with high-quality query
points. These initial configurations can be either constructed to be complementary (Feurer et al.,
2014; 2015; Lindauer & Hutter, 2018) or learned based on data set features (Kim et al., 2017). An

2

Under review as a conference paper at ICLR 2021

Figure 2: Illustration of the generative models. We approximate the unknown function f(x, τ) with gθ(x, z)
by meta-learning the parameters θ based on the noisy observations y = f(x, τ) + ε. We regularize the model so
that we can infer a reliable uncertainty prediction for a new function f(x, τ) through approximate inference on
z in our model. Our method results in reliable confidence intervals and is able to adapt quickly, see Fig. 1.

alternative strategy is to transfer knowledge between tasks by adapting the acquisition function. These
approaches balance exploration and exploitation by weighting the usefulness of a given x not only
on the current task, but also on the related tasks. This trade-off can either be heuristically motivated
(Wistuba et al., 2015; Wistuba et al., 2018), or learned directly (Volpp et al., 2020). All of these
approaches change the BO algorithm, but not the underlying probabilistic model.

Most related to our work are methods that focus on alternative ways to model the observations.
Several methods build a global Gaussian process (GP) models across all tasks (Swersky et al., 2013;
Golovin et al., 2017; Marco et al., 2017; Feurer et al., 2018; Law et al., 2019), which requires
approximations due to the cubic scaling of GPs. A method to avoid this scaling is to use a shared
neural network to learn specialized features for Bayesian Linear Regression (BLR). The method,
dubbed adaptive BLR (ABLR)(Perrone et al., 2018), learns a new BLR model for each task based on
the shared neural network features. This allows ABLR to quickly adapt to new tasks and scale better
than GPs, but limits its predictive power for a small number of test data points. We consider ABLR
to be the state-of-the-art for our setting and use it as a baseline in our experiments.

The problem of adapting a model to a new problem is not unique to BO, but arises in other fields
too. Recent progress in transfer learning (Weiss et al., 2016) and meta-learning(Vanschoren, 2018) is
concerned with the adaptation of a ML model from one or multiple related tasks to a new one. This
transfer often focuses on data-efficiency, which makes them similar to BO. While Frameworks for
general (probabilistic) model adaption (Finn et al., 2017; 2018) exist, our contribution relates to a
subset of approaches that directly model latent task distributions (Gordon et al., 2019; Rusu et al.,
2019; Garnelo et al., 2018b;a; Zintgraf et al., 2019). All of them model the relationship between
tasks using the task specific variables, latent variables, and a model that adapts to new tasks by using
these latent variables (often as an input). Most of these meta-learning algorithms do not consider
active learning as an application and focus on deterministic models gθ. In the following, we propose a
method to meta-learn a probabilistic prior model that we can use together with approximate inference
in order to estimate a posterior distribution for BO.

4 PROBABILISTIC META-LEARNING FOR BAYESIAN OPTIMIZATION

In this section, we discuss how to approximate f(x, τ) with a generative model based on the metadata
Dmeta and how to use this model to infer predictions for BO on a new task, given test-data Dn. We
use a neural network gθ(x, z) to approximate the unknown function f(x, τ). Next to the function
inputs x, the network depends on trainable meta-parameters θ shared between all tasks, and an
encoding z ∈ Z ⊆ Rd of the task-specific parameters τ . We refer to the latter as task embeddings
in the following, since they represent unknown task parameters τ . In addition to being used as
additional inputs to the network g, the latent parameter space Z can also include task-dependent
network parameters, e.g., weights of the output layer. Since we do not know τ and p(T), we can not
match z to τ directly. Instead, we assume a fixed and known prior distribution p(Z) to turn gθ into a
generative network. Without loss of generality, we focus on a Gaussian prior p(Z) = N (0, I) in the
following. The resulting approximative generative model is shown on the right in Fig. 2.

Meta training The goal of meta-learning is to select appropriate global parameters θ so that
for each task τ ∈ T there exists a corresponding latent encoding z ∈ Z with f(x, τ) = gθ(x, z).

