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ABSTRACT

Large language models have demonstrated impressive universal capabilities across
a wide range of open-ended tasks and have extended their utility to encompass
multimodal conversations. In this study, we introduce Chat-UniVi, a Unified
Vision-language model capable of comprehending and engaging in conversations
involving images and videos. Specifically, Chat-UniVi uniformly represents images
and videos using a collection of dynamic visual tokens. This novel representation
framework empowers the model to efficiently utilize a limited number of visual
tokens to simultaneously capture the spatial details necessary for images and the
comprehensive temporal relationship required for videos. Besides, we leverage
a multi-scale representation that equips large language models to perceive both
high-level semantic concepts and low-level visual details. More encouragingly,
Chat-UniVi is trained on a mixed dataset containing both images and videos, mak-
ing it directly applicable to tasks involving both mediums without the need for
any modifications. Extensive experimental results demonstrate that Chat-UniVi,
as a unified model, consistently surpasses even the existing methods exclusively
designed for either images or videos. To the best of our knowledge, Chat-UniVi
represents the first successful unified multimodal large language model that consis-
tently outperforms both dedicated image and video models.

1 INTRODUCTION

Large language models (LLMs), e.g., GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023), and
LLaMA (Touvron et al., 2023a;b), showcase substantial universal capabilities that pave the way
for achieving general artificial intelligence. However, language represents just one facet of com-
munication. Visual information serves to augment and enhance our comprehension of the world.
Therefore, there exists a burgeoning interest in developing a multimodal conversation model that can
accommodate various input modalities simultaneously, including images and videos.

Recent advances in multimodal conversation models, e.g., MiniGPT-4 (Zhu et al., 2023), MultiModal-
GPT (Gong et al., 2023), and mPLUG-Owl (Ye et al., 2023), focus on integrating visual tokens
into LLMs. Despite their commendable progress, existing methods often specialize in either image
or video inputs. For instance, methods that prioritize image inputs, e.g., LLaVA (Liu et al., 2023),
typically employ a larger number of visual tokens to attain finer spatial understanding. Conversely,
methods concentrating on video inputs, e.g., Video-ChatGPT (Maaz et al., 2023), often compromise
spatial comprehension per frame to accommodate more frames for modeling temporal relationships.
Although some methods, e.g., Flamingo (Alayrac et al., 2022), can extract a fixed number of tokens
for each image and video using a query transformer, their primary emphasis remains on image
understanding, lacking the capability to effectively model temporal comprehension, thus resulting in
a limited understanding of videos. Therefore, it is crucial and challenging to enable LLMs for both
image and video comprehension within a unified framework.

In this paper, we introduce Chat-UniVi, a Unified Vision-language model designed to proficiently
comprehend and engage in conversations about both images and videos. Chat-UniVi uniformly
represents images and videos using a collection of dynamic visual tokens, enabling it to concurrently
capture the spatial details of images and the comprehensive temporal relationship of videos. As
illustrated in Fig. 1, images can be depicted through visual tokens of diverse sizes. For example, the
primary object, i.e., the sheep in Fig. 1, necessitates a fine-grained representation with numerous
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Figure 1: The unified representation framework for images and videos utilizing dynamic visual
tokens. H and W represent the height and width of the input, respectively. L, D, M , C, and E
denote the number of vanilla visual tokens, the feature dimension, the frame length, the number of
dynamic visual tokens, and the number of events, respectively.

visual tokens, while the background, i.e., the snow-capped mountain, can be sufficiently modeled
with only one visual token. In the case of videos, the video is initially divided into several events, and
subsequently, these visual tokens expand over frames within each event to encapsulate frame-level
dynamics. Such unified representation for both images and videos significantly reduces the number of
visual tokens while maintaining the expressive capabilities of the model. Moreover, longer videos are
assigned more visual tokens and are therefore better suited for variable-length video understanding.

To obtain these dynamic visual tokens, we propose a parameter-free token merging method for
progressively merging visual tokens with similar semantic meanings. Specifically, starting with visual
tokens initialized by the Vision Transformer (Dosovitskiy et al., 2021), we gradually group them
by applying the k-nearest-neighbor based density peaks clustering algorithm, i.e., DPC-KNN (Du
et al., 2016), on the token features. When it comes to videos, we also utilize DPC-KNN on the frame
features to get events. At each merging step, we merge the visual tokens assigned to the same cluster
by averaging their token features. Finally, we supply a multi-scale representation to the LLMs. The
upper layers of the multi-scale representation encompass high-level semantic concepts, while the
lower layers emphasize visual details representations.

The proposed Chat-UniVi has two compelling advantages: First, its unified image and video modeling
method allows training on the mixed dataset of image and video, enabling direct application to both
image and video tasks without any modifications. Second, the multi-scale representation contributes
to the comprehensive understanding of images and videos, empowering Chat-UniVi to adapt to
various tasks, including employing high-level representation for semantic understanding and low-
level representation for generating detailed descriptions. We evaluate Chat-UniVi on both image
and video understanding tasks. Compared to other methods focused exclusively on either images
or videos, Chat-UniVi consistently demonstrates superiority in comprehending images and videos.
Moreover, we also provide evidence of the advantages of joint training of images and videos for
multimodal large language models. The main contributions are summarized as follows:

• To the best of our knowledge, the proposed Chat-UniVi is the first successful unified vision-
language model that consistently outperforms both dedicated image and video models.

• We uniformly represent images and videos using multi-scale dynamic visual tokens and
propose a parameter-free token merging method to obtain these visual tokens.

• Without fine-tuning, Chat-UniVi attains competitive performance in both image and video
tasks and achieves impressive results in the object hallucination benchmark.

2 RELATED WORK

Large Language Models. Recently, large language models (Kenton & Toutanova, 2019; Radford
et al., 2019; Raffel et al., 2020; Vaswani et al., 2017) have made disruptive progress, primarily
attributed to the expansion of training data and the substantial increase in model parameters. Inspired
by the success of GPT-3 (Brown et al., 2020), numerous large language models have subsequently
been developed, including PaLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022), BLOOM (Scao
et al., 2022), InstructGPT (Ouyang et al., 2022), and ChatGPT (OpenAI, 2022). However, language
represents just one facet of communication. Visual information serves to augment and enhance our
comprehension of the world (Labiosa et al.; Jin et al., 2022; 2023b). In this work, we introduce Chat-
UniVi, designed to not only comprehend and generate responses from text but also incorporate visual
inputs, thereby providing a more comprehensive and immersive context for response generation.
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Figure 2: The overview of the proposed Chat-UniVi for conversations containing both images
and videos. Chat-UniVi uniformly represents images and videos using a collection of dynamic visual
tokens and provides a multi-scale representation that equips large language models to perceive both
high-level semantic concepts and low-level visual details.

