

PROBABILISTIC BISECTION ALGORITHM PROVABLY ACHIEVES EXPONENTIAL CONVERGENCE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The probabilistic bisection algorithm (PBA) extends the classical binary
 012 search to settings with noisy responses, and is a foundational algorithm
 013 commonly used in basic problems such as root-finding. Despite its strong
 014 empirical success, its theoretical property, particularly the convergence rate,
 015 remains unclear. This paper establishes that PBA converges at a geometric
 016 rate, providing a rigorous justification for its empirical efficiency. Notably,
 017 this rate is optimal in the sense that it matches the performance of classical
 018 binary search under noiseless responses. The core of our analysis lies in
 019 directly characterizing the dynamics of PBA queries, which had not been
 020 examined in the prior literature. We show that the queries oscillate around
 021 the truth but steadily draw closer, thus leading to an estimator that rapidly
 022 concentrates on the truth. Beyond resolving the long-standing question of
 023 PBA’s convergence, our developed techniques offer new tools for analyzing
 024 PBA’s dynamics, which may be of independent interest.

1 INTRODUCTION

028 Binary search is a fundamental algorithm that addresses the core challenge of **efficiently**
 029 **locating a target within an ordered space** using the principle of divide-and-conquer. It
 030 underpins a wide range of modern algorithms in computer science, statistics, and applied
 031 mathematics (Knuth, 1997; Karp & Kleinberg, 2007; Waeber et al., 2013), and serves as a
 032 building block for systems and methods from multidimensional data to search on graphs and
 033 trees (Bentley, 1975; Nowak, 2009; Emamjomeh-Zadeh et al., 2016; Rodriguez & Ludkovski,
 034 2020a). Classical applications include fast key retrieval in large databases and numerical
 035 root-finding in engineering and economics. For instance, consider finding a unique root
 036 of a monotone function $h : [0, 1] \rightarrow \mathbb{R}$ where one can query only the sign of $h(x)$. When the
 037 response to each query x is noiseless, a binary search algorithm efficiently locates the root
 038 by halving the search interval each round. After n queries, the remaining interval has length
 2^{-n} , achieving the optimal exponential convergence rate.

039 In practice, however, the observed responses are often noisy, e.g., due to transmission and
 040 measurement error, meaning that they have a chance to be incorrect. Motivated by noisy
 041 channel coding, the Probabilistic Bisection Algorithm (PBA, Horstein, 1963) extends binary
 042 search to handle noisy labels. Compared to binary search, PBA adopts a Bayesian approach
 043 to select the query. In the 1-D root-finding setup, PBA maintains a probability distribution
 044 with density f_t over the support $[0, 1]$, representing the likelihood of each point being the true
 045 root. At each round t , PBA queries the median x_t of this distribution and receives a noisy
 046 response y_t indicating the sign at x_t . The belief is then updated via Bayes’ rule given y_t .
 047 For instance, if y_t is positive, then $f_t(x) = 2(1 - p)f_{t-1}(x)$ for $x \leq x_t$ and $f_t(x) = 2pf_{t-1}(x)$
 048 for $x > x_t$, where p is the noise level. The process repeats until termination, with the final
 049 estimator being the last query.

050 Despite strong empirical performance, (Waeber, 2013; Frazier et al., 2019; Rodriguez & Lud-
 051kovski, 2020a;b), PBA’s theoretical property, particularly its convergence rate, remains poorly
 052 understood. The difficulty stems from its **intricate query process over a continuous**
 053 **search space**. In comparison, the so-called noisy binary search typically focuses on a finite
 search set and enjoys well-understood guarantees. It has been shown that locating a target

054 among H elements with error probability at most δ requires only $O(\log(H/\delta))$ queries (Karp
 055 & Kleinberg, 2007; Nowak, 2009; Emamjomeh-Zadeh et al., 2016). However, these results
 056 rely crucially on the discretized structure of the search space *such as searching nodes on*
 057 *a path (Aslam & Dhagat, 1991; Karp & Kleinberg, 2007) or a graph (Emamjomeh-Zadeh*
 058 *et al., 2016; Dereniowski et al., 2019)*. In contrast, PBA addresses a continuous domain with
 059 uncountably many possible queries, which requires fundamentally different analysis tools.

060 Historically, analyzing PBA’s performance has been difficult due to the continuous nature
 061 of the query sequence, which makes tracking the estimation non-trivial. As a result, prior
 062 efforts either (1) adopted a discretized version of PBA, or (2) invoked a Bayesian framework
 063 where the unknown truth is modeled as a continuous random variable. However, these
 064 approaches are unable to directly characterize the convergence behavior of the original PBA
 065 *given a fixed truth*. Specifically, Burnashev & Zigangirov (1974) proposed a discretized
 066 version of PBA, which we refer to as the BZ algorithm. BZ restricts queries to a finite
 067 grid $\{0, 1/K, 2/K, \dots, 1\}$ for some constant K . With carefully modified update and query
 068 rules, they proved that BZ attains exponential convergence when K adapts to the query
 069 size (Burnashev & Zigangirov, 1974; Castro & Nowak, 2008). However, a pre-selected and
 070 fixed K is required to run BZ in practice, thus such a convergence rate cannot be expected.
 071 Waeber et al. (2013) analyzed PBA in a Bayesian setting. By modeling the root as a random
 072 variable X^* uniformly distributed on $[0, 1]$, they proved that $\mathbb{E}|X^* - \hat{X}_n|$ decays geometrically,
 073 where \hat{X}_n is the PBA estimate after n queries. However, this result hinges critically on
 074 the assumption that X^* is a continuous random variable. Therefore, this analysis does not
 075 apply to real-world tasks where the ground truth is a fixed but unknown constant, such as
 076 root-finding and boundary detection problems.

