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Abstract

In this paper, we study the statistical limits of deep learning techniques for solving
elliptic partial differential equations (PDEs) from random samples using the Deep
Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify
the problem, we focus on a prototype elliptic PDE: the Schrödinger equation on a
hypercube with zero Dirichlet boundary condition, which is applied in quantum-
mechanical systems. We establish upper and lower bounds for both methods,
which improve upon concurrently developed upper bounds for this problem via
a fast rate generalization bound. We discover that the current Deep Ritz Method
is sub-optimal and propose a modified version of it. We also prove that PINN
and the modified version of DRM can achieve minimax optimal bounds over
Sobolev spaces. Empirically, following recent work which has shown that the
deep model accuracy will improve with growing training sets according to a power
law, we supply computational experiments to show similar-behavior of dimension
dependent power law for deep PDE solvers.

1 Introduction

Partial differential equations (PDEs) play a prominent role in many disciplines of science and engi-
neering. The recent deep learning breakthrough and the rapid development of sensors, computational
power, and data storage in the past decade draws attention to numerically solving PDEs via machine
learning methods [36, 35, 48, 18, 57, 29], especially in high-dimension where conventional methods
become impractical. Despite the success and popularity of adopting neural networks for solving
high-dimensional PDEs, the following question still remain poorly answered.

For a given PDE and data driven approximation architecture, how large a
sample size and how complex such model is needed for to reach a prescribed
performance level?

In this paper, we aim to establish the numerical analysis of such deep learning based PDE solvers.
Inspired by recent works which showed that the empirical performance of a model is remarkably
predictable via a power law of the data number, known as the neural scaling law [28, 22, 54], we
aim to explore the neural scaling law for deep PDE solvers and compare its performance to Fourier
approximation. In this work, we will focus on the deep Ritz method (DRM) [12, 29] and the Physics-
Inspired Neural Networks (PINN) approach [57, 48], both are based on minimizing neural network
parameters according to some loss funcitonal related to the PDEs.
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To provide theoretically guarantees for DRM and PINN, following [38, 11, 1], we decompose the
error into approximation error [68, 59, 55] and generalization error [2, 68, 67]. However instead
of the O(1/

√
n) (n is the number of data sampled) slow rate generalization bounds established in

prior work [38, 55, 66, 56], we utilize the strongly convex structure of the DRM and PINN objective
and provide a O(1/n) fast rate generalization bound [2, 67] which lead us to a non-parametric
estimation bound. Our theory also suggests optimal selection of network size with respect to the
number of sampled data. Moreover, to illustrate the optimiality of our upper bound, we also establish
an information-theoretic lower bound which matches our upper bound for PINN and a modified
version of DRM.

2 Setting

For simplicity, we consider the static Schrödinger equation with zero Dirichlet boundary conditions
on the domain Ω, which we assume to be the unit hypercube in Rd. Let f ∈ L2(Ω), V ∈ L∞(Ω)
and , g ∈ L∞(Ω). Our focus is on the analysis of Deep-Learning-based numerical methods to solve
the elliptic equations

−∆u+ V u = f in Ω,

u = g on ∂Ω.
(2.1)

2.1 Loss Functions for Solving PDEs and Induced Evaluation Metric

In this paper, we mainly focus on analysing Deep Ritz Methods (DRM) and Physics Informed Neural
Network (PINN). In this subsection, we first introduce the objective function and algorithm of the
two methods.

Deep Ritz Methods [12, 57] Recall that the equation 2.1 is equivalent to following variational
form

u∗ = arg min
H1

0 (Ω)
EDRM(u) :=

1

2

∫
Ω

|∇u|2 + V |u|2 dx−
∫

Ω

fudx, (2.2)

where u is minimized over H1
0 (Ω) with boundary condition given by g on ∂Ω.

Physics Informed Neural Network [48, 57]. PINN solves 2.1 via minizing the following objective
function

u∗ = arg min
u

EPINN∈H1
0 (Ω)(u) :=

∫
Ω

|∆u(x)− V (x)u(x) + f(x)|2dx.

The objective function EPINN can also be viewed as the population risk function and we can train
an optimal estimator approximation of the solution to the PDE within a parameterized hypothesis
function class F ⊂ H1

0 (Ω). In this paper, we also rely on the strong convexity of the PINN objective
respect to the H2 norm.

2.2 Estimator Setting

Empirical Loss Minimization In order to access the d-dimensional integrals, DRM and PINNem-
ploy a Monte-Carlo method on sampled data (Xi, fi = f(Xi) + ηi)

n
i=1, ηi ∼ N (0, σ) for computing

the high dimensional integrals, which leads to the so-called empirical risk minimization training for
neural networks. Define the empirical losses En by setting

EDRM
n (u) =

1

n

n∑
j=1

[
|Ω| ·

(1

2
|∇u(Xj)|2 +

1

2
V (Xj)|u(Xj)|2 − fju(Xj)

)]
, (2.3)

EPINN
n (u) =

1

n

n∑
j=1

[
|Ω| ·

(
∆u(Xj)− V (Xj)u(Xj) + fj

)2]
, (2.4)

where |Ω| represent the Lebesgue measure of the sets.

Once given an empirical loss E′n, we apply the empirical loss minimization to seek the estimation un,
i.e. un = arg minu∈F En(u) where F is the parametrized hypothesis function space we consider.
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For example, reproducing kernel Hilbert space[8] and tensor training format[49]. In this paper, we
consider sparse neural network and truncated fourier basis, which can achieves min-max optimal
estimation rate for the non-parametric function estimation[62, 52, 14, 59, 7, 27, 45].

Neural Network Function Space In this paper, the hypothesis function spaceF is expressed by the
neural network following [59]. Let us denote the ReLU3 activation by η3(x) = max{x3, 0} (x ∈ R)
which is used in [12], and for a vector x, η(x) is operated in an element-wise manner. Define the
neural network with height L, width W , sparsity constraint S and norm constraint B as

Φ(L,W,S,B) := {(W(L)η3(·) + b(L)) ◦ · · · (W(2)η3(·) + b(2)) ◦ (W(1)x+ b(1)) |
W(L) ∈ R1×W , b(L) ∈ R,W(1) ∈ RW×d, b(1) ∈ RW ,W(l) ∈ RW×W , b(l) ∈ RW (1 < l < L),

L∑
l=1

(‖W(l)‖0 + ‖b(l)‖0) ≤ S,max
l
‖W(l)‖∞,∞ ∨ ‖b(l)‖∞ ≤ B}, (2.5)

where ◦ denotes the function composition, ‖ · ‖0 is the `0-norm of the matrix (the number of non-zero
elements of the matrix) and ‖ · ‖∞ is the `∞-norm of the matrix (maximum of the absolute values of
the elements).

Truncated Fourier Basis Estimator We also considered the Truncated Fourier basis as our es-
timator. Suppose the domain we interested Ω ⊆ [0, 1]d. For any z ∈ Nd, we consider the
corresponding Fourier basis function φz(x) := e2πi〈z,x〉 (x ∈ Ω). Any function f ∈ L2(Ω)
can be represented as weighted sum of the Fourier basis f(x) :=

∑
z∈Nd fzφz(x) where fz :=∫

Ω
f(x)φz(x)dx (∀ z ∈ Nd) is the Fourier coefficient. This inspired us to use the Fourier Basis

whose index lies in a truncated set Zξ = {z ∈ Z|‖z‖∞ ≤ ξ} to represent the function class F as
Fξ = {

∑
‖z‖∞≤ξ azφz|az ∈ R, ‖z‖∞ ≤ ξ}.

3 Lower Bounds

Theorem 3.1 (Lower bound). We denote u∗(f) to be the solution of the PDE 2.1 and we can access
randomly sampled data {Xi, fi}i=1,··· ,n as described in Section 2.2.

DRM Lower Bound. For all estimator H :
(
Rd
)⊗n × R⊗n → Hα(Ω), we have

inf
H

sup
u∈Hα(Ω)

E‖H({Xi, fi}i=1,··· ,n)− u∗(f)‖2H1
& n−

2α−2
d+2α−4 . (3.1)

Given that n−
2(β−k)
d+2β is the minimax rate of estimation of the k-th derivative of a β-smooth density in

L2 [34, 47, 43], the lower bound have here is the rate of estimating the right hand side function f in
terms of the H−1 norm. Given H−1 norm error estimate on f , we can achieve estimate of u with,
which provides an alternative way to understand our upper bound.

PINN Lower Bound. For all estimator H :
(
Rd
)⊗n × R⊗n → H1(Ω), we have

inf
H

sup
u∈Hα(Ω)

E‖H({Xi, fi}i=1,··· ,n)− u∗(f)‖2H2
& n−

2α−4
d+2α−4 . (3.2)

4 Upper Bounds

Physics Informed Neural Network.
Theorem 4.1. (Informal Upper Bound of PINN with Deep Neural Network Estimator) With proper
assumptions, consider the sparse Deep Neural Network function spaceΦ(L,W, S,B) with parameters
L = O(1), W = O(n

d
d+2s−4 ), S = O(n

d
d+2s−4 ), B = O(1), then the Physics Informed estimator

ûDNN
PINN = minu∈Φ(L,W,S,B) E

PINN
n (u) satisfies the following upper bound with high probability:

‖ûDNN
PINN − u∗‖2H2

. n−
2s−4
d+2s−4 log n.
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Theorem 4.2. (Informal Upper Bound of PINN with Truncated Fourier Series Estimator) With proper
assumptions, consider the Physics Informed Neural Network objective with a plug-in Fourier Series
estimator ûFourier

PINN = minu∈Fξ(Ω) E
PINN
n (u) with ξ = Θ(n

1
d+2s−4 ), then with high probability we have

‖ûFourier
PINN − u∗‖2H2

. n−
2s−4
d+2s−4 .

Deep Ritz Methods.
Theorem 4.3. (Informal Upper Bound of DRM with Truncated Fourier Series Estimator)With proper
assumptions, consider the Deep Ritz objective with a plug in Fourier Series estimator ûFourier

DRM =

minu∈Fξ(Ω) E
DRM
n (u) with ξ = Θ(n

1
d+2s−2 ), then with high probability we have

‖ûFourier
DRM − u∗‖2H1

. n−
2s−2
d+2s−2 .

Theorem 4.4. (Final Upper Bound of DRM with Deep Neural Network Estimator) With proper
assumptions, consider the sparse Deep Neural Network function space Φ(L,W, S,B) with param-
eters L = O(1), W = O(n

d
d+2s−2 ), S = O(n

d
d+2s−2 ), B = O(1), then the Deep ritz estimator

ûDNN
DRM = minu∈Φ(L,W,S,B) E

DRM
n (u) satisfies the following upper bound with high probability:

‖ûDNN
DRM − u∗‖2H1

. n−
2s−2
d+2s−2 log n.

Upper Bounds Lower BoundObjective Function Neural Network Previous Bound Fourier Basis

Deep Ritz n−
2s−2
d+2s−2 log n n−

2s−2
d+4s−4 log n

[11]
n−

2s−2
d+2s−2 n−

2s−2
d+2s−4

Modified Deep Ritz n−
2s−2
d+2s−2 log n / n−

2s−2
d+2s−4 n−

2s−2
d+2s−4

PINN n−
2s−4
d+2s−4 log n n−

2s−2
d+4s−4 log n

[25]
n−

2s−4
d+2s−4 n−

2s−4
d+2s−4

Table 1: Upper bounds and lower bounds we achieved in this paper and previous work. The upper
bound colored in red indicates the convergence rate matches the min-max lower bound.

5 Modified Deep Ritz Methods

Comparing the lower bound in Section 3 and the upper bound in Section 4, we find out that the
Physics Informed Neural Network achieved min-max optimality while the Deep Ritz Method doesn’t.
In this section, we proposed a modified version of deep Ritz which can be statistically optimal.

As discussed in Appendix B, the reason behind the suboptimality of DRM comes from the high
complexity introduced via the uniform concentration bound of the gradient term in the variational
form. At the same time, we further observed that the

∫
|∇u|2dx doesn’t require any information

of observed data, which means that we can easily make another splitted sample to approximate the∫
|∇u|2dx term.

EN,n(u) =
1

N

N∑
j=1

[
|Ω| · 1

2
|∇u(X ′j)|2

]
+

1

n

n∑
j=1

[
|Ω| ·

(1

2
V (Xj)|u(Xj)|2 − fju(Xj)

)]
(5.1)

Once we sampled more data for approximating
∫
|∇u|2dx, we can achieve an near optimal bound

for the Truncated Fourier Estimator when N
n & n

2
d+2s−4 .

Theorem 5.1. (Informal Upper Bound of DRM with Truncated Fourier Series Estimator)With proper
assumptions, consider the Deep Ritz objective with a plug in Fourier Series estimator ûFourier

DRM =

minu∈Fξ(Ω) E
DRM
n (u) with ξ = Θ(n

1
d+2s−4 ) and N

n & n
2

d+2s−4 , then we have

‖ûFourier
DRM − u∗‖2H1

. n−
2s−2
d+2s−4 .

All our upper and lower bound is summarized in Table 1. Due to page limit, we put all the discussion
in Appendix A and experiments in Appendix C.
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Appendix
A Discussion

A.1 Related Works

Neural Scaling Law The starting point of our work is the recent observation across speech, vision
and text [22, 28, 51, 50] that the empirical performance of a model satisfies a power law scales as a
power-law with model size and dataset size. [54] further finds out that the power of the scaling law
is depends on the intrinsic dimension of the dataset. Theoretical works [52, 59, 60, 7, 24, 14, 27]
explore the optimal power law under the non-parametric curve estimation setting via a plug-in neural
network. Our work extend this line of research into solving a PDE.

Deep Network Based PDE Solver. Soliving high dimensional partial differential equations (PDEs)
have been a long-standing challenge due to the curse of dimensionality. At the same time, deep
learning has shown superior flexibility and adaptivity in approximating high dimensional functions
which leads to state-of-the-art performances in a wide range of tasks ranging from computer vision to
natural language processing. Recent years, pioneer works [18, 48, 36, 57, 29] have tried to utilize
the deep neural networks to solve different types of PDEs and achieves impressive results in many
tasks [37, 33]. Based on the natural idea to represent solutions of PDEs by (deep) neural networks,
different loss functions for solving PDEs are proposed. [18, 19] utilize the Feyman-Kac formulation
which turns solving PDE to a stochastic control problem and the weak adversarial network [69]
solves the weak formulation via an adversarial network. In this paper, we focus on the convergence
rate of the Deep Ritz Method (DRM) [12, 29] and Physic–informed neural network(PINN) [48, 57].
DRM[12, 29] utilize the variational structure of the PDE, similar to the Ritz-Galerkin method in
classical numerical analysis of PDEs, and trains the neural network to minimize the variational
objective. PINN[48, 57] train the neural network directly to minimize the residual of the PDE.

Theoretical Guarantee For Machine Learning Based PDE Solver. Theoretical convergence
results for deep learning based PDE solvers raises wide interest recently. Specifically, [38, 15, 41, 65,
66, 56, 1] investigated the regularity of PDEs approximated by neuarl network and [38, 39] further
provided a generalization analysis. [44] considered a prior and an equivalent white noise model[4]
and considered the rate of convergence of the posterior. Our paper doesn’t need to introduce and
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provided a non-asymptotic result. At the same time, [44] can only be applied to linear PDEs while
our proof technique can be extend to nonlinear one. All these paper also failed to answer the question
that how to determine the network size corresponding to the sampled data number to achieve a
desired statistical convergence rate. [23, 40] consider the similar problem for the optimal transport
problem, i.e. Monge-ampere equation. However the variational problem we considered is different
from[23, 40] which leads to technical difference. The most related paper to us is a concurrent paper
[11, 25, 26]. However our upper is faster than [11, 25, 26] and we have shown that the lower bound
conjecture in [11] is wrong. In this paper, we showed that generalization analysis in [38, 11, 39] are
loose due to lack of localization technique[2, 67]. With observation of the strong convexity of the
loss function, we follows fast rate results for ERM [52, 67, 14] and provided a near optimal bound
for both DRM and PINN.

A.2 Contribution

In short, we summarize our contribution as following

• In this paper, we first consider the statistical limit of learning a PDE solution from sam-
pled observations. The lower bound showed a non-standard exponent different from non-
parametric estimating a function, which breaks the conjecture listed in the concurrent work
[11].

• Instead of the O(1/
√
n) slow rate generalization bounds in [38, 11], we utilize the strongly

convex nature of the variational form and provide a fast rate generalization bound via the
localization methods [63, 2, 30, 58, 67]. We showed that PINN and a modified version of
DRM can achieve nearly min-max optimal convergence rate. Our result is listed in Table 1.

• We tested the recently discovered neural scaling law [22, 28, 51, 20] for deep PDE solvers
numerically and the empirical results verified our theory.

A.3 Remark on Our Upper Bound

• To theoretically understand the empirical success of Physics Informed Neural Networks and
the Deep Ritz solver, in this section, we aim to prove that the excess risk ∆En := E(un)−
E(u∗) of a well-trained neural networks on the PINN/DRM loss function will follow a
precise power-law scaling relations with the size of the training dataset. Similar to [66, 38,
11, 25, 26], we decompose the excess risk into approximation error and generalization error.
Different from the concurrent bound [11, 25], we provided a fast rate O(1/n) by utilizing
the strong convexity of the objective function established in Section 2.1 and achieved a faster
and near optimal upper bound. We showed that the generalization error can be bounded by
the fixed point of the local Rademencher complexity

ψ(r) = Rn({I(u)|‖u− u∗‖2A ≤ r}),

where Rn is the rademencher complexity, I(u) = ∆u+ V u, ‖ · ‖A = ‖ · ‖H2 for PINN and
I(u) = ‖∇u‖2 + V u, ‖ · ‖A = ‖ · ‖H1

for DRM. We put detailed definition and analysis in
Appendix D.4. Then we plug in the approximation and generalization error calculated in
Appendix D.3 and Appendix D.2 and finally achieved the following upper bounds.

• There is a common belief that Machine learning based PDE solvers can break the curse of
dimensionality [12, 16, 31]. However we obtained an n−

2s−2
2s−4+d convergence rate which can

become super slow in high dimension. Our analysis showed that it’s essential to constrain
the function space to break the curse of dimensionality. [38] considered the DRM in Barron
spaces. [46] showed that functions in the Barron space enjoy a smoothness s at the same
magnitude as d , which will also leads to convergence rate independent of the dimension
using our upper bound. Neural network can also approximate mixed sparse grid spaces
[42, 59], function on manifold [45, 7] without curse of dimensionality. Combined with these
approximation bounds, we can also achieve a bound that breaks the curse of dimensionality
using Theorem D.12 and D.9. In this paper, we aim to consider the statistical power of the
loss function in common function spaces and put the curse of dimensionality as a separate
topic.

• Our bound is faster than the concurrent bound [11, 25] for we provided a fast rate O(1/n)
by utilizing the strong convexity of the objective function. Comparing to the lower bound
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provided in Section3, we show that our bound for PINN is near optimal and we’ll let our
bound for DRM become near optimal in the next section.

• For upper bound of DRM, due to technique issue, we assume the observation we access is
clean, i.e fi = f(Xi). We conjecture that add noising on observation will not effect the rate
and leave this to future work.

B Intuition Behind the Sub-optimality of the Unmodified Deep Ritz Methods

In this section, we aim to discuss the intuition behind the sub-optimality of the unmodified DRM via
using the truncation Fourier basis. To simplify the notation, in this section we consider the following
simplest Poisson equation ∆u = f . To illustrate the necessity of the modification we made, we
consider the difference between the following two estimators

• Estimator 1. We use the truncated Fourier basis estimator to learn the right hand side
function f and then we invert the PDE exactly to get the estimated u.

• Estimator 2. We plug in a parametrization of the truncated fourier basis into the empirical
DRM objective

We would like to point out that estimator 1 isn’t build for computational consideration but we use it
to consider the statistical limit of our sampled data. We first show that the estimator 1 can achieve the
minmax optimal estimation error.

Error Of Estimator 1 Firstly, we show that if one wants to learn the function u in H1 norm, one
need to learn the right hand side function f in H−1 norm. The H−1 norm is defined as the dual norm
of the H1 norm, i.e. ‖u‖H−1

= max‖v‖H1
≤1 〈u, v〉. Once we assume we have an estimation f̂ of f

in H−1, we can have the estimate of u via û := (∆)
−1
f̂ in H1 norm for

‖∇u−∇û‖H1 = max
‖v‖H1

≤1
〈∇u−∇û,∇v〉

= max
‖v‖H1

≤1
〈∆u−∆û, v〉

= max
‖v‖H1

≤1

〈
f − f̂ , v

〉
= ‖f − f̂‖H−1 .

