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Abstract

The probabilistic bisection algorithm (PBA) extends the classical binary
search to settings with noisy responses, and is a foundational algorithm
commonly used in basic problems such as root-finding. Despite its strong
empirical success, its theoretical property, particularly the convergence rate,
remains unclear. This paper establishes that PBA converges at a geometric
rate, providing a rigorous justification for its empirical efficiency. Notably,
this rate is optimal in the sense that it matches the performance of classical
binary search under noiseless responses. The core of our analysis lies in
directly characterizing the dynamics of PBA queries, which had not been
examined in the prior literature. We show that the queries oscillate around
the truth but steadily draw closer, thus leading to an estimator that rapidly
concentrates on the truth. Beyond resolving the long-standing question of
PBA’s convergence, our developed techniques offer new tools for analyzing
PBA’s dynamics, which may be of independent interest.

1 Introduction

Binary search is a fundamental algorithm that addresses the core challenge of efficiently
locating a target within an ordered space using the principle of divide-and-conquer. It
underpins a wide range of modern algorithms in computer science, statistics, and applied
mathematics (Knuth, 1997; Karp & Kleinberg, 2007; Waeber et al., 2013), and serves as a
building block for systems and methods from multidimensional data to search on graphs and
trees (Bentley, 1975; Nowak, 2009; Emamjomeh-Zadeh et al., 2016; Rodriguez & Ludkovski,
2020a). Classical applications include fast key retrieval in large databases and numerical
root-finding in engineering and economics. For instance, consider finding a unique root of
a monotone function h : [0, 1] → R where one can query only the sign of h(x). When the
response to each query x is noiseless, a binary search algorithm efficiently locates the root
by halving the search interval each round. After n queries, the remaining interval has length
2−n, achieving the optimal exponential convergence rate.

In practice, however, the observed responses are often noisy, e.g., due to transmission and
measurement error, meaning that they have a chance to be incorrect. Motivated by noisy
channel coding, the Probabilistic Bisection Algorithm (PBA, Horstein, 1963) extends binary
search to handle noisy labels. Compared to binary search, PBA adopts a Bayesian approach
to select the query. In the 1-D root-finding setup, PBA maintains a probability distribution
with density ft over the support [0, 1], representing the likelihood of each point being the true
root. At each round t, PBA queries the median xt of this distribution and receives a noisy
response yt indicating the sign at xt. The belief is then updated via Bayes’ rule given yt.
For instance, if yt is positive, then ft(x) = 2(1− p)ft−1(x) for x ≤ xt and ft(x) = 2pft−1(x)
for x > xt, where p is the noise level. The process repeats until termination, with the final
estimator being the last query.

Despite strong empirical performance, (Waeber, 2013; Frazier et al., 2019; Rodriguez & Lud-
kovski, 2020a;b), PBA’s theoretical property, particularly its convergence rate, remains poorly
understood. The difficulty stems from its intricate query process over a continuous
search space. In comparison, the so-called noisy binary search typically focuses on a finite
search set and enjoys well-understood guarantees. It has been shown that locating a target
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among H elements with error probability at most δ requires only O(log(H/δ)) queries (Karp
& Kleinberg, 2007; Nowak, 2009; Emamjomeh-Zadeh et al., 2016). However, these results
rely crucially on the discretized structure of the search space such as searching nodes on
a path (Aslam & Dhagat, 1991; Karp & Kleinberg, 2007) or a graph (Emamjomeh-Zadeh
et al., 2016; Dereniowski et al., 2019). In contrast, PBA addresses a continuous domain with
uncountably many possible queries, which requires fundamentally different analysis tools.

Historically, analyzing PBA’s performance has been difficult due to the continuous nature
of the query sequence, which makes tracking the estimation non-trivial. As a result, prior
efforts either (1) adopted a discretized version of PBA, or (2) invoked a Bayesian framework
where the unknown truth is modeled as a continuous random variable. However, these
approaches are unable to directly characterize the convergence behavior of the original PBA
given a fixed truth. Specifically, Burnashev & Zigangirov (1974) proposed a discretized
version of PBA, which we refer to as the BZ algorithm. BZ restricts queries to a finite
grid {0, 1/K, 2/K, . . . , 1} for some constant K. With carefully modified update and query
rules, they proved that BZ attains exponential convergence when K adapts to the query
size (Burnashev & Zigangirov, 1974; Castro & Nowak, 2008). However, a pre-selected and
fixed K is required to run BZ in practice, thus such a convergence rate cannot be expected.
Waeber et al. (2013) analyzed PBA in a Bayesian setting. By modeling the root as a random
variable X∗ uniformly distributed on [0, 1], they proved that E|X∗−X̂n| decays geometrically,
where X̂n is the PBA estimate after n queries. However, this result hinges critically on
the assumption that X∗ is a continuous random variable. Therefore, this analysis does not
apply to real-world tasks where the ground truth is a fixed but unknown constant, such as
root-finding and boundary detection problems.

A closer inspection of these approaches shows that the main barrier to analyzing the original
PBA, again, lies in the complex, location-dependent behavior of its queries. Both the
discretized analysis of Burnashev & Zigangirov (1974) and the Bayesian analysis of Waeber
et al. (2013) exploit a simplifying property: at every round a quantity that upper-bounds the
estimation error is expected to decrease, regardless of where the queries fall. Unfortunately,
this guarantee breaks down when analyzing the original PBA with a fixed ground truth,
as the improvement in accuracy depends delicately on the query locations (with further
discussion in Subsection 2.2).

Our work demonstrates that understanding the query behavior of PBA is both essential and
powerful in tackling this problem. In Subsection 2.3, we develop new analytical techniques
that measure the improvement contributed by the query at each round, and characterize
the number of queries that lead to a better estimation, an aspect not studied in the prior
literature. These tools allow us to directly study the dynamics of PBA queries. Intuitively,
we show that the queries oscillate around the ground truth but steadily draw closer, driving
the posterior distribution to concentrate sharply at the ground truth.

Building on these tools, we prove that PBA converges at an exponential rate for any
fixed, unknown ground truth. The rate we establish is optimal, matching the geometric
convergence achievable by classical binary search with noiseless feedback. This result settles
the long-standing theoretical question of whether PBA retains its empirical efficiency under
noisy responses (Waeber et al., 2013). Moreover, our developed tools provide a fine-grained
understanding of PBA’s query process, which may be of independent interest for other
adaptive algorithms.

The rest of the paper is organized as follows. Section 2 present our main result, the
convergence rate of PBA for one-dimensional data. Simulation experiments are conducted in
Appendix D, and we discuss the extension to the high-dimensional data in Appendix C. We
conclude the paper with further discussions in Section 3.
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2 Convergence Rate of PBA

2.1 Setup

We cast the root-finding problem as a special case of binary classification. Consider a
learner seeking to identify the unknown classifier hθ∗(x) = 1x≥θ∗ within a hypothesis class
H = {hθ : θ ∈ [0, 1]}, where 1(·) is an indicator function. Let p ∈ (0, 1/2) denote the noise
level in the response. In this formulation, θ∗ is the unknown root, and each response is
flipped independently with probability p. Specifically, for any query X, the observed response
Y satisfies that P(Y = hθ∗(X)) = 1 − p and P(Y = 1 − hθ∗(X)) = p. We note that our
results also extend to the more general setting where P(Y = 1− hθ∗(X)) ≤ p, as elaborated
in Appendix B.