Large-scale Multimodal Models. Existing large-scale multimodal models can be broadly cate-
gorized into two classes. The first class of methods involves using LLMs as a dispatch scheduler,
facilitating connections between various expert models to handle different vision tasks. These
methods are exemplified by VisualChatGPT (Wu et al., 2023a), HuggingGPT (Shen et al., 2023),
MM-REACT (Yang et al., 2023), and ViperGPT (Surı́s et al., 2023). The second class of methods
emphasizes the integration of models from different modalities into end-to-end trainable models.
Representatives of this approach include GPT-4 (OpenAI, 2023), Mini-GPT4 (Zhu et al., 2023),
Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al., 2023b), InstructBLIP (Dai et al., 2023), Otter (Li
et al., 2023a), mPLUG-Owl (Ye et al., 2023), LLaMA-Adapter (Zhang et al., 2023b), and LLaMA-
Adapter V2 (Gao et al., 2023). More recently, there have also been several dedicated multimodal
models tailored for video processing, such as Video-ChatGPT (Maaz et al., 2023), VideoChat (Li
et al., 2023c), and Video-LLaMA (Zhang et al., 2023a). Despite their commendable progress, existing
methods often focus exclusively on either image or video inputs. In this work, we focus on developing
an end-to-end trained multimodal model for both image and video tasks. Although Flamingo also
supports both image and video inputs, it can only extract a fixed number of tokens for videos of
varying lengths with a query transformer. Recent works (Wu et al., 2023b; Chen et al., 2023) have
explored the use of separately pre-trained image and video encoders for processing, but these methods
introduce model redundancy and prove challenging to train together. Hence, it does not align with our
focus on achieving a unified vision-language model. In contrast to the previous works, Chat-UniVi
uniformly represents images and videos using multi-scale dynamic visual tokens.

3 METHODOLOGY

Chat-UniVi aims to model images and videos concurrently within a language sequence that can be
comprehended by Large Language Models (LLMs) in a unified framework. Chat-UniVi achieves this
by uniformly representing images and videos through a set of dynamic visual tokens, bridging the
intricate spatial details of images with the broader temporal comprehension needed for videos. The
overview of the proposed Chat-UniVi is shown in Fig. 2.

3.1 DYNAMIC VISUAL TOKENS FOR IMAGE AND VIDEO

Building upon the foundation of the vanilla Vision Transformer, most methods generate equally
important visual tokens by dividing the image into regular and fixed grids. However, it is evident
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that not all regions hold equal significance in vision-language tasks. For example, capturing the
background may require only a single visual token. Drawing inspiration from this insight, We
amalgamate non-essential tokens to derive dynamic vision regions as input for LLMs.

Spatial Visual Token Merging. For an input image, we adopt the vision encoder of CLIP (ViT-
L/14) (Radford et al., 2021) to provide the original visual tokens Z = {zi}Li=1, where L is the number
of visual tokens each image is divided into. To amalgamate non-essential visual tokens, we utilize
DPC-KNN (Du et al., 2016), a k-nearest neighbor-based density peaks clustering algorithm, to cluster
the visual tokens. Starting with visual tokens Z = {zi}Li=1 initialized by the vision transformer, we
first compute the local density ρi of each token zi according to its K-nearest neighbors:

ρi = exp
(
− 1

K

∑
zk∈KNN(zi,Z)

∥zk − zi∥2
)
, (1)

where KNN(zi,Z) is the K-nearest neighbors of zi in Z\{zi}. “Z\{zi}” denotes removing {zi}
from Z. Intuitively, ρi denotes the local density of token zi. Then, we compute the distance index δi
of the token zi, which is formulated as:

δi =

 min
j:ρj>ρi

∥zj − zi∥2, if ∃j s.t. ρj > ρi.

max
j

∥zj − zi∥2, otherwise.
(2)

In essence, δi represents the distance between the given token zi from other high-density tokens. We
identify those tokens with relatively high ρi × δi as cluster centers and then allocate other tokens to
their nearest cluster center according to the Euclidean distances. Finally, we utilize the average token
within each cluster to represent the corresponding cluster. The vision region of the merged token is
the union of the vision regions within the corresponding cluster.

Temporal Visual Token Merging. To adapt the dynamic visual tokens to video, we extend the
visual tokens across frames. However, directly consolidating all frames into a limited number of
visual tokens may lead to the loss of temporal information within the video. For example, in Fig. 2,
the video demonstrates the process of cooking pasta before preparing the sauce. Simply merging all
frames would pose challenges for the model in determining the correct sequence, such as whether
to prepare the sauce first, cook the pasta first, or simultaneously cook the pasta while preparing the
sauce. Therefore, we propose temporal visual token merging to first divide the video into several
critical events. After that, we make the visual tokens only expand over frames within the same event.

Given the mth frame Zm = {zm
i }Li=1 of a video, we first apply mean-pooling over all tokens to

obtain the frame-level representation fm. Similar to the spatial visual token merging method, we
leverage DPC-KNN to amalgamate non-essential frames.

Specifically, we first compute the local density ρm and the distance index δm of each frame fm.
Then, we identify those frames with relatively high ρm × δm as cluster centers and then allocate
other frames to their nearest cluster center according to the Euclidean distances. We treat each cluster
as a critical event and denote the set of indexes of the frames in the cluster as F. Therefore, the set of
visual tokens within the nth event Fn can be formulated as:

Z̃n =
{
zm
i |m ∈ Fn, i ∈ {1, 2, ..., L}

}
. (3)

After completing the temporal visual token merging, we obtain the set of visual tokens within the
event, i.e., Z̃. To make the visual tokens expand over frames within the event, we adjust Eq. 1 and
Eq. 2 in the spatial visual token merging method to the following form:

ρ̃i = exp
(
− 1

K

∑
zk∈KNN(zi,Z̃)

∥zk − zi∥2
)
, δ̃i =

 min
j:ρ̃j>ρ̃i

∥zj − zi∥2, if ∃j s.t. ρ̃j > ρ̃i.

max
j

∥zj − zi∥2, otherwise.
(4)

Finally, we concatenate the expanded visual tokens together in order of events to ensure the broader
temporal understanding required for videos.

Multi-scale Representation. To further enhance the capabilities of our model, we propose a
multi-step aggregation method designed to provide multi-scale visual features for LLMs. Specifically,
in Chat-UniVi, the initial visual tokens at the first merging step are derived from the vision encoder
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Table 1: GPT-based evaluation for image understanding. Following Liu et al. (2023), we report the
relative scores to GPT-4 for instruction-following questions. “†” denotes our own re-implementation
of LLaVA under our training settings (excluding video data) for a fair comparison.

Methods LLM Size Visual Tokens Conversation Detail Description Complex Reasoning All
LLaVA 13B 256 83.1 75.3 96.5 85.1
LLaVA 7B 256 70.3 56.6 83.3 70.1
LLaVA† 7B 256 78.8 70.2 91.8 80.4

Chat-UniVi 7B 112 84.1 74.2 93.7 84.2

Table 2: GPT-based evaluation for video understanding. Following Maaz et al. (2023), we report
the relative scores between the output of the model and the ground truth, with the assistance of GPT. It
is worth noting that the results reported in Maaz et al. (2023) span a range from 0 to 5. To standardize
the metrics, we normalize all scores to a scale of 0 to 100.