Estimator 1 using the truncated fourier estimator to estimate the right hand side function f . Suppose
we can access a random sample of observed data as {xi, f(xi)}ni=1, then the Fourier coefficient
fz := 〈u, φz〉 can be estimated as f̂z := 1

n

∑n
i=1 f(xi)φz(xi). To bound the estimation error of

f̂ :=
∑
‖z‖∞≤Z f̂zφz in H−1, we first apply the bias-variance decompoiton as

E‖f̂ − f‖2H−1 ≤ ‖Ef̂ − f‖2H−1 + E‖f̂ − Ef‖2H−1

We first bound the bias term ‖Ef̂ − f‖2H−1 . We know that Ef̂ =
∑
‖z‖∞≤Z fzφz . Thus for a

truncation set Z to be of the from Z := {z ∈ Nd|‖z‖∞ ≤ Z}, the bias can be controlled by

‖
∑

‖z‖∞>Z

fzφz‖2H−1 ≤ C
∑

‖z‖∞>Z

f2
z z
−2 ≤ ‖z‖−2(s−1)‖f‖2Hα−2

Next we estimate the variance of the estimator, we decompose the variance in to every term

E‖f − f̂‖2H−1
≤ E

∑
‖z‖∞≤Z

(f̂z − fz)2‖φz‖2H−1
≤

∑
‖z‖∞≤Z

|z|−1Var(f̂z).

Finally we achieve a Z−2(s−1) + Zd−2

n upper bound for estimator 1 and with optimal selection of Z,

we can achieve the min-max optimal convergence rate n−
2s−2
d+2s−4 .
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Difference Between Estimator 1 and Estimator 2 Next we aim to understand the Deep Ritz
Method objective function via plugging in a truncated Fourier series estimator. We consider our
estimator u =

∑
ûzφz(x) lies in the truncated fourier spaces. Then the empirical DRM objective

function then can be expressed as

1

2n

n∑
i=1

(∑
z

ûzφz(xi)

)2

+
∑
z

ûzφz(xi)f(xi). (B.1)

We observe that (B.1) is a quadratic formula respect to the fourier coffecient u := (uz)‖z‖∞≤Z and
we can reformulate it in the following matrix form

min
1

2
u>Â+ u>f̂ , where Â =

(
1

n

n∑
i=1

∇φi(xi)∇φj(xi)

)
‖i‖∞≤Z,‖j‖∞≤Z

. (B.2)

Based on the matrix formulation B.2 we can compare the solution for the two estimator

• Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

û1 = diag
(
‖z‖22

)−1

‖z‖∞≤Z
f̂ . (B.3)

• Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

û2 = Â−1f̂ . (B.4)

We notice that EÂ =
(
‖z‖22

)
‖z‖∞≤Z

, thus we discovered that we further introduce another variance
from the sampling of A. We directly estimate û1 − û2 and showed this term will larger than the final
convergence rate. Notice that

‖û1 − û2‖2H1
= f>

(
(EÂ)−1 − Â−1

)>
diag

(
‖z‖22

)
‖z‖∞≤Z

(
(EÂ)−1 − Â−1

)
f (B.5)

Next we aim to bound
(

(EÂ)−1 − Â−1
)

. We first use Matrix Bernstein Inequality[61] to bound the
H1 distance between û1 and û2. Using Matrix Bernstein Inequality, we know with high probability
1− e−t ∥∥∥((EÂ)− Â

)∥∥∥
H
≤
√
Zd

n
+
t

n
, (B.6)

where ‖ · ‖H is the matrix operator norm respect to the vector ‖ · ‖H defined as ‖z‖2H =

z>diag
(
‖z‖22

)−1

‖z‖∞≤Z
z. Note that(

I + (EÂ)−1
(
Â− (EÂ)

))(
(EÂ)−1 − Â−1

)
= (EÂ)−1

(
Â− (EÂ)

)
(EÂ)−1 (B.7)

When n is large enough, we know that 1
2I 6 I + (EÂ)−1

(
Â− (EÂ)

)
6 I with high probability.

Thus the term ‖û1 − û2‖2H1
is at the scale of

∥∥∥((EÂ)− Â
)∥∥∥2

H
≈ Zd

n , the same magnitude as what

we get from the empirical process approach in our main proof and is large than the Zd−2

n variance
term for û1. Thus here we conjecture that the our bound for DRM itself is tight and leads to the
sub-optimal convergence rate.

C Experiments

In this section, we conduct several numerical experiments to verify our theory. We follow the neural
network and hyper-parameter setting in [5]. Due to the page limit, we only put the experiments for
Deep Ritz Methods here.
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C.1 The Modified Deep Ritz Methods

In this section, we conduct experiments which substantiate our theoretical results for modified Deep
Ritz methods. For simplicity, we take V (x) = 1 in our experiment. We conduct experiment in
2-dimension and select the solution of the PDE as u∗ =

∑
z ‖z‖−sφz(x) ∈ Hs. We showed the

Log-log plot of H1 loss plotted against the number of sampled data for s = 4 in Figure 1. We use an
OLS estimator to fit the log-log plot and put the estimated slope and corresponding R2 score in Figure
1. As our theory predicts, the modified Deep Ritz Methods convergences faster than the original one.
All the derivation of the two estimators is listed in Appendix B.

C.2 Dimension Dependent Scaling Law.

Log(Number of Training Data) Log(Number of Training Data)

Log of H
1 Loss

Theory
Empirical 0.6595 0.7953
R2 Score 0.91 0.89

(b) Modified Deep Ritz Methods(a) Deep Ritz Methods
2s − 2

d + 2s − 4 = 12s − 2
d + 2s − 2 = 0.75

Figure 1: The Log-Log plot and estimated con-
vergence slope for Modified DRM and DRM us-
ing fourier basis, showing the median error over 5
replicates.

We conduct experiments to illustrate that the
population loss of well-trained and well-tuned
deep Ritz method will scales with the d-
dimensional training data number N as a power-
law L ∝ 1

Nα . We also scans over a range of d
and α and verified an an approximately α ∝ 1

d
scaling law as our theory suggested. We use the
same test function in Section C.1 as the solution
of our PDE. For simplicity, we take V (x) = 1
in our experiment. We trained deep Nitsche
method on 20, 80, 320, 1280, 10240 sampled
data for 5,6,7,8,9,10 dimensional problems and
we plot our result in log–log scale. Result is
shown in Figure 2. We discovered the L ∝ n

1
d+2 scaling law in practical situations.
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Figure 2: We verify the dimension dependent scaling law empirically and the multiplicative inverse
of the scaling law coefficient is highly linear with the dimension d, showing the mean error over 2
replicates.

C.3 Adapation To The Simpler Functions.

[54] have shown that the neural scaling law will adapt to the structure that the target function enjoys,
this adaptivity enables the neural network to break the cure of the dimensionality for simple functions
in high dimension. [60, 6] also observed this theortically. For solving PDE, we also observed this
adaptivity in practice. Here we tested the following two hypothesis

• Random Neural Network Teacher. Following [54], we also tested random neural network
using He initialization [21] as the ground turth solution u∗. [10] has shown that random
deep neural networks are biased towards simple functions and in practice we observed a
scaling law at the parametric rate. To be specific, we obtained a linear estimate with slope
α = −0.50679429 in the log-log curve and with a R2 score 0.96. See Figure3(a).

• Simple Polynomials. Neural network can approximate simple polynomials exponentially
fast [64], thus we select the ground truth solution to be the following simple polynomial in
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10 dimensional spaces,
u∗(x) = x1x2 + · · ·+ x9x10.

In this example, we obtained a linear estimate with slope α = −0.49755418 in the log-log
curve and with a R2 score 0.99. See Figure3(b). .

L
og of R

elative Testing L
oss

Log of Training Data Number.

(a) Random Neural Network Teacher (b) y = x1x2 + x3x4 + ⋯ + x9x10

Log of Training Data Number.

L
og of R

elative Testing L
oss

Figure 3: Neural network have the ability to adapt to simple functions and achieves convergence
without curse of dimensionality, showing the median error over 5 replicates.

D Proof of the Upper Bounds

D.1 Regularity Result For the PDE model.

Regularity Results of the DRM Objective Function
Theorem D.1. We consider the static Schrödinger equation on the unit hypercube on Rd with the
zero Direchlet boundary condition:

−∆u+ V u = f on Ω,

u = 0 on ∂Ω.
(D.1)

where f ∈ L2(Ω) and V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤ Vmax > 0. There exists a unique
weak solution u∗S to the equivalent variational problem [13]:

u∗S = arg min
u∈H0

1 (Ω)

EDRM
S (u) := arg min

u∈H0
1 (Ω)

{1

2

∫
Ω

[
|∇u|2 + V |u|2

]
dx−

∫
Ω

fudx
}
. (D.2)

Then for any u ∈ H1(Ω), we have:

min(1, Vmin)

2
‖u− u∗S‖2H1(Ω) ≤ EDRM

S (u)−EDRM
S (u∗S) ≤ max(1, Vmax)

2
‖u− u∗S‖2H1(Ω). (D.3)

Proof. To show that u∗S satisfies estimate D.3, we first claim that for any u ∈ H1(Ω),

ES(u)−ES(u∗S) =
1

2

∫
Ω

|∇u−∇u∗S |2dx+
1

2

∫
Ω

V (u∗S − u)2 dx. (D.4)

In fact, by plugging in the first equation of D.1, one has that

ES(u∗S) =
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V |u∗S |2dx−
∫

Ω

fu∗Sdx

=
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V |u∗S |2dx+

∫
Ω

(∆u∗S − V u∗S)u∗Sdx

=
1

2

∫
Ω

|∇u∗S |2dx+

∫
Ω

(∆u∗S)u∗Sdx−
1

2

∫
Ω

V |u∗S |2dx.
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Furthermore, applying Green’s formula to the true solution u∗S yields:

ES(u∗S) =
1

2

∫
Ω

|∇u∗S |2dx+

∫
Ω

(∆u∗S)u∗Sdx−
1

2

∫
Ω

V |u∗S |2dx

=

∫
∂Ω

∂u∗S
∂n

u∗Sdx−
1

2

∫
Ω

|∇u∗S |2dx−
1

2

∫
Ω

V |u∗S |2dx

= −1

2

∫
Ω

|∇u∗S |2dx−
1

2

∫
Ω

V |u∗S |2dx,

where the last identity above follows from the second equality in D.1. Now for any u ∈ H1(Ω),
applying Green’s formula to u and the true solution u∗S implies:

ES(u)−ES(u∗S) =
1

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

V |u|2dx−
∫

Ω

fudx+
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V |u∗S |2dx

=
1

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

V |u|2dx+

∫
Ω

(∆u∗S − V u∗S)udx+
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V |u∗S |2dx

=
1

2

∫
Ω

|∇u|2dx+

∫
Ω

(∆u∗S)udx+
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V
(
u∗S − u

)2
dx

=
1

2

∫
Ω

|∇u|2dx+

∫
∂Ω

∂u∗S
∂n

udx−
∫

Ω

∇u∗S · ∇udx+
1

2

∫
Ω

|∇u∗S |2dx+
1

2

∫
Ω

V
(
u∗S − u

)2
dx

=
1

2

∫
Ω

|∇u−∇u∗S |2dx+
1

2

∫
Ω

V (u∗S − u)2 dx

where the last identity above again follows from the second equality in D.1. This completes our proof
of identity D.4. Using the assumptions on the potential function V then implies:

ES(u)−ES(u∗S) ≤ max(1, Vmax)

2

[ ∫
Ω

|∇u−∇u∗S |2dx+

∫
Ω

(u∗S − u)2 dx
]

=
max(1, Vmax)

2
‖u− u∗S‖2H1(Ω),

ES(u)−ES(u∗S) ≥ max(1, Vmin)

2

[ ∫
Ω

|∇u−∇u∗S |2dx+

∫
Ω

(u∗S − u)2 dx
]

=
max(1, Vmin)

2
‖u− u∗S‖2H1(Ω).

This completes our proof of D.1.

Regularity Results of the PINN Objective Function
Theorem D.2. We consider the static Schrödinger equation on the unit hypercube on Rd with the
Neumann boundary condition:

−∆u+ V u = f on Ω,

u = 0 on ∂Ω.
(D.5)

where f ∈ L2(Ω) and V ∈ L∞(Ω) with V − 1
2∆V > Cmin, 0 < V (x) ≤ Vmax and ∆V (x) ≤ Vmax.

Then there exists a unique solution u∗S to the following minimization problem [3]:

u∗S = arg min
u∈H1(Ω)

EPINN
S (u) := arg min

u∈H1(Ω)

{∫
Ω

|∆u− V u+ f |2dx
}
. (D.6)

Then for any u ∈ H1(Ω), we have:

min{1, Cmin}‖u− u∗S‖2H2(Ω) ≤ E(u)−E(u∗S) ≤ 2(1 + Vmax)‖u− u∗S‖2H2(Ω). (D.7)

Proof. Let ũ = u− u∗, we have

E(u)−E(u∗S) =

∫
Ω

(∆ũ)2 + V 2ũ2 − 2V ũ∆ũdx =

∫
Ω

(∆ũ)2 + V 2ũ2 + 2V ‖∇ũ‖2 + 2ũ∇V · ∇ũdx

=

∫
(V − 1

2
∆V )ũ2 + V ‖∇ũ‖2 + (∆ũ)2

(D.8)
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For we have assumed V ∈ L∞(Ω) with V − 1
2∆V > Cmin, 0 < V (x) ≤ Vmax and ∆V (x) ≤ Vmax,

thus we have

min{1, Cmin}‖u− u∗S‖2H2(Ω) ≤ E(u)−E(u∗S) ≤ 2(1 + Vmax)‖u− u∗S‖2H2(Ω). (D.9)

D.2 Auxiliary definitions and lemmata On Generalization Error

To bound the generalization error, we use the localized Rademencher complexity [2]. Recall that the
Rademacher complexity of a function class G is defined by

Rn(G) = EZEσ
[

sup
g∈G

∣∣∣ 1
n

n∑
j=1

σjg(Zj)
∣∣∣ ∣∣∣ Z1, · · · , Zn

]
,

where Zi are i.i.d samples according to the data distributions and σj are i.i.d Rademencher random
variables which take the value 1 with probaility 1

2 and value -1 with probaility 1
2 .

The following important symmetrization lemma makes the connection between the uniform law of
large numbers and the Rademacher complexity.

Lemma D.1 (Symmetrization Lemma). Let F be a set of functions. Then

E sup
u∈F

∣∣∣ 1
n

n∑
j=1

u(Xj)− EX∼PΩ
u(X)

∣∣∣ ≤ 2Rn(F ).

Lemma D.2 (Ledoux-Talagrand contraction [32, Theorem 4.12]). Assume that φ : R→R is L-
Lipschitz with φ(0) = 0. Let {σi}ni=1 be independent Rademacher random variables. Then for any
T ⊂ Rn

Eσ sup
(t1,··· ,tn)∈T

∣∣∣ n∑
i=1

σiφ(ti)
∣∣∣ ≤ 2L · Eσ sup

(t1,··· ,tn)∈T

∣∣∣ n∑
i=1

σiti

∣∣∣.
Let (E, ρ) be a metric space with metric ρ. A δ-cover of a set A ⊂ E with respect to ρ is a collection
of points {x1, · · · , xn} ⊂ A such that for every x ∈ A, there exists i ∈ {1, · · · , n} such that
ρ(x, xi) ≤ δ. The δ-covering number N(δ, A, ρ) is the cardinality of the smallest δ-cover of the
set A with respect to the metric ρ. Equivalently, the δ-covering number N(δ, A, ρ) is the minimal
number of balls Bρ(x, δ) of radius δ needed to cover the set A.

Theorem D.3 (Dudley’s Integral theorem). Let F be a function class such that supf∈F ‖f‖∞ ≤M .
Then the Rademacher complexity Rn(F ) satisfies that

Rn(F ) ≤ inf
0≤δ≤M

{
4δ +

12√
n

∫ M

δ

√
logN(ε,F , ‖ · ‖∞) dε

}
.

Lemma D.3 (Talagrand Concentration Inequality). For a function class F defined on a probability
measure µ, if for all f ∈ F , we have ‖f‖∞ ≤ β,Eµ[f ] = 0,Eµ[f2] ≤ σ2. Then for any t > 0, we
can have the following concentration results.

Pz1,··· ,zn∼µ

[
sup
f∈F

1

n

n∑
i=1

f(zi) ≥ 2 sup
f∈F

Ez′1,··· ,z′n∼µ
1

n

n∑
i=1

f(z′i) +

√
2tσ2

n
+

2tβ

n

]
≤ e−t

Lemma D.4 (Peeling lemma [2]). For a function class F defined on a probability measure µ, if for
all f ∈ F , we have ‖f‖∞ ≤ β,Eµ[f ] = 0. We further have a sub-root function φ(r) satisfies

Rn({f ∈ F|Pf ≤ r}) ≤ φ(r) (∀r > 0). (D.10)

Then we have

Eσi,zn
[
sup
g∈G

1
n

∑n
i=1 σig(zi)

Pg + r

]
≤ 4φ(r)

r
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Proof. Denote G(r) to be the localized set with radius r. Then we have

Eσi,zi
[ 1
n

∑n
i=1 σig(zi)

Pg + r

]
≤ sup
g∈G(r)

1
n

∑n
i=1 σig(zi)

r

+

∞∑
j=0

sup
g∈G(r4j+1)\G(r4j)

1
n

∑n
i=1 σig(zi)

r4j + r

≤ Rn(Gr)

r
+

∞∑
j=0

Rn(Gr4j+1+r)

r4j + r
≤ φ(r)

r
+

∞∑
j=0

φ(r4j+1 + r)

r4j + r

≤ φ(r)

r
+

∞∑
j=0

2j+1φ(r)

r4j + r
≤ 4φ(r)

r

D.2.1 Local Rademacher Complexity of Truncated Fourier Basis

Definition D.1. (Fourier Series) Given a domain Ω ⊆ [0, 1]d. For any z ∈ Nd, we consider the
corresponding Fourier basis function φz(x) := e2πi〈z,x〉 (x ∈ Ω). With respect to the Fourier basis,
any function f ∈ L2(Ω) can be decomposed as the following sum:

f(x) :=
∑
z∈Nd

fzφz(x). (D.11)

where for any z ∈ Nd, the Fourier coefficient fz =
∫

Ω
f(x)φz(x)dx.

Definition D.2. (Truncated Fourier Series) For a fixed positive integer ξ ∈ Z+, we define the space
Fξ(Ω) of truncated Fourier series as follows:

Fξ(Ω) :=
{
f =

∑
z∈Nd

fzφz

∣∣∣ fz = 0, ∀ ‖z‖∞ > ξ
}
. (D.12)

Equivalently, we can decompose any f ∈ Fξ(Ω) as f :=
∑
‖z‖∞≤ξ fzφz .

Lemma D.5. (Local Rademacher Complexity of Localized Truncated Fourier Series) For a fixed
ξ ∈ Z+, we consider a localized class of functions Fρ,ξ(Ω) =

{
f ∈ Fξ(Ω)

∣∣∣ ‖f‖2H1(Ω) ≤ ρ
}

, where
ρ > 0 is fixed. Then we have the following upper bound on the local Rademacher complexity:

Rn(Fρ,ξ(Ω)) = EX

[
Eσ
[

sup
f∈Fρ,ξ(Ω)

1

n

n∑
i=1

σif(Xi)
∣∣∣ X1, · · · , Xn

]]
.

√
ρ

n
ξ
d−2

2 . (D.13)

Proof. Take an arbitrary function f ∈ Fρ,ξ(Ω). Let f =
∑
‖z‖∞≤ξ fzφz be the Fourier basis

expansion of f . On the one hand, substituting the Fourier expansion into the norm restriction and
using orthogonality of the Fourier basis imply:

ρ ≥ ‖f‖2H1(Ω) = ‖
∑
‖z‖∞≤ξ

fzφz‖2H1(Ω) = ‖
∑
‖z‖∞≤ξ

fzφz‖2L2(Ω) + ‖
∑
‖z‖∞≤ξ

fz∇φz‖2L2(Ω)

=
∑
‖z‖∞≤ξ

|fz|2‖φz‖2L2(Ω) +
∑
‖z‖∞≤ξ

|fz|2‖∇φz‖2L2(Ω)

= |Ω|
( ∑
‖z‖∞≤ξ

|fz|2 + 4π2
∑
‖z‖∞≤ξ

|fz|2‖z‖22
)
,⇒

∑
‖z‖∞≤ξ

|fz|2‖z‖22 . ρ.
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On the other hand, substituting the Fourier expansion into the average sum 1
n

∑n
i=1 σif(Xi) and

using Cauchy-Schwarz inequality let us upper bound as follows:

1

n

n∑
i=1

σif(Xi) =
1

n

n∑
i=1

σi
∑
‖z‖∞≤ξ

fzφz(Xi) =
1

n

∑
‖z‖∞≤ξ

n∑
i=1

σifzφz(Xi)

≤ 1

n

( ∑
‖z‖∞≤ξ

|fz|2‖z‖22
) 1

2
( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2) 1

2

.
√
ρ

n

( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2) 1

2

.

where we have used the constraint
∑
‖z‖∞≤ξ |fz|

2‖z‖22 . ρ in the last step above. Moreover, by
taking expectation with respect to the i.i.d Rademacher random variables σi (1 ≤ i ≤ n) and the
uniformly sampled data points {Xi}ni=1 on both sides and applying Jensen’s inequality, we can
deduce that:

EXEσ
[ 1

n

n∑
i=1

σif(Xi)
]
.
√
ρ

n
EX,σ

( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2) 1

2


≤
√
ρ

n

EX,σ
[ ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2]
 1

2

.