Probabilistic Bisection Algorithm (PBA). A learner can use PBA to efficiently estimate
θ∗ as follows. Let P0 be a uniform prior distribution such that its density function is
f0(x) = 1, x ∈ [0, 1]. At round i ≥ 1, PBA will select a query Xi as the median of Pi−1, i.e.,

Pi−1(X ≤ Xi) = 1/2.

After observing the corresponding label Yi, PBS updates the posterior distribution as follows:

(1) If Yi = 1, fi(x) =
{
2(1− p)fi−1(x), x ≤ Xi,

2pfi−1(x), x > Xi,

(2) If Yi = 0, fi(x) =
{
2pfi−1(x), x ≤ Xi,

2(1− p)fi−1(x), x > Xi.

The posterior distribution at round i is Pi(t) =
∫ t

0
fi(x)dx. The final estimator of θ∗ after n

rounds is θ̂n := Xn+1.
Remark 1 (Prior and Posterior Distributions). In our setting the unknown root θ∗ is fixed.
The distribution Pi represents the learner’s belief about θ∗: at round i, they believe that the
probability that θ∗ ≤ t is given by Pi(t). We use the terms prior and posterior in keeping
with the PBA literature, where the algorithm is commonly interpreted from a Bayesian
perspective.

2.2 Exponential Convergence Rate

Throughout the paper, c and C are either universal constants or constant of p only, though
their value may vary from line to line. We use the terms ‘root’, ‘truth’, and ‘ground truth’
interchangeably. The complete proof of Theorem 1 is included in Appendix A.

Theorem 1 (Exponential Convergence Rate of PBA). For the PBA estimator θ̂n, we have

E|θ̂n − θ∗| ≤ 3e−Cn,

where C > 0 is a constant of p only.

Key Challenges and Contributions. We assume that θ∗ ∈ (0, 1) for illustration purpose.
The basic idea is to show that θ̂n lies within a small interval around θ∗ with high probability.
Partition [0, 1] into K intervals [(i− 1)/K, i/K), i = 1, 2, . . . ,K. Then there exists some i∗

such that θ∗ ∈ [δi∗−1, δi∗). We can prove that

P
(
θ̂n ∈ [δi∗−1, δi∗)

)
≥ 1− 2K2(K + 1)e−Cn. (1)

Choosing K = eCn/4 yields the desired result.

Eq. 1 is equivalent to showing that the PBA estimator is unlikely to be much larger or
smaller than θ∗. By symmetry, it suffices to prove the upper-tail bound:

P
(
θ̂n > δi∗

)
≤ K2(K + 1)e−Cn. (2)

The key challenge is to establish the exponential decay result in Eq. 2.
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We emphasize that although similar bounds were obtained in (Burnashev & Zigangirov, 1974;
Waeber et al., 2013), their proofs rely on the argument that

E(Mi+1 −Mi | Mi) ≤ −C, (3)
where Mi is a quantity, in particular, log(Mθ(i)) in Hero et al. (2007, Theorem 8.1) and
log(Ai∧ (1−Ai)) in Waeber et al. (2013, Proposition 5.3), that can upper bound P

(
θ̂i > δi∗

)
.

That is, under the discretization or the Bayesian setting, there exists a stochastic process Mi’s
that is equivalent to a geometric random walk with negative shift. Hence, Eq. 3 guarantees
that the estimator moves closer to the truth after each query (in expectation), regardless
of query location. However, our analysis reveals that this property fails for the original
PBA: the accuracy improvement depends critically on the query position, and
improvement is not always guaranteed.

To overcome this challenge, we conduct a finer-grid analysis of PBA’s query dynamics, as
detailed in the next subsection. Consequently, our proof of Eq. 2 employs a fundamentally
different argument from those in (Burnashev & Zigangirov, 1974; Waeber et al., 2013), which
constitutes a key methodological contribution of this work.

2.3 Analysis of Query Behaviors

This subsection introduces two novel propositions on query behaviors, which are key for
deriving Eq. 2. First, we recall a key property of PBA query: it is the median of posterior
belief, meaning that Xn+1 satisfies

Pn(Xn+1) = 1/2. (4)
This equation establishes a direct connection between the query location and the posterior
probability mass over intervals, which will play a critical role in our analysis.

We introduce the following critical quantities before presenting the results. Let δ be a
constant such that θ∗ < δ < 1. We divide the interval [0, 1] into three sub-intervals:

I1 := [0, θ∗], I2 := (θ∗, δ), I3 := [δ, 1],

and define
a
(j)
i (δ) := Pi(X ∈ Ij) :=

∫
Ij

fi(x)dx.

We will omit the dependence on δ when clear from context. Namely, a(j)i is the posterior
probability that the estimator θ̂i+1 lies in the j-th sub-interval after the i-th query.
Remark 2 (Motivation for a

(j)
i ). At each round i, the query must fall into one of three

sub-intervals, which is completely determined by a
(j)
i−1’s. Recall that θ̂n = Xn+1. By Eq. 4,

a large estimator Xn+1 > δ implies a
(3)
n =

∫ 1

δ
fn(x)dx > 1/2. Thus, to establish that the

probability of such a large estimator is exponentially small, it suffices to show that a
(3)
n is

unlikely to become large. It turns out that understanding the behavior of PBA queries is
necessary for deriving such a result, which further relies on tracking the change of all three
posterior probabilities.

For any realization of Xi, Yi’s, we further define

Nj :=

n∑
i=1

1Xi∈Ij , Gj := {i ∈ [1, n] : Xi ∈ Ij}, j = 1, 2, 3.

Nj is the number of total occurrences of the event Xi ∈ Ij , and Gj contains the corresponding
indices. We also define the following stopping times:

τ0 = 0, τi = inf

{
t : t > τi−1, sign(a

(1)
t − 1/2) ̸= sign(a

(1)
t−1 − 1/2)

}
, i = 1, 2, . . . ,

where sign(x) = 1 for x ≥ 0 otherwise sign(x) = −1. Namely, τi is the i-th time such that
a
(1)
t across 1/2, meaning that the query’s location transits from I1 to I2 ∪ I3 or vice versa.

Finally, we define
T := sup{i : i ≥ 0, τi ≤ n}, (5)

which is the number of total times that the query crosses the truth θ∗.

4
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Proposition 1. Let Mi(δ) := a
(3)
i (δ)/a

(2)
i (δ). For some constant C1, C2 > 0 of p only, we

have

P(Mn/M0 ≤ e−C1n) ≥ 1− e−C2n,

which implies EMn ≤ e−C3n/|θ∗ − δ| for some positive constant C3.
Proposition 2. There exists a constant η only depending on p, such that E(T ) ≥ ηn.

Implications. Together, Propositions 1 and 2 yield a sharp picture of the dynamics: the
posterior distribution of PBA rapidly concentrates around θ∗, while the queries themselves
are expected to oscillate across the truth. In other words, the queries repeatedly swing
around θ∗ but with steadily shrinking amplitude, driving convergence. This insight provides
a fundamental explanation for the empirical success of PBA.