Methods LLM Size Correctness Detail Contextual Temporal Consistencyof Information Orientation Understanding Understanding
Video-LLaMA 7B 39.2 43.6 43.2 36.4 35.8
LLaMA-Adapter 7B 40.6 46.4 46.0 39.6 43.0
VideoChat 7B 44.6 50.0 50.6 38.8 44.8
Video-ChatGPT 7B 48.0 50.4 52.4 39.6 47.4

Chat-UniVi 7B 57.8 58.2 69.2 57.8 56.2

of CLIP. Then, we progressively merge visual tokens with similar semantic meanings and obtain
different numbers of tokens in different steps. The higher-level features encompass abstract semantic
concepts, while the lower levels emphasize representations of visual details. In practice, we execute a
three-step aggregation process for each input image or video. Finally, we concatenate the outputs
from each merging step and utilize a trainable projection matrix W to transform these multi-scale
visual features into language embedding tokens, which serve as inputs for LLMs.

It is worth noting that despite this concatenation, the number of visual tokens in our method remains
significantly lower than the original visual tokens initially generated by the vision transformer.

3.2 MULTIMODAL TRAINING SCHEME

Multimodal Pre-training. Following previous works (Liu et al., 2023), our training is divided into
two stages. In the first stage, we pre-train the projection matrix W while freezing both the LLM and
the vision encoder. This strategic freezing of the LLM empowers our method to effectively capture
semantic visual information without any discernible compromise in the performance of LLMs.

Joint Instruction Tuning. After completing the first stage, the model is able to understand
human queries but still fails to generate reasonable and coherent linguistic responses. In the second
stage, we fully fine-tune the large language model and the projection matrix W on a multimodal
instruction-following dataset. This dataset is a composite of multi-turn conversations and single-turn
conversations presented in a conversational format, alongside single images, multiple images, and
videos as visual input. Through joint training on the mixture dataset, Chat-UniVi achieves a superior
comprehension of a wide array of directives and produces more natural and dependable output. More
encouragingly, Chat-UniVi possesses the unique capability to directly handle both images and videos
without necessitating any realignment between the vision and language models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Settings. Following previous works (Liu et al., 2023), we adopt the vision encoder of
CLIP (ViT-L/14) (Radford et al., 2021) as the visual foundation model. We chose an instruction-tuned
variant of LLaMA2 (Touvron et al., 2023b), i.e., Vicuna (Team, 2023), as our language foundation
model. Specifically, we utilize the Vicuna-v1.5 model, comprised of 7B parameters.

Data and Training Details. For the multimodal pre-training stage, we utilize the image-caption
pairs from various datasets, including COCO (Chen et al., 2015) and CC3M-595K screened from
CC3M (Sharma et al., 2018) by LLaVA (Liu et al., 2023). We pre-train Chat-UniVi for one epoch
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Table 3: Zero-shot and fine-tuning question answering accuracy on the ScienceQA test set.
Question classes: NAT = natural science, SOC = social science, LAN = language science, TXT =
text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. “†”
denotes our own re-implementation of LLaVA under our training settings (excluding video data).

Methods LLM Size Subject Context Modality Grade Average
NAT SOC LAN TXT IMG NO G1-6 G7-12

Random Choice - 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67 39.83
Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

Zero-shot Question Answering Accuracy (%)
GPT-4 1T+ 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69
GPT-3 175B 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
LLaVA† 7B 47.78 41.96 53.64 47.90 44.03 51.92 49.63 45.29 48.08

Chat-UniVi 7B 58.61 61.08 61.82 57.33 58.25 61.39 62.04 56.23 59.96

Fine-tuning Question Answering Accuracy (%)
LLaVA 13B 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
LLaVA† 7B 79.71 91.68 82.82 80.94 83.24 81.46 83.74 81.74 83.02
LLaMA-Adapter 7B 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
LLaMA-SciTune 7B 84.50 94.15 82.91 88.35 83.64 88.74 85.05 85.60 86.11

Chat-UniVi 7B 88.50 93.03 85.91 88.51 85.97 88.15 88.88 88.60 88.78

Table 4: Zero-shot video question answering accuracy. We follow the evaluation protocol in Maaz
et al. (2023), i.e., employing GPT-assisted evaluation to assess the capabilities of models. “Score”
denotes the confidence score from 0 to 5 assigned by the GPT model.

Methods LLM Size MSRVTT-QA MSVD-QA TGIF-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM 1B 16.8 - 32.2 - 41.0 - 24.7 -
Video-LLaMA 7B 29.6 1.8 51.6 2.5 - - 12.4 1.1
LLaMA-Adapter 7B 43.8 2.7 54.9 3.1 - - 34.2 2.7
VideoChat 7B 45.0 2.5 56.3 2.8 34.4 2.3 26.5 2.2
Video-ChatGPT 7B 49.3 2.8 64.9 3.3 51.4 3.0 35.2 2.7

Chat-UniVi 7B 54.6 3.1 65.0 3.6 60.3 3.4 45.8 3.2

with a batch size of 128, employing the AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017)
optimizer with a cosine schedule. The learning rate is set to 2e-3, and the warm-up rate is 0.03. For
the joint instruction tuning stage, we incorporate multimodal instruction data from multiple sources:
(i) multimodal in-context instruction datasets, such as MIMIC-IT (Li et al., 2023a; Antol et al., 2015;
Hudson & Manning, 2019), (ii) visual instruction datasets, such as LLaVA, (iii) video instruction
data from Video-ChatGPT (Maaz et al., 2023). All input images or frames are resized to 224× 224.
We train Chat-UniVi for 2 epochs with a batch size of 128, and the learning rate is set to 2e-5.

4.2 GPT-BASED EVALUATION

Image Understanding. To quantitatively measure the image understanding capability, we report
the GPT-4 evaluation results in Tab. 1. Following Liu et al. (2023); Zhang et al. (2023c), we employ
90 questions based on 30 COCO validation images, covering various aspects, including conversation,
detail description, and complex reasoning. We utilize the GPT-4 model to evaluate the outputs of the
model in these three aspects, as well as provide an overall score. For a comprehensive description
of image understanding metrics, please refer to the appendix. As shown in Tab. 1, Chat-UniVi uses
fewer visual tokens while achieving superior performance. Notably, our method, even as a 7B model,
can achieve the performance level of a 13B model, demonstrating the effectiveness of our method.

Video Understanding. To quantitatively measure the video understanding capability, we report the
GPT evaluation results in Tab. 2. Following Maaz et al. (2023), we employ a test set based on the
ActivityNet dataset (Caba Heilbron et al., 2015) and utilize the GPT-3.5 model to assign a relative
score to the outputs of the model in the following five aspects: Correctness of Information, Detail
Orientation, Contextual Understanding, Temporal Understanding, and Consistency. Please refer to
the appendix for more details. As shown in Tab. 2, Chat-UniVi, even as a unified model, significantly
surpasses recently proposed state-of-the-art methods, such as VideoChat and Video-ChatGPT, that
exclusively focus on video, which demonstrates the effectiveness of our method.
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Table 5: Zero-shot object hallucination evaluation on the COCO validation set. “Yes” represents
the proportion of positive answers that the model outputs. “†” denotes our own re-implementation of
LLaVA under our training settings (excluding video data) for a fair comparison.