Using independence between the random variables σi (1 ≤ i ≤ n), we can further simplify the
expectation inside the square root above as below:

EX,σ
[ ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2] =

∑
‖z‖∞≤ξ

EX,σ
[∣∣∣ n∑
i=1

σi
‖z‖2

φz(Xi)
∣∣∣2]

=
∑
‖z‖∞≤ξ

n∑
i=1

EX,σ
[ σ2

i

‖z‖22

∣∣∣φz(Xi)
∣∣∣2]

=
∑
‖z‖∞≤ξ

n∑
i=1

|Ω|
‖z‖22

. n
∑
‖z‖∞≤ξ

1

‖z‖22
. n

ξd

ξ2
= nξd−2.

Combining the two bounds above yields the desired upper bound:

EX

[
Eσ
[

sup
f∈Fρ,ξ(Ω)

1

n

n∑
i=1

σif(Xi)
∣∣∣ X1, · · · , Xn

]]
.
√
ρ

n

√
nξd−2 =

√
ρ

n
ξ
d−2

2 .

Lemma D.6. (Local Rademacher Complexity of Localized Truncated Fourier Series’ Gradient) For
a fixed ξ ∈ Z+, we consider a localized class of functions Gρ,ξ(Ω) = {‖∇f‖2 | f ∈ Fρ,ξ(Ω)},
where ρ > 0 is fixed. Then for any sample {Xi}ni=1 ⊂ Ω, we have the following upper bound on the
local Rademacher complexity:

Rn(Gρ,ξ(Ω)) = EX

[
Eσ
[

sup
f∈Fρ,ξ(Ω)

1

n

n∑
i=1

σi‖∇f(Xi)‖2
∣∣∣ X1, · · · , Xn

]]
.

√
ρ

n
ξ
d
2 . (D.14)

Proof. Take an arbitrary function f ∈ Fρ,ξ(Ω). Let f =
∑
‖z‖∞≤ξ fzφz be the Fourier basis

expansion of f . Similarly, the norm restriction condition ‖f‖2H1(Ω) ≤ ρ can be reduced to the
following condition about fourier coefficients:∑

‖z‖∞≤ξ

|fz|2‖z‖22 . ρ.
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Moreover, substituting the Fourier expansion into the average sum 1
n

∑n
i=1 σi∇f(Xi) and using

Cauchy-Schwarz inequality let us upper bound as follows:

1

n

n∑
i=1

σi‖∇f(Xi)‖2 =
1

n

n∑
i=1

σi‖
∑
‖z‖∞≤ξ

fz∇φz(Xi)‖2 ≤
1

n

∑
‖z‖∞≤ξ

n∑
i=1

σi‖fz∇φz(Xi)‖2

≤ 1

n

( ∑
‖z‖∞≤ξ

|fz|2‖z‖22
) 1

2
( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2) 1

2

.
√
ρ

n

( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2) 1

2

.

where we have used the constraint
∑
‖z‖∞≤ξ |fz|

2‖z‖22 . ρ in the last step above. Moreover, by
taking expectation with respect to the i.i.d Rademacher random variables σi (1 ≤ i ≤ n) and the
uniformly sampled data points {Xi}ni=1 on both sides and applying Jensen’s inequality, we can
deduce that:

EXEσ
[ 1

n

n∑
i=1

σi‖∇f(Xi)‖2
]
.
√
ρ

n
EX,σ

( ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2) 1

2


≤
√
ρ

n

EX,σ
[ ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2]
 1

2

.

Using independence between the random variables σi (1 ≤ i ≤ n), we can further simplify the
expectation inside the square root above as below:

EX,σ
[ ∑
‖z‖∞≤ξ

∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2] =

∑
‖z‖∞≤ξ

EX,σ
[∣∣∣ n∑
i=1

σi
‖z‖2

‖∇φz(Xi)‖2
∣∣∣2]

=
∑
‖z‖∞≤ξ

n∑
i=1

EX,σ
[ σ2

i

‖z‖22
‖∇φz(Xi)‖22

]

=
∑
‖z‖∞≤ξ

n∑
i=1

|Ω|4π
2‖z‖22
‖z‖22

. n
∑
‖z‖∞≤ξ

1 . nξd.

Combining the two bounds above yields the desired upper bound:

EX

[
Eσ
[

sup
f∈Fρ,ξ(Ω)

1

n

n∑
i=1

σi‖∇f(Xi)‖2
∣∣∣ X1, · · · , Xn

]]
.
√
ρ

n

√
nξd =

√
ρ

n
ξ
d
2 .

D.2.2 Local Rademacher Complexity of the Deep Neural Network Model

In this section we aim to bound the local Rademacher Complexity of a Deep Neural Network. We
first bound the covering number of the function space composed by the gradient of all possible neural
networks and then apply a Duley Integral to achieve the final bound.
Definition D.3. Let ηl denote the l-ReLU activiation function. Here we use η3 := max{0, x}3[12]
as the activation function to ensure smoothness. We can define the space consisting of all neural
network models with depth L, width W , sparsity constraint S and norm constraint B as follows:

Φ(L,W,S,B) :=
{

(W(L)η3(·) + b(L)) · · · (W(1)x+ b(1)) | W(L) ∈ R1×W , b(L) ∈ R, (D.15)

W(1) ∈ RW×d, b(1) ∈ RW ,W(l) ∈ RW×W , b(l) ∈ RW (1 < l < L), (D.16)
L∑
l=1

(‖W(l)‖0 + ‖b(l)‖0) ≤ S,max
l
‖W(l)‖∞,∞ ∨ ‖b(l)‖∞ ≤ B

}
. (D.17)
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where ‖ · ‖0 measures the number of nonzero entries in a matrix and ‖ · ‖∞,∞ measures the maximum
of the absolute values of the entries in a matrix.
For any d ∈ Z+, we refer to an arbitrary element in Φ(L,W, S,B) as a ReLU3 Deep Neural Network.
Then for any index 1 ≤ k ≤ L, we use Fk to denote the k−ReLU3 Deep Neural Network composed
by the first k layers, i.e:

Fk(x) := (W(k)
F η3(·) + b

(k)
F ) · · · (W(1)

F x+ b
(1)
F ).

Also, we use Φk(L,W, S,B) to denote the space consisting of all Fk. In particular, when k = L, we
have:

F (x) := FL(x) = (W(L)
F η3(·) + b

(L)
F ) · · · (W(1)

F x+ b
(1)
F ), and ΦL(L,W, S,B) = Φ(L,W,S,B).

Furthermore, given that the domain Ω ⊂ [0, 1]d is bounded, we have supx∈Ω ‖x‖∞ = 1

Lemma D.7. (Upper bound on ∞-norm of functions in DNN space) For any 1 ≤ k ≤ L, the
following inequality holds:

sup
x∈Ω, Fk∈Φk(L,W,S,B)

‖Fk(x)‖∞ ≤W
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 2
3k−1

2 −k+1.

Proof. We use induction to prove this claim.
Base cases: When k = 1, we have that for any x ∈ Ω and any F1 ∈ Φ1(L,W, S,B), the following
holds:

‖F1(x)‖∞ = ‖W(1)
F x+ b

(1)
F ‖∞ ≤ ‖W

(1)
F ‖∞‖x‖∞ + ‖b(1)

F ‖∞
≤ d‖W(1)

F ‖∞,∞ +B ≤ dB +B ≤ 2(B ∨ d)2.
(D.18)

When k = 2, we have that for any x ∈ Ω and any F2 ∈ Φ2(L,W, S,B), the following holds:

‖F2(x)‖∞ = ‖W(2)
F η3(F1(x)) + b

(2)
F ‖∞ ≤ ‖W

(2)
F ‖∞‖η3(F1(x))‖∞ + ‖b(2)

F ‖∞ ≤W‖W
(2)
F ‖∞,∞‖F1(x)‖3∞ +B.

By applying the bound proved in the case when k = 1, we have:

‖F2(x)‖∞ ≤WB(dB +B)3 +B = WB4(d+ 1)3 +B

= WB4(d3 + 3d2 + 3d+ 1) +B ≤ 8W (B ∨ d)7.

where the last inequality follows from the assumption that W ≥ 2.
Inductive Step: Now we assume that the claim has been proved for k−1, where 3 ≤ k ≤ L. Similarly,
for any x ∈ Ω and any Fk ∈ Φk(L,W,S,B), we have:

‖Fk(x)‖∞ = ‖W(k)
F η3(Fk−1(x)) + b

(k)
F ‖∞ ≤ ‖W

(k)
F ‖∞‖η3(Fk−1(x))‖∞ + ‖b(k)

F ‖∞
≤W‖W(k)

F ‖∞,∞‖Fk−1(x)‖3∞ +B ≤WB‖Fk−1(x)‖3∞ +B.

Using inductive hypothesis, we can further deduce that:

‖Fk(x)‖∞ ≤WB ×W
3k−1−3

2 (B ∨ d)
5·3k−1−3

2 2
3k−3

2 −3k+6 +B

≤W
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 2
3k−3

2 −3k+6 +B ∨ d

≤W
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 [2
3k−3

2 −3k+6 + 1]

≤W
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 2
3k−3

2 −k+2 (k ≥ 3)

= W
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 2
3k−1

2 −k+1.

Thus, the inequality also holds for k. By induction, the claim is proved.

We also need to show that the ReLu3 activation function is a Lipschitzness functions over a bounded
domain.
Lemma D.8. For any k ∈ Z+, consider the k−ReLU activation function ηk defined on some bounded
domain D ⊂ Rd (i.e, supx∈D ‖x‖∞ ≤ C for some C > 0). Then we have that for any x, y ∈ D, the
following inequalities hold:

‖η3(x)− η3(y)‖∞ ≤ 3C2‖x− y‖∞,
‖η2(x)− η2(y)‖∞ ≤ 2C‖x− y‖∞.
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Proof. This is because |∇η3(x)| = |3 max{x, 0}2| ≤ 3C2 and |∇η2(x)| = |2 max{x, 0}| ≤
2C.

Lemma D.9. (Relation between the covering number of DNN space and parameter space) For any
1 ≤ k ≤ L, suppose that a pair of different two networks Fk, Gk ∈ Φk(L,W,S,B) are given by:

Fk(x) := (W(k)
F η3(·) + b

(k)
F ) · · · (W(1)

F x+ b
(1)
F ),

Gk(x) := (W(k)
G η3(·) + b

(k)
G ) · · · (W(1)

G x+ b
(1)
G ).

Furthermore, assume that the ‖ ‖∞ norm of the distance between the parameter spaces are upper
bounded by δ, i.e

‖W (l)
F −W

(l)
G ‖∞,∞ ≤ δ, ‖b

(l)
F − b

(l)
G ‖∞ ≤ δ. (∀ 1 ≤ l ≤ k)

Then we have that:

sup
x∈Ω,Fk,Gk∈Φk(L,W,S,B)

‖Fk(x)−Gk(x)‖∞ ≤ δW
3k−1−1

2 (B ∨ d)
5·3k−1−1

2 2
3k−1

2 −k+23k−1.

(D.19)

Proof. Let’s prove the claim by using induction on k.
Base Case: When k = 1, we have that for any x ∈ Ω and any F1, G1 ∈ Φ1(L,W,S,B), the
following holds:

‖F1(x)−G1(x)‖∞ = ‖W(1)
F x+ b

(1)
F −W

(1)
G x− b(1)

G ‖∞
≤ ‖W(1)

F −W
(1)
G ‖∞‖x‖∞ + ‖b(1)

F − b
(1)
G ‖∞

≤ δd+ δ = δ(d+ 1) ≤ 2δ(B ∨ d) ≤ 4δ(B ∨ d)2.

(D.20)

When k = 2, we have that for any x ∈ Ω and any F2, G2 ∈ Φ2(L,W, S,B), the following inequality
holds:

‖F2(x)−G2(x)‖∞ = ‖W(2)
F η3(F1(x)) + b

(2)
F −W

(2)
G η3(G1(x))− b(2)

G ‖∞
≤ ‖W(2)

F η3(F1(x))−W(2)
G η3(G1(x))‖∞ + ‖b(2)

F − b
(2)
G ‖∞

≤ ‖W(2)
F η3(F1(x))−W(2)

G η3(F1(x))‖∞ + ‖W(2)
G η3(F1(x))−W(2)

G η3(G1(x))‖∞ + δ.

By applying the upper bound proved in equation D.18, we can upper bound the first part
‖W(2)

F η3(F1(x))−W(2)
G η3(F1(x))‖∞ by:

‖W(2)
F η3(F1(x))−W(2)

G η3(F1(x))‖∞ ≤ ‖W(2)
F −W

(2)
G ‖∞‖η3(F1(x))‖∞

≤Wδ‖F1(x)‖3∞ ≤ δW [2W (B ∨ d)]3.

By applying the Lipschitz condition proved in Lemma D.8 and the bound proved in equation D.20,
we can further upper bound the second part ‖W(2)

G η3(F1(x))−W(2)
G η3(G1(x))‖∞ by:

‖W(2)
G η3(F1(x))−W(2)

G η3(G1(x))‖∞ ≤ ‖W(2)
G ‖∞‖η3(F1(x))− η3(G1(x))‖∞

≤WB × 3 sup
F1∈Φ1(L,W,S,B)

‖F1(x)‖2∞ × ‖F1(x)−G1(x)‖∞

≤WB × 3[2W (B ∨ d)]2 × 2δW (B ∨ d)

≤ 24δW 4(B ∨ d)4.

Summing the two upper bounds above yields:

‖F2(x)−G2(x)‖∞ ≤ 8δW 4(B ∨ d)3 + 24δW 4(B ∨ d)4 + δ ≤ 48δW 4(B ∨ d)4.

where we again use the assumption W ≥ 2 in the last step.
Inductive Step: Now we assume that the claim has been proved for k − 1, where k ≥ 3. For any
x ∈ Ω and Fk ∈ Φk(L,W, S,B), we have that:

‖Fk(x)−Gk(x)‖∞ = ‖W(k)
F η3(Fk−1(x)) + b

(k)
F −W

(k)
G η3(Gk−1(x))− b(k)

G ‖∞
≤ ‖W(k)

F η3(Fk−1(x))−W(k)
G η3(Gk−1(x))‖∞ + ‖b(k)

F − b
(k)
G ‖∞

≤ ‖W(k)
F η3(Fk−1(x))−W(k)

G η3(Gk−1(x))‖∞ + δ.
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Applying triangle inequality helps us upper bound the first term above as follows:

‖W(k)
F η3(Fk−1(x))−W(k)

G η3(Gk−1(x))‖∞
≤ ‖W(k)

F η3(Fk−1(x))−W(k)
G η3(Fk−1(x))‖∞ + ‖W(k)

G η3(Fk−1(x))−W(k)
G η3(Gk−1(x))‖∞

≤ ‖W(k)
F −W(k)

G ‖∞‖η3(Fk−1(x))‖∞ + ‖W(k)
G ‖∞‖η3(Fk−1(x))− η3(Gk−1(x))‖∞

≤ δW‖Fk−1(x)‖3∞ +BW‖η3(Fk−1(x))− η3(Gk−1(x))‖∞.

From Lemma D.7, we can upper bound the first term δW‖Fk−1(x)‖3∞ by:

δW‖Fk−1(x)‖3∞ ≤ δW
3k−1−1

2 (B ∨ d)
5·3k−1−3

2 2
3k−3

2 −3k+6.

Moreover, applying Lemma D.8 and the inductive hypothesis let us upper bound the second term
BW‖η3(Fk−1(x))− η3(Gk−1(x))‖∞ as follows:

BW‖η3(Fk−1(x))− η3(Gk−1(x))‖∞
≤ BW × 3 sup

x∈Ω, Fk−1∈Φk−1(L,W,S,B)

‖Fk−1(x)‖2∞ × ‖Fk−1(x)−Gk−1(x)‖∞

≤ 3BW ×W 3k−2−1(B ∨ d)5×3k−2−123k−1−1−2k+4‖Fk−1(x)−Gk−1(x)‖∞

≤ 3BW ×W 3k−2−1(B ∨ d)5×3k−2−123k−1−1−2k+4 × δW
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+33k−2

≤ 3k−1δW
3k−1−1

2 (B ∨ d)
5×3k−1−1

2 2
3k−1

2 −3k+6.

Combining the two upper bounds derived above yields:

‖Fk(x)−Gk(x)‖∞ ≤ δW
3k−1−1

2 (B ∨ d)
5·3k−1−3

2 2
3k−3

2 −3k+6

+ 3k−1δW
3k−1−1

2 (B ∨ d)
5×3k−1−1

2 2
3k−1

2 −3k+6 + δ

≤ δ3k−1W
3k−1−1

2 (B ∨ d)
5×3k−1−1

2 2
3k−1

2 −k+2,

where the last inequality above follows from the fact that k ≥ 3. Thus, the upper bound also holds
for k. By induction, the claim is proved.

Theorem D.4. (Bounding the DNN space covering number) Fix some sufficiently large N ∈ Z+.
Consider a Deep Neural Network space Φ(L,W,S,B) with L = O(1),W = O(N), S = O(N)
and B = O(N). Then the log value of the covering number of this DNN space with respect to the
‖ · ‖∞ norm, which is denoted by N (δ,Φ(L,W,S,B), ‖ · ‖∞), can be bounded by:

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) = O
(
S
[

log(δ−1) + 3L log(WB)
])

(D.21)

Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). By picking
k = L in Lemma D.9, we get the following upper bound on the covering number with respect to
‖ · ‖∞:

(
δ

3L−1W
3L−1−1

2 (B ∨ d)
5×3L−1−1

2 2
3L−1

2 −L+2
)−S

Furthermore, note that the number of feasible configurations is upper bounded by:(
(W + 1)L

S

)
≤ (W + 1)LS

Multiplying the two bounds above yields:

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) ≤ log
[
(W + 1)LS{ δ

3L−1W
3L−1−1

2 (B ∨ d)
5×3L−1−1

2 2
3L−1

2 −L+2
)−S

]
≤ S log

[
δ−1(W + 1)L3L−1W

3L−1−1
2 (B ∨ d)

5×3L−1−1
2 2

3L−1
2 −L+2

]
. S

[
log(δ−1) + L log(3W ) + 3L log(W (B ∨ d)) + 3L log 2

]
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Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L = O(1),W = O(N), S = O(N) and B = O(N), we can further deduce that:

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) . S
[

log(δ−1) + 3L log(WB)
]

This finishes our proof.

Now let’s consider upper bounding the covering number of the l2 norm of the sparse Deep Neural
Networks’ gradients. Note that for any 1 ≤ k ≤ L − 1, any k−ReLU3 Deep Neural Network
Fk ∈ Φk(L,W,S,B) is a map from Rd to RW . For any 1 ≤ l ≤ W , we use Fk,l(x) to denote the
l-th component of the map Fk. This helps us write the map Fk(x) and its Jacobian matrix J [Fk](x)
explicitly as:

Fk(x) = [Fk,1(x), Fk,2(x), · · · , Fk,W (x)]T ∈ RW

J [Fk](x) =


∂
∂x1

Fk,1(x) ∂
∂x2

Fk,1(x) · · · ∂
∂xd

Fk,1(x)
∂
∂x1

Fk,2(x) ∂
∂x2

Fk,2(x) · · · ∂
∂xd

Fk,2(x)

· · · · · ·
. . .