Regarding the convergence rate, Proposition 1 shows that Mn decays exponentially fast,
which immediately implies an exponentially decaying probability of a large estimator. To
see it, Markov’s inequality gives that

P(a(3)n ≥ ϵ) ≤ P(Mn ≥ ϵ) ≤ EMn

ϵ
≤ e−Cn

|θ∗ − δ|ϵ
.

As a result, P(Xn+1 ≥ δ) ≤ P(a(3)n ≥ 1/2) ≤ 2e−Cn/|θ∗ − δ|, establishing the kep step (2) in
Theorem 1.

Proof Sketch. The core idea behind the proof of Proposition 1 is to show that ln(Mi)’s
form a supermartingale, which decreases when the query lies in I2 or I3. We note that
ln(Mi) remains unchanged when Xi ∈ I1, and the decrease can be arbitrarily small when
Xi ∈ I2. Fortunately, we find that ln(Mi) decreases by at least a constant amount when
the query crosses the truth. That is, when Xi−1 < θ∗ ≤ Xi or Xi−1 ≥ θ∗ > Xi. This
boundary-crossing behavior is characterized by T . Hence, to ensure that ln(Mn) becomes
sufficiently small, it suffices to show that E(T ) grows linearly with n, as established in
Proposition 2.

Technically, Propositions 1 and 2 hinge on a careful analysis of the changes in a
(j)
i and

their combinations such as Mi. These changes depend on the query location and leads to
a discussion of three cases: Xi ∈ I1, Xi ∈ I2, and Xi ∈ I3. To prove Proposition 2, first
we need to construct appropriate sub- or super-martingales from the posterior probabilities.
We then show that the queries cross the truth sufficiently often by analyzing the boundary-
crossing times τi and invoking the stopping time theorem. This, together with a martingale
concentration inequality, ensures a significant reduction in Mi, thereby completing the proof
of Proposition 1. The full details of these two propositions are presented below.
Remark 3 (Motivation of Mi). Proposition 1 focuses on analyzing Mn rather than a

(3)
n . The

quantity Mn is deliberately and carefully designed, not an arbitrary combination of the
a
(j)
n ’s. The key reason is that the evolution of a(j)n depends intricately on the query locations,

making them difficult to control directly. To establish Eq. 2, we seek a quantity that is
guaranteed to be monotone on average across rounds. However, the a

(j)
n ’s alone do not

exhibit this property for all possible query positions. By introducing a ratio-based structure,
Mn (specifically, its logarithm) acquires this desirable monotonicity, enabling a tractable
analysis.

Proof of Proposition 1.

Proof. We prove this result by three steps: (1) Mi is expected to decrease or maintain the
same at each round, (2) there is a sufficient number of time steps such that Mi is expected
to decrease, (3) evoking a concentration inequality.

Step 1: Depending on the position of Xi, we discuss the update of Mi in three cases as
follows.

Case 1, Xi ∈ I1. Clearly, by the update rule of PBS, a(2) and a(3) will be multiplied by
2(1− p) (when Yi = 0) or 2p (when Yi = 1) simultaneously. As a result, Mi = Mi−1 in this
case.

5
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Case 2, Xi ∈ I2. Now, a correct label (Yi = 1 with probability 1 − p) leads to a
(1)
i =

2(1− p)a
(1)
i−1 and a

(3)
i = 2pa

(3)
i−1. As a result,

Mi/Mi−1 =
2pa

(2)
i−1

1− 2(1− p)a
(1)
i−1 − 2pa

(3)
i−1

∈
(

p

1− p
, 1

)
.

A wrong label leads to

Mi/Mi−1 =
2(1− p)a

(2)
i−1

1− 2pa
(1)
i−1 − 2(1− p)a

(3)
i−1

∈
(
1,

1− p

p

)
.

For notation simplicity, we denote q1 = a
(1)
i−1, q2 = a

(2)
i−1, q3 = a

(3)
i−1. Some important properties

of them are summarized in Lemma 1. Evoking Lemma 1, we have

E
(

Mi

Mi−1

)
= (1− p)

2pq2
1− 2(1− p)q1 − 2pq3

+ p
2(1− p)q2

1− 2pq1 − 2(1− p)q3

=
2p(1− p)q2

q2 − (1− 2p)(q1 − q3)
+

2p(1− p)q2
q2 + (1− 2p)(q1 − q3)

=
4p(1− p)(q2)

2

(q2)2 − (1− 2p)2(q1 − q3)2

= 1− (1− 2p)2{(q2)2 − (q1 − q3)
2}

(q2)2 − (1− 2p)2(q1 − q3)2

< 1.

The last step is due to q2 > |q1 − q3| and the positivity of denominator.

Moreover, for any ϵ ∈ (0, 1/2), when q1, q3 ≤ (1− ϵ)/2, the fourth point of Lemma 1 gives
that q2 − |q1 − q3| ≥ ϵ and

E
(

Mi

Mi−1

)
= 1− (1− 2p)2{(q2)2 − (q1 − q3)

2}
(q2)2 − (1− 2p)2(q1 − q3)2

≤ 1− (1− 2p)2ϵ2.

As a result, Jensen’s Inequality gives

E
{
ln

(
Mi

Mi−1

)}
≤ ln(1− (1− 2p)2ϵ2) ≤ −(1− 2p)2ϵ2.

Case 3, Xi ∈ I3. In this case, a correct label (Yi = 1 with probability 1 − p) leads to
a
(2)
i = 2(1− p)a

(2)
i−1 and 1− a

(3)
i = 2(1− p)(1− a

(3)
i−1) , so that

Mi/Mi−1 =
1− 2(1− p)(1− a

(3)
i−1)

2(1− p)a
(3)
i−1

∈
(

p

1− p
,

1

2(1− p)

)
.

Similarly, a wrong label results in

Mi/Mi−1 =
1− 2p(1− a

(3)
i−1)

2pa
(3)
i−1

∈
(

1

2p
,
1− p

p

)
.

As a result, we have

E
{
ln

(
Mi

Mi−1

)}
= (1− p) ln

(
1− 2(1− p)(1− a

(3)
i−1)

2(1− p)a
(3)
i−1

)
+ p ln

(
1− 2p(1− a

(3)
i−1)

2pa
(3)
i−1

)
.

Let
h(x) := (1− p) ln

(
1− 2(1− p)(1− x)

x

)
+ p ln

(
1− 2p(1− x)

x

)
.

6
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Its first derivative is

h′(x) =
2(1− p)2

1− 2(1− p)(1− x)
+

2p2

1− 2p(1− x)
− 1

x
.

We have

h′(x) > 0 ⇐⇒ 2(1− p)2x+ 2p2x > {1− 2(1− p)(1− x)}{1− 2p(1− x)}
⇐⇒ (2− 4p+ 4p2)x > 1− 2(1− x) + 4p(1− p)(1− x)

⇐⇒ 2x > 2x− 1 + 4p(1− p)

⇐⇒ 1 > 4p(1− p),

which is true since p ∈ (0, 1/2). Since E
{
ln

(
Mi

Mi−1

)}
= h(a

(3)
i−1) − ln(2) + H(p) where

H(p) = −p ln(p)−(1−p) ln(1−p) is the binary entropy function, we know that E
{
ln

(
Mi

Mi−1

)}
achieves its maximum when a

(3)
i−1 = 1, leading to

E
{
ln

(
Mi

Mi−1

)}
≤ − ln(2) +H(p) < 0.