Methods LLM Size Random Popular Adversarial

Accuracy F1-Score Yes Accuracy F1-Score Yes Accuracy F1-Score Yes

LLaVA 13B 64.12 73.38 83.26 63.90 72.63 81.93 58.91 69.95 86.76
MiniGPT-4 13B 79.67 80.17 52.53 69.73 73.02 62.20 65.17 70.42 67.77
InstructBLIP 13B 88.57 89.27 56.57 82.77 84.66 62.37 72.10 77.32 73.03
MM-GPT 7B 50.10 66.71 99.90 50.00 66.67 100.00 50.00 66.67 100.00
mPLUG-Owl 7B 53.97 68.39 95.63 50.90 66.94 98.57 50.67 66.82 98.67
LLaVA† 7B 72.16 78.22 76.29 61.37 71.52 85.63 58.67 70.12 88.33

Chat-UniVi 7B 85.19 86.05 54.67 69.50 74.39 69.10 64.97 71.54 73.10

Table 6: Ablation study about the multi-scale representation. “Detail” denotes the “Detail De-
scription” in the context of image understanding or “Detail Orientation” in the context of video
understanding. For image understanding, “Reason” denotes the “Complex Reasoning”. For video
understanding, “Correct”, “Context”, and “Temporal” stand for “Correctness of Information”, “Con-
textual Understanding”, and “Temporal Understanding”, respectively.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency

Single-scale 70.5 63.4 88.3 74.2 54.6 56.4 65.8 52.8 52.2

Multi-scale 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table 7: Ablation study about instruction tuning scheme. “Only Image” indicates training solely
on image data. “Image + Video” means training on image data followed by fine-tuning on video data.
“Image & Video” denotes training on a combined dataset of both image and video data.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency

Only Image 84.0 69.3 89.3 81.5 43.4 48.6 56.8 45.4 46.2
Only Video 72.7 55.8 71.5 66.8 57.4 58.8 69.0 56.4 56.0
Image + Video 45.5 31.3 76.1 50.9 51.2 55.6 64.8 50.0 50.4
Video + Image 79.0 69.2 88.5 79.1 45.6 49.8 58.2 46.4 47.8

Image & Video 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

4.3 QUESTION-ANSWER EVALUATION

ScienceQA Performance. ScienceQA (Lu et al., 2022) is a comprehensive multimodal science
question-answering dataset comprising 21k multiple-choice questions. Each example in ScienceQA
contains a visual context, a textual context, a question, multiple options, and the correct answer. For
the input of Chat-UniVi, we concatenate the question, textual context, and options sequentially into
a single sentence. We report both zero-shot and fine-tuning results in Tab. 3. As shown in Tab. 3,
Chat-UniVi shows competitive performance across all metrics. Notably, Chat-UniVi outperforms
LLaMA-SciTune (Horawalavithana et al., 2023), a model specifically tailored for science question
answering, which fully demonstrates the superiority of our method.

Zero-shot Video-question Answering Performance. In Tab. 4, we show the zero-shot video-
question answering performance on several commonly used open-ended question-answer datasets,
including MSRVTT-QA (Xu et al., 2017), MSVD-QA (Xu et al., 2017), TGIF-QA FrameQA (Jang
et al., 2017), and ActivityNet-QA (Yu et al., 2019). Our evaluation protocol follows that of Maaz et al.
(2023), utilizing GPT-assisted evaluation to assess the capabilities of models. As shown in Tab. 4,
Chat-UniVi outperforms the recently proposed state-of-the-art methods, e.g., FrozenBiLM (Yang
et al., 2022) and Video-ChatGPT, across various datasets. Chat-UniVi exhibits a slight improvement
on MSVD-QA. We attribute this to the short duration of videos in MSVD-QA, which may not fully
showcase the advantages of our method in temporal modeling.

4.4 OBJECT HALLUCINATION EVALUATION

In Tab. 5, we report the results of the polling-based object probing evaluation (Li et al., 2023d). For
details of the polling-based object probing evaluation, please refer to the appendix. As shown in Tab. 5,
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Table 8: Ablation study about the number of spatial visual clusters. “C1”, “C2”, and “C3” denote
the number of clusters at the first step, the second step, and the last step, respectively.

C1 C2 C3 Visual Tokens Conversation Detail description Complex reasoning All

16 8 4 28 78.6 69.0 95.1 81.1
32 16 8 56 82.7 67.2 94.5 81.6
64 32 16 112 84.1 74.2 93.7 84.2

128 64 32 224 79.8 68.7 83.8 79.8

Table 9: Ablation study about the number of temporal visual clusters. “M” is the frame length.
“1/M” denotes that the model directly consolidates all frames into a single event.

Temporal Correctness Detail Contextual Temporal ConsistencyClustering Ratio of Information Orientation Understanding Understanding

1/M 51.2 41.8 47.6 32.8 42.2
1/32 57.2 58.0 69.6 56.2 54.2
1/16 57.8 58.2 69.2 57.8 56.2
1/8 56.8 58.2 68.0 55.8 57.8

(a) Comparison of image-based conversations (b) Comparison of video-based conversations
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Figure 3: Human evaluations on multimodal conversations. In 30 image conversation scenarios
and 30 video conversation scenarios, the evaluators rate the model on a scale of 0 to 10 based on its
multimodal conversation performance. Finally, we use the average score as the final model score.

Chat-UniVi outperforms the recently proposed state-of-the-art methods, such as MultiModal-GPT
(MM-GPT). Notably, as a 7B model, our method even outperforms the 13B model, e.g., MiniGPT-4,
in the object hallucination evaluation. We attribute this success to the multi-scale representation that
equips our method to perceive both high-level semantic concepts and low-level visual appearance.

4.5 ABLATIVE ANALYSIS

Effect of the Multi-scale Representation. To investigate the impact of the multi-scale representa-
tion of our method, we provide the ablation results in Tab. 6. Multi-scale representation improves
both image understanding and video understanding of the model. These results provide evidence for
the benefits of employing a multi-scale representation in multimodal large language models.

Effect of the Tuning Scheme. In Tab. 7, we provide the ablation study on the instruction tuning
scheme. We find that visual instruction tuning using only one type of medium, such as images, results
in a decrease in comprehension of another medium, such as videos. However, pre-training on one
medium and fine-tuning on another may lead to knowledge degradation from the pre-training stage.
In contrast, our joint training strategy, which involves training on a mixed dataset of images and
videos, endows the model with the capability to process both types of visual inputs. Among all tuning
schemes, joint training consistently achieves the highest performance, confirming its effectiveness.