3

Under review as a conference paper at ICLR 2021

Since we have no information about τ , we train a separate task embedding zt for each task τt by
optimizing them jointly with the parameters θ. We can view the resulting model as a variational
autoencoder, where we directly optimize over the outputs zt of the encoder, without committing to
a specific parametric form. We can optimize the model’s predictive performance on the meta-data
by maximizing the log-likelihood L(xn,t, yn,t; θ, zt) = log pε(yn,t | gθ(xn,t, zt)) of the parameters
and observations for each of the T meta-tasks together with the corresponding task embedding:

max
θ,z1,...,zT

T∑
t=1

1

Nt

∑
(x,y)∈Dmeta

t

L
(
x, y; θ, zt

)
− λR

(
{z1, . . . , zT } || p(Z)

)
, (1)

where we rescale the likelihood for each meta-task by Nt, the number of data points per task, to
account for imbalanced data which skews the loss towards tasks with many evaluations. Without
regularization, this model could easily overfit to each task by placing the task embeddings zt in
disjoint areas of the domain. In that case, samples from the Gaussian prior p(Z) would lead to
function samples with low probability-mass under p(T). To avoid this, we introduce a regularization
termR scaled by an appropriate constant λ ∈ R>0 in order to get a more uniform loss approximation
over Z . We discuss the specific choice that we use to enable reliable and efficient inference below.

Inference Given the meta-trained generative model, we can make predictions about a new task
f(·, τ). That is, after n ≥ 0 noisy observations of function values in Dn, we can infer a posterior
belief over the task embeddings, p(z | Dn, θ). While this is generally intractable analytically,
approximate inference methods are generally reliable enough to make this tractable. For example,
we use Hamiltonian Monte Carlo (HMC) (Neal, 2011) in our experiments. Given samples from
this posterior belief, we obtain a posterior belief over function values f(x, τ) from a monte-carlo
approximation of

p(gθ(x) | Dn,x, θ) =

∫
gθ(x, z) p(z | Dn, θ) ∂z = Ez∼p(z|Dn,θ) [gθ(x, z)] . (2)

We can view this posterior inference as a task-specific adaptation of the parameters z in order to
match g to f . In contrast to deterministic meta-learning approaches, here the adaptation does not
happen directly through an optimization process such as gradient descent, but through approximate
Bayesian inference. This enables us to naturally capture uncertainty depending on the amount of data
in Dn that we condition on.

Regularizing the Latent space We can only expect the inference over the predictive distribution
in (2) to work well if the two generative models in Fig. 2 encode similar distributions over functions;
that is, if f(x, τ) with τ ∼ p(T) has a similar distribution as gθ(x, z) with z ∼ p(Z) for all x ∈ X .
This generally requires each sample z ∼ p(Z) to be associated with a meaningful function gθ(x, z).
In this paper, we achieve this through regularizing zt to be close to the prior distribution p(Z) and
regularizing the network gθ to be smooth. Regularizing p(Z) encourages a meaningful prior over
functions where each sample has probability mass under p(T), while the regularization of g ensures
that samples from the posterior p(gθ(x) | Dn,x, θ) vary smoothly across Z .

To regularize the task embeddings one might be tempted to use the log-likelihood of the prior p(Z).
However, Tolstikhin et al. (2018) show that this can lead to poor inference results, since a Gaussian
prior regularizes ‖zt‖2, rather than covering the probability mass of p(Z) uniformly. Instead, Ghosh
et al. (2020) propose to use a deterministic regularizer during training and use density estimation to
determine the prior p(Z).

We propose a novel regularizer that is both deterministic (does not require stochastic approximations)
and regularizes the empirical distribution of zt to a Gaussian prior p(Z) = N (0, I) in a tractable
way. We are inspired by the Kolmogorov-Smirnov test for one-dimensional distributions, which we
use to compare the empirical cumulative distribution function (CDF) of the elements [zt]i in zt with
the marginal CDFs over the dimensions of the prior p(Z). We show an example in Fig. 5 in the
appendix. The empirical CDF is defined as F (z, d) = 1

T

∑T
t=1 I([zt]d ≤ z), where I([zt]i ≤ z) is

the indicator function that returns one if the ith component of zt is smaller or equal than z and zero
otherwise. In addition to the marginals, we account for correlations by regularizing the empirical
covariance matrix Cov({z1, . . . , zT }) to be close to that of p(Z), which is the identity matrix in our