Step 2: We show that Mi is expected to strictly decrease for sufficient number of rounds.

Specifically, we know that E
{
ln

(
Mi

Mi−1

)}
is strictly smaller than zero if (1) Xi ∈ I2, and

q1, q3 < (1− ϵ)/2; and (2) Xi ∈ I3. For a given realization of Xi, Yi’s, the latter case happens
for N3 times. We define the number of the first case as

N ′
2(ϵ) := |G′

2(ϵ)|, G′
2(ϵ) := {i : Xi ∈ I2, q1, q3 ≤ (1− ϵ)/2}.

We will omit ϵ in the following as it will be chosen as a constant of p solely.

Next, we show that N ′
2 +N3 ≥ η′n with high prob for some η′. The idea is to show that

each down-crossing of τi leads to an instance of G′
2 or G3 with a constant probability, and

Proposition 2 shows that such down-crossing happens sufficiently often. Let us consider each
time a

(1)
t goes down and crosses 1/2. Suppose a

(1)
t−1 > 1/2 and a

(1)
t ≤ 1/2. By update rule,

we have 2p ≤ a
(1)
t ≤ 1/2, thus either Xt+1 ∈ I2 or Xt+1 ∈ I3.

(Step 2.1) We have t+ 1 ∈ G′
2 ∪G3 when Xt+1 ∈ I3 or Xt+1 ∈ I2 with a

(1)
t , a

(3)
t ≤ (1− ϵ)/2.

(Step 2.2) Now, suppose t /∈ G′
2 ∪G3, namely Xt+1 ∈ I2 and at least one of a(1)t , a

(3)
t is larger

than (1− ϵ)/2.

We first consider the case where a
(1)
t > (1 − ϵ)/2. With probability p, Yt+1 is a wrong

label, and Xt+2 ∈ I1 since a
(1)
t+1 = 2(1− p)a

(1)
t > 1/2 for any ϵ ∈ (0, 1− 1/(2− 2p)). With

probability 1− p, Yt+1 is a correct label, leading to (i) Xt+2 ∈ I3, or (ii) Xt+2 ∈ I2. While (i)
automatically leads to t+ 2 ∈ G3, (ii) again leads to two possible outcomes: (ii.a) Xt+3 ∈ I3,
or (ii.b) Xt+3 ∈ I2. We note that (ii.b) results in t+ 3 ∈ G′

2 for a sufficiently small ϵ. To see
it, we have a

(1)
t+2 = 4p(1 − p)a

(1)
t < (1 − ϵ)/2 and a

(3)
t+2 = 4p(1 − p)a

(3)
t < (1 − ϵ)/2 for any

ϵ ∈ (0, (1− 2p)2). Next, we consider the case a
(3)
t > (1− ϵ)/2. With probability p, Yt+1 is a

wrong label, we therefore have t+2 ∈ N3 because a
(3)
t+1 = 1−2p(1−a

(3)
t ) > 1−p(1+ ϵ) > 1/2

for any ϵ ∈ (0, (2p)−1 − 1). Combining these two cases, we have that with probability at
least p, such time step t will lead to an occurrence of N ′

2 or N3 before the next occurrence of
a
(1)
t going down and crossing 1/2.

(Step 2.3) WLOG, let a
(1)
0 < 1/2 as explained in the proof of Proposition 2. Let Rk

denoting whether a
(1)
τ2k leads to an occurrence of N ′

2 or N3, we have Rk being IID Bernoulli
random variables with P(Rk = 1) ≥ p. We can therefore construct a sub-martingale

7
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Sl =
∑l

k=1 Rk − pl, l = 1, 2, . . . , and S0 = 0. Now, applying the optional stopping theorem,
we have ES⌊T/2⌋ ≥ ES0 = 0, yielding

E(N ′
2 +N3) ≥ E

(⌊T/2⌋∑
k=1

Rk

)
≥ pE(⌊T/2⌋).

Now, evoking Proposition 2, we have E(N ′
2 +N3) ≥ η′n for η′ = pη/2.

Step 3: Finally, we show that Mn is small with high probability by applying Azuma-Hoeffding
inequality. Note that

Mn = M0 exp

{ n∑
i=1

ln(Mi/Mi−1)

}
.

Step 1 indicates that
∑n

i=1 ln(Mi/Mi−1) is a super-martingale with respect to n, because

E
{ n∑

i=1

ln(Mi/Mi−1) |
n−1∑
i=1

ln(Mi/Mi−1)

}
= E ln(Mn/Mn−1) ≤ 0.

Moreover, all ln(Mi/Mi−1)’s have a uniform upper bound on their absolute value and
variance, denoted as B1, B2 > 0, respectively. Let C6 := min{(1− 2p)2ϵ2, ln(2)−H(p)} > 0
and ζ = η′C6/2. Azuma-Hoeffding’s inequality gives that

P
( n∑

i=1

ln(Mi/Mi−1) > E
( n∑

i=1

ln(Mi/Mi−1)

)
+ nζ

)
≤ e−2nζ2

⇐⇒P
( n∑

i=1

ln(Mi/Mi−1) > −E(N ′
2 +N3)C6 + nζ

)
≤ e−2nζ2

⇐⇒P
( n∑

i=1

ln(Mi/Mi−1) > −η′C6n/2

)
≤ e−2nζ2

As a result, with probability at least 1− e−2nζ2

, we have

Mn ≤ M0 exp(−nη′C6/2).

We therefore complete the proof by noting M0 = (1 − δ)/(δ − θ∗) since f0(x) = 1 for all
x ∈ [0, 1].

Proof of Proposition 2.

Proof. Let b
(1)
i = 1 − a

(1)
i . Depending on the position of Xi, The change of a(1)i in each

round is also categorized into three cases.

Case 1, Xi ≤ θ∗. A correct label (Y = 0 with probability 1 − p) leads to 1 − a
(1)
i =

2(1− p)(1− a
(1)
i−1). Therefore,

a
(1)
i

a
(1)
i−1

=
1− 2(1− p)(1− a

(1)
i−1)

a
(1)
i−1

,
b
(1)
i

b
(1)
i−1

= 2(1− p),

A wrong label leads to

a
(1)
i

a
(1)
i−1

=
1− 2p(1− a

(1)
i−1)

a
(1)
i−1

,
b
(1)
i

b
(1)
i−1

= 2p.

Therefore,

E
{
ln

(
a
(1)
i

a
(1)
i−1

)}
= (1− p) ln

(
1− 2(1− p)(1− a

(1)
i−1)

a
(1)
i−1

)
+ p ln

(
1− 2p(1− a

(1)
i−1)

a
(1)
i−1

)
< 0.

8
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The last inequality is because function h(a
(1)
i−1) := (1 − p) ln

(
1−2(1−p)(1−a

(1)
i−1)

a
(1)
i−1

)
+

p ln

(
1−2p(1−a

(1)
i−1)

a
(1)
i−1

)
monotonously increases when a

(1)
i−1 ∈ (1/2, 1), which can be verified

by taking its first derivative.

Also,

E
{
ln

(
b
(1)
i

b
(1)
i−1

)}
= (1− p) ln(2(1− p)) + p ln(2p) = ln(2)−H(p) > 0,

where H(p) = −p ln(p)− (1− p) ln(1− p) is the binary entropy function.