∂
∂x1

Fk,W (x) ∂
∂x2

Fk,W (x) · · · ∂
∂xd

Fk,W (x)

 ∈ RW×d

In particular, when k = L, we have that any FL ∈ ΦL(L,W,S,B) = Φ(L,W, S,B) is a map from
Rd to R. Thus, its Jacobian can be explicitly written as the following row vector:

J [FL](x) = [
∂

∂x1
FL(x),

∂

∂x2
FL(x), · · · ∂

∂xd
FL(x)] ∈ R1×d

Lemma D.10. (Upper bound on∞-norm of function gradients in DNN space) For any 1 ≤ k ≤ L,
the following inequality holds:

sup
x∈Ω,Fk∈Φk(L,W,S,B)

‖J [Fk](x)‖∞ ≤ 3k−1[W (B ∨ d)]
3k−1

2 2
3k−1

2 −k2

Proof. We use induction on k to prove the claim.
Base case: k = 1. By the definition of Jacobian matrix, we have that for any x ∈ Ω and any
F1 ∈ Φ1(L,W, S,B), the following holds:

‖J [F1](x)‖∞ = ‖W(1)
F ‖∞ ≤ dB ≤W (B ∨ d)

Inductive Step: Assume that the claim has been proved for k− 1. Again, by the definition of Jacobian
matrix, we can write the Jacobian matrix J [Fk](x) as follows:

J [Fk](x) =W(k)
F J [η3 ◦ Fk−1](x)

⇒ ‖J [Fk](x)‖∞ ≤ ‖W(k)
F ‖∞‖J [η3 ◦ Fk−1](x)‖∞ ≤WB‖J [η3 ◦ Fk−1](x)‖∞

Note that for any 2 ≤ k ≤ L, the mapping η3 ◦ Fk−1 maps from Rd to RW . Hence, the Jacobian
matrix J [η3 ◦ Fk−1](x) is of shape RW×d. Moreover, from Chain Rule we know that its∞-norm
can be written as:

‖J [η3 ◦ Fk−1](x)‖∞ = sup
1≤l≤W

(

d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
|)

Furthermore, for any 1 ≤ l ≤W , the expression on the RHS above can be upper bounded as below:
d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
|

≤ 3‖Fk−1(x)‖2∞(

d∑
j=1

| ∂
∂xj

Fk−1,l(x)|) ≤ 3‖Fk−1(x)‖2∞‖J [Fk−1](x)‖∞

≤ 3[W (B ∨ 1)]3
k−1−1(M ∨ 1 + 1)3k−1−1−2k+2‖J [Fk−1](x)‖∞

≤ 3[W (B ∨ 1)]3
k−1−1(M ∨ 1 + 1)3k−1−1−2k+2 × 3k−2[W (B ∨ 1)]

3k−1−1
2 (M ∨ 1 + 1)

3k−1−1
2 −(k−1)2

= 3k−1[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−1

2 −k2
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where we use the inductive hypothesis in the second last step. Taking supremum with respect to l
implies:

‖J [η3 ◦ Fk−1](x)‖∞ = sup
1≤l≤W

(

d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
|) ≤ 3k−1[W (B ∨ 1)]

3k−3
2 (M ∨ 1 + 1)

3k−1
2 −k2

Combining the two bounds derived above yields:

‖J [Fk](x)‖∞ ≤W (B ∨ 1)‖J [η3 ◦ Fk−1](x)‖∞ ≤ 3k−1[W (B ∨ 1)]
3k−1

2 (M ∨ 1 + 1)
3k−1

2 −k2

Therefore, the inequality also holds for k. By induction, the claim is proved.

Lemma D.11. (Relation between the covering number of Jacobian/Gradient of elements in the DNN
space and parameter space) For any 1 ≤ k ≤ L, suppose that a pair of different two networks
Fk, Gk ∈ FkDNN are given by:

Fk(x) := (W(k)
F η3(·) + b

(k)
F ) · · · (W(1)

F x+ b
(1)
F )

Gk(x) := (W(k)
G η3(·) + b

(k)
G ) · · · (W(1)

G x+ b
(1)
G )

Furthermore, assume that the ‖ ‖∞ norm of the distance between the parameter spaces are upper
bounded by δ, i.e

‖W (l)
F −W

(l)
G ‖∞,∞ ≤ δ, ‖b

(l)
F − b

(l)
G ‖∞ ≤ δ (∀ 1 ≤ l ≤ k)

Then we have that:

sup
x∈Ω,Fk,Gk∈FkDNN

‖J [Fk](x)− J [Gk](x)‖∞ ≤ δ32k−2[W (B ∨ 1)]
3k−1

2 (M ∨ 1 + 1)
3k−1

2 −k2+2k

(D.22)

Proof. We use induction on k to prove the claim.
Base case: When k = 1, we have that for any x ∈ Ω and any F1, G1 ∈ F1

DNN , the following holds:

‖J [F1](x)− J [G1](x)‖∞ = ‖W(1)
F −W

(1)
G ‖∞ ≤ δW ≤ δW (B ∨ 1)(M ∨ 1 + 1)2

Inductive Step: assume that the claim has been proved for k − 1. Then for any x ∈ Ω and
Fk, Gk ∈ FkDNN , difference between the two Jacobian matrices J [Fk](x) and J [Gk](x) can be
written as:

‖J [Fk](x)− J [Gk](x)‖∞ = ‖W(k)
F J [η3 ◦ Fk−1](x)−W(k)

G J [η3 ◦Gk−1](x)‖∞
≤ ‖W(k)

F J [η3 ◦ Fk−1](x)−W(k)
G J [η3 ◦ Fk−1](x)‖∞ + ‖W(k)

G J [η3 ◦ Fk−1](x)−W(k)
G J [η3 ◦Gk−1](x)‖∞

≤ ‖W(k)
F −W(k)

G ‖∞‖J [η3 ◦ Fk−1](x)‖∞ + ‖W(k)
G ‖∞‖J [η3 ◦ Fk−1](x)− J [η3 ◦Gk−1](x)‖∞

≤ δW‖J [η3 ◦ Fk−1](x)‖∞ +BW‖J [η3 ◦ Fk−1](x)− J [η3 ◦Gk−1](x)‖∞

Using what we have calculated before, the first term can be upper bounded by:

δW‖J [η3 ◦ Fk−1](x)‖∞ ≤ δW3k−1[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−1

2 −k2

Moreover, using the definition of Jacobian matrix again, we can deduce that:

‖J [η3 ◦ Fk−1](x)− J [η3 ◦Gk−1](x)‖∞

= sup
1≤l≤W

(

d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
− 3η2(Gk−1,l(x))

∂Gk−1,l(x)

∂xj
|)
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For any index 1 ≤ l ≤W , the summation above can be upper bounded by:

d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
− 3η2(Gk−1,l(x))

∂Gk−1,l(x)

∂xj
|

≤
d∑
j=1

|3η2(Fk−1,l(x))
∂Fk−1,l(x)

∂xj
− 3η2(Gk−1,l(x))

∂Fk−1,l(x)

∂xj
|

+

d∑
j=1

|3η2(Gk−1,l(x))
∂Fk−1,l(x)

∂xj
− 3η2(Gk−1,l(x))

∂Gk−1,l(x)

∂xj
|

≤
d∑
j=1

|3η2(Fk−1,l(x))− 3η2(Gk−1,l(x))‖∂Fk−1,l(x)

∂xj
|

+

d∑
j=1

|3η2(Gk−1,l(x))‖∂Fk−1,l(x)

∂xj
− ∂Gk−1,l(x)

∂xj
|

≤ 6( sup
x∈Ω, Fk−1∈Fk−1

DNN

‖Fk−1(x)‖∞)‖Fk−1(x)−Gk−1(x)‖∞
d∑
j=1

|∂Fk−1,l(x)

∂xj
|

+ 3( sup
x∈Ω, Gk−1∈Fk−1

DNN

‖Gk−1(x)‖∞)2
d∑
j=1

|∂Fk−1,l(x)

∂xj
− ∂Gk−1,l(x)

∂xj
| =: S1 + S2

Now let’s consider using what we have calculated above to upper bound the two summations. On the
one hand, the first summation S1 can be upper bounded as follows:

S1 ≤ 6( sup
x∈Ω, Fk−1∈Fk−1

DNN

‖Fk−1(x)‖∞)‖Fk−1(x)−Gk−1(x)‖∞‖J [Fk−1](x)‖∞

≤ 6[W (B ∨ 1)]
3k−1−1

2 (M ∨ 1 + 1)
3k−1−1

2 −k+2 × δ3k−2[W (B ∨ 1)]
3k−1−1

2 (M ∨ 1 + 1)
3k−1−1

2 −k+3

× 3k−2[W (B ∨ 1)]
3k−1−1

2 (M ∨ 1 + 1)
3k−1−1

2 −k2+2k−1

= 2δ × 32k−3[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−3

2 −k2+4

On the other hand, applying the inductive hypothesis helps us upper bound the second summation as
follows:

S2 ≤ 3( sup
x∈Ω, Gk−1∈Fk−1

DNN

‖Gk−1(x)‖∞)2‖J [Fk−1](x)− J [Gk−1](x)‖∞

≤ 3[W (B ∨ 1)]3
k−1−1(M ∨ 1 + 1)3k−1−1−2k+4 × δ32k−4[W (B ∨ 1)]

3k−1−1
2 (M ∨ 1 + 1)

3k−1−1
2 −k2+4k−3

= δ × 32k−3[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−1

2 −k2+2k

Combining all bounds proved above yields:

‖J [Fk](x)− J [Gk](x)‖∞ ≤ δW3k−1[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−1

2 −k2

+WB(S1 + S2)

≤ δW3k−1[W (B ∨ 1)]
3k−3

2 (M ∨ 1 + 1)
3k−1

2 −k2

+ 2δ × 32k−3[W (B ∨ 1)]
3k−1

2 (M ∨ 1 + 1)
3k−3

2 −k2+4

+ δ × 32k−3[W (B ∨ 1)]
3k−1

2 (M ∨ 1 + 1)
3k−1

2 −k2+2k

≤ δ32k−2[W (B ∨ 1)]
3k−1

2 (M ∨ 1 + 1)
3k−1

2 −k2+2k (k ≥ 2)

By induction, this completes our proof of the claim.

Lemma D.12. Given any two row vectors u,v ∈ R1×d, we have:∣∣∣‖u‖2 − ‖v‖2∣∣∣ ≤ √d‖u− v‖∞
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Proof. Assume that the two vectors u,v ∈ Rd can be explicitly written as u = [u1, u2, · · · , ud] and
v = [v1, v2, · · · , vd], respectively. By applying Cauchy-Schwarz inequality, we have:

∣∣∣‖u‖2 − ‖v‖2∣∣∣2 =

∣∣∣∣∣∣
√√√√ d∑

i=1

u2
i −

√√√√ d∑
i=1

v2
i

∣∣∣∣∣∣
2

=

d∑
i=1

u2
i +

d∑
i=1

v2
i − 2

√√√√ d∑
i=1

u2
i

√√√√ d∑
i=1

v2
i

≤
d∑
i=1

u2
i +

d∑
i=1

v2
i − 2

d∑
i=1

uivi =

d∑
i=1

|ui − vi|2

≤ d max
1≤i≤d

|ui − vi|2 = d‖u− v‖2∞

Taking the square root on both sides yields the desired inequality.

Theorem D.5. (Bounding the DNN gradient space covering number) Fix some sufficiently large
N ∈ Z+. Consider a Deep Neural Network space Φ(L,W, S,B) with L = O(1),W = O(N), S =
O(N) and B = O(N). Then the log value of the covering number of this DNN space with respect to
the ‖ · ‖∞ norm, which is denoted by N (δ,∇Φ(L,W, S,B), ‖ · ‖∞), can be bounded by:

logN (δ,∇Φ(L,W, S,B), ‖ · ‖∞) = O
(
S
[

log(δ−1) + 3L log(WB)
])

(D.23)

Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). By picking
k = L in Lemma D.9, we get the following upper bound on the covering number with respect to
‖ · ‖∞:

(
δ

3L−1[W (B ∨ d)]
3L−1

2 2
3L−1

2 −L+2
)−S

Furthermore, note that the number of feasible configurations is upper bounded by:(
(W + 1)L

S

)
≤ (W + 1)LS

Multiplying the two bounds above yields:

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) ≤ log
[
(W + 1)LS{ δ

3L−1[W (B ∨ d)]
3L−1

2 2
3L−1

2 −L+2
)−S

]
≤ S log

[
δ−1(W + 1)L3L−1[W (B ∨ d)]

3L−1
2 2

3L−1
2 −L+2

]
. S

[
log(δ−1) + L log(3W ) + 3L log(W (B ∨ d)) + 3L log 2

]
Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L = O(1),W = O(N), S = O(N) and B = O(N), we can further deduce that:

logN (δ,Φ(L,W, S,B), ‖ · ‖∞) . S
[

log(δ−1) + 3L log(WB)
]

This finishes our proof.

Lemma D.13. (Relation between the covering number of the DNN Laplacian space and parameter
space) For any 1 ≤ k ≤ L, suppose that a pair of different two networks Fk, Gk ∈ Φk(L,W, S,B)
are given by:

Fk(x) := (W(k)
F η3(·) + b

(k)
F ) · · · (W(1)

F x+ b
(1)
F ),

Gk(x) := (W(k)
G η3(·) + b

(k)
G ) · · · (W(1)

G x+ b
(1)
G ).
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Furthermore, assume that the ‖ ‖∞ norm of the distance between the parameter spaces is uniformly
upper bounded by δ, i.e

‖W (l)
F −W

(l)
G ‖∞,∞ ≤ δ, ‖b

(l)
F − b

(l)
G ‖∞ ≤ δ, (∀ 1 ≤ l ≤ k). (D.24)

Then we have:

sup
x∈Ω
‖∆[Fk](x)−∆[Gk](x)‖∞ = O

(
δW

3k−1−1
2 (B ∨ d)

5·3k−1−1
2

)
. (D.25)

Proof. We use induction on k to prove the claim.
Base case: k = 1. Note that any F1 ∈ Φ1(L,W, S,B) is a linear transform, so the Laplacian
∆[F1](x) must be the zero vector for any x ∈ Ω. Hence, for any x ∈ Ω and any F1, G1 ∈
Φ1(L,W, S,B), we have:

‖∆[F1](x)−∆[G1](x)‖∞ = 0 . δ(B ∨ d)2.

Inductive Step: assume that the claim has been proved for k − 1, where 2 ≤ k ≤ L. Then for any
x ∈ Ω and Fk, Gk ∈ Φk(L,W, S,B) satisfying constraint D.24, applying linearity of the Laplacian
operator indicates:

‖∆[Fk](x)−∆[Gk](x)‖∞ = ‖W(k)
F ∆[η3 ◦ Fk−1](x)−W(k)

G ∆[η3 ◦Gk−1](x)‖∞

=
∥∥∥(W(k)

F −W(k)
G

)
∆[η3 ◦ Fk−1](x)

∥∥∥
∞

+
∥∥∥W(k)

G

(
∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)

)∥∥∥
∞

≤ ‖W(k)
F −W(k)

G ‖∞‖∆[η3 ◦ Fk−1](x)‖∞
+ ‖W(k)

G ‖∞‖∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)‖∞.

For the first term ‖W(k)
F −W(k)

G ‖∞‖∆[η3 ◦ Fk−1](x)‖∞, applying the bound in equation ?? and
equation D.24 yields:

‖W(k)
F −W(k)

G ‖∞‖∆[η3 ◦ Fk−1](x)‖∞ . δW ×W
3k−1−3

2 (B ∨ d)
5·3k−1−3

2

= δW
3k−1−1

2 (B ∨ d)
5·3k−1−3

2 .
(D.26)

For the second term ‖W(k)
G ‖∞‖∆[η3 ◦ Fk−1](x) −∆[η3 ◦ Gk−1](x)‖∞, we need to upper bound

the norm ‖∆[η3 ◦ Fk−1](x) −∆[η3 ◦ Gk−1](x)‖∞ at first. Note that for any 1 ≤ l ≤ W , we can
use equation ?? to write the l-th component of ∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x) as:(

∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)
)
l

=

d∑
j=1

∂2

∂x2
j

η3[Fk−1,l(x)]−
d∑
j=1

∂2

∂x2
j

η3[Gk−1,l(x)]

= 6η1[Fk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

− 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Gk−1,l(x)

)2

+ 3η2[Fk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)− 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Gk−1,l(x)

= 6η1[Fk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

− 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

+ 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

− 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Gk−1,l(x)

)2

+ 3η2[Fk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)− 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)

+ 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)− 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Gk−1,l(x).
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We denote the four summations above by V1, V2, V3 and V4, respectively:

V1 := 6η1[Fk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

− 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

,

V2 := 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

− 6η1[Gk−1,l(x)]

d∑
j=1

( ∂

∂xj
Gk−1,l(x)

)2

,

V3 := 3η2[Fk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)− 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x),

V4 := 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Fk−1,l(x)− 3η2[Gk−1,l(x)]

d∑
j=1

∂2

∂x2
j

Gk−1,l(x).

By applying Lemma ??, Lemma D.8, Lemma D.9 and Lemma ??, we can upper bound V1 by:

V1 = 6
(
η1[Fk−1,l(x)]− η1[Gk−1,l(x)]

) d∑
j=1

( ∂

∂xj
Fk−1,l(x)

)2

≤ 6|Fk−1,l(x)−Gk−1,l(x)|

 d∑
j=1

∣∣∣ ∂
∂xj

Fk−1,l(x)
∣∣∣
2

≤ 6‖Fk−1(x)−Gk−1(x)‖∞‖J [Fk−1](x)‖2∞

. δW
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+23k−2 ×W 3k−2−1(B ∨ d)5·3k−2−123k−1−1−2k+432k−4

. δW
3k−1−3

2 (B ∨ d)
5·3k−1−3

2 .

where the last step above follows from k ≤ L and L = O(1).

Furthermore, note that for any 1 ≤ j ≤ d, we can upper bound the difference
(

∂
∂xj

Fk−1,l(x)
)2

−(
∂
∂xj

Gk−1,l(x)
)2

as follows:( ∂

∂xj
Fk−1,l(x)

)2

−
( ∂

∂xj
Gk−1,l(x)

)2

≤
∣∣∣∣( ∂

∂xj
Fk−1,l(x)

)2

−
( ∂

∂xj
Gk−1,l(x)

)2
∣∣∣∣

=

∣∣∣∣ ∂∂xj Fk−1,l(x) +
∂

∂xj
Gk−1,l(x)

∣∣∣∣ ∣∣∣∣ ∂∂xj Fk−1,l(x)− ∂

∂xj
Gk−1,l(x)

∣∣∣∣
≤
(∣∣∣ ∂
∂xj

Fk−1,l(x)
∣∣∣+
∣∣∣ ∂
∂xj

Gk−1,l(x)
∣∣∣) ∣∣∣∣ ∂∂xj Fk−1,l(x)− ∂

∂xj
Gk−1,l(x)

∣∣∣∣ .
(D.27)

Note that η1(Gk−1,l(x)) ≥ 0. Combining the non-negativity with equation D.27, Lemma ??, Lemma
?? and Lemma ?? helps us upper bound V2 by:

V2 = 6η1[Gk−1,l(x)]

d∑
j=1

[( ∂

∂xj
Fk−1,l(x)

)2

−
( ∂

∂xj
Gk−1,l(x)

)2
]

≤ 6‖Gk−1(x)‖∞
d∑
j=1

(∣∣∣ ∂
∂xj

Fk−1,l(x)
∣∣∣+
∣∣∣ ∂
∂xj

Gk−1,l(x)
∣∣∣) ∣∣∣∣ ∂∂xj Fk−1,l(x)− ∂

∂xj
Gk−1,l(x)

∣∣∣∣
≤ 6‖Gk−1(x)‖∞

 d∑
j=1

∣∣∣ ∂
∂xj

Fk−1,l(x)
∣∣∣+

d∑
j=1

∣∣∣ ∂
∂xj

Gk−1,l(x)
∣∣∣
 d∑

j=1

∣∣∣ ∂
∂xj

Fk−1,l(x)− ∂

∂xj
Gk−1,l(x)

∣∣∣


≤ 6‖Gk−1(x)‖∞
(
‖J [Fk−1](x)‖∞ + ‖J [Gk−1](x)‖∞

)∥∥∥J [Fk−1](x)− J [Gk−1](x)
∥∥∥
∞

≤ 6W
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+2 × 2W
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+23k−2

× δW
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+132k−4 . δW
3k−1−3

2 (B ∨ d)
5·3k−1−3

2 .
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where the last step above follows from k ≤ L and L = O(1).
Moreover, using Lemma ??, Lemma D.8 and Lemma ?? helps us upper bound V3 by:

V3 =
(

3η2[Fk−1,l(x)]− 3η2[Gk−1,l(x)]
) d∑
j=1

∂2

∂x2
j

Fk−1,l(x)

≤
∣∣∣3η2[Fk−1,l(x)]− 3η2[Gk−1,l(x)]

∣∣∣∣∣∣ d∑
j=1

∂2

∂x2
j

Fk−1,l(x)
∣∣∣

≤ 6
(

sup
x∈Ω, Fk−1∈Φk−1(L,W,S,B)

‖Fk−1(x)‖∞
)
‖Fk−1(x)−Gk−1(x)‖∞‖∆[Fk−1](x)‖∞

. 6W
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+2 × δW
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 2
3k−1−1

2 −k+23k−2

×W
3k−2−1

2 (B ∨ d)
5·3k−2−1

2 . δW
3k−1−3

2 (B ∨ d)
5·3k−1−3

2

where the last step above follows from k ≤ L and L = O(1).
Finally, applying Lemma ?? and inductive hypothesis helps us upper bound V4 by:

V4 = 3η2[Gk−1,l(x)]
( d∑
j=1

∂2

∂x2
j

Fk−1,l(x)−
d∑
j=1

∂2

∂x2
j

Gk−1,l(x)
)

≤ 3‖Gk−1(x)‖2∞‖∆[Fk−1](x)−∆[Gk−1](x)‖∞

. 3W 3k−2−1(B ∨ d)5·3k−2−123k−1−1−2k+4 × δW
3k−2−1

2 (B ∨ d)
5·3k−2−1

2

. δW
3k−1−3

2 (B ∨ d)
5·3k−1−3

2

where the last step above follows from k ≤ L and L = O(1).
Combining the four bounds on V1, V2, V3 and V4 implies:(

∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)
)
l

=

4∑
i=1

Vi . δW
3k−1−3

2 (B ∨ d)
5·3k−1−3

2

Taking supremum with respect to 1 ≤ l ≤ W gives us an upper bound on the second term
‖W(k)

G ‖∞‖∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)‖∞:

‖W(k)
G ‖∞‖∆[η3 ◦ Fk−1](x)−∆[η3 ◦Gk−1](x)‖∞ .WB × δW

3k−1−3
2 (B ∨ d)

5·3k−1−3
2

= δW
3k−1−1

2 (B ∨ d)
5·3k−1−1

2

(D.28)
Combining the two bounds derived in equation D.26 and equation D.28 then implies:

‖∆[Fk](x)−∆[Gk](x)‖∞ . δW
3k−1−1

2 (B ∨ d)
5·3k−1−3

2 + δW
3k−1−1

2 (B ∨ d)
5·3k−1−1

2

. δW
3k−1−1

2 (B ∨ d)
5·3k−1−1

2

Taking supremum with respect to x ∈ Ω on the LHS implies that the given upper bound also holds
for k. By induction, the claim is proved.