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Probabilistic Meta-learning for Bayesian Optimization

1: Given meta-data Dmeta
t for tasks t = 1, . . . , T

2: θ ← meta-train by minimizing loss (1) on the metadata
3: New, unknown task τ ∼ P (τ), D1 ← ∅
4: for iteration n = 1, . . . do
5: Approximate predictive distribution p(gθ(x) | D,x, θ) in (2)
6: xn = argmaxα(p(gθ(x) | x, θ,Dn)) . Optimize BO acquisition function
7: Dn+1 ← Dn ∪ {(xn, f(xn, τ) + εn)}

setting. The resulting regularizer,

R
(
{z1, . . . , zT } || p(Z)

)
=

d∑
i=1

(F ([zt]i)− Φ([zt]i))
2

︸ ︷︷ ︸
Match marginal CDF of p(Z)

+ λc‖I− Cov({z1, . . . , zT })‖2F︸ ︷︷ ︸
Match second moment of p(Z)

, (3)

trades off the loss for the empirical, marginal CDF of the task embeddings relative to the one for the
second moment through a scaling parameter λc. Unlike the original Kolmogorov-Smirnov test, (3)
uses the average distance between the CDFs at the points zt. We found this to lead to more stable
training than the original formulation which uses the maximum over Z . In practice, many different
tests for assessing multivariate normality exist (Korkmax et al., 2014) and could be used instead of
(3). For example, Marida’s test (Mardia, 1970) also considers higher-order moments. However, we
found it to be too computationally expensive relative to the cheap O(dT (log(T) + d) complexity of
(3) and the latter was sufficient to achieve high performance in our experiments.

While the log-likelihood term L in (1) encourages a good fit for each meta-task and the regularization
R in (3) forces the meta-task embeddings conform with the prior p(Z), we also have to ensure
that gθ interpolates between the different task embeddings smoothly in order to obtain meaningful
functions gθ(·, z) for z ∼ p(z) that are not part of the task-embeddings during training. A simple
trick to enforce smoothness is to add noise to the embeddings during training, which is equivalent to
regularizing the Hessian ∂2gθ(x, z) / ∂z∂z for Gaussian likelihoods pε (Webb, 1994; Bishop, 1995;
An, 1996).

Bayesian optimization algorithms can directly use the predictive distribution (2) in the acquisition
function α in order to select informative parameters xn. Most acquisition functions only depend on
the mean and variance of the predictions or samples from the posterior, all of which can be directly
computed from (2). The overall algorithm is summarized in Algorithm 1: We first use the meta-data
to minimize the regularized meta-loss in Line 2. In Line 3 we get a new task τ and start without any
test data D1 = ∅. After that, we proceed iteratively and approximate the predictive distribution, select
new parameters to use by maximizing BO’s acquisition function, evaluate test-task f(xn, τ), and add
the data point to our test data set.

Selecting hyperparameters Like most machine learning methods, BaNNER depends on hyperpa-
rameters that include the regularization constants λ, λc, parameters of the BO acquisition function α,
the amount of noise to add for regularization, training-specific hyperparameters like learning-rates
and batch-sizes, and inference-specific hyperparameters such as the length and number of the chains
that we sample from. In practice, these have to be selected based on the meta-data only, since we
typically cannot generate additional meta-training data easily or cheaply. For our experiments, we
split the metadata into train and validation sets and select hyperparameters by comparing the average
log likelihood of the trained models. For BO tasks, we split each validation task randomly into data
points that we condition on in (2) and points that we use to evaluate the likelihood.

To efficiently optimize all these parameters we use BOHB (Falkner et al., 2018), a highly parallel
framework to optimize hyperparameters. To speed up computation, we use BOHB’s multi-fidelity
capabilities and scale the number of meta-training iterations and validation tasks used to compute the
validation loss with the fidelity. This allows us to quickly find promising regions of the hyperparameter
search space and focus the compute resources there.