Case 2, Xi ≥ δ. A correct label (Y = 1 with probability 1− p) leads to a
(1)
i = 2(1− p)a

(1)
i−1

and

a
(1)
i

a
(1)
i−1

= 2(1− p),
b
(1)
i

b
(1)
i−1

=
1− 2(1− p)(1− b

(1)
i−1)

b
(1)
i−1

.

A wrong label leads to

a
(1)
i

a
(1)
i−1

= 2p,
b
(1)
i

b
(1)
i−1

=
1− 2p(1− b

(1)
i−1)

b
(1)
i−1

,

Therefore,

E
{
ln

(
a
(1)
i

a
(1)
i−1

)}
= (1− p) ln{2(1− p)}+ p ln(2p) = ln(2)−H(p) > 0, E

{
ln

(
b
(1)
i

b
(1)
i−1

)}
< 0.

Case 3, θ∗ < Xi < δ. The update rule for a(1)i is exactly the same as Case 2, hence we have

E
{
ln

(
a
(1)
i

a
(1)
i−1

)}
= (1− p) ln{2(1− p)}+ p ln(2p) = ln(2)−H(p), E

{
ln

(
b
(1)
i

b
(1)
i−1

)}
< 0.

For now, we assume that 2p < a
(1)
0 < 1/2; otherwise we can start the count of N1 at the

first time t such that 2p < a
(1)
t < 1/2, as explained later. Therefore, τ2k−1, k = 1, 2, . . . is

the time that a
(1)
t goes up and crosses 1/2, while τ2k, k = 1, 2, . . . is the time that a

(1)
t goes

down and crosses 1/2, and T is the number of total cross times.

We note that Zi := τi − τi−1, i = 1, 2, . . . are IID random variables with EZk ≤ z, where z is
a constant. To see it, we have

a(1)τ2k−1
= a(1)τ2k−2

exp

{τ2k−1−τ2k−2∑
i=0

ln

(
a
(1)
τ2k−2+i

a
(1)
τ2k−2+i−1

)}
≥ exp

(τ2k−1−τ2k−2∑
i=1

Vi

)
/(2p),

b(1)τ2k
= b(1)τ2k−1

exp

{τ2k−τ2k−1∑
i=0

ln

(
b
(1)
τ2k−1+i

b
(1)
τ2k−1+i−1

)}
≤ 2(1− p) exp

(
−

τ2k−τ2k−1∑
i=1

Vi

)
, (6)

where Vi’s are independent random variable with EVi = ln(2)−H(p) := v. Moreover, Vi’s are
uniformly bounded by a constant of p solely, denoted by B. Therefore, ln(a(1)t ) is a random
walk starting from (or above) − ln(2p) with a positive drift, which is expected to across
ln(1/2) in a finite time by random walk theory (can be easily verified by applying Hoeffding’s
inequality). Similarly, ln(b(1)t ) is a random walk starting from (or below) ln(2(1− p)) with
a negative drift. We further define Sl =

∑l
k=1 Zk − kz and S0 = 0. Clearly, Sl is a

super-martingale. Finally, optional stopping theorem yields that EST ≤ S0, leading to

E(T + 1)z ≥ E
{T+1∑

k=1

(τk − τk−1)

}
= E(τT+1) ≥ n.

9
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As a result, we have E(T ) ≥ ηn for η = 1/(2z).

Finally, we show that we can assume 2p < a
(1)
t < 1/2. By Hoeffding’s inequality, a

(1)
t

will across 1/2 both up and down at least once within n/2 steps with probability at least
1 − e−C4n with some constant C4. Ever since that, we will have 2p ≤ a

(1)
τi < 1/2 when

sign(a
(1)
τi ) = −1 and 1/2 ≤ a

(1)
τi < 2(1− p) when sign(a

(1)
τi ) = 1, due to the update rule. We

therefore conclude the proof.

3 Conclusion and Further Remarks

This work investigates the dynamics of PBA queries, revealing the intriguing pattern that
they oscillate around the truth while steadily converging toward it. Building on this insight,
we establish the exponential convergence rate of PBA, thereby bridging the long-standing
gap between its theoretical guarantees and empirical performance. A natural direction for
future research is to examine whether PBA still converges exponentially when the actual
noise level p exceeds the one assumed in the update rule, and, if not, to determine the
resulting convergence rate. Another intriguing problem is the implementation of PBA, as it
may be numerically challenge to exactly find the posterior median.
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A Missing Proofs.

Proof of Theorem 1

Proof. We handle the case with θ∗ ∈ (0, 1) first, and defer proof of the corner case to the
end of this proof. For now, let δ be a constant such that 1 > δ > θ∗ > 0. We denote

Mi(δ) :=
a
(3)
i (δ)

a
(2)
i (δ)

. (7)

Proposition 1 shows that for some constant C > 0 of p only, we have

EMn ≤ e−Cn

|θ∗ − δ|
. (8)

Since a
(j)
i ∈ (0, 1) for j = 1, 2, 3 and all i ≥ 0, we know that Mn is positive, and Markov’s

inequality gives that

P(a(3)n ≥ ϵ) ≤ P(Mn ≥ ϵ) ≤ EMn

ϵ
≤ e−Cn

|θ∗ − δ|ϵ
.

When 0 < δ < θ∗ < 1, we can apply Proposition 1 after performing the transformation
x′ = 1− x, which yields P(1− a

(3)
n ≥ ϵ) ≤ e−Cn/(|θ∗ − δ|ϵ). Therefore,

P(min{a(3)n , 1− a(3)n } ≥ ϵ) ≤ e−Cn/(|θ∗ − δ|ϵ). (9)

When θ∗ = 0 or θ∗ = 1, we have P(min{a(3)n , 1 − a
(3)
n } ≥ ϵ) = 0 by definition (see, Eq. 7),

therefore satisfying Eq. 9 as well.

Now, let δi = i/K, i = 0, . . . ,K, where K will be determined shortly. If mini|θ∗ − δi| <
1/{2K(K + 1)}, we can increase K by 1, which ensures that mini|θ∗ − δi| ≥ 1/{2K(K + 1)}.
Clearly, there exists some i∗ ≥ 1 such that θ∗ ∈ (δi∗−1, δi∗). Evoking Eq. 9, we know that
with probability at least 1− 2K(K + 1)e−Cn/ϵ, we have

Pn(X ∈ (δi∗−1, δi∗)) ≥ 1− 2ϵ,

implying that |Xn+1 − θ∗| ≤ 1/K for any ϵ < 1/4. Therefore, for K > 4 and ϵ = 1/K, we
have

P(|Xn+1 − θ∗| > 1/K) ≤ 2K2(K + 1)e−Cn.

Finally, taking K = eCn/4 yields

E|Xn+1 − θ∗| ≤ 1/K + P(|Xn+1 − θ∗| > 1/K) ≤ 3e−Cn/4.

Regarding the corner case, we analyze with θ∗ = 0 as θ∗ = 1 can be handled with an
analogous argument. In this case, Lemma 2 gives that

E
(
a(3)n

)
≤ e−Cn.

Let δ = ϵ = 1/K. Similar to the argument in the case of θ∗ ∈ (0, 1), we have with probability
at least 1− e−Cn/ϵ,

Pn(X ∈ [0, δ]) ≥ 1− ϵ.