Given a DNN space Φ(L,W, S,B), we define a corresponding DNN Laplacian space
∆Φ(L,W, S,B) as:

∆Φ(L,W, S,B) := {∆F | F ∈ Φ(L,W, S,B)}. (D.29)

Theorem D.6. (Bounding the DNN Laplacian space covering number) Fix some sufficiently
large N ∈ Z+. Consider a Deep Neural Network space Φ(L,W, S,B) with L = O(1),W =
O(N), S = O(N) and B = O(N). Then the log value of the covering number of the DNN
Laplacian space with respect to the ‖ · ‖∞ norm ‖F (x)‖∞ := supx∈Ω |F (x)|, which is denoted by
N (δ,∆Φ(L,W,S,B), ‖ · ‖∞), can be upper bounded by:

logN (δ,∆Φ(L,W, S,B), ‖ · ‖∞) = O
(
S
[

log(δ−1) + 3L log(WB)
])

(D.30)
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Proof. We firstly fix a sparsity pattern (i.e, the locations of the non-zero entries are fixed). Applying
Lemma D.13 yields that there exists some constant C = O(1), such that the covering number with
respect to ‖ · ‖∞ can be upper bounded by:( δ

CW
3L−1−1

2 (B ∨ d)
5·3L−1−1

2

)−S
Furthermore, note that the number of feasible configurations is upper bounded by:(

(W + 1)L

S

)
≤ (W + 1)LS

Multiplying the two bounds above yields:

logN (δ,Φ(L,W,S,B), ‖ · ‖∞) ≤ log

[
(W + 1)LS

( δ

CW
3L−1−1

2 (B ∨ d)
5·3L−1−1

2

)−S]
≤ S log

[
δ−1(W + 1)LW

3L−1−1
2 (B ∨ d)

5·3L−1−1
2

]
. S

[
log(δ−1) + L log(W ) + 3L log(W (B ∨ d))

]
Note that here the dimension d is some constant. Thus, by plugging in thee given magnitudes
L = O(1),W = O(N), S = O(N) and B = O(N), we can further deduce that:

logN (δ,∆Φ(L,W, S,B), ‖ · ‖∞) . S
[

log(δ−1) + 3L log(WB)
]

This finishes our proof.

Lemma D.14 (Local Rademencher Complexity Bound for Deep Ritz Method). At the the same time,
for any ρ > 0, we assume the Rademencher complexity of a localized function space Sρ(Ω) :={
h := |Ω| ·

[
1
2

(
|∇u|2 − |∇u∗|2

)
+ 1

2V (|u|2 − |u∗|2)− f(u− u∗)
] ∣∣∣ ‖u − u∗‖2H1

≤ ρ, u ∈

Φ(L,W, S,B)
}

can be upper bounded by a sub-root function

φ(r) := O

(√
S3Lr

n
log (LBWn)

)

i.e. we have
φ(4ρ) ≤ 2φ(ρ) and Rn(Sρ(Ω)) ≤ φ(ρ) (D.31)

holds for all constant ρ > 0

Proof. We first apply the Talagrand Contraction Lemma D.2 to upper bound the local Rademacher
complexity Rn(Sρ(Ω)) as

Rn(Sρ(Ω)) = ExEσ
[

sup
f∈F

1

n

n∑
i=1

σi

[
1

2

(
|∇u|2 − |∇u∗|2

)
+

1

2
V (|u|2 − |u∗|2)− f(u− u∗)

] ]
≤ 2LExEσ

[
sup
u∈S

1

n

n∑
i=1

σi

(
u(xi)− u∗(xi)

)]
+ 2LExEσ′

[
sup
u∈S

1

n

n∑
i=1

σ′i

(
‖∇u(xi)−∇u∗(xi)‖2

)]

≤ 2LExEσ

[
sup
u∈S

1

n

n∑
i=1

σi

(
u(xi)− u∗ξ(xi)

)]
+ 2LExEσ′

[
sup
u∈S

1

n

n∑
i=1

σ′i

(
‖∇u(xi)−∇u∗ξ(xi)‖2

)]
.

We denote the localization set Lρ := {u : u ∈ φ(L,W, S,B), ‖u− u∗‖2H1
≤ ρ}, then we can bound

the local Radmencher complexity using duley integral
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EηRnSρ(Ω) ≤ CL [EηRn {u− u∗ : u ∈ Lρ}+ EηRn {‖∇u−∇u∗‖ : u ∈ Lρ}]
≤ CLEηRn

{
u− u∗ : u ∈ φ(L,W, S,B), ‖u− u∗‖2n ≤ 2ρ

}
+ CLEηRn

{
‖∇u−∇u∗‖ : u ∈ φ(L,W,S,B), ‖∇u−∇u∗‖2n ≤ 2ρ

}
. CL inf

0<α<
√

2ρ0

{
α+

1√
n

∫ 2r0

α

√
logN (δ,Φ(L,W, S,B), ‖ · ‖n)dδ

}
+ CL inf

0<α<
√

2ρ0

{
α+

1√
n

∫ 2r0

α

√
logN (δ,Φ(L,W, S,B), ‖∇ · ‖n)dδ

}
. CL

[ 1

n
+

1√
n

∫ c
√

r
α

1
n

√
2SL log(LBWε−1) +

1√
n

∫ c
√

r
α

1
n

√
2S3L log(LBWε−1)

]
.

√
S3Lr

n
log (LBWn)

Lemma D.15 (Local Rademencher Complexity Bound for Physics Informed Neural Network). At
the the same time, for any ρ > 0, we assume the Rademencher complexity of a localized function
space Sρ(Ω) :=

{
h := |Ω| ·

[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

] ∣∣∣ ‖u − u∗‖2H2
≤ ρ, u ∈

Φ(L,W, S,B)
}

can be upper bounded by a sub-root function

φ(r) := O

(√
S3Lr

n
log (LBWn)

)

i.e. we have

φ(4ρ) ≤ 2φ(ρ) and Rn(Sρ(Ω)) ≤ φ(ρ) (D.32)

holds for all constant ρ > 0

Proof. We first apply the Talagrand Contraction Lemma D.2 to upper bound the local Rademacher
complexity Rn(Sρ(Ω)) as

Rn(Sρ(Ω)) = ExEσ
[

sup
f∈F

1

n

n∑
i=1

σi
[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

] ]
≤ 2LExEσ

[
sup
u∈S

1

n

n∑
i=1

σi

(
u(xi)− u∗(xi)

)]
+ 2LExEσ′

[
sup
u∈S

1

n

n∑
i=1

σ′i

(
‖∆u(xi)−∆u∗(xi)‖2

)]

≤ 2LExEσ

[
sup
u∈S

1

n

n∑
i=1

σi

(
u(xi)− u∗ξ(xi)

)]
+ 2LExEσ′

[
sup
u∈S

1

n

n∑
i=1

σ′i

(
‖∆u(xi)−∆u∗ξ(xi)‖2

)]
.

We denote the localization set Lρ := {u : u ∈ φ(L,W, S,B), ‖u− u∗‖2H1
≤ ρ}, then we can bound

the local Radmencher complexity using duley integral
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EηRnSρ(Ω) ≤ CL [EηRn {u− u∗ : u ∈ Lρ}+ EηRn {|∆u−∆u∗| : u ∈ Lρ}]
≤ CLEηRn

{
u− u∗ : u ∈ φ(L,W, S,B), ‖u− u∗‖2n ≤ 2ρ

}
+ CLEηRn

{
|∆u−∆u∗| : u ∈ φ(L,W,S,B), |∆u−∆u∗|2n ≤ 2ρ

}
. CL inf

0<α<
√

2ρ0

{
α+

1√
n

∫ 2r0

α

√
logN (δ,Φ(L,W, S,B), ‖ · ‖n)dδ

}
+ CL inf

0<α<
√

2ρ0

{
α+

1√
n

∫ 2r0

α

√
logN (δ,Φ(L,W, S,B), ‖∆ · ‖n)dδ

}
. CL

[ 1

n
+

1√
n

∫ c
√

r
α

1
n

√
2SL log(LBWε−1) +

1√
n

∫ c
√

r
α

1
n

√
2SL log(LBWε−1)

]
.

√
S3Lr

n
log (LBWn)

D.3 Auxiliary definitions and lemmata On Approximation Error

D.3.1 Approximation using Truncated Fourier Basis

Lemma D.16. Given α > 0 and a fixed integer ξ ∈ Z+. For any function f ∈ Hα(Ω) , we let
fξ =

∑
‖z‖∞≤ξ fzφz be the best approximation of f in the space Fξ(Ω). Then for any 0 < β ≤ α,

we have the following inequality:

‖f − fξ‖2Hβ(Ω) ≤ ξ
−2(α−β)‖f‖2Hα .

Proof. For f ∈ Hα(Ω), we know the Fourier coefficient satisfies∑
‖z‖∞≥ξ

|fz|2‖z‖2α2 . ‖f‖2Hα .

We directly construct fξ =
∑
‖z‖∞≤ξ fzφz to be the truncated Fourier series of the function f , then

we have

‖f − fξ‖2Hβ(Ω) .
∑
‖z‖∞≥ξ

|fz|2‖z‖2β2 ≤ ξ−2(α−β)
∑
‖z‖∞≥ξ

|fz|2‖z‖2α2 ≤ ξ−2(α−β)‖f‖2Hα .

D.3.2 Approximation using Neural Network

In this section, we aim to provide approximation bound for deep neural network. Our proof of
the approximation upper bound is based on the observation that the B-spline approximation[9, 53]
can be formulated as a ReLU3 neural network efficiently[59, 17, 11, 25]. Although the proof of
the approximation of the neural network to the Sobolev spaces is a standard approach, we still
demonstrate the proof sketch here.
Definition D.4. (Univariate and Multivariate B-splines) Fix an arbitrary integer l ∈ Z+. Consider
a corresponding uniform partition πl of [0, 1]:

πl : 0 = t
(l)
0 < t

(l)
1 < · · · < t

(l)
l−1 < t

(l)
l = 1,

where t(l)i = i
l (∀ 0 ≤ i ≤ l). Now for any k ∈ Z+, we can define an extended partition πl,k as:

πl,k : t
(l)
−k+1 = · · · t(l)−1 = 0 = t

(l)
0 < t

(l)
1 < · · · < t

(l)
l−1 < t

(l)
l = 1 = t

(l)
l+1 = · · · = t

(l)
l+k−1

Based on the extended partition πl,k, the univariate B-splines of order k with respect to partition πl
are defined by:

N
(k)
l,i (x) := (−1)k(t

(l)
i+k − t

(l)
i ) ·

[
t
(l)
i , · · · , t

(l)
i+k

]
max{(x− t), 0}k−1, x ∈ [0, 1], i ∈ Il,k (D.33)
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where Il,k = {−k + 1,−k + 2, · · · , l − 1} and
[
t
(l)
i , · · · , t

(l)
i+k] denotes the divided difference

operator.
Equivalently, for any x ∈ [0, 1], we can rewrite the univariate B-splines N (k)

l,i (x) in an explicit form:

N
(k)
l,i (x) =


lk−1

(k−1)!

∑k
j=0(−1)j

(
k
j

)
max

{
x− i+j

l , 0
}k−1

, (0 ≤ i ≤ l − k + 1)∑k−1
j=0 aij max

{
x− j

l , 0
}k−1

+
∑k−2
n=1 binx

n + bi0, (−k + 1 ≤ i ≤ 0)∑l
j=l−k+1 cij max

{
x− j

l , 0
}k−1

, (l − k + 1 ≤ i ≤ l − 1)

(D.34)

where {aij | − k + 1 ≤ i ≤ 0, 0 ≤ j ≤ k − 1}, {bin | − k + 1 ≤ i ≤ 0, 1 ≤ n ≤ k − 2} and
{cij | l − k + 1 ≤ i ≤ l − 1, l − k + 1 ≤ j ≤ l − 1} are some fixed constants.
For any index vector i = (i1, i2, · · · , id) ∈ Idl,k, we can define a corresponding multivariate B-spline
as a product of univariate B-splines:

N
(k)
l,i (x) := Πd

j=1N
(k)
l,ij

(xj). (D.35)

Definition D.5. (Interpolation Operator[53]) Take some domain Ω ⊂ [0, 1]d and two arbitrary
integers k, l ∈ Z+. Consider the extended partition πl,k and the corresponding set of multivariate
B-splines {N (k)

l,i (x)}i∈Idl,k defined in Definition D.4. For any i ∈ Idl,k, we define the domain Ωi :=

{x ∈ Ω : xj ∈ [tij , tij+k], 1 ≤ j ≤ d}. There exists a set of linear functionals {λi}i∈Idk,l , where

λi : L1(Ω)→ R (∀ i ∈ Idk,l), such that for any i ∈ Idk,l and p ∈ [1,∞], we have:

λi(N
(k)
l,j ) = δi,j and |λi(f)| ≤ 9d(k−1)(2k + 1)d

(k
l

)− dp ‖f‖Lp(Ωi), ∀ f ∈ Lp(Ω). (D.36)

The corresponding interpolation operator Qk,l is defined as:

Qk,lf :=
∑
i∈Idk,l

λi(f)N
(k)
l,i , ∀ f ∈ L

1(Ω).

Theorem D.7. [[53]] Fix f ∈ W s(Ω) with Ω ⊆ [0, 1]d, s ∈ Z+ and p ∈ [1,∞). Then for any
k, l, r ∈ Z+ with k ≥ s and 0 ≤ r ≤ s, we have that there exists some constant C = C(k, s, r, p, d),
such that:

‖f −Qk,lf‖Hr(Ω) ≤ C
(1

l

)s−r
‖f‖Hs(Ω).

Theorem D.8. (Approximation result of Deep Neural Network) Fix some dimension d ∈ Z+, some
domain Ω ⊆ [0, 1]d. Pick some N ∈ Z+ that is sufficiently large. Then for any s, r ∈ Z+

with 0 ≤ r ≤ s and any function u∗ ∈ Hs(Ω), there exists some sparse Deep Neural Network
uDNN ∈ Φ(L,W, S,B) with L = O(1),W = O(N), S = O(N), B = O(N), such that:

‖uDNN − u∗‖Hr(Ω) . N−
s−r
d ‖u∗‖Hs(Ω). (D.37)

Proof. We firstly show that the given function u∗ can be approximated well by some linear combi-
nation of multivariate splines, which is denoted by usp. Note that N is assumed to be sufficiently
large. Hence, we may pick l = dN 1

d e = Θ(N
1
d ) ∈ Z+ to be the partition size of the B-splines.

Moreover, by picking k = 4 and p = 2 in Theorem D.7, we have that the linear combination
usp := Q4,lu

∗ =
∑

i∈Id4,l
λi(u

∗)N
(4)
l,i satisfies:

‖u∗ − usp‖Hr(Ω) = ‖u∗ −Q4,lu
∗‖Hr(Ω) ≤ C

(1

l

)s−r
‖u∗‖Hs(Ω) = CN−

s−r
d ‖u∗‖Hs(Ω).

We will then show that the linear combination usp =
∑

i∈Id4,l
λi(f)N

(4)
l,i can be implemented by

some Deep Neural Network uDNN ∈ Φ(L,W, S,B) with L = O(1),W = O(N), S = O(N) and
B = O(logN). Firstly, note that for x ≥ 0, both x and x2 can be expressed in terms of the ReLU3
activation function η3 with no error:

x = − 1

12
[η3(x+ 3)− 5η3(x+ 2) + 7η3(x+ 1)− 3η3(x) + 6]

x2 = −1

6
[η3(x+ 2)− 4η3(x+ 1) + 3η3(x)− 4]
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Applying the explicit formula listed in equation D.34 implies that for any −3 ≤ i ≤ l − 1, the
univariate B-spline function N (4)

l,i (x) (x ∈ [0, 1]) can be implemented by some ReLU3 Deep Neural
Network vDNN with both scalar input and scalar output. We have that for vDNN, the depth Lv is 2 and
the maximum width Wv is upper bounded by 11.
Secondly, for any x, y ≥ 0, we have that the product operation x · y can be expressed in terms of the
ReLU3 activation function η3 with no error:

x · y =
1

2
[(x+ y)2 − x2 − y2]

= − 1

12

[
η3(x+ y + 2)− 4η3(x+ y + 1) + 3η3(x+ y)

− η3(x+ 2) + 4η3(x+ 1)− 3η3(x)− η3(y + 2) + 4η3(y + 1)− 3η3(y) + 4
]

In [53], it has been proved that the B-splines are always non-negative, i.e N (4)
l,i (x) ≥ 0, ∀ x ∈ [0, 1].

Therefore, by multiplying the non-negative univariate B-splines, we can implement any multivariate
B-spline N (4)

l,i = Πd
j=1N

(4)
l,ij

(xj) with some ReLU3 Deep Neural Network pDNN. We have that for
pDNN, the depth Lp = dlog2 de+ 2 and the maximum width Wp = max{11d, 9

2d}.
Hence, we can further claim that u∗ =

∑
i∈Id4,l

λi(u
∗)N

(4)
l,i , which is a linear combination of the

multivariate B-splines N (4)
l,i , can be implemented by some ReLU3 Deep Neural Network uDNN.

It remains to check that uDNN ∈ Φ(L,W,S,B) with L = O(1),W = O(N), S = O(N) and
B = O(N). Note that we can ensure that the hidden layers of uDNN are of the same dimension W by
adding inactive neurons.
For the depth L of uDNN, we have that L is equal to Lp + 1, where Lp denotes the depth of the
ReLU3 Deep Neural Network pDNN. Thus, we have L = Lp + 1 = dlog2 de+ 3, which implies that
L = O(1).
For the width W of uDNN, we have that W ≤ |Idk,l|Wp, where Wp denotes the width of the ReLU3
Deep Neural Network pDNN. This implies:

W ≤ |Idk,l| × 11d = 11d(l + k)d = 11d(l + 4)d = O(ld)⇒W = O(N)

For the sparsity constraint S of uDNN, we have that starting from the third layer, the number of
active neurons decreases by a factor of 2 when the index of the layer increases by 1. This yields the
following upper bound on S:

S ≤ 2(W +W +

L−2∑
j=0

W

2j
) ≤ 8W ⇒ S = O(W ) = O(N)

For the norm constraint B of uDNN, we have the following upper bound on B from equation D.34
and equation D.36:

B = O(max{lk−1, sup
i∈Idk,l

λi(u
∗)}) = O(max{l3, ld}) = O(N)

Now we have shown that parameters L,W, S,B of the Deep Neural Network uDNN are of the desired
magnitude, which completes our proof.

D.4 Final Upper Bound

In this subsection, we provide the proof of upper bounds for PINN and DRM. For both estimator, we
first provide a meta-theorem to illustrate the approximation and generalization decomposition with
a O(1/n) fast rate generalization bound[2, 66]. Then we use truncated fourier basis estimator and
neural network estimator as example to obtain the final rate.

D.4.1 Deep Ritz Methods

Theorem D.9 (Meta-theorem for Upper Bounds of Deep Ritz Methods). Let u∗ ∈ Hs(Ω) denote
the true solution to the PDE model with Dirichlet boundary condition:

−∆u+ V u = f on Ω,

u = 0 on ∂Ω,
(D.38)
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where f ∈ L2(Ω) and V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤ Vmax > 0. For a fixed function space
F (Ω), consider the empirical loss induced by the Deep Ritz Method:

En(u) =
1

n

n∑
j=1

[
|Ω| ·

(1

2
|∇u(Xj)|2 +

1

2
V (Xj)|u(Xj)|2 − f(Xj)u(Xj)

)]
, (D.39)

where {Xj}nj=1 are datapoints uniformly sampled from the domain Ω. Then the Deep Ritz estimator
associated with function space F (Ω) is defined as the minimizer of En(u) over the function space
F (Ω):

ûDRM = min
u∈F (Ω)

En(u)

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (Ω), the real solution u∗ and f, V satisfy the following two conditions.

• The gradients and function value are uniformly bounded

max
{

sup
u∈F (Ω)

‖u‖L∞(Ω), sup
u∈F (Ω)

‖∇u‖L∞(Ω), ‖u∗‖L∞(Ω), ‖∇u∗‖L∞(Ω), Vmax, ‖f‖L∞(Ω)

}
≤ C.