5

Under review as a conference paper at ICLR 2021

5 EMPIRICAL EVALUATION

In this section, we evaluate BaNNER in different scenarios and compare it to other methods. We focus
specifically on low-dimensional problems where BO outperforms other global optimization methods.
As benchmarks we designed five synthetic function ensembles from well-known benchmark function.
These include functions where the optimum of tasks varies only locally and benchmarks where the
minima vary over the entire domain so that the model must adapt globally. Additionally we evaluate
simulated meta-learning tasks, where the objective is to efficiently optimize the hyper-parameters of
two machine learning algorithms across different data sets.

We use two variants of BaNNER. One that only considers task embeddings as input and one that
additionally considers BLR over the last layer, dubbed BaNNER-BLR in the following. We compare
both to several baselines: Random search is a simple yet often surprisingly competitive baseline in
the hyperparameter optimization settings (Bergstra & Bengio, 2012; Li et al., 2017). We also consider
Gaussian process based BO (GPBO), which is the de-facto default for low-dimensional problems
in the BO community. Lastly, we compare to ABLR by Perrone et al. (2018), which we see as the
state-of-the-art for our problem setting. We do not consider approaches like stacked GPs (Golovin
et al., 2017) and weighted GP ensembles (Feurer et al., 2018) that do not scale to the large meta-data
sets we consider.

We implement ABLR and BaNNER in PyTorch (Paszke et al., 2019) and use the open source Gaussian
Process implementation from Emukit for GPBO (Paleyes et al., 2019). The latter is a modular BO
framework, which we use to evaluate and compare all methods. All experiments use the default BO
parameters with expected improvement (EI) as the acquisition function. We will make all model
implementations and code to reproduce the experiments presented below openly available after
acceptance of the paper.

5.1 SYNTHETIC FUNCTION ENSEMBLES

We derive all ensembles of function in this section from well-known functions by replacing parameters
of the function with distributions over them. These include one-dimensional quadratic functions and
an ensemble of Forrester functions (Forrester et al., 2008), as well as extended multi-dimensional
functions Branin, Hartmann3 and Hartmann6 (Dixon & Szego, 1978). We provide details about these
functions, their parameter distributions, and the meta data in Appendix B.

The Forrester ensemble shown in our illustrative example in Fig. 1 represents the easiest benchmark.
The provided meta data covers both X and T well and the optimum often falls into a relatively small
region of the search space. As one would expect, the results in the left panel of Fig. 3 show that
BO benefits strongly form any meta-learning model. Both variants of BaNNER start with already
low regret and keep improving, while ABLR starts consistently worse than random sampling, but
improves more quickly than GPBO. The reason for this is that ABLR starts with an uninformed BLR
layer that has a symmetric prior over all weights. Since the meta-data is normalized, this means that
the mean prediction of ABLR without tests points is equal to the mean of the meta data. Since the
weight prior is uniform, the predictive variance is large whenever the neural network features attain
large absolute values, which occurs at points where the training data is most extreme. For Forrester,
this coincides with the large function values at x = 1, which is not close to the optimum.

Our second example consists of one-dimensional quadratic functions. For this benchmark, we provide
less meta data per task and allow shifts, so that the minimum of the function can vary over the domain.
Methods that quickly estimate the overall global shape of the function can expect small regret. We
show results in the right panel of Fig. 3 for 256 different runs. We can see that both variants of
BaNNER achieve the lowest mean regret. Surprisingly, ABLR performs worse than random search,
indicating that the small number of meta-data points did not allow ABLR to learn representative
features, even though the network is capable of approximating the optimal features 1, x, and x2 easily.
We suspect that the regularization in BaNNER helped mitigate these problems.

The third ensemble based on the two-dimensional Branin function, has a true latent dimensionality six,
τ ∈ R6. The results in the bottom-left panel in Fig. 3 show a similar picture to the two benchmarks
above: Both variants of BaNNER perform best from the beginning and GPBO eventually closes the
gap. ABLR’s initial evaluation are poor, but it quickly improves to outperform Random Search and
GPBO for the first 16 iterations, at which point it stagnates without further improvement.