Choosing K = eCn/2 gives

E|Xn+1 − θ∗| ≤ 1/K + P(|Xn+1 − θ∗| > 1/K) ≤ 2e−Cn/2.

We thus conclude the proof.

Lemma 1. When Xi ∈ (θ∗, δ), we have the following facts: (1) q1 + q2 + q3 = 1. (2)
q1, q3 ∈ (0, 1/2). (3) |q1 − q3| < q2. (4) For any ϵ < 1/2, q2 − |q1 − q3| ≥ ϵ if and only if
q1, q3 ≤ (1− ϵ)/2.
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Proof. Fact (1) is by definition of a(j)i−1, j = 1, 2, 3. Their summation equals to Pi−1(X ≤
1) = 1.

Fact (2) holds since Xi ∈ (θ∗, δ); otherwise, if q1 ≥ 1/2 for example, we have Xi ≤ θ∗ since
Pi−1(X < θ∗) = q1 ≥ 1/2, which is a contradiction.

We prove Fact (3) by contradiction. If |q1 − q3| ≥ q2, then q1 ≥ q2 + q3 or q3 ≥ q1 + q2.
However, q1 ≥ q2 + q3 with Fact (1) imply that q1 ≥ 1/2, which is a contradiction to Fact
(2). Similarly, q3 ≥ q1 + q2 cannot hold as well.

Regarding (4), we use a similar argument as (3). Note that

q2 − |q1 − q3| < ϵ

⇐⇒q1 > q2 + q3 − ϵ or q3 > q2 + q1 − ϵ

⇐⇒q1 > (1− ϵ)/2 or q3 > (1− ϵ)/2.

We thus complete the proof.

Lemma 2. When θ∗ = 0 and δ < 1, for some constant C1, C2 > 0 of p only, we have

P(a(3)n ≤ e−C1n) ≥ 1− e−C2n,

which implies Ea(3)n ≤ e−C3n for some positive constant C3.

Proof. The spirit of this proof is the same as Proposition 1. Instead of studying the change
of Mi, we can directly focus on a

(3)
i when θ∗ = 0. Notably, when θ∗ = 0, there are only two

potential locations of Xi.

Case 1: Xi ∈ I2. A correct label (Yi = 1 with probability 1 − p) leads to a
(3)
i = 2pa

(3)
i−1,

while a wrong label leads to a
(3)
i = 2(1− p)a

(3)
i−1. As a result,

E
{
ln

(
a
(3)
i

a
(3)
i−1

)}
= (1− p) ln(2p) + p ln(2(1− p)) < 0.

Case 2: Xi ∈ I3. Now, a correct label (Yi = 0 with probability 1 − p) leads to a
(3)
i =

1 − 2(1 − p)a
(3)
i−1, while a wrong label leads to a

(3)
i = 1 − 2pa

(3)
i−1. Therefore, by Jensen’s

inequality, we have

E
{
ln

(
a
(3)
i

a
(3)
i−1

)}
≤ ln

{
E
(
a
(3)
i

a
(3)
i−1

)}

= ln

{
(1− p)

1− 2(1− p)a
(3)
i−1

1− a
(3)
i−1

+ p
1− 2pa

(3)
i−1

1− a
(3)
i−1

}

= ln

{
1−

a
(3)
i−1

1− a
(3)
i−1

(1− 2p)2
}

< 0.

With a similar argument as Proposition 1, we only have to show that Case 1 occurs sufficiently
many times. Specifically, we define τ̃i = inft>τ̃i−1

sign(a
(3)
t ̸= sign(a

(3)
t−1), i = 1, 2, . . . , τ̃0 = 0,

and T̃ = supi≥0{τ̃i ≤ n}. We show ET̃ ≥ ηn for some constant η by tracking a
(2)
i . When

Xi ∈ I3, a correct label (Yi = 0 with probability 1− p) leads to a
(2)
i = 2(1− p)a

(2)
i−1, while a

wrong label leads to a
(2)
i = 2pa

(2)
i−1. Therefore, we have

E
{
ln

(
a
(2)
i

a
(2)
i−1

)}
= (1− p) ln(2(1− p)) + p ln(2p) = ln(2)−H(p) > 0.

The rest of proof is akin to Proposition 2. We thus complete the proof.
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B Discussion on the Noise Level

Our results apply to general responses Y with a noise level up to p. That is, P(Y =
hθ∗(X)) ≥ 1− p and P(Y = 1− hθ∗(X)) ≤ p. To see it, an intuitive explanation is that at
each round i, a correct response will drive the PBA estimator to be closer to the truth θ∗,
while an incorrect response will push it away from the truth. As a result, a higher noise level
corresponds to a harder learning problem, and we discuss the most difficult learning scenario
(P(Y = 1− hθ∗(X)) = p) in the main paper.

Technically, inspecting the proof of Proposition 1, we find that the expectation of Mi/Mi−1

is even smaller when the probability of incorrect label is smaller than p. Meanwhile, the
crossing time T is still guaranteed to be at the order of O(n). Therefore, the probability of
an ill-performed estimator remains an exponentially decaying rate.

C Extension to High Dimensional Data

In this section, we extend our results to high dimensional setting where d ≥ 2.

Setup. Consider the query X ∈ [0, 1]d, d ≥ 2 and the label Y ∈ {0, 1}. Similar to the setting
when d = 1, let p ∈ (0, 1/2) represent the noise level in the labels, P

(
Y = h(X)

)
= 1 − p

and P
(
Y = 1 − h(X)

)
= p, where h is a classifier h : [0, 1]d → {0, 1}, which a learner

wants to estimate. Recall that in one dimensional setting, we consider a hypothesis class
H = {hθ : θ ∈ [0, 1]} and work with a threshold classifier hθ∗(x) = 1x≥θ∗ . This ordered,
one-parameter structure enables a probabilistic bisection algorithm (PBA, see Section 2),
yielding an estimator θ̂n which converges to θ∗ exponentially fast, i.e. E|θ̂n − θ∗| ≤ O(e−n)
(see Theorem 1).

For d ≥ 2, the natural analogue of a “threshold” is a decision boundary, whose shape should be
restricted by additional geometric assumptions, such as smoothness, to ensure identifiability
and control the complexity of the hypothesis class. In this work, we adopt a standard
assumption in the literature that the decision boundary is Hölder smooth (Castro & Nowak,
2007; 2008). In particular, we consider the hypothesis class H = {hg : g ∈ Σ(L,α)}, where
Σ(L,α) denotes α-Hölder smooth with parameters L (see Definition 1).

Definition 1. A function g : [0, 1]d−1 → R is Hölder smooth if it has continuous partial
derivatives up to order k = ⌊α⌋ and ∀z,x ∈ [0, 1]d−1 :, g(z)− TPx(z) ≤ L∥z − x∥α, where
L,α > 0, and TPx(·) denotes the order k Taylor polynomial approximation of g expanded
around x.

The classifier is hg∗(x) = 1x∈G∗ , where g∗ is the decision boundary of G∗ and G∗ = {(X̃, xd) ∈
[0, 1]d−1 × [0, 1] : xd ≥ g∗(X̃)}. In the following, we use h, g∗, and G∗ interchangeably. The
learner wants to construct an estimator ĝn, or equivalently, a classifier Ĝn = {(X̃, xd) ∈
[0, 1]d−1 × [0, 1] : xd ≥ ĝn(X̃)}, with small expected L1 error E∥ĝn − g∗∥1.