(D.40)

• All the functions in the function space F (Ω) satisfies the boundary condition

u = 0 on ∂Ω.

At the the same time, for any ρ > 0, we assume the Rademencher complexity of a localized function
space Sρ(Ω) :=

{
h := |Ω| ·

[
1
2

(
|∇u|2 − |∇u∗|2

)
+ 1

2V (|u|2 − |u∗|2)− f(u− u∗)
] ∣∣∣ ‖u −

u∗‖2H1
≤ ρ
}

can be upper bounded by a sub-root function φ = φ(ρ) : [0,∞)→ [0,∞), i.e.

φ(4ρ) ≤ 2φ(ρ) and Rn(Sρ(Ω)) ≤ φ(ρ) (∀ ρ > 0). (D.41)

For all constant t > 0. We denote r∗ to be the solution of the fix point equation of local Rademacher
complexity r = φ(r). There exists a constant Cp such that for probability 1− Cp exp(−t), we have
the following upper bound for the Deep Ritz Estimator

‖ûDRM − u∗‖2H1
. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
.

Proof. To upper bound the excess risk ∆E(n) := E(ûDRM) − E(u∗), following[66, 38, 11], we
decompose the excess risk into approximation error and generalization error with probability 1− e−t:

∆E(n)(ûDRM) = E(ûDRM)−E(u?) =
[
E(ûDRM)−En(ûDRM)

]
+
[
En(ûDRM)−En(uF )

]
+
[
En(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
≤
[
E(ûDRM)−En(ûDRM)

]
+
[
En(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
≤
[
E(ûDRM)−E(u∗) + En(u∗)−En(u)

]
+

3

2

[
E(uF )−E(u?)

]
+

t

2n
,

(D.42)
where the expectation is on all sampled data. The inequality of the third line is because the
u is the minimizer of the empirical loss En in the solution set F (Ω), so we have En(u) ≤
En(uF ). The last inequality is based on the Bernstein inequality. The variance of h =

|Ω|·
[

1
2

(
|∇u|2 − |∇u∗|2

)
+ 1

2V (|u|2 − |u∗|2)− f(u− u∗)
]

can be bounded by
[
E(uF )−E(u?)

]
due to the strong convexity of the variation objective (D.44). According to the Bernstein inequality,
we know with probability 1− e−t we have

En(uF )−En(u∗)−E(uF ) + E(u∗) ≤

√
t
[
E(uF )−E(u?)

]
n

≤ 1

2

[
E(uF )−E(u?)

]
+

t

2n
.
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Note that D.42 holds for all function lies in the function space F . Thus, we can take uF :=

arg minu0∈F (Ω)

(
E(u0)−E(u?)

)
and finally get

∆E(n) ≤ E(ûDRM)−E(u∗) + En(u∗)−En(u)︸ ︷︷ ︸
∆Egen

+
3

2
inf

uF∈F (Ω)

(
E(uF )−E(u?)

)
︸ ︷︷ ︸

∆Eapp

+
t

2n
.

This inequality decompose the excess risk to the generalization error ∆Egen := Ex∼µ[E(ûDRM)−
E(u∗) + En(u∗) − En(ûDRM)] and the approximation error ∆Eapp = infuF∈F (Ω)

(
E(uF ) −

E(u?)
)

.
From the lemmata proved in Section D.3, we already have an estimation of the approximation error’s
convergence rate. So now we’ll focus on providing fast rate upper bounds of the generalization error
for the two estimators using the localization technique[2, 66]. To achieve the fast generalization
bound, we focus on the following normalized empirical process

S̃r(Ω) :=
{
h̃(x) :=

E[h]− h(x)

E[h] + r
| h ∈ S(Ω)

}
(r > 0).

First, we try to bound the expectation of the normalized empirical process. Applying the Symmetriza-
tion Lemma D.1, we can first bound the expectation as

sup
h̃∈S̃r(Ω)

Ex′
[

1

n

n∑
i=1

h̃(x′i)

]
≤ Ex′

[
sup

h∈S(Ω)

∣∣∣ 1
n

n∑
i=1

h(x′i)− E[h]

E[h] + r

∣∣∣] ≤ 2Rn(Ŝr(Ω)).

where the function class Ŝr(Ω) is defined as:

Ŝr(Ω) :=
{
ĥ(x) :=

h(x)

E[h] + r
| h ∈ S(Ω)

}
,

where S(Ω) =
{
h := |Ω| ·

[
1
2

(
|∇u|2 − |∇u∗|2

)
+ 1

2V (|u|2 − |u∗|2)− f(u− u∗)
]}

. Then Ap-
plying the Peeling Lemma to any function h ∈ S(Ω) helps us upper bound the local Rademacher
complexity Rn(Ŝr(Ω)) with the function φ defined in equation D.41:

Rn(Ŝr(Ω)) = Eσ

[
Ex
[

sup
h∈S(Ω)

1
n

∑n
i=1 σih(xi)

E[h] + r

]]
≤ 4φ(r)

r
.

Combining all inequalities derived above yields:

sup
h̃∈S̃r(Ω)

Ex′
[

1

n

n∑
i=1

h̃(x′i)

]
≤ 2Rn(Ŝr(Ω)) ≤ 8φ(r)

r
(r > 0). (D.43)

Secondly we’ll apply the Talagrand concentration inequality, which requires us to verify the condition
needed. We will first check that the expectation value E[h] is always non-negative for any h ∈ S(Ω):

E[h] =
1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u(x)|2 +

1

2
V (x)|u(x)|2 − f(x)u(x))dx

− 1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u?(x)|2 +

1

2
V (x)|u?(x)|2 − f(x)u?(x))dx

= E(u)−E(u?) ≥ 0⇒ E[h] ≥ 0.

We will proceed to verify that any h̃ = E[h]−h
E[h]+r ∈ S̃r(Ω) is of bounded inf-norm. We need to prove

that any h ∈ S(Ω) is of bounded inf-norm beforehand. Using boundedness condition listed in
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equation D.40 implies:

‖h‖∞ = |Ω|‖1

2

(
|∇u|2 − |∇u∗|2

)
+

1

2
V (|u|2 − |u∗|2)− f(u− u∗)‖∞

≤ |Ω|
2

(
‖∇u‖2∞ + ‖∇u∗‖2∞

)
+
|Ω|
2
Vmax

(
‖u‖2∞ + ‖u∗‖2∞

)
+ |Ω|‖f‖∞

(
‖u‖∞ + ‖u∗‖∞

)
≤ |Ω|

2
× 2C2 +

|Ω|
2
Vmax × 2C2 + 2|Ω|C2 = |Ω|(Vmax + 3)C2

By taking M := |Ω|(Vmax + 3)C2, we then have ‖h‖∞ ≤ M for all h ∈ S(Ω). Note that the
denominator can be lower bounded by |E[h] + r| ≥ r > 0. Combining these two inequalities help us
upper bound the inf-norm ‖h̃‖∞ = supx∈Ω |h̃(x)| as follows:

‖h̃‖∞ =
‖E[h]− h‖∞
|E[h] + r|

≤ 2‖h‖∞
r

≤ 2M

r
=: β.

We will then check the normalized functions E[h]−h(x)
E[h]+r in S̃r(Ω) have bounded second moment,

which is satisfied because of the regularity results of the PDE. We aim to show that there exist some
constants α, α′ > 0, such that for any h ∈ S(Ω), the following inequality holds:

αE[h2] ≤ ‖u− u∗‖2H1(Ω) ≤ α
′E[h]. (D.44)

The RHS of the inequality follows from strong convexity of the DRM objective function proved in
Theorem D.1:

E[h] = E(u)−E(u∗) ≥ min{1, Vmin}
4

‖u− u∗‖2H1(Ω)

The LHS of the inequality follows from boundedness condition listed in equation D.40 and the
QM-AM inequality:

E[h2] =

∫
Ω

[
1

2

(
|∇u|2 − |∇u∗|2

)
+

1

2
V (|u|2 − |u∗|2)− f(u− u∗)

]2

dx

≤ 3

4

∫
Ω

(
|∇u|2 − |∇u∗|2

)2

dx+
3

4

∫
Ω

V 2(|u|2 − |u∗|2)2dx+ 3

∫
Ω

f2(u− u∗)2dx

≤ 3

4

∫
Ω

∣∣∣|∇u| − |∇u∗|∣∣∣2(|∇u|+ |∇u∗|)2dx+
3

4
V 2

max

∫
Ω

∣∣∣|u| − |u∗|∣∣∣2(|u|+ |u∗|)2dx

+ 3C2

∫
Ω

(u− u∗)2dx ≤ 3C2

∫
Ω

|∇u−∇u∗|2dx+ 3C2(1 + V 2
max)

∫
Ω

|u− u∗|2dx

≤ 3C2(1 + V 2
max)‖u− u∗‖2H1(Ω)

By picking α′ = 4
min{1,Vmin} and α = 1

3C2(1+V 2
max)

, we have finished proving inequality D.44. Then

we can can upper bound the expectation E[h̃2] as:

E[h̃2] =
E[(h− E[h])2]

|E[h] + r|2
=

E[h2]− E[h]2

|E[h] + r|2
≤ E[h2]

|E[h] + r|2
.

Using the fact that E[h] ≥ 0 and inequality D.44, we can lower bound the denominator |E[h] + r|2
as follows:

|E[h] + r|2 ≥ 2E[h]r ≥ 2rα

α′
E[h2].

Therefore, we can deduce that:

E[h̃2] ≤ E[h2]

|E[h] + r|2
≤ E[h2]

2rα
α′ E[h2]

=
α′

2rα
=: σ2.

Hence, any function in the localized class S̃r(Ω) is of bounded second moment.

36



It’s easy to check that for any h̃ ∈ S̃r(Ω), we have

E[h̃] =
E[h]− E[h]

E[h] + r
= 0,

i.e. any function in the localized class S̃r(Ω) is of zero mean.

Now we have verified that any function h̃ ∈ S̃r(Ω) satisfies all the required conditions. By taking µ
to be the uniform distribution on the domain Ω and applying Talagrand’s Concentration inequality
given in Lemma D.3, we have:

Px

[
sup

h̃∈S̃r(Ω)

1

n

n∑
i=1

h̃(xi) ≥ 2 sup
h̃∈S̃r(Ω)

Ex′
[ 1

n

n∑
i=1

h̃(x′i)
]

+

√
2tσ2

n
+

2tβ

n

]
≤ e−t.

By using the upper bound deduced above and plugging in the expressions of β and σ, we can rewrite
Talagrand’s Concentration Inequality in the following way. With probability at least 1 − e−t, the
inequality below holds:

1

n

n∑
i=1

h̃(xi) ≤ sup
h̃∈S̃r(Ω)

1

n

n∑
i=1

h̃(xi) ≤ 2 sup
h̃∈S̃r(Ω)

Ex′
[ 1

n

n∑
i=1

h̃(x′i)
]

+

√
2tσ2

n
+

2tβ

n

≤ 16φ(r)

r
+

√
tα′

nαr
+

4Mt

nr
=: ψ(r).

Let’s pick the threshold radius r0 to be:

r0 = max{214r∗,
24Mt

n
,

36α′t

αn
}. (D.45)

Note that concavity of the function φ implies that φ(r) ≤ r for any r ≥ r∗. Combining this with the
first inequality listed in D.41 yields:

16φ(r)

r
≤

211φ( r0214 )

214 r0
214

=
1

8
×
φ( r0214 )
r)
214

≤ 1

8
.

On the other hand, applying equation D.45 yields:√
α′t

nαr0
≤
√
α′t

nα

αn

36α′t
=

1

6
,

4Mt

nr0
≤ 4Mt

n
× n

24Mt
=

1

6
.

Summing the three inequalities above implies:

ψ(r0) =
16φ(r0)

r0
+

√
tα′

nαr0
+

4Mt

nr0
≤ 1

8
+

1

6
+

1

6
<

1

2
.

By picking r = r0, we can further deduce that for any function u ∈ F (Ω), the following inequality
holds with probability 1− e−t:

E(u)−E(u∗)−En(u) + En(u∗)

E(u)−E(u∗) + r0
=

1

n

n∑
i=1

h̃(xi) ≤ ψ(r0) <
1

2
.

Multiplying the denominator on both sides indicates:

∆Egen = E(u)−E(u∗)−En(u) + En(u∗) ≤ 1

2

[
E(u)−E(u∗)

]
+

1

2
r0 =

1

2
∆E(n) +

1

2
r0.

Substituting the upper bound above into the decomposition ∆E(n) ≤ ∆Egen + 3
2∆Eapp + t

2n yields
that with probability 1− e−t, we have:

∆E(n) ≤ ∆Egen +
3

2
∆Eapp +

t

2n
≤ 1

2
∆E(n) +

1

2
r0 +

3

2
∆Eapp +

t

2n
.

37



Simplifying the inequality above yields that with probability 1− e−t, we have:

∆E(n) ≤ r0 + 3∆Eapp +
t

n
= 3 inf

uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max{214r∗, 24M

t

n
,

36α′

α

t

n
}+

t

n

. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
Moreover, using strong convexity of the DRM objective function proved in Theorem D.1 implies:

∆E(n) = E(ûDRM)−E(u∗) ≥ min{1, Vmin}
4

‖ûDRM − u∗‖2H1(Ω)

Combining the two bounds above yields that with probability 1− e−t, we have:

‖ûDRM − u∗‖2H1(Ω) . inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}

Deep Neural Network Estimator. For any N ∈ Z+, there exists some Deep Neural Network in
Φ(L,W, S,B) with L = O(1), W = O(N), S = O(N), B = O(1), such that the approximation
error ∆Eapp = O(N−

2(s−1)
d ) and generalization error ∆Egen = O(N logN

n ). With optimal selection

N = n
d

d+2s−2 to balance the bias and variance, we can achieve n−
2s−2
d+2s−2 log n convergence rate for

DRM estimator.
Theorem D.10. (Final Upper Bound of DRM with Deep Neural Network Estimator) Con-
sider the sparse Deep Neural Network function space Φ(L,W, S,B) with parameters L =

O(1), W = O(n
d

d+2s−2 ), S = O(n
d

d+2s−2 ), B = O(1), then the Deep ritz estimator ûDNN
DRM =

minu∈Φ(L,W,S,B) En(u) satisfies the following upper bound

‖ûDNN
DRM − u∗‖2H1

. n−
2s−2
d+2s−2 log n.

Proof. On the one hand, by taking s = 1 and p = 2 in Theorem D.8 proved above, we have that
there exists some Deep Neural Network uDNN ∈ Φ(L,W, S,B) with L = O(1),W = O(N), S =
O(N), B = O(1), such that.

‖uDNN − u∗‖2H1(Ω) ≤ N
− 2s−2

d ‖u∗‖Hs(Ω).

Applying strong convexity of the DRM objective function proved in Section 2.1 further implies:

∆Eapp . ‖uDNN − u∗‖2H1(Ω) ≤ N
− 2s−2

d .

On the other hand, from Lemma D.14 proved above, we know that the function φ(ρ) that upper
bounds the local Rademacher complexity of the Deep Neural Networks uDNN is dominated by the

term
√

ρ3LS
n log(W (B ∨ 1)n). By plugging in the magnitudes of L,W, S,B, we can determine the

thresholding localization radius r̂:√
ρ3LS

n
log(W (B ∨ 1)n) '

√
ρN

n
(logN + log n) ' ρ⇒ r̂ ' N(logN + log n)

n
.

Combining the two bounds above gives us:

Ex∼µ[∆En] . ∆Eapp + r̂ . N−
2(s−1)
d +

N(logN + log n)

n
.

By equating the two terms above, we can solve for the optimal N that yields the desired bound:

N−
2(s−1)
d ' N

n
⇒ N ' n

d
d+2s−2 .

Plugging in the optimal N gives us the magnitudes of the four parameters L = O(1), W =

O(n
2s−2
d+2s−2 ), S = O(n

2s−2
d+2s−2 ), B = O(1), as well as the final rate:

Ex∼µ[∆En] . N−
2(s−1)
d +

N logN

n
. n−

2(s−1)
d+2(s−1) log n.
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Truncated Fourier Series Estimator. For any ξ ∈ Z+, there exists some Truncated Fourier Series
in Fξ(Ω) with approximation error ∆Eapp = O(ξ−2(s−1)) and generalization error ∆Egen = O( ξ

d

n )

Theorem D.11. (Final Upper Bound of DRM with Truncated Fourier Series Estimator) Consider
the Deep Ritz objective with a plug in Fourier Series estimator ûFourier

DRM = minu∈Fξ(Ω) En(u) with

ξ = Θ(n
1

d+2s−2 ), then we have

‖ûFourier
DRM − u∗‖2H1

. n−
2s−2
d+2s−2

Proof. On the one hand, from Lemma D.5 and Lemma D.6 proved above, we know that the function
φ(ρ) that upper bounds the local Rademacher complexity is dominated by the term

√
ρ
nξ

d
2 for

Truncated Fourier Series in Fξ(Ω). Thus, the thresholding localization radius r̂ can be determined as
follows: √

ρ

n
ξ
d
2 ' ρ⇒ r̂ ' ξd

n
,

On the other hand, by taking α = s and β = 1 in Lemma D.16 and applying strong convexity of the
DRM objective function proved in Section 2.1, we can upper bound the approximation error ∆Eapp
as below:

∆Eapp . ξ−2(s−1),

By equating the two terms above, we can solve for ξ that yields the desired bound:

ξd

n
' ξ−2(s−1) ⇒ ξ ' n

1
d+2s−2 ,

Plugging in the expression of ξ gives the final upper bound:

Ex∼µ[∆En] . r̂ + ∆Eapp .
ξd

n
+ ξ−2(s−1) ' n−

2s−2
d+2s−2 .

D.4.2 Physics Informed Neural Network

Theorem D.12 (Meta-theorem for Upper Bounds of Physics Informed Neural Network). Let u∗ ∈
Hs(Ω) denote the true solution to the PDE model with Dirichlet boundary condition:

−∆u+ V u = f on Ω,

u = 0 on ∂Ω,
(D.46)

where f ∈ L2(Ω) and V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤ Vmax > 0. For a fixed function space
F (Ω), consider the empirical loss induced by the Physics Informed Neural Network:

En(u) =
1

n

n∑
j=1

[
|Ω| ·

(
∆u(Xj)− V (Xj)u(Xj) + f(Xj)

)2]
, (D.47)

where {Xj}nj=1 are datapoints uniformly sampled from the domain Ω. Then the Physics Informed
Neural Network estimator associated with function space F (Ω) is defined as the minimizer of En(u)
over the function space F (Ω):

ûPINN = min
u∈F (Ω)

En(u)

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (Ω), the real solution u∗ and f, V satisfy the following two conditions.

• The gradients and function value are uniformly bounded

max
{

sup
u∈F (Ω)

‖u‖L∞(Ω), sup
u∈F (Ω)

‖∇u‖L∞(Ω), sup
u∈F (Ω)

‖∆u‖L∞(Ω),

‖u∗‖L∞(Ω), ‖∇u∗‖L∞(Ω), ‖∆u∗‖L∞(Ω), Vmax, ‖f‖L∞(Ω)

}
≤ C.

(D.48)
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• All the functions in the function space F (Ω) satisfies the boundary condition

u = 0 on ∂Ω.

At the the same time, for any ρ > 0, we assume the Rademencher complexity of a localized function
space Tρ(Ω) :=

{
h := |Ω| ·

[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

] ∣∣∣ ‖u − u∗‖2H2
≤ ρ

}
can

be upper bounded by a sub-root function φ = φ(ρ) : [0,∞)→ [0,∞), i.e.

φ(4ρ) ≤ 2φ(ρ) and Rn(Tρ(Ω)) ≤ φ(ρ) (∀ ρ > 0). (D.49)

For all constant t > 0. We denote r∗ to be the solution of the fix point equation of local Rademacher
complexity r = φ(r). There exists a constant Cp such that for probability 1− Cp exp(−t), we have
the following upper bound for the Physics Informed Neural Network Estimator

‖ûPINN − u∗‖2H2
. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
.

Proof. To upper bound the excess risk ∆E(n), following[66, 38, 11], we decompose the excess risk
into approximation error and generalization error with probability 1− e−t:

∆E(n)(ûPINN) = E(ûPINN)−E(u?) =
[
E(ûPINN)−En(ûPINN)

]
+
[
En(ûPINN)−En(uF )

]
+
[
En(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
≤
[
E(ûPINN)−En(ûPINN)

]
+
[
En(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
≤
[
E(Ê(ûPINN)−E(u∗) + En(u∗)−En(ûPINN)

]
+

3

2

[
E(uF )−E(u?)

]
+

t

2n
,

(D.50)
where the expectation is on all sampled data. The inequality of the third line is because the
u is the minimizer of the empirical loss En in the solution set F (Ω), so we have En(u) ≤
En(uF ). The last inequality is based on the Bernstein inequality. The variance of h =
|Ω| ·

[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

]
can be bounded by

[
E(uF ) − E(u?)