6

Under review as a conference paper at ICLR 2021

Forrester ensemble

0 2 4 6 8 10 12 14 16
Iteration

10−4

10−2

100

102

S
im

p
le

re
g
re

t

Quadratic ensemble

0 2 4 6 8
Iteration

10−5

10−3

10−1

101

S
im

p
le

re
g
re

t

Branin ensemble

0 4 8 12 16 20 24 28 32
Iteration

10−3

10−1

101

103

S
im

p
le

re
g
re

t

Hardmann6 ensemble

0 32 64 96 128
Iteration

10−2

10−1

100

101

S
im

p
le

re
g
re

t

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Random search GPBO ABLR BaNNER BaNNER-BLR

Figure 3: Performance on two synthetic function ensembles. All show the mean ± the standard error of the
mean (95% confidence) for 256 independent evaluations. For the Forrester ensemble, a strong prior without any
test data leads to a strong performance right from the start for both variants of our method. For the quadratic
functions, the strength of the meta-models lies in knowing the global shape of the functions, rather than knowing
a-priory the location of the optimum. ABLR failed to learn useful features from the provided meta-data, possibly
due to the over-parametrized network and more broadly distributed y values. With growing complexity and a
smaller ratio of number of points per task per dimension, the performance of the meta-learning models degrades
and they fail to improve over time, especially for Hartmann6. In all cases, the GPBO method eventually catches
up and usually outperforms the other methods, but meta-learning leads to strong early performance in all cases.
Additional plots including also an ensemble of Hartmann3 functions can be found in Appendix A.

Our last two synthetic ensembles are based on the Hartmann3 and Hartmann6 functions, where we
deliberately deliberately does not contain near-optimal points for meta-training. All meta-learning
algorithms perform similarly (see Fig. 3 for Hartmann6 and Appendix A for Hartmann3): After a
short improvement, BaNNER and ABLR stagnate and GPBO outperforms them. We attribute this to
the growing complexity of the functions in terms of the search space size and the size of the training
data set, which does not allow the models to adapt to test points beyond a certain accuracy. For
Hartmann6, all three meta-learning algorithms exhibit nearly the same performance, which could
indicate that the type of probabilistic model becomes less relevant, if the meta-model lacks the
necessary precision around the optimum.

In summary, the synthetic experiments demonstrate the potential improvements of a probabilistic
meta-model in BO and also explored its limitations when the meta data does not cover the minima
sufficiently. We would like to highlight that in the case of good coverage of both, τ and x, the
additional task parameters in the BLR layer of BaNNER-BLR did not provide any benefit.

5.2 META-LEARNING SURROGATE BENCHMARKS

We now consider a more practical meta-learning application: tuning the hyperparameters of ML
algorithms across different data sets. In this setting, f(x, τ) represents the performance of an
algorithm on a specific dataset that has unknown properties τ . Instead of optimizing the ML
algorithms directly, we use HPOlib2 (Eggensperger et al., 2013), a library dedicated to the evaluation
of hyperparameter optimization algorithms. HPOlib2 replaces the costly training step by a cheap
lookup based on a large number of hyperparameter evaluations.

We evaluate our method and the baselines on two benchmarks: The training of GLMNET (Genaralized
Linear Models with elastic NET regularization) (Friedman et al., 2010) and Ranger, a random forest
implementation, (Wright & Ziegler, 2017) and their evaluations on 37 data sets(Kühn et al., 2018b).

7

Under review as a conference paper at ICLR 2021

GLMNET1471

0 4 8 12 16
Iteration

10−5

10−4

10−3

10−2

10−1

S
im

p
le

re
g
re

t

Ranger1489

0 32 64 96 128
Iteration

10−4

10−2

100

S
im

p
le

re
g
re

t

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Random search GPBO ABLR BaNNER BaNNER-BLR

Figure 4: Performance on two surrogate meta-learning problems. Both show the mean ± the standard error of
the mean (95% confidence). We ran every method 256 times with different seeds.

Both of the benchmarks have data sets available on OpenML (Van Rijn et al., 2013) and the collected
evaluation data is licensed under creative commons (Kühn et al., 2018). Moreover, the two algorithms
are well understood ML methods that usually benefit from optimizing their hyperparameters. We
provide more details in Appendix C.