Theorem 2. There exists an estimator ĝn such that E∥ĝn − g∗∥1 ≤ O
((

logn
n

) α
d−1

)
.

In the proof, we explicitly construct ĝn by generalizing the PBA to d ≥ 2. At a high
level, we recursively partition the (d − 1)-dimensional base domain into dyadic cells and
on each vertical lines, we deploy a one-dimensional PBA to localize the decision boundary
within each cell. By combining these local estimates across the cells, we obtain a piecewise
approximation of the boundary. The Hölder regularity of g∗ governs both the approximation
error within each cell and the number of cells required at a given resolution, allowing a
sample allocation that achieves the convergence rate in Theorem 2. Moreover, the matching
information-theoretic lower bound of Castro & Nowak (2008) for learning Hölder-smooth
decision boundaries implies that no estimator can achieve L1 error smaller than a constant
multiple of n− α

(d−1) (up to logarithmic factors). Therefore, the upper bound in Theorem 2 is
nearly minimax optimal.
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Special Case of α = ∞. A linear decision boundary is arbitrarily smooth, corresponding
to the special case of α = ∞. Theorem 2 implies that learning such a function using a
PBA-based algorithm is faster than any polynomial rate. In fact, Theorem 3 below shows
that one can still achieve an optimal exponential rate by leveraging PBA.
Theorem 3. When the true boundary g∗ is linear, corresponding to the case α = ∞, there
exists an estimator ĝn satisfying E∥ĝn − g∗∥1 ≤ C1 exp(−cn), where C1 > 0 depending only
on d and c > 0 depending only on d and the noise level p.

Proof of Theorem 2.

Proof. Estimator: constructing ĝn(·) by grid–lines–interpolate.

Pick an integer M ≥ 2 and set h = 1/M . For each multi-index ℓ̃ ∈ {0, . . . ,M}d−1 let the
base-grid node be x̃ℓ̃ := M−1ℓ̃ ∈ [0, 1]d−1. Along the vertical line Lℓ̃ = {(x̃ℓ̃, xd) : xd ∈ [0, 1]},
we collect N samples and run a 1-d threshold estimator (using PBA as described in Section 2)
to obtain ĝ(x̃ℓ̃) as an estimate g∗(x̃ℓ̃). This yields a total of N(M +1)d−1 samples, where the
total number of samples n satisfying n ≥ N(M + 1)d−1. We then interpolate the estimates
of g∗ at these points to construct a final estimates of the decision boundary.

In particular, we begin by dividing [0, 1]d−1 in to cells. Without of generality, we assume
that α > 1 (α = 1 can be handled in similar way) and M

⌊α⌋ is an integer (since this can always
be achieved by the proper choice of M). For the ease of notation, let r := ⌊α⌋ ∈ {1, 2, . . . },
and let the cell index q̃ = (q̃1, . . . , q̃d−1) ∈ {0, . . . , M

r − 1}d−1 define the axis-aligned cell
Iq̃ =

∏d−1
i=1 [

r q̃i
M , r(q̃i+1)

M ]. In this way, the (r+1)d−1 lattice nodes inside Iq̃ have multi-indices
ℓ̃ = (ℓ1, . . . , ℓd−1), ℓi ∈ {rq̃i, rq̃i + 1, . . . , rq̃i + r}, and coordinates x̃ℓ̃ := M−1ℓ̃. For
bookkeeping in coordinate i, set the node locations zi,j := rq̃i+j

M , j = 0, 1, . . . , r, and the local
index of ℓi within its cell mi := ℓi − rq̃i ∈ {0, 1, . . . , r}.
Given these notations, we construct ĝn(·) by the piecewise polynomial, shown as follows.

ĝn(x̃) =
∑
q̃

L̂q̃(x̃)1{x̃ ∈ Iq̃}, (10)

where L̂q̃(x̃) =
∑

ℓ̃: x̃
ℓ̃
∈Iq̃

ĝ(x̃ℓ̃)Qq̃,ℓ̃(x̃), and Qq̃,ℓ̃(x̃) is the multidimensional tensor-product
basis on the cell. In particular,

Qq̃,ℓ̃(x̃) :=

d−1∏
i=1

Li,q̃i,ℓi(x̃i) =

d−1∏
i=1

r∏
j=0
j ̸=mi

x̃i − rq̃i+j
M

ℓi
M − rq̃i+j

M

,

where Li,q̃i,ℓi(t) :=
∏r

j=0
j ̸=mi

t−zi,j
zi,mi

−zi,j
. ĝn(·) defines a classification rule Ĝn.

By Equation 10, we have the follows.

O(∥ĝn − g∗∥1) = O
(∑

q̃

∥(L̂q̃ − g∗)1{x̃ ∈ Iq̃}∥L1([0,1]d−1)

)
= O

(∑
q̃

∥(Lq̃ − g∗)1{x̃ ∈ Iq̃}+ (L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}∥L1([0,1]d−1)

)
= O

(∑
q̃

∥(Lq̃ − g∗)1{x̃ ∈ Iq̃}∥L1([0,1]d−1) + ∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}∥L1([0,1]d−1)

)
,

where Lq̃(x̃) =
∑

ℓ̃: x̃
ℓ̃
∈Iq̃

g∗(x̃ℓ̃)Qq̃,ℓ̃(x̃) is the Clairvoyant version of L̂q̃.

Note that

∥(Lq̃ − g∗)1{x̃ ∈ Iq̃}∥L1([0,1]d−1) =

∫
Iq̃

|Lq̃(x̃)− g∗(x̃)|dx̃ = O(

∫
Iq̃

M−αdx̃), (11)
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by using Lemma 3 and resulting in O(M−αM−(d−1)). Moreover, by conditioning on the
good event where |ĝ(x̃l̃)− g∗(x̃l̃)| ≤ ϵN , we have

∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}∥L1([0,1]d−1) =
∑

l̃:x̃
l̃
∈Iq̃

|ĝ(x̃l̃)− g∗(x̃l̃)|∥Qq̃,l̃∥L1([0,1]d−1) (12)

≤
∑

l̃:x̃
l̃
∈Iq̃

ϵN

(∫
Iq̃

Qq̃,l̃(x̃)dµx̃

)
(13)

≤
∑

l̃:x̃
l̃
∈Iq̃

ϵN

(∫
Iq̃

r(d−1)rdµx̃

)
(14)

= O
(
ϵNM−(d−1)

)
. (15)

Note that µ is a Lebesgue measure of x̃ which is uniform on [0, 1]d−1. By Equation 11 and
12, we have

∥ĝn − g∗∥1 ≤ O
(∑

q̃

∥(Lq̃ − g∗)1{x̃ ∈ Iq̃}∥L1([0,1]d−1) + ∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}∥L1([0,1]d−1)

)
≤ O

(
Md−1(M−αM−(d−1) + ϵNM−(d−1))

)
= O

(
M−α + ϵN

)
.