]
due to the

strong convexity of the variation objective (D.52). According to the Brenstein inequality, we know
with probability 1− e−t we have

En(uF )−En(u∗)−E(uF ) + E(u∗) ≤

√
t
[
E(uF )−E(u?)

]
n

≤ 1

2

[
E(uF )−E(u?)

]
+

t

2n
.

Note that E.5 holds for all function lies in the function space F . Thus, we can take uF :=

arg minu0∈F (Ω)

(
E(u0)−E(u?)

)
and finally get

∆E(n) ≤ E(ûPINN)−E(u∗) + En(u∗)−En(ûPINN)︸ ︷︷ ︸
∆Egen

+
3

2
inf

uF∈F (Ω)

(
E(uF )−E(u?)

)
︸ ︷︷ ︸

∆Eapp

+
t

2n
.

This inequality decompose the excess risk to the generalization error ∆Egen := E(ûPINN)−E(u∗) +

En(u∗)−En(ûPINN) and the approximation error ∆Eapp = infuF∈F (Ω)

(
E(uF )−E(u?)

)
.

From the lemmata proved in Section D.3, we already have an estimation of the approximation error’s
convergence rate. So now we’ll focus on providing fast rate upper bounds of the generalization error
for the two estimators using the localization techinque[2, 66]. To achieve the fast generalization
bound, we focus on the following normalized empirical process

T̃r(Ω) :=
{
h̃(x) :=

E[h]− h(x)

E[h] + r
| h ∈ T (Ω)

}
(r > 0).

First, we try to bound the expectation of the normalized empirical process. Applying the Symmetriza-
tion Lemma D.1, we can first bound the expectation as
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sup
h̃∈T̃r(Ω)

Ex′
[

1

n

n∑
i=1

h̃(x′i)

]
≤ Ex′

[
sup

h∈T (Ω)

∣∣∣ 1
n

n∑
i=1

h(x′i)− E[h]

E[h] + r

∣∣∣] ≤ 2Rn(T̂r(Ω)).

where the function class Ŝr(Ω) is defined as:

T̂r(Ω) :=
{
ĥ(x) :=

h(x)

E[h] + r
| h ∈ T (Ω)

}
,

where T (Ω) =
{
h := |Ω| ·

[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

] }
. Then Applying the Peeling

Lemma to any function h ∈ T (Ω) helps us upper bound the local Rademacher complexityRn(T̂r(Ω))
with the function φ defined in equation D.49:

Rn(T̂r(Ω)) = Eσ

[
Ex
[

sup
h∈T (Ω)

1
n

∑n
i=1 σih(xi)

E[h] + r

]]
≤ 4φ(r)

r
.

Combining all inequalities derived above yields:

sup
h̃∈T̃r(Ω)

Ex′
[

1

n

n∑
i=1

h̃(x′i)

]
≤ 2Rn(T̂r(Ω)) ≤ 8φ(r)

r
(r > 0). (D.51)

Secondly we’ll apply the Talagrand concentration inequality, which requires us to verify the condition
needed. We will first check that the expectation value E[h] is always non-negative for any h ∈ S(Ω):

E[h] =
1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u(x)|2 +

1

2
V (x)|u(x)|2 − f(x)u(x))dx

− 1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u?(x)|2 +

1

2
V (x)|u?(x)|2 − f(x)u?(x))dx

= E(u)−E(u?) ≥ 0⇒ E[h] ≥ 0.

We will proceed to verify that any h̃ = E[h]−h
E[h]+r ∈ T̃r(Ω) is of bounded inf-norm. We need to prove

that any h ∈ T (Ω) is of bounded inf-norm beforehand. Using boundedness condition listed in
equation D.48 implies:

‖h‖∞ = |Ω| · ‖(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2‖∞ = |Ω| · ‖(∆u− V u+ f)2‖∞
≤ |Ω| · (‖∆u‖∞ + Vmax‖u‖∞ + ‖f‖∞)2 ≤ |Ω|(Vmax + 2)2C2

By taking M := |Ω|(Vmax + 2)2C2, we then have ‖h‖∞ ≤ M for all h ∈ T (Ω). Note that the
denominator can be lower bounded by |E[h] + r| ≥ r > 0. Combining these two inequalities help us
upper bound the inf-norm ‖h̃‖∞ = supx∈Ω |h̃(x)| as follows:

‖h̃‖∞ =
‖E[h]− h‖∞
|E[h] + r|

≤ 2‖h‖∞
r

≤ 2M

r
=: β.

We will then check the normalized functions E[h]−h(x)
E[h]+r in T̃r(Ω) have bounded second moment,

which is satisfied because of the regularity results of the PDE. We aim to show that there exist some
constants α, α′ > 0, such that for any h ∈ T (Ω), the following inequality holds:

αE[h2] ≤ ‖u− u∗‖2H2(Ω) ≤ α
′E[h]. (D.52)

The RHS of the inequality follows from strong convexity of the PINN objective function proved in
Theorem D.2:

E[h] = E(u)−E(u∗) ≥ min{1, Vmin}‖u− u∗‖2H2(Ω)
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The LHS of the inequality follows from boundedness condition listed in equation D.48 and the
QM-AM inequality:

E[h2] =

∫
Ω

[
(∆u− V u+ f)2 − (∆u∗ − V u∗ + f)2

]2
dx =

∫
Ω

(∆u− V u+ f)4dx

≤M2

∫
Ω

(∆u− V u−∆u∗ + V u∗)2dx ≤ 2M2

∫
Ω

[(∆u−∆u∗)2 + V 2(u− u∗)2]dx

≤ 2M2 max{1, V 2
max}‖u− u∗‖2H2(Ω)

By picking α′ = min{1, Vmin} and α = 1
2M2 max{1,V 2

max}
, we have finished proving inequality D.52.

Then we can can upper bound the expectation E[h̃2] as:

E[h̃2] =
E[(h− E[h])2]

|E[h] + r|2
=

E[h2]− E[h]2

|E[h] + r|2
≤ E[h2]

|E[h] + r|2
.

Using the fact that E[h] ≥ 0 and inequality D.52, we can lower bound the denominator |E[h] + r|2
as follows:

|E[h] + r|2 ≥ 2E[h]r ≥ 2rα

α′
E[h2].

Therefore, we can deduce that:

E[h̃2] ≤ E[h2]

|E[h] + r|2
≤ E[h2]

2rα
α′ E[h2]

=
α′

2rα
=: σ2.

Hence, any function in the localized class T̃r(Ω) is of bounded second moment.

It’s easy to check that for any h̃ ∈ T̃r(Ω), we have

E[h̃] =
E[h]− E[h]

E[h] + r
= 0,

i.e. any function in the localized class S̃r(Ω) is of zero mean.

Now we have verified that any function h̃ ∈ S̃r(Ω) satisfies all the required conditions. By taking µ
to be the uniform distribution on the domain Ω and applying Talagrand’s Concentration inequality
given in Lemma D.3, we have:

Px

[
sup

h̃∈T̃r(Ω)

1

n

n∑
i=1

h̃(xi) ≥ 2 sup
h̃∈T̃r(Ω)

Ex′
[ 1

n

n∑
i=1

h̃(x′i)
]

+

√
2tσ2

n
+

2tβ

n

]
≤ e−t.

By using the upper bound deduced above and plugging in the expressions of β and σ, we can rewrite
Talagrand’s Concentration Inequality in the following way. With probability at least 1 − e−t, the
inequality below holds:

1

n

n∑
i=1

h̃(xi) ≤ sup
h̃∈S̃r(Ω)

1

n

n∑
i=1

h̃(xi) ≤ 2 sup
h̃∈S̃r(Ω)

Ex′
[ 1

n

n∑
i=1

h̃(x′i)
]

+

√
2tσ2

n
+

2tβ

n

≤ 16φ(r)

r
+

√
tα′

nαr
+

4Mt

nr
=: ψ(r)

Let’s pick the threshold radius r0 to be:

r0 = max{214r∗,
24Mt

n
,

36α′t

αn
}. (D.53)

Note that concavity of the function φ implies that φ(r) ≤ r for any r ≥ r∗. Combining this with the
first inequality listed in D.49 yields:

16φ(r)

r
≤

211φ( r0214 )

214 r0
214

=
1

8
×
φ( r0214 )
r)
214

≤ 1

8
.
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On the other hand, applying equation D.53 yields:√
α′t

nαr0
≤
√
α′t

nα

αn

36α′t
=

1

6
,

4Mt

nr0
≤ 4Mt

n
× n

24Mt
=

1

6
.

Summing the three inequalities above implies:

ψ(r0) =
16φ(r0)

r0
+

√
tα′

nαr0
+

4Mt

nr0
≤ 1

8
+

1

6
+

1

6
<

1

2
.

By picking r = r0, we can further deduce that for any function u ∈ F (Ω), the following inequality
holds with probability 1− e−t:

E(u)−E(u∗)−En(u) + En(u∗)

E(u)−E(u∗) + r0
=

1

n

n∑
i=1

h̃(xi) ≤ ψ(r0) <
1

2
.

Multiplying the denominator on both sides indicates:

∆Egen = E(u)−E(u∗)−En(u) + En(u∗) ≤ 1

2

[
E(u)−E(u∗)

]
+

1

2
r0 =

1

2
∆E(n) +

1

2
r0.

Substituting the upper bound above into the decomposition ∆E(n) ≤ ∆Egen + 3
2∆Eapp + t

2n yields
that with probability 1− e−t, we have:

∆E(n) ≤ ∆Egen +
3

2
∆Eapp +

t

2n
≤ 1

2
∆E(n) +

1

2
r0 +

3

2
∆Eapp +

t

2n
.

Simplifying the inequality above yields that with probability 1− e−t, we have:

∆E(n) ≤ r0 + 3∆Eapp +
t

n
= 3 inf

uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max{214r∗, 24M

t

n
,

36α′

α

t

n
}+

t

n

. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
Moreover, using strong convexity of the PINN objective function proved in Theorem D.1 implies:

∆E(n) = E(ûPINN)−E(u∗) ≥ min{1, Vmin}‖ûPINN − u∗‖2H1(Ω)

Combining the two bounds above yields that with probability 1− e−t, we have:

‖ûPINN − u∗‖2H1(Ω) . inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}

Deep Neural Network Estimator. For any N ∈ Z+, there exists some Deep Neural Network in
Φ(L,W, S,B) with L = O(1), W = O(N), S = O(N), B = O(1), such that the approximation
error ∆Eapp = O(N−

2(s−2)
d ) and generalization error ∆Egen = O(N logN

n ). With optimal selection

N = n
d

d+2s−2 to balance the bias and variance, we can achieve n−
2s−2
d+2s−2 log n convergence rate for

PINN estimator.

Theorem D.13. (Final Upper Bound of PINN with Deep Neural Network Estimator) Consider the
sparse Deep Neural Network function space Φ(L,W,S,B) with parameters L = O(1), W =

O(n
d

d+2s−4 ), S = O(n
d

d+2s−4 ), B = O(1), then the Physics Informed Neural Network estimator
ûDNN

PINN = minu∈Φ(L,W,S,B) En(u) satisfies the following upper bound with high probability

‖ûDNN
PINN − u∗‖2H2

. n−
2s−4
d+2s−4 log n.
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Proof. On the one hand, by taking s = 2 and p = 2 in Theorem D.8 proved above, we have that
there exists some Deep Neural Network uDNN ∈ Φ(L,W, S,B) with L = O(1),W = O(N), S =
O(N), B = O(1), such that.

‖uDNN − u∗‖2H2(Ω) ≤ N
− 2s−4

d ‖u‖Hs(Ω).

Applying strong convexity of the DRM objective function proved in Section 2.1 further implies:

∆Eapp . ‖uDNN − u∗‖2H2(Ω) ≤ N
− 2s−4

d .

On the other hand, from lemma D.15 proved above, we know that the function φ(ρ) that upper
bounds the local Rademacher complexity of the Deep Neural Networks uDNN is dominated by the

term
√

ρ3LS
n log(W (B ∨ 1)n). By plugging in the magnitudes of L,W, S,B, we can determine the

thresholding localization radius r̂:√
ρ3LS

n
log(W (B ∨ 1)n) '

√
ρN

n
(logN + log n) ' ρ⇒ r̂ ' N(logN + log n)

n
.

Combining the two bounds above gives us:

Ex∼µ[∆En] . ∆Eapp + r̂ . N−
2(s−2)
d +

N(logN + log n)

n
.

By equating the two terms above, we can solve for the optimal N that yields the desired bound:

N−
2(s−2)
d ' N

n
⇒ N ' n

d
d+2s−4 .

Plugging in the optimal N gives us the magnitudes of the four parameters L = O(1), W =

O(n
d

d+2s−4 ), S = O(n
d

d+2s−4 ), B = O(1), as well as the final rate:

Ex∼µ[∆En] . N−
2(s−2)
d +

N logN

n
. n−

2(s−2)
d+2(s−2) log n.

Truncated Fourier Series Estimator. For any ξ ∈ Z+, there exists some Truncated Fourier Series
in Fξ(Ω) with approximation error ∆Eapp = O(ξ−2(s−2)) and generalization error ∆Egen = O( ξ

d

n )

Theorem D.14. (Final Upper Bound of PINN with Truncated Fourier Series Estimator)

Consider the PINN objective with a plug in Fourier Series estimator ûFourier
PINN = minu∈Fξ(Ω) En(u)

with ξ = Θ(n
1

d+2s−4 ), then we have

‖ûFourier
PINN − u∗‖2H2

. n−
2s−4
d+2s−4

Proof. On the one hand, from Lemma D.5 and Lemma D.6 proved above, we know that the function
φ(ρ) that upper bounds the local Rademacher complexity is dominated by the term

√
ρ
nξ

d
2 for

Truncated Fourier Series in Fξ(Ω). Thus, the thresholding localization radius r̂ can be determined as
follows: √

ρ

n
ξ
d
2 ' ρ⇒ r̂ ' ξd

n
,

On the other hand, by taking α = s and β = 1 in Lemma D.16 and applying strong convexity of the
DRM objective function proved in Section 2.1, we can upper bound the approximation error ∆Eapp
as below:

∆Eapp . ξ−2(s−2),

By equating the two terms above, we can solve for ξ that yields the desired bound:
ξd

n
' ξ−2(s−2) ⇒ ξ ' n

1
d+2s−4 ,

Plugging in the expression of ξ gives the final upper bound:

Ex∼µ[∆En] . r̂ + ∆Eapp .
ξd

n
+ ξ−2(s−2) ' n−

2s−4
d+2s−4 .
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E Proof of Modified DRM

Theorem E.1 (Meta-theorem for Upper Bounds of Modified Deep Ritz Method). Let u∗ ∈ Hs(Ω)
denote the true solution to the PDE model with Dirichlet boundary condition:

−∆u+ V u = f on Ω,

u = 0 on ∂Ω,
(E.1)

where f ∈ L2(Ω) and V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤ Vmax > 0. For a fixed function space
F (Ω), consider the empirical loss induced by the Modified Deep Ritz Method (N ≥ n):

EN,n(u) =
1

N

N∑
i=1

[
|Ω| · 1

2
|∇u(X ′i)|2

]
+

1

n

n∑
j=1

[
|Ω| ·

(1

2
V (Xj)|u(Xj)|2 − f(Xj)u(Xj)

)]
,

(E.2)
where {X ′i}Ni=1 and {Xj}nj=1 are datapoints uniformly and independently sampled from the domain
Ω. Then the Modified Deep Ritz estimator associated with function space F (Ω) is defined as the
minimizer of EN,n(u) over the function space F (Ω):

ûMDRM = min
u∈F (Ω)

EN,n(u)

Moreover, we assume that there exists some constant C > 0 such that all function u in the function
space F (Ω), the real solution u∗ and f, V satisfy the following two conditions.

• The gradients and function value are uniformly bounded

max
{

sup
u∈F (Ω)

‖u‖L∞(Ω), sup
u∈F (Ω)

‖∇u‖L∞(Ω), ‖u∗‖L∞(Ω), ‖∇u∗‖L∞(Ω), Vmax, ‖f‖L∞(Ω)

}
≤ C.

(E.3)

• All the functions in the function space F (Ω) satisfy the boundary condition

u = 0 on ∂Ω.

At the the same time, for any ρ > 0, we assume the Rademacher complexity of a localized function
space

Sρ(Ω) :=
{
h := |Ω|·

[
1
2

(
|∇u|2 − |∇u∗|2

)
+ 1

2V (|u|2 − |u∗|2)− f(u− u∗)
] ∣∣∣ ‖u−u∗‖2H1

≤ ρ
}

can be upper bounded by a sub-root function φ = φ(ρ) : [0,∞)→ [0,∞), i.e.

φ(4ρ) ≤ 2φ(ρ) and RN,n(Sρ(Ω)) ≤ φ(ρ) (∀ ρ > 0). (E.4)

For all constant t > 0. We denote r∗ to be the solution of the fix point equation of local Rademacher
complexity r = φ(r). There exist a constant Cp such that for probability 1− Cp exp(−t), we have
the following upper bound for the Modified Deep Ritz Estimator

‖ûMDRM − u∗‖2H1
. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
.

Proof. To upper bound the excess risk ∆E(N,n) := E(ûMDRM)−E(u∗), following[66, 38, 11], we
decompose the excess risk into approximation error and generalization error with probability 1− e−t:

∆E(N,n) =
[
E(ûMDRM)−E(u?)

]
=
[
E(ûMDRM)−EN,n(ûMDRM)

]
+
[
EN,n(ûMDRM)−EN,n(uF )

]
+
[
EN,n(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
≤
[
E(ûMDRM)−EN,n(ûMDRM)

]
+
[
EN,n(uF )−E(uF )

]
+
[
E(uF )−E(u?)

]
.
[
E(ûMDRM)−E(u∗) + EN,n(u∗)−EN,n(ûMDRM)]

]
+ 2
[
E(uF )−E(u?)

]
+

t

min{N,n}
,

(E.5)
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where the expectation is on all sampled data. The inequality of the third line is because the u is the
minimizer of the empirical loss En in the solution set F (Ω), so we have EN,n(u) ≤ EN,n(uF ). The
last inequality is based on the Bernstein inequality. The variance can be bounded by

[
E(uF )−E(u?)

]
due to the strong convexity of the variation objective. According to the Brenstein inequality, we know
with probability 1− e−t we have

EN,n(uF )−EN,n(u∗)−E(uF ) + E(u∗) ≤

√
2t
[
E(uF )−E(u?)

]
min{N,n}

≤
[
E(uF )−E(u?)

]
+

4t

min{N,n}
.

Note that E.5 holds for all function lies in the function space F . Thus, we can take uF :=

arg minuF∈F (Ω)

(
E(uF )−E(u?)

)
and finally get

∆EN,n . Ex,x′∼µ[E(ûMDRM)−E(u∗) + EN,n(u∗)−EN,n(ûMDRM)]︸ ︷︷ ︸
∆Egen

+ inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
︸ ︷︷ ︸

∆Eapp

+
t

n
.

This inequality decomposes the excess risk to the generalization error ∆Egen := Ex∼µ[E(ûMDRM)−
E(u∗) +EN,n(u∗)−EN,n(ûMDRM)] and the approximation error ∆Eapp = infuF∈F (Ω)

(
E(uF )−

E(u?)
)

. From the lemmata proved in Section D.3, we already have an estimation of the approx-
imation error’s convergence rate. So now we’ll focus on providing fast rate upper bounds of the
generalization error for the two estimators using the localization techinque[2, 66]. To achieve the fast
generalization bound, we focus on the following two normalized empirical processes:

S̃r,1(Ω) :=
{
h̃1(x) :=

E[h1]− h1(x)

E[h1] + E[h2] + r
| h = h1 + h2 ∈ S(Ω)

}
(r > 0),

S̃r,2(Ω) :=
{
h̃2(x) :=

E[h2]− h2(x)

E[h1] + E[h2] + r
| h = h1 + h2 ∈ S(Ω)

}
(r > 0).