Effect of the Number of Spatial Visual Clusters. To explore the influence of the number of spatial
visual clusters, we provide the ablation results in Tab. 8. We find that a smaller number of visual
clusters may decrease the capacity to grasp fine visual details, whereas a larger number of visual
clusters may introduce redundancy and potentially reduce the overall performance of the model. To
strike a balance between detailed understanding and model learning complexity, we set the number
of clusters at the three levels to 64, 32, and 16 respectively in practice.

Effect of the Number of Temporal Visual Clusters. Videos vary in length, with longer videos
typically containing more events. Therefore, in Chat-UniVi, the number of temporal visual clusters is
determined proportionally based on the number of input video frames. As shown in Tab. 9, we find
that a smaller clustering ratio may result in the loss of crucial temporal information within the video.
Conversely, a larger clustering ratio increases the computational overhead of the model. We observe
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Figure 4: Visualization of the dynamic visual tokens. More visualizations of the dynamic visual
tokens are shown in Fig. A and Fig. B. Examples of conversations are provided in Appendix. E.

that the model performs optimally when the clustering ratio is set to 1/16. Therefore, in practice, we
adopt a default temporal clustering ratio of 1/16 for better performance.

4.6 QUALITATIVE ANALYSIS

Human Evaluation. In our evaluation, we manually assess the performance of Chat-UniVi and
baselines in 30 image conversation scenarios and 30 video conversation scenarios. The results are
presented in Fig. 3. OpenFlamingo (Awadalla et al., 2023), derived from Flamingo (Alayrac et al.,
2022), and Otter (Li et al., 2023a), an in-context instruction tuning variant of OpenFlamingo, are also
included in our comparison. As shown in Fig. 3, we find that methods based on Flamingo exhibit
limitations in their ability to comprehend videos. This limitation is attributed to their use of a query
transformer to extract a fixed number of visual tokens from videos of varying lengths, which hinders
their effectiveness in modeling temporal comprehension. In contrast, Chat-UniVi, functioning as
a unified model, not only outperforms methods built upon the Flamingo but also surpasses models
specifically designed for image (e.g., LLaVA) and video (e.g., Video-ChatGPT).

Visualization of the Dynamic Visual Tokens. We provide the visualization in Fig. 4 and invite
readers to explore more visualizations in the appendix. It is important to emphasize that our proposed
token merging method is parameter-free and operates without the need for object outline labels. As
shown in Fig. 4, the proposed dynamic visual tokens effectively generalize objects and backgrounds.
This capability enables Chat-UniVi to reconcile the intricate spatial nuances of images with the
broader temporal understanding required for videos with a limited number of visual tokens.

5 CONCLUSION

In this paper, we introduce Chat-UniVi, a unified multimodal large language model designed to
proficiently comprehend and engage in conversations about both images and videos. To seamlessly
bridge the intricate spatial nuances of images with the broader temporal understanding required
for videos, we propose a unified representation framework employing dynamic visual tokens. This
novel representation leverages DPC-KNN to progressively cluster visual tokens and provides multi-
scale features. More encouragingly, Chat-UniVi is trained on a mixed dataset encompassing both
images and videos, enabling it to be directly applicable to tasks involving both media types without
necessitating any modifications. Extensive experimental results demonstrate that Chat-UniVi, as a
unified model, consistently surpasses even methods exclusively designed for images or videos.

9



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

1. For data details.
(a) We outline the composition of the training data in Section 4.1.
(b) We describe in detail the composition of the training data, as well as our data filtering

method in Appendix B.
(c) We provide a detailed description of the training data in Tab. C.
(d) We promise to release a data download link upon publication, which can directly

download the data we have processed.
2. For model settings.

(a) We outline the model settings in Section 4.1.
(b) We describe in detail the model settings in Appendix B.
(c) We also experiment with other model settings, such as another vision encoder. The

results are provided in Tab. E.
3. For training hyperparameters.

(a) We outline the training hyperparameters in Section 4.1.
(b) We describe in detail the training hyperparameters in Appendix B.
(c) We also provide detailed training hyperparameters for fine-tuning our model on the

ScienceQA dataset in Appendix B.
4. For code.

(a) We have attached the code to the supplementary material.
(b) In this code, we also provide the pre-trained model weights and the process of the

evaluation of the proposed method.
(c) Besides, we provide the additional demo code, providing an interactive interface to

make it easier for readers to experience the capabilities of our model.
(d) We promise to release a more detailed and clean code version upon publication.
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A APPENDIX

Abstract This appendix provides additional discussions (Appendix A), implementation details (Ap-
pendix B), several additional experiments (Appendix C), additional visualization results (Appendix D),
more qualitative analysis (Appendix E), and details of quantitative evaluations (Appendix F).

Code We have attached the code to the supplementary material. In this code, we also provide the
pre-trained model weights and the process of the evaluation of the proposed method. We promise to
release a more detailed and clean code version upon publication.

Demo In the supplementary material, we provide the additional demo code, providing an interactive
interface to make it easier for readers to experience the capabilities of our model.

A ADDITIONAL DISCUSSIONS

A.1 COMPARISON OF CHAT-UNIVI AND OTHER METHODS

Existing methods often focus exclusively on either image or video inputs. Recently, there have also
been some methods (Alayrac et al., 2022; Wu et al., 2023b; Chen et al., 2023) that support both
images and videos, and they can be broadly divided into two classes.

• Q-former based methods. The first class of methods uses a query transformer to extract
a fixed number of tokens for each image and video. These methods are exemplified by
Flamingo (Alayrac et al., 2022), OpenFlamingo (Awadalla et al., 2023), and Otter (Li et al.,
2023a). However, videos vary in length, posing a challenge for these methods, as they
extract a fixed number of visual tokens from each video, limiting their ability to effectively
capture temporal comprehension. Human evaluation results (see Fig. 3) also substantiate
that these methods struggle to strike a balance between image and video comprehension.

• Multi-encoder methods. The second category of methods employs separate pre-trained
image and video encoders to process images and videos independently. Prominent examples
of this approach include X-LLM (Chen et al., 2023) and NExT-GPT (Wu et al., 2023b).
However, these methods introduce redundancy within the model and present difficulties
when trained jointly. Most importantly, this approach does not leverage the advantages of
joint training with both image and video data. Consequently, they do not align with our
primary objective of developing a unified vision-language model.

In contrast to the previous works, Chat-UniVi uniformly represents images and videos using multi-
scale dynamic visual tokens. The proposed Chat-UniVi has two compelling advantages:

• Variable length video features. In Chat-UniVi, the number of temporal visual clusters is
determined proportionally based on the number of input video frames. In contrast to the
Q-former based methods, Chat-UniVi allocates a greater number of visual tokens to longer
videos. Therefore, our method is better suited for variable-length video understanding.

• Unified visual encoder. Chat-UniVi employs a shared visual encoder to consistently process
both images and videos. In contrast to multi-encoder methods, our method eliminates the
need for introducing redundant parameters and streamlines the training process.