According to Theorem 1, we know P(|ĝ(x̃l̃) − g∗(x̃l̃)| > ϵN ) ≤ 3
ϵN

exp(−CN). Therefore,

we choose N = ⌈K log n⌉, where K > 2α
C(d−1) , M = ⌊

(
n

K logn

)1/(d−1)⌋ and ϵN =
√
3 e−cN/2,

leading to

E∥ĝn − g∗∥1 ≤ O
(
M−α + ϵN

)
+

3

ϵN
exp(−CN) = O

((
log n

n

) α
d−1

)
.

Lemma 3. supg∗∈Σ(L,α) maxx̃∈Iq̃ |Lq̃(x̃) − g∗(x̃)| = O(M−α).

Proof. Let x̃ ∈ Iq̃ and g ∈ Σ(L,α), we have the follows.∣∣Lq̃(x̃)− g∗(x̃)
∣∣ = ∣∣Lq̃(x̃)− TPq̃rM−1(x̃)− g∗(x̃) + TPq̃rM−1(x̃)

∣∣
≤
∣∣Lq̃(x̃)− TPq̃rM−1(x̃)

∣∣+ ∣∣g∗(x̃)− TPq̃rM−1(x̃)
∣∣

≤
∣∣Lq̃(x̃)− TPq̃rM−1(x̃)

∣∣+ L
∥∥x̃− q̃ rM−1

∥∥α
≤
∣∣Lq̃(x̃)− TPq̃rM−1(x̃)

∣∣+O(M−α).

Note that the tensor–polynomial approximation space contains the space of degree r poly-
nomials. Therefore we can write Lq̃(x̃) as a tensor–product polynomial. Therefore, we
have

∣∣Lq̃(x̃)− g∗(x̃)
∣∣ ≤

∣∣∣∣∣∣∣
∑

l̃:x̃
l̃
∈Iq̃

g∗(x̃l̃)Qq̃,l̃(x̃)− TPq̃rM−1(x̃)

∣∣∣∣∣∣∣+O(M−α)

=

∣∣∣∣∣∣∣
∑

l̃:x̃
l̃
∈Iq̃

(
g∗(x̃l̃)− TPq̃rM−1(x̃l̃)

)
Qq̃,l̃(x̃)

∣∣∣∣∣∣∣+O(M−α)

≤
∑

l̃:x̃
l̃
∈Iq̃

∣∣g∗(x̃l̃)− TPq̃rM−1(x̃l̃)
∣∣ ∣∣Qq̃,l̃(x̃)

∣∣+O(M−α)
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≤
∑

l̃:x̃
l̃
∈Iq̃

L
∥∥x̃− q̃ rM−1

∥∥α ∣∣Qq̃,l̃(x̃)
∣∣+O(M−α)

≤
∑

l̃:x̃
l̃
∈Iq̃

L
∥∥x̃− q̃ rM−1

∥∥α r(d−1)r +O(M−α)

≤
∑

l̃:x̃
l̃
∈Iq̃

O(M−α) +O(M−α) = r d−1O(M−α) +O(M−α) = O(M−α).

Proof of Theorem 3

Proof. For a linear boundary, we denote g∗(x̃) = a⊤∗ x̃ + b∗, x̃ ∈ [0, 1]d−1. Similar to the
previous setting, the labels satisfy P

(
Y = hg∗(X)

)
= 1− p and P

(
Y = 1− hg∗(X)

)
= p with

p ∈ (0, 1
2 ). We show that there exist an estimator that achieves exponential L1 error decay.

We first pick m ≥ d anchor points x̃1, . . . , x̃m ∈ [0, 1]d−1 in general position so that the
augmented design

Z =

x̃⊤
1 1
...

...
x̃⊤
m 1

 ∈ Rm×d

satisfies rank(Z) = d. For each fixed x̃j , query along the vertical line {(x̃j , t) : t ∈ [0, 1]} and
run a PBA to estimate the one-dimensional threshold t∗j := g∗(x̃j) = a⊤∗ x̃j + b∗.

One concrete choice with m = d is to take x̃1 = 0, x̃k+1 = ek for k = 1, . . . , d− 1, where ek
denotes the k-th standard basis vector in Rd−1. Then the augmented design matrix Z is

Z =


0 · · · 0 1
1 0 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 ∈ Rd×d.

Let t̂j be the PBA estimate after nj queries on line j, and set t̂ = (t̂1, . . . , t̂d)
⊤. Estimate

θ∗ := (a∗, b∗) ∈ Rd by least squares: θ̂n := argminθ∈Rd ∥ t̂ − Zθ ∥22 = (Z⊤Z)−1Z⊤t̂, where
t̂ = ĝ(x̃) := â⊤x̃ + b̂. Let the total sample be n =

∑d
j=1 nj . Let ε := (ε1, . . . , εd)

⊤ with
εj = t̂j − t∗j . Then we can express

θ̂n − θ∗ = (Z⊤Z)−1Z⊤ε,

and ∥θ̂n − θ∗∥2 ≤ 1
σmin(Z) ∥ε∥2, where σmin(Z) > 0 is the smallest singular value of Z. Let

∆a := â− a∗ and ∆b := b̂− b∗. Then we have

E∥ĝn − g∗∥1 := E
∫
[0,1]d−1

∣∣∆a⊤u+∆b
∣∣ du ≤ |∆b|+ 1

2

d−1∑
k=1

|∆ak| ≤
(
1 +

√
d−1
2

)
∥θ̂ − θ∗∥2

≤

(
1 +

√
d−1
2

)
σmin(Z)

E∥ε∥2 =

(
1 +

√
d−1
2

)
σmin(Z)

E∥t̂− t∗∥2 ≤

(
1 +

√
d−1
2

)
σmin(Z)

√√√√ d∑
j=1

(
E|εj |

)2

≤ 3

(
1 +

√
d−1
2

)
σmin(Z)

√
d max

j
exp(−Cnj).

We have the last equation by Theorem 1, which shows E|t̂j−t∗j | ≤ 3 exp(−Cnj),∀j, where C is

a constant of p only. By taking nj =
n
d , we show that E∥ĝ−g∗∥1 ≤ 3

(
1+

√
d−1
2

)
σmin(Z)

√
d exp(−C n

d ).
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Figure 1: Estimator error rate of PBA estimator with respect to the query size n, under
various noise level p.

Since the matrix Z has full column rank and σmin(Z) is bounded below by a positive constant
depending only on d, we can write E∥ĝ − g∗∥1 ≤ C1 exp(−cn), where C1 > 0 depends only
on d and c > 0 depends only on p and d.

D Experiments

In this section, we conducted simulation experiments to corroborate our theoretical findings.
WLOG, we choose θ∗ = 1/3 and vary the noisy level p from a list of values 0.1, 0.2, 0.3, 0.4.
We report the average estimation error of the PBA estimator with respect to the query size
n on 20 replicated experiments. The results are shown in Figure 1. The maximum query size
is 100 because the convergence rate is exponentially fast and the calculation of estimation
error will encounter numerical issues, as seen in Figure 1.

Figure 1 clearly displays an exponential decay of the estimation error by PBA (a linear trend
in the log-plot), aligned with our Theorem 1. In addition, a larger noise level p results in a
significantly smaller constant in the exponent of the convergence rate, leading to a slower
convergence.

E The Use of Large Language Models Statement

Large language models were used solely as a writing aid. Their use was limited to minor
language editing, such as correcting grammar, improving clarity, and polishing the phrasing,
without altering the substantive content or analysis of the article.
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