First, we try to bound the expectation of the two normalized empirical processes. Applying the
Symmetrization Lemma D.1, we can first bound the two expectations as:

sup
h̃1∈S̃r,1(Ω)

Ey′
[

1

N

N∑
i=1

h̃1(y′i)

]
≤ Ey′

[
sup

h1∈S1(Ω)

∣∣∣ 1

N

N∑
i=1

h1(y′i)− E[h1]

E[h1] + E[h2] + r

∣∣∣] ≤ 2RN (Ŝr,1(Ω)),

sup
h̃2∈S̃r,2(Ω)

Ey

 1

n

n∑
j=1

h̃2(yj)

 ≤ Ey

[
sup

h2∈S2(Ω)

∣∣∣ 1
n

n∑
i=1

h2(yj)− E[h2]

E[h1] + E[h2] + r

∣∣∣] ≤ 2Rn(Ŝr,2(Ω)).

where the function classes Ŝr,k(Ω) (1 ≤ k ≤ 2) are defined as:

Ŝr,1(Ω) :=
{
ĥ1(x) :=

h1(x)

E[h1] + E[h2] + r
| h = h1 + h2 ∈ S(Ω)

}
,

Ŝr,2(Ω) :=
{
ĥ2(x) :=

h2(x)

E[h1] + E[h2] + r
| h = h1 + h2 ∈ S(Ω)

}
,

Applying the Peeling Lemma to any function h ∈ S(Ω) helps us upper bound the sum of the two local
Rademacher complexities RN (Ŝr,1(Ω)) +Rn(Ŝr,2(Ω)) with the function φ defined in equation:

RN (Ŝr,1(Ω)) +Rn(Ŝr,2(Ω)) = Eσ

[
Ey
[

sup
h∈S(Ω)

1
N

∑N
i=1 σih1(yi)

E[h] + r

]]
+ Eτ

[
Ey′
[

sup
h∈S(Ω)

1
n

∑n
j=1 τjh2(y′j)

E[h] + r

]]

= Eσ

[
Ey,y′

[
sup

h∈S(Ω)

1
N

∑N
i=1 σih1(yi)

E[h] + r
+ sup
h∈S(Ω)

1
n

∑n
j=1 τjh2(y′j)

E[h] + r

]]

= RN,n(Ŝr(Ω)) ≤ 4φ(r)

r
.
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Combining all inequalities derived above yields:

sup
h̃1∈S̃r,1(Ω)

Ey′
[

1

N

N∑
i=1

h̃1(y′i)

]
+ sup
h̃2∈S̃r,2(Ω)

Ey

 1

n

n∑
j=1

h̃2(yj)


≤ 2RN (Ŝr,1(Ω)) + 2Rn(Ŝr,2(Ω)) = 2RN,n(Ŝr(Ω)) ≤ 8φ(r)

r
(r > 0).

(E.6)

Secondly we’ll apply the Talagrand concentration inequality to the two function classes S̃r,1(Ω) and
S̃r,2(Ω), which requires us to verify the conditions needed. We will first check that the expectation
value E[h] is always non-negative for any h ∈ S(Ω):

E[h] =
1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u(x)|2 +

1

2
V (x)|u(x)|2 − f(x)u(x))dx

− 1

|Ω|

∫
Ω

|Ω| · (1

2
|∇u?(x)|2 +

1

2
V (x)|u?(x)|2 − f(x)u?(x))dx

= E(u)−E(u?) ≥ 0⇒ E[h] ≥ 0.

Next, We will verify that S̃r,1(Ω) satisfies all three requirements. At first, we will show that any
h̃1 = E[h1]−h1

E[h]+r ∈ S̃r,1(Ω) is of bounded inf-norm. We need to prove that any h1 ∈ S1(Ω) is of
bounded inf-norm beforehand. Using boundedness condition listed in equation E.3 implies:

‖h1‖∞ = ‖1

2

(
|∇u|2 − |∇u∗|2

)
‖∞ ≤

1

2

(
‖∇u‖2∞ + ‖∇u∗‖2∞

)
≤ C2.

By taking M1 := C2, we then have ‖h1‖∞ ≤M1 for all h1 ∈ S1(Ω). Note that the denominator of
h̃1 can be lower bounded by |E[h] + r| ≥ r > 0. Combining these two inequalities help us upper
bound the inf-norm ‖h̃1‖∞ = supx∈Ω |h̃1(x)| as follows:

‖h̃1‖∞ =
‖E[h1]− h1‖∞
|E[h] + r|

≤ 2‖h1‖∞
r

≤ 2M1

r
=: β1.

Also, it’s easy to check that for any h̃1 ∈ S̃r,1(Ω), we have

E[h̃1] =
E[h1]− E[h1]

E[h] + r
= 0,

i.e. any function in the localized class S̃r,1(Ω) is of zero mean.
Moreover, we take σ2

1 = suph̃1∈S̃r,1(Ω) E[h̃2
1] to be the upper bound on the second moment of

functions in S̃r,1(Ω). Now we have verified that any function h̃1 ∈ S̃r,1(Ω) satisfies all the required
conditions. By taking µ to be the uniform distribution on the domain Ω and applying Talagrand’s
Concentration inequality given in Lemma D.3, we have:

Px

[
sup

h̃1∈S̃r,1(Ω)

1

N

N∑
i=1

h̃1(xi) ≥ 2 sup
h̃1∈S̃r,1(Ω)

Ey
[ 1

N

N∑
i=1

h̃1(yi)
]

+

√
2tσ2

1

N
+

2tβ1

N

]
≤ e−t.

(E.7)
Moreover, We will verify that S̃r,2(Ω) also satisfies all three requirements. At first, we will show that
any h̃2 = E[h2]−h2

E[h]+r ∈ S̃r,2(Ω) is of bounded inf-norm. We need to prove that any h2 ∈ S2(Ω) is of
bounded inf-norm beforehand. Using boundedness condition listed in equation E.3 implies:

‖h2‖∞ = ‖1

2
V (|u|2 − |u∗|2)− f(u− u∗)‖∞

≤ 1

2
Vmax

(
‖u‖2∞ + ‖u∗‖2∞

)
+ ‖f‖∞

(
‖u‖∞ + ‖u∗‖∞

)
≤ 1

2
Vmax × 2C2 + 2C2 = (Vmax + 2)C2.
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By taking M2 := (Vmax + 2)C2, we then have ‖h2‖∞ ≤ M2 for all h2 ∈ S2(Ω). Note that the
denominator of h̃2 can be lower bounded by |E[h] + r| ≥ r > 0. Combining these two inequalities
help us upper bound the inf-norm ‖h̃2‖∞ = supx∈Ω |h̃2(x)| as follows:

‖h̃2‖∞ =
‖E[h2]− h2‖∞
|E[h] + r|

≤ 2‖h2‖∞
r

≤ 2M2

r
=: β2.

Also, it’s easy to check that for any h̃2 ∈ S̃r,2(Ω), we have

E[h̃2] =
E[h2]− E[h2]

E[h] + r
= 0,

i.e. any function in the localized class S̃r,2(Ω) is of zero mean.
Moreover, we take σ2

2 = suph̃2∈S̃r,2(Ω) E[h̃2
2] to be the upper bound on the second moment of

functions in S̃r,2(Ω). Now we have verified that any function h̃2 ∈ S̃r,2(Ω) satisfies all the required
conditions. By taking µ to be the uniform distribution on the domain Ω and applying Talagrand’s
Concentration inequality given in Lemma D.3, we have:

Px′

 sup
h̃2∈S̃r,2(Ω)

1

n

n∑
j=1

h̃2(x′j) ≥ 2 sup
h̃2∈S̃r,2(Ω)

Ey′
[ 1

n

n∑
j=1

h̃2(y′j)
]

+

√
2tσ2

2

n
+

2tβ2

n

 ≤ e−t.
(E.8)

By applying a union bound to the two inequalities derived in E.7 and E.8, we can derive that with
probability at least 1− 2e−t, the inequality below holds:

1

N

N∑
i=1

h̃1(x′i) +
1

n

n∑
j=1

h̃(xj) ≤ sup
h̃1∈S̃r,1(Ω)

1

N

N∑
i=1

h̃1(xi) + sup
h̃2∈S̃r,2(Ω)

1

n

n∑
j=1

h̃2(x′j)

≤ 2 sup
h̃1∈S̃r,1(Ω)

Ey
[ 1

N

N∑
i=1

h̃1(yi)
]

+

√
2tσ2

1

N
+

2tβ1

N

+ 2 sup
h̃2∈S̃r,2(Ω)

Ey′
[ 1

n

n∑
j=1

h̃2(y′j)
]

+

√
2tσ2

2

n
+

2tβ2

n

≤ 16φ(r)

r
+

√
2t

n
(σ1 + σ2) +

2t(β1 + β2)

n

By the definition of β1 and β2, we have that the term 2t(β1+β2)
n can be upper bounded by:

2t(β1 + β2)

n
=

4t(M1 +M2)

nr
≤ 4(Vmax + 3)C2t

nr

Now we will derive some upper bound on the sum σ1 + σ2. By definition we have that:

(σ1 + σ2)2 ≤ 2(σ2
1 + σ2

2) = 2
[

sup
h̃1∈S̃r,1(Ω)

E[h̃2
1] + sup

h̃1∈S̃r,1(Ω)

E[h̃2
1]
]

= 2
[

sup
h∈S(Ω)

E[h2
1]− E[h1]2

|E[h] + r|2
+ sup
h∈S(Ω)

E[h2
2]− E[h2]2

|E[h] + r|2
]

≤ 4 sup
h∈S(Ω)

E[h2
1] + E[h2

2]

|E[h] + r|2

Now it suffices to derive an upper bound of E[h2
1]+E[h2

2]
|E[h]+r|2 for any h ∈ S(Ω). The existence of such an

upper bound is guaranteed because of the regularity results of the PDE. We aim to show that there
exist some constants α, α′ > 0, such that for any h ∈ S(Ω), the following inequality holds:

α(E[h2
1] + E[h2

2]) ≤ ‖u− u∗‖2H1(Ω) ≤ α
′E[h]. (E.9)
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The RHS of the inequality follows from strong convexity of the DRM objective function proved in
Section 2.1:

E[h] = E(u)−E(u∗) ≥ min{1, Vmin}
4

‖u− u∗‖2H1(Ω)

The LHS of the inequality follows from boundedness condition listed in equation E.3 and the QM-AM
inequality:

E[h2
1] + E[h2

2] =

∫
Ω

1

4

(
|∇u|2 − |∇u∗|2

)2

dx+

∫
Ω

[
1

2
V (|u|2 − |u∗|2)− f(u− u∗)

]2

dx

≤ 1

4

∫
Ω

(
|∇u|2 − |∇u∗|2

)2

dx+
1

2

∫
Ω

V 2(|u|2 − |u∗|2)2dx+ 2

∫
Ω

f2(u− u∗)2dx

≤ 1

4

∫
Ω

∣∣∣|∇u| − |∇u∗|∣∣∣2(|∇u|+ |∇u∗|)2dx+
1

2
V 2

max

∫
Ω

∣∣∣|u| − |u∗|∣∣∣2(|u|+ |u∗|)2dx

+ 2C2

∫
Ω

(u− u∗)2dx ≤ C2

∫
Ω

|∇u−∇u∗|2dx+ 2C2(1 + V 2
max)

∫
Ω

|u− u∗|2dx

≤ 2C2(1 + V 2
max)‖u− u∗‖2H1(Ω).

By picking α′ = 4
min{1,Vmin} and α = 1

2C2(1+V 2
max)

, we have finished proving inequality E.9. Then we

can can upper bound the term E[h2
1]+E[h2

2]
|E[h]+r|2 as:

E[h2
1] + E[h2

2]

|E[h] + r|2
≤

α′

α E[h]

2rE[h]
≤ α′

2αr
.

Combining the bounds derived above helps us upper bound the term
√

2t
n (σ1 + σ2) as below:√

2t

n
(σ1 + σ2) ≤

√
8t

n

√
sup

h∈S(Ω)

E[h2
1] + E[h2

2]

|E[h] + r|2
≤
√

4α′t

nαr

Thus, using the two upper bounds on
√

2t
n (σ1 + σ2) and 2t(β1+β2)

n , we have :

1

N

N∑
i=1

h̃1(x′i) +
1

n

n∑
j=1

h̃(xj) ≤
16φ(r)

r
+

√
2t

n
(σ1 + σ2) +

2t(β1 + β2)

n

≤ 16φ(r)

r
+

√
4α′t

nαr
+

4(Vmax + 3)C2t

nr
= ψ(r)

Let’s pick the threshold radius r0 to be:

r0 = max{214r∗,
24Mt

n
,

144α′t

αn
}. (E.10)

Note that concavity of the function φ implies that φ(r) ≤ r for any r ≥ r∗. Combining this with the
first inequality listed in E.4 yields:

16φ(r0)

r0
≤

211φ( r0214 )

214 r0
214

=
1

8
×
φ( r0214 )
r)
214

≤ 1

8
.

On the other hand, applying equation E.10 yields:√
4α′t

nαr0
≤
√

4α′t

nα

αn

144α′t
=

1

6
,

4(Vmax + 3)C2t

nr0
≤ 4(Vmax + 3)C2t

n
× n

24(Vmax + 3)C2t
=

1

6
.

Summing the three inequalities above implies:

ψ(r0) =
16φ(r0)

r0
+

√
4α′t

nαr0
+

4(Vmax + 3)C2t

nr0
≤ 1

8
+

1

6
+

1

6
<

1

2
.
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By picking r = r0, we can further deduce that for any function u ∈ F (Ω), the following inequality
holds with probability 1− e−t:

E(u)−E(u∗)−En(u) + En(u∗)

E(u)−E(u∗) + r0
=

1

n

n∑
i=1

h̃(xi) ≤ ψ(r0) <
1

2
.

Multiplying the denominator on both sides indicates:

∆Egen = E(u)−E(u∗)−En(u) + En(u∗) ≤ 1

2

[
E(u)−E(u∗)

]
+

1

2
r0 =

1

2
∆E(n) +

1

2
r0.

Substituting the upper bound above into the decomposition ∆E(n) ≤ ∆Egen + 3
2∆Eapp + t

2n yields
that with probability 1− e−t, we have:

∆E(n) ≤ ∆Egen +
3

2
∆Eapp +

t

2n
≤ 1

2
∆E(n) +

1

2
r0 +

3

2
∆Eapp +

t

2n
.

Simplifying the inequality above yields that with probability 1− e−t, we have:

∆E(n) ≤ r0 + 3∆Eapp +
t

n
= 3 inf

uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max{214r∗, 24M

t

n
,

36α′

α

t

n
}+

t

n

. inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}
Moreover, using strong convexity of the DRM objective function proved in Theorem D.1 implies:

∆E(n) = E(ûMDRM)−E(u∗) ≥ {1, Vmin}‖ûMDRM − u∗‖2H1(Ω)

Combining the two bounds above yields that with probability 1− e−t, we have:

‖ûMDRM − u∗‖2H1(Ω) . inf
uF∈F (Ω)

(
E(uF )−E(u?)

)
+ max

{
r∗,

t

n

}

Truncated Fourier Series Estimator. Next we aim to show that the truncated Fourier series
estimator can achieve the min-max optimal rate using the MDRM objective function. For any ξ ∈ Z+,
there exists some Truncated Fourier Series in Fξ(Ω) with approximation error ∆Eapp = O(ξ−2(s−2))

and generalization error ∆Egen = O( ξ
d

n )

Theorem E.2. (Final Upper Bound of PINN with Truncated Fourier Series Estimator) Consider
the PINN objective with a plug in Fourier Series estimator ûFourier

PINN = minu∈Fξ(Ω) En(u) with

ξ = Θ(n
1

d+2s−4 ), then we have

‖ûFourier
PINN − u∗‖2H2

. n−
2s−4
d+2s−4

Proof. On the one hand, from Lemma D.5 and Lemma D.6 proved above, we know that the function
φ(ρ) that upper bounds the local Rademacher complexity is dominated by the term

√
ρ
nξ

d
2 for

Truncated Fourier Series in Fξ(Ω). Thus, the thresholding localization radius r̂ can be determined as
follows: √

ρ

n
ξ
d−2

2 +

√
ρ

N
ξ
d
2 ' ρ⇒ r̂ ' ξd

n
,

On the other hand, by taking α = s and β = 1 in Lemma D.16 and applying strong convexity of the
DRM objective function proved in Section 2.1, we can upper bound the approximation error ∆Eapp
as below:

∆Eapp . ξ−2(s−1),

By equating the two terms above, we can solve for ξ that yields the desired bound:
ξd−2

n
+
ξd

N
' ξ−2(s−1) ⇒ ξ ' n

1
d+2s−4 ,

Note that this is because ξd

N < ξd−2

n . Plugging in the expression of ξ gives the final upper bound:

Ex∼µ[∆En] . r̂ + ∆Eapp .
ξd−2

n
+ ξ−2(s−2) ' n−

2s−2
d+2s−4 .
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F Proof of the Lower Bounds

F.1 Preliminaries on Tools for Lower Bounds

In this section, we repeat the standard tools we use to establish the lower bound. The main tool we
use is the Fano’s inequailty and the Varshamov-Gilber Lemma.
Lemma F.1 (Fano’s methods). Assume that V is a unifrom random variable over set V , then for any
markov chain V → X → V̂ , we always have

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
Lemma F.2 (Varshamov-Gillbert Lemma,[62] Theorem 2.9). Let D ≥ 8. There exists a subset V =

{τ (0), · · · , τ (2D/8)} of D−dimensional hypercube HD = {0, 1}D such that τ (0) = (0, 0, · · · , 0)
and the `1 distance between every two elements is larger than D

8

D∑
l=1

‖τ (j) − τ (k)‖`1 ≥
D

8
, for all 0 ≤ j, k ≤ 2D/8

F.2 Proof Of Lower Bound

In this section, we provide the proof of the lower bound for learning a PDE. Our proof uses standard
Fano method to establish minimax lower bound but finally leads to a non-standard convergence rate.
We state standard results for Fano methods in Appendix F.1. Following is the proof our main lower
bound.
Theorem F.1 (Lower bound). We denote u∗(f) to be the solution of the PDE 2.1 and we can aceess
randomly sampled data {Xi, Yi}i=1,··· ,n as described in Section 2.2.

DRM Lower Bound. For all estimator H :
(
Rd
)⊗n × R⊗n →W∞1 (Ω), we have

inf
H

sup
u∈W∞s (Ω)

E‖H({Xi, fi}i=1,··· ,n)− u∗(f)‖2H1
& n−

2α−2
d+2α−4 . (F.1)

PINN Lower Bound. For all estimator H :
(
Rd
)⊗n × R⊗n →W∞1 (Ω), we have

inf
H

sup
u∈W∞s (Ω)

E‖H({Xi, fi}i=1,··· ,n)− u∗(f)‖2H2
& n−

2α−4
d+2α−4 . (F.2)

Proof. We construct the following bump function to construct the multiple hypothesis test used for
proving the lower bound. Consider a simple C∞ bump function supported on [0, 1]d

g(x) =

d∏
i=1

ξ(xi), x = (x1, · · · , xd),

where ξ : R → R be a non-zero funtion in C∞(R) with support contained in [0, 1] and satisfies
ξ(x) 6= 0, ddxξ(x) 6= 0. Then ∇g(x) 6= 0 and the support of function g is [0, 1]d.

Next, take m = [n
1

2α−4+d ] and let’s consider a regular gird x(j), j ∈ [m]d. According to the
Varshamov-Gilbert lemma, we can find 2m

d/8 (0, 1)-sequence τ1, · · · , τ2md/8 ∈ {0, 1}m
d

such that
‖τk − τk′‖22 ≥ md

8 for all 0 < k 6= k′ ≤ 2m
d/8. Then we construct the multiple hypothesis as

uk(x) =
∑

j∈[m1]d

τk(j)
ω

mα+ d
2

g(m(x− x(j))), k = 1, 2, · · · , 2m
d/8,

where ω is a constant to be determined later. It’s easy to find out that uk ∈ Cα.

Then we reduce solving PDE to the multiple hypothesis testing which considers all mappings from n

sampled data to the constructed hypothesis Ψ :
(
Rd
)⊗n × R⊗n → V := {ui|i = 1, 2, · · · , 2md/8}.
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Then we apply the local Fano method and check that we can obtain a constant lower bound of
P(V̂ 6= V ) for any estimator V̂ . Applying the local Fano methods, we know that

I(V ;X) ≤ 1

|V|2
∑
z

∑
v 6=v′

DKL(Pv||P ′v)

where Pk joint distribution of the sampled data (x, y), in specific, x follows a uniform distribu-
tion on [0, 1]d and y = f(X) + σε where ε is independently sampled from a standard Gaussian
distributionN(0, 1). Then we have

KL(Pk||Pk′) = E log(
dPk
dP

) = ‖∆uk + uk‖2L2
=

Cω

m2α−4

Using Fano inequality, when taking ω large enough, we know that

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
≥ 1−

8Cω
m2α−4

md log 2
≥ 1/2

At the same time, we can estimate the separation of the hypothesis in the two different norms:

• Deep Ritz Method:∫
[0,1]d

‖∇uk −∇uk′‖2dx =
κ2

m2α−2+d

∑
j∈[m]d

(τ
(k)
j − τ (k′)

j )2

∫
Rd
‖∇g(x)‖2dx &

1

m2α−2

• Physic Informed Neural Network:∫
[0,1]d

‖∆uk −∆uk′‖2dx =
κ2

m2α−4+d

∑
j∈[m]d

(τ
(k)
j − τ (k′)

j )2

∫
Rd
‖∆g(x)‖2dx &

1

m2α−4

Plug in m = [n
1

2α−4+d ], we know that with constant probability we have

inf
H

sup
u∈W∞s (Ω)

E‖H({Xi, Yi}i=1,··· ,n)− u∗(f)‖2H1
& n−

2α−2
d+2α−4 log(n)2, (F.3)

inf
H

sup
u∈W∞s (Ω)

E‖H({Xi, Yi}i=1,··· ,n)− u∗(f)‖2H2
& n−

2α−4
d+2α−4 log(n)2. (F.4)
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