• Benefit from joint training. Due to the unified representation framework for both images
and videos, Chat-UniVi can be trained on mixed datasets that include both images and
videos. This allows for direct application to tasks involving both images and videos. Most
importantly, we find that this joint training strategy can simultaneously enhance the model’s
understanding of both images and videos. Experimental results are shown in Tab. 7.

In Tab. A, we show the comparison of Chat-UniVi and other methods. For Q-former based methods,
the advantages of joint training are not shown, and even the performance of the model may affect
each other when multiple datasets are mixed (Alayrac et al., 2022). However, the potential to benefit
from joint training cannot be ruled out. In addition, the multi-encoder method can also select a video
encoder that can encode dynamic length features.
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Table A: Comparison with other methods. “✘” denotes that the model does not have this property.
“✔” denotes that the model has this property. “–” indicates a temporary lack of experimental evidence.

Type Methods Variable Unified Benefit from
Length Features Visual Encoder Joint Training

Q-former based methods Flamingo
✘ ✔ –OpenFlamingo, Otter

Multi-encoder methods X-LLM, NExT-GPT – ✘ ✘

Unified methods Chat-UniVi ✔ ✔ ✔

Table B: Comparison of Chat-UniVi and another token clustering method. “✘” denotes that the
model does not have this property. “✔” denotes that the model has this property.

Methods Parameter-free Video Input Image Understanding

Conversation Detail Reason All

Ma et al. (2023) ✘ ✘ 71.8 60.9 91.6 75.0

Chat-UniVi ✔ ✔ 84.1 74.2 93.7 84.2

A.2 COMPARISON OF CHAT-UNIVI AND OTHER CLUSTERING TRANSFORMER METHODS

There have also been recent methods (Ma et al., 2023; Xu et al., 2022; Zeng et al., 2022; Jin et al.,
2023a) to explore the role of token clustering within the transformer framework. However, none of
these methods can be directly extended to video, and additional parameters need to be trained. We
summarize the advantages of our method as follows:

• Supporting video input. In contrast to other methods, Chat-UniVi extends the tokens
clustering method to incorporate video inputs, achieving the integration of image and video
representations for the first time. Our work is the first to demonstrate that this unified
representation can reconcile the intricate spatial details of images with the broader temporal
understanding required for videos.

• Without parameters. Our clustering method is parameter-free and therefore requires no
training. Interestingly, we find that this parameter-free clustering method serves as the
linchpin to the success of our model. As shown in Tab. B, the performance of the clustering
method with training parameters is significantly inferior to the parameter-free clustering
method we propose. We attribute this phenomenon to the gradient instability in multimodal
conversation training, which hinders the convergence of parameterized methods.

A.3 LIMITATIONS AND FUTURE WORK

In this section, we delineate the limitations of our work and outline avenues for future research.

The Enduring Impact of Large Language Models. Our method leverages the strength of
pre-trained Large Language Models, and as a consequence, also inherits their vulnerabilities.

• Hallucination. While our experiments (see Tab. 5) demonstrate the effectiveness of our
method in addressing hallucinations, it is important to acknowledge that the issue of halluci-
nations in LLMs remains a challenge yet to be fully resolved. The phenomenon of illusory
responses in LLMs can result in unsupported conjectures during open multimodal conversa-
tions, and addressing this issue has the potential to significantly expedite advancements in
the field. For a more in-depth exploration of common weaknesses observed in large LLMs,
please refer to Brown et al. (2020); Rae et al. (2021).

• Long sequence processing. Transformer-based language models often exhibit suboptimal
generalization when confronted with test sequences considerably longer than their training
data (Press et al., 2022). This becomes particularly evident in multi-turn conversations, where
the model may exhibit forgetfulness of prior conversational context, resulting in erroneous
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Table C: Description of training data. “✘” denotes that the dataset does not have this property.
“✔” denotes that the dataset has this property. “‡” represents the dataset filtered from MIMIC-IT,
containing exclusively image data. In order to further filter the training data, we also delete the
duplicate data in LLaVA-instruct-150K and MIMIC-IT.

Datasets Image Inputs Video Inputs Multi-turn Number of
Conversations Conversations

Multimodal Pre-training Stage
CC3M-595K ✔ ✘ ✘ 595K
COCO ✔ ✘ ✘ 956K

Joint Instruction Tuning Stage
LLaVA-instruct-150K ✔ ✘ ✔ 150K
MIMIC-IT-399K‡ ✔ ✘ ✘ 399K
Video-ChatGPT-instruct ✘ ✔ ✘ 100K

responses. Simultaneously, we find a decline in model performance when multiple videos
are inputted, which could also be attributed to constraints associated with sequence length.

• Prompt sensitivity. In-context learning has demonstrated disconcerting sensitivity to various
aspects of demonstrations, including prompt formats (Zhao et al., 2021). Notably, different
prompt formats can yield entirely contradictory output results. Finding a solution to this
issue holds the potential to greatly accelerate progress in the field.

Natural Language Output. Natural language serves as a robust and adaptable input/output
interface for describing visual tasks to the model, facilitating the generation of outputs, or estimating
conditional probabilities for potential outcomes. However, it may prove to be a less convenient
interface for tasks that require conditioning on or predicting more structured outputs, such as
bounding boxes, as well as for generating dense pixel predictions. Besides, the flexibility of the
natural language output also makes it difficult to evaluate the performance of the model.

More Modalities. Future work can explore alternative modalities, such as audio, in addition to
visual inputs. The incorporation of multiple modalities holds the promise of broadening the spectrum
of tasks that the model can address, and it has the potential to enhance their performance by leveraging
synergies among these various modalities. For example, contemplating audio information alongside
video processing can significantly augment the video understanding of the model.

B IMPLEMENTATION DETAILS

Data Details. For the multimodal pre-training stage, we utilize the image-caption pairs from various
datasets, including COCO (Chen et al., 2015) and CC3M-595K screened from CC3M (Sharma et al.,
2018) by LLaVA (Liu et al., 2023). All input images are resized to 224×224. For the joint instruction
tuning stage, we incorporate multimodal instruction data from multiple sources: (i) multimodal in-
context instruction datasets, such as MIMIC-IT (Li et al., 2023a; Antol et al., 2015; Hudson &
Manning, 2019), (ii) visual instruction datasets, such as LLaVA, (iii) video instruction data from
Video-ChatGPT (Maaz et al., 2023). In order to further filter the training data, we delete the duplicate
data in LLaVA-instruct-150K and MIMIC-IT, and delete the video data in MIMIC-IT. This dataset is
a composite of multi-turn conversations and single-turn conversations presented in a conversational
format, alongside single images, multiple images, and videos as visual input. For each video, we
select 64 frames as input for the model. All input images or frames are resized to 224 × 224. We
provide a detailed description of the training data in Tab. C.

Model Settings. Following previous works (Liu et al., 2023), we adopt the vision encoder of
CLIP (ViT-L/14) (Radford et al., 2021) as the visual foundation model. We chose an instruction-tuned
variant of LLaMA2 (Touvron et al., 2023b), i.e., Vicuna (Team, 2023), as our language foundation
model. Specifically, we utilize the Vicuna-v1.5 model, comprised of 7B parameters.