For our experiments, we randomly split the data sets into 32 meta-data sets and 5 test data sets. We
refer to these benchmarks as, e.g., GLMNET335 or Ranger1487, where the id corresponds to the
data set that the method was trained on. We refer to (Kühn et al., 2018b) details about the data sets
and their properties. For the meta training data, we sampled 128, and 512 points for GLMNET and
Ranger respectively using the surrogate model. Instead of validating on unseen tasks with unseen
hyperparameter settings, we reuse the training tasks, but with an unseen set of x. In this scheme, the
hyperparameter optimization tuning BaNNER’s parameters cannot estimate the generalization to new
tasks. We do this to avoid a computationally expensive cross-validation scheme that would require
several fits of the meta-learning models. Our results verfy this simplified validation in our scenario,
suggesting that the test tasks are sufficiently similar to the training tasks.

Figure 4 shows representative results on one of data sets per ML method. We see a strong performance
on the very first iterations for BaNNER and BaNNER-BLR compared to random sampling. The
performance of ABLR’s initial guess fluctuates depending on the data set. We attribute this again to
the uninformed BLR layer at the beginning, as discussed above. The plots for all data sets can be
found in Appendix A. Notably, in this scenario BaNNER-BLR seems to outperform BaNNER. We
suspect that the good coverage in x, but the rather poor coverage of τ (due to the small number of
datatsets) could be an explanation. Another difference to the experiments in Section 5.2 lies in the
inherent noise of the evaluations, which could also be more effectively countered by adapting the
output layer of the network rather than the embedding.

Besides this, the results look similar to the ones above: our method consistently learns a better prior
for the first iterations and usually adapts quickly to competitive regret values. Unlike above, GPBO
does not perform much better in the shown number of iterations then the other methods. There are a
few examples (GLMNET1489 and Ranger1485) where ABLR has the best initial guess and performs
the best. We can only speculate for the reasons, but want to point out that 1485 is quite a large data
set with many features compared to the meta training data sets, and 1489 is slightly more imbalanced
then the average. Data set 1504 turned out to be easy and all methods, even Random Search, perfectly
tune both models within a few iterations.

6 CONCLUSION

We have presented BaNNER, a novel approach to probabilistic meta-learning by training a generative
model that mimics the data generation process. Our meta-loss contains regularization inspired by
statistical tests and enables training the model deterministically while still allowing for efficient
inference based on multivariate normal prior. In our experiments we use BaNNER as a model in
Bayesian optimization (BO) and on meta-learning tasks, which demonstrate higher sample-efficiency
than both standard BO with Gaussian processes and ABLR, the state-of-the-art probabilistic model
for scalable transfer-learning in BO.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Guozhong An. The effects of adding noise during backpropagation training on a generalization
performance. Neural computation, 8(3):643–674, 1996.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation, 7
(1):108–116, 1995.

L.C.W. Dixon and G.P. Szego. The global optimisation problem: an introduction. In L.C.W. Dixon
and G.P. Szego (eds.), Towards Global Optimisation 2, pp. 1–15. North-Holland Pub, New York,
1978.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger H Hoos,
and Kevin Leyton-brown. Towards an empirical foundation for assessing bayesian optimization
of hyperparameters. In In NeurIPS Workshop on Bayesian Optimization in Theory and Practice.
Citeseer, 2013.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pp. 1437–1446, 2018.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using meta-learning to initialize
bayesian optimization of hyperparameters. In Proceedings of the 2014 International Conference
on Meta-learning and Algorithm Selection-Volume 1201, pp. 3–10. Citeseer, 2014.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In Advances in neural information
processing systems, pp. 2962–2970, 2015.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian optimiza-
tion. arXiv preprint arXiv:1802.02219, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pp. 9516–9527, 2018.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate modelling:
a practical guide. John Wiley & Sons, 2008.

Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. In Information Science
for Materials Discovery and Design, pp. 45–75. Springer, 2016.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL
http://www.jstatsoft.org/v33/i01/.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. J. Black, and B. Schölkopf. From variational to determin-
istic autoencoders. In 8th International Conference on Learning Representations (ICLR), April
2020. *equal contribution.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1487–1495, 2017.

9

http://www.jstatsoft.org/v33/i01/

Under review as a conference paper at ICLR 2021

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=HkxStoC5F7.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning. Springer, 2019.