Training Hyperparameters. For the multimodal pre-training stage, we pre-train Chat-UniVi for
one epoch with a batch size of 128, employing the AdamW optimizer with a cosine schedule. The
learning rate is set to 2e-3, and the warm-up rate is 0.03. For the joint instruction tuning stage, we
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Table D: Comparison between the LoRA and full fine-tuning. “Detail” denotes the “Detail De-
scription” in the context of image understanding or “Detail Orientation” in the context of video
understanding. For image understanding, “Reason” denotes the “Complex Reasoning”. For video
understanding, “Correct”, “Context”, and “Temporal” stand for “Correctness of Information”, “Con-
textual Understanding”, and “Temporal Understanding”, respectively.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency .

LoRA 76.1 68.6 82.4 75.8 52.8 55.0 63.8 51.6 53.8

Full fine-tuning 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table E: Comparison between the EVA CLIP and the Openai CLIP. We choose EVA-CLIP
(ViT-G), which has a similar number of parameters as Openai-CLIP (ViT-L/14), for the experiment.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency

EVA-CLIP 80.0 74.7 91.2 82.1 57.2 58.8 67.8 55.2 54.6

Openai-CLIP 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table F: Effect of the multi-scale representation on object hallucination. “Yes” represents the
proportion of positive answers that the model outputs.

POPE Methods LLM Size Accuracy Precision Recall F1-Score Yes

Random Single-scale 7B 73.88 67.03 97.06 79.30 74.63
Multi-scale 7B 85.19 83.59 88.66 86.05 54.67

Popular Single-scale 7B 56.36 53.50 97.20 69.01 90.83
Multi-scale 7B 69.50 64.10 88.60 74.39 69.10

Adversarial Single-scale 7B 55.63 53.07 97.26 68.67 91.63
Multi-scale 7B 64.97 60.23 88.06 71.54 73.10

train Chat-UniVi for 2 epochs with a batch size of 128, and the learning rate is set to 2e-5, employing
the AdamW optimizer with a cosine schedule. The warm-up rate is set to 0.03.

ScienceQA Fine-tuning Settings. We start with a pre-trained model to fine-tune. We fine-tune the
model for 9 epochs with a batch size of 32, employing the AdamW optimizer with a cosine schedule.
The learning rate is set to 2e-5, and the warm-up rate is 0.03.

C ADDITIONAL EXPERIMENTS

Comparison between the LoRA and Full Fine-tuning. When the number of model parameters
is too large, full fine-tuning of retraining all model parameters becomes expensive, so many recent
methods freeze most of the model parameters and train the model with LoRA (Hu et al., 2022). We
provide the results of the comparison between the LoRA and full fine-tuning in Tab. D. We find that
LoRA can achieve competitive performance with full fine-tuning while saving more than half the
GPU memory required for training. Future work can use LoRA to extend our method on larger LLMs
and vision encoders to achieve better performance.

Analysis of the Vision Encoder. EVA-CLIP (Sun et al., 2023) is a recently developed multimodal
model with performance comparable to Openai-CLIP (Radford et al., 2021). We provide the results
of the comparison between EVA-CLIP and Openai-CLIP in Tab. E. We find that the performance of
EVA-CLIP is comparable to that of Openai-CLIP when the number of parameters is equal. However,
EVA-CLIP offers a larger version of the model with a parameter count of 1.8B, so we think it might
be better to adopt a larger EVA-CLIP than Openai-CLIP when using larger LLMs.
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Table G: Detailed results on object hallucination evaluation. “†” denotes our own re-
implementation of LLaVA under our training settings (excluding video data) for a fair comparison.

POPE Methods LLM Size Accuracy Precision Recall F1-Score Yes

Random

LLaVA 13B 64.12 59.38 95.99 73.38 83.26
MiniGPT-4 13B 79.67 78.24 82.20 80.17 52.53
InstructBLIP 13B 88.57 84.09 95.13 89.27 56.57
MultiModal-GPT 7B 50.10 50.05 100.00 66.71 99.90
mPLUG-Owl 7B 53.97 52.07 99.60 68.39 95.63
LLaVA† 7B 72.16 78.22 76.29 78.22 76.29
Chat-UniVi 7B 85.19 83.59 88.66 86.05 54.67

Popular

LLaVA 13B 63.90 58.46 95.86 72.63 81.93
MiniGPT-4 13B 69.73 65.86 81.93 73.02 62.20
InstructBLIP 13B 82.77 76.27 95.13 84.66 62.37
MultiModal-GPT 7B 50.00 50.00 100.00 66.67 100.00
mPLUG-Owl 7B 50.90 50.46 99.40 66.94 98.57
LLaVA† 7B 61.37 56.63 97.00 71.52 85.63
Chat-UniVi 7B 69.50 64.10 88.60 74.39 69.10

Adversarial

LLaVA 13B 58.91 55.11 95.72 69.95 86.76
MiniGPT-4 13B 65.17 61.19 82.93 70.42 67.77
InstructBLIP 13B 72.10 65.13 95.13 77.32 73.03
MultiModal-GPT 7B 50.00 50.00 100.00 66.67 100.00
mPLUG-Owl 7B 50.67 50.34 99.33 66.82 98.67
LLaVA† 7B 58.67 54.90 97.00 70.12 88.33
Chat-UniVi 7B 64.97 60.23 88.06 71.54 73.10

Effect of the Multi-scale Representation on Object Hallucination. As shown in Tab. 5, Chat-
UniVi, as a 7B model, even outperforms the 13B model, e.g., MiniGPT-4, in the object hallucination
evaluation. We attribute this success to the multi-scale representation that equips our method to
perceive both high-level semantic concepts and low-level visual appearance. In Tab. F, we show the
results of ablation experiments on object hallucination evaluation for the multi-scale representation.
We find that multi-scale representation improves the ability to resist hallucinations. Therefore,
multi-scale representation is beneficial for multimodal LLMs.

Detailed Results on Object Hallucination Evaluation. In Tab. G, we report the detailed results
of the polling-based object probing evaluation (Li et al., 2023d). As shown in Tab. G, Chat-UniVi
outperforms the recently proposed state-of-the-art methods. Notably, as a 7B model, our method even
outperforms the 13B model, e.g., MiniGPT-4, in the object hallucination evaluation. These results
demonstrate the effectiveness of our method.

D ADDITIONAL VISUALIZATION RESULTS

Visualization of the dynamic visual tokens for the image inputs. To gain a deeper insight into the
functionality of our proposed dynamic visual tokens, we present the additional visualization results
for the image inputs in Fig. A. In Fig. A, we provide a diverse range of visualizations encompassing
various image categories, including portraits, sports, wildlife, art, architecture, and food. It is crucial
to underscore that our proposed token merging method operates without the need for object outline
labels and is parameter-free. As shown in Fig. A, the proposed dynamic visual tokens effectively
generalize objects and backgrounds, empowering Chat-UniVi to capture the spatial nuances of images
using a limited number of visual tokens.

Visualization of the dynamic visual tokens for the video inputs. To gain a more comprehensive
understanding of our proposed dynamic visual tokens, we also present additional visualization results
for the video inputs in Fig. B. In the case of videos, the video is initially divided into several events,
and subsequently, these visual tokens expand over frames within each event to encapsulate frame-
level dynamics. Notably, our method imposes no restrictions on the number of frames per event,
showcasing the remarkable flexibility and generalization ability of our methodology. As shown in
Fig. B, the proposed dynamic visual tokens significantly reduce the number of visual tokens while
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Figure A: Visualization of the dynamic visual tokens for the image inputs. We provide a diverse
range of visualizations encompassing various image categories, including portraits, sports, wildlife,
art, architecture, and food. It is important to emphasize that our proposed token merging method is
parameter-free and operates without the need for object outline labels.

maintaining the expressive capabilities of the model. This empowerment equips Chat-UniVi with the
capacity to capture the broader temporal understanding required for videos, all within the confines of
a limited number of visual tokens.

E ADDITIONAL QUALITATIVE ANALYSIS

The conversation includes both the image and the video. In Fig. C and Fig. D, we present
examples of conversations that encompass both the image and the video. As shown in Fig. C and
Fig. D, Chat-UniVi offers detailed and contextually appropriate responses aligned with user prompts.
These illustrative examples showcase the remarkable ability of Chat-UniVi to comprehend both image
and video contexts across multiple conversational turns.
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Figure B: Visualization of the dynamic visual tokens for the video inputs. It is important to
emphasize that our proposed token merging method is parameter-free and operates without the need
for object outline labels. Our method imposes no restrictions on the number of frames per event,
showcasing the remarkable flexibility and generalization ability of our methodology.

The conversation includes multiple videos. Fig. E illustrates a conversation example including
multiple videos. As shown in Fig. E, Chat-UniVi can use the information of multiple videos in the
context, and provide appropriate and coherent responses based on user prompts. The illustrative
example showcases the remarkable ability of Chat-UniVi to comprehend multiple video contexts
across multiple conversational turns.

The conversation includes multiple images. Fig. F provides an illustrative conversation example
including multiple images. As shown in Fig. F, Chat-UniVi adeptly leverages information from
multiple images within the context, enabling it to make choices among various images. This
illustrative example highlights the impressive capacity of Chat-UniVi to grasp multiple image
contexts seamlessly throughout various conversational exchanges.

The conversation includes the image. Fig. G features an example of a conversation that incor-
porates an image. As shown in Fig. G, Chat-UniVi excels at providing detailed descriptions and
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can even craft compelling narratives inspired by the image. The illustrative example showcases the
remarkable ability of Chat-UniVi in the realms of reasoning and creative expression.

The conversation includes the video. In Fig. H and Fig. I, we offer examples of conversations that
incorporate the video. As shown in Fig. H and Fig. I, Chat-UniVi exhibits a remarkable proficiency
in comprehending videos and is adept at offering valuable insights inspired by the video content.
These illustrative examples showcase the remarkable ability of Chat-UniVi to grasp video contexts
and engage in reasoned responses.

F DETAILS OF QUANTITATIVE EVALUATIONS

GPT-based Evaluation For Image Understanding. Our quantitative evaluation protocol follows
that of Liu et al. (2023). Following Liu et al. (2023); Zhang et al. (2023c), we employ 90 questions
based on 30 COCO validation images, covering various aspects, including conversation, detail
description, and complex reasoning. These images are randomly selected by Liu et al. (2023). We
utilize the GPT-4 model to generate reference responses based on the question, and the ground-truth
bounding boxes and captions. During the model evaluation process, the model predicts answers based
on both the question and input image. After obtaining the response from the model, we feed the
question, visual information (in the format of captions and bounding boxes), the generated response,
and the reference response to GPT-4. GPT-4 evaluates the helpfulness, relevance, accuracy, and
level of detail of the responses, assigning an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance. Besides, we also ask GPT-4 to provide a comprehensive
explanation of the evaluation to enhance our understanding of the models.

GPT-based Evaluation For Video Understanding. The quantitative evaluation protocol for
video understanding follows the methodology introduced by Maaz et al. (2023). Specifically, Maaz
et al. (2023) curates a test set based on the ActivityNet-200 dataset (Caba Heilbron et al., 2015),
which includes videos with rich, dense descriptive captions and associated question-answer pairs
from human annotations. During the model evaluation process, we employ the GPT-3.5 model to
assign a relative score to the generated predictions on a scale of 1-5, across five critical aspects:
(1) Correctness of information. (2) Detail orientation. (3) Contextual understanding. (4) Temporal
understanding. (5) Consistency. It is worth noting that the results reported in Maaz et al. (2023) span
a range from 0 to 5. To standardize the metrics, we normalize all scores to a scale of 0 to 100.

Zero-shot Video Question Evaluation. Our evaluation protocol follows that of Maaz et al. (2023),
utilizing GPT-assisted evaluation to assess the capabilities of models. During the model evaluation
process, we feed the question, the ground-truth answer, and the generated response to the GPT-3.5
model. GPT-3.5 evaluates whether the generated responses are correct and assigns a matching score
on a scale of 0 to 5, where a higher score indicates better overall performance.

Zero-shot Object Hallucination Evaluation. To quantitatively evaluate the hallucination problem
of the model, we adopt the polling-based object probing evaluation (POPE) process proposed by
Li et al. (2023d). Specifically, POPE formulates the evaluation of object hallucination as a binary
classification task, where the model is prompted to respond with either “Yes” or “No” to queries
like “Is there a chair in the image?”. Li et al. (2023d) randomly selects 500 images from the COCO
validation set. Each image contains more than three ground-truth objects in the annotations, and six
questions are generated for each image. The annotations of objects in images directly construct the
questions with the answer “Yes”. For the questions with the answer “No”, three different strategies
are employed for sampling their probing objects as follows:

• Random Sampling. Randomly sampling objects that do not exist in the image.
• Popular Sampling. Selecting the top-3 most frequently occurring objects in the COCO

dataset that are absent from the image.
• Adversarial Sampling. Initially, Li et al. (2023d) rank all objects based on their co-

occurring frequencies with the ground-truth objects, and subsequently select the top-3 most
frequent objects from this list that are not present in the image.
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Figure C: An example of a conversation that includes both the image and the video. The blue
box shows the user input. The gray box shows the model output.
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Figure D: An example of a conversation that includes both the image and the video. The blue
box shows the user input. The gray box shows the model output.
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Figure E: An example of a conversation that includes multiple videos. The blue box shows the
user input. The gray box shows the model output.
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Figure F: An example of a conversation that includes multiple images. The blue box shows the
user input. The gray box shows the model output.
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Figure G: An example of a conversation that includes the image. The blue box shows the user
input. The gray box shows the model output.
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Figure H: An example of a conversation that includes the video. The blue box shows the user
input. The gray box shows the model output.
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Figure I: An example of a conversation that includes the video. The blue box shows the user input.
The gray box shows the model output.
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