Jungtaek Kim, Saehoon Kim, and Seungjin Choi. Learning to warm-start bayesian hyperparameter
optimization. arXiv preprint arXiv:1710.06219, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Selcuk Korkmax, Dincer Goksuluk, and Gokmen Zarasiz. MVN: An R package for assessing
multivariate normality. The R Journal, 6(2):151–162, 12 2014. ISSN 2073-4859.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. Automatic exploration of machine
learning experiments on openml. ArXiv, abs/1806.10961, 2018a.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. Automatic exploration of machine
learning experiments on openml. arXiv preprint arXiv:1806.10961, 2018b.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. OpenML R Bot Benchmark Data (final
subset). figshare, 3 2018. doi: 10.6084/m9.figshare.5882230.v2. URL https://figshare.
com/articles/OpenML_R_Bot_Benchmark_Data_final_subset_/5882230.

Ho Chung Law, Peilin Zhao, Leung Sing Chan, Junzhou Huang, and Dino Sejdinovic. Hyperparameter
learning via distributional transfer. In Advances in Neural Information Processing Systems, pp.
6801–6812, 2019.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Marius Lindauer and Frank Hutter. Warmstarting of model-based algorithm configuration. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan
Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simulations and physical experiments
in reinforcement learning with Bayesian optimization. In Proc. of the International Conference on
Robotics and Automation (ICRA), pp. 1557–1563, 2017.

K. V. Mardia. Measures of multivariate skewness and kurtosis with applications. Biometrika,
57(3):519–530, 12 1970. ISSN 0006-3444. doi: 10.1093/biomet/57.3.519. URL https:
//doi.org/10.1093/biomet/57.3.519.

Jan Hendrik Metzen, Alexander Fabisch, and Jonas Hansen. Bayesian optimization for contextual
policy search. In Proceedings of the Second Machine Learning in Planning and Control of Robot
Motion Workshop. IROS Hamburg, 2015.

Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, pp.
113, 2011.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier González. Emulation
of physical processes with emukit. In Second Workshop on Machine Learning and the Physical
Sciences, NeurIPS, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

10

https://openreview.net/forum?id=HkxStoC5F7
https://figshare.com/articles/OpenML_R_Bot_Benchmark_Data_final_subset_/5882230
https://figshare.com/articles/OpenML_R_Bot_Benchmark_Data_final_subset_/5882230
https://doi.org/10.1093/biomet/57.3.519
https://doi.org/10.1093/biomet/57.3.519
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2021

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable hyperpa-
rameter transfer learning. In Advances in Neural Information Processing Systems, pp. 6845–6855,
2018.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
BJgklhAcK7.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 26, pp. 2004–2012. Curran Associates, Inc., 2013. URL http://
papers.nips.cc/paper/5086-multi-task-bayesian-optimization.pdf.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=HkL7n1-0b.

Jan N Van Rijn, Bernd Bischl, Luis Torgo, Bo Gao, Venkatesh Umaashankar, Simon Fischer, Patrick
Winter, Bernd Wiswedel, Michael R Berthold, and Joaquin Vanschoren. Openml: A collaborative
science platform. In Joint european conference on machine learning and knowledge discovery in
databases, pp. 645–649. Springer, 2013.

Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and
Christian Daniel. Meta-learning acquisition functions for transfer learning in bayesian optimization.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=ryeYpJSKwr.

Andrew R Webb. Functional approximation by feed-forward networks: a least-squares approach to
generalization. IEEE transactions on Neural Networks, 5(3):363–371, 1994.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3(1):9, 2016.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimization initializa-
tions. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pp. 1–10, Oct 2015. doi: 10.1109/DSAA.2015.7344817.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Scalable gaussian process-based
transfer surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78, 2018.

Marvin N. Wright and Andreas Ziegler. ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017. doi:
10.18637/jss.v077.i01.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702,
2019.

11

https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7
http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization.pdf
http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization.pdf
https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=ryeYpJSKwr
https://openreview.net/forum?id=ryeYpJSKwr

	Introduction
	Problem Statement and Background
	Related Work
	Probabilistic Meta-Learning for Bayesian Optimization
	Empirical Evaluation
	Synthetic Function Ensembles
	Meta-Learning Surrogate Benchmarks

	Conclusion