077 A closer inspection of these approaches shows that the main barrier to analyzing the original
 078 PBA, again, lies in the complex, location-dependent behavior of its queries. Both the
 079 discretized analysis of Burnashev & Zigangirov (1974) and the Bayesian analysis of Waeber
 080 et al. (2013) exploit a simplifying property: at every round a quantity that upper-bounds the
 081 estimation error is expected to decrease, regardless of where the queries fall. Unfortunately,
 082 this guarantee breaks down when analyzing the original PBA with a fixed ground truth,
 083 as the improvement in accuracy depends delicately on the query locations (with further
 084 discussion in Subsection 2.2).

085 Our work demonstrates that understanding the query behavior of PBA is both essential and
 086 powerful in tackling this problem. In Subsection 2.3, we develop new analytical techniques
 087 that measure the improvement contributed by the query at each round, and characterize
 088 the number of queries that lead to a better estimation, an aspect not studied in the prior
 089 literature. These tools allow us to directly study the dynamics of PBA queries. Intuitively,
 090 we show that the queries oscillate around the ground truth but steadily draw closer, driving
 091 the posterior distribution to concentrate sharply at the ground truth.

092 Building on these tools, we prove that **PBA converges at an exponential rate for any**
 093 **fixed, unknown ground truth**. The rate we establish is optimal, matching the geometric
 094 convergence achievable by classical binary search with noiseless feedback. This result settles
 095 the long-standing theoretical question of whether PBA retains its empirical efficiency under
 096 noisy responses (Waeber et al., 2013). Moreover, our developed tools provide a fine-grained
 097 understanding of PBA’s query process, which may be of independent interest for other
 098 adaptive algorithms.

099 The rest of the paper is organized as follows. Section 2 present our main result, the
 100 convergence rate of PBA for one-dimensional data. Simulation experiments are conducted in
 101 Appendix D, and we discuss the extension to the high-dimensional data in Appendix C. We
 102 conclude the paper with further discussions in Section 3.

102
 103
 104
 105
 106
 107

108 2 CONVERGENCE RATE OF PBA
109110 2.1 SETUP
111

112 We cast the root-finding problem as a special case of binary classification. Consider a
113 learner seeking to identify the unknown classifier $h_{\theta^*}(x) = \mathbb{1}_{x \geq \theta^*}$ within a hypothesis class
114 $\mathcal{H} = \{h_\theta : \theta \in [0, 1]\}$, where $\mathbb{1}_{(\cdot)}$ is an indicator function. Let $p \in (0, 1/2)$ denote the noise
115 level in the response. In this formulation, θ^* is the unknown root, and each response is
116 flipped independently with probability p . Specifically, for any query X , the observed response
117 Y satisfies that $\mathbb{P}(Y = h_{\theta^*}(X)) = 1 - p$ and $\mathbb{P}(Y = 1 - h_{\theta^*}(X)) = p$. We note that our
118 results also extend to the more general setting where $\mathbb{P}(Y = 1 - h_{\theta^*}(X)) \leq p$, as elaborated
119 in Appendix B.

120 **Probabilistic Bisection Algorithm (PBA).** A learner can use PBA to efficiently estimate
121 θ^* as follows. Let P_0 be a uniform prior distribution such that its density function is
122 $f_0(x) = 1, x \in [0, 1]$. At round $i \geq 1$, PBA will select a query X_i as the median of \mathbb{P}_{i-1} , i.e.,

$$123 \quad \mathbb{P}_{i-1}(X \leq X_i) = 1/2.$$

124 After observing the corresponding label Y_i , PBS updates the posterior distribution as follows:

$$125 \quad (1) \text{ If } Y_i = 1, f_i(x) = \begin{cases} 2(1-p)f_{i-1}(x), & x \leq X_i, \\ 2pf_{i-1}(x), & x > X_i, \end{cases}$$

$$126 \quad (2) \text{ If } Y_i = 0, f_i(x) = \begin{cases} 2pf_{i-1}(x), & x \leq X_i, \\ 2(1-p)f_{i-1}(x), & x > X_i. \end{cases}$$

127 The posterior distribution at round i is $\mathbb{P}_i(t) = \int_0^t f_i(x)dx$. The final estimator of θ^* after n
128 rounds is $\hat{\theta}_n := X_{n+1}$.

129 *Remark 1* (Prior and Posterior Distributions). In our setting the unknown root θ^* is fixed.
130 The distribution \mathbb{P}_i represents the learner’s belief about θ^* : at round i , they believe that the
131 probability that $\theta^* \leq t$ is given by $\mathbb{P}_i(t)$. We use the terms *prior* and *posterior* in keeping
132 with the PBA literature, where the algorithm is commonly interpreted from a Bayesian
133 perspective.

134 2.2 EXPONENTIAL CONVERGENCE RATE
135

136 Throughout the paper, c and C are either universal constants or constant of p only, though
137 their value may vary from line to line. We use the terms ‘root’, ‘truth’, and ‘ground truth’
138 interchangeably. The complete proof of Theorem 1 is included in Appendix A.

139 **Theorem 1** (Exponential Convergence Rate of PBA). *For the PBA estimator $\hat{\theta}_n$, we have*

$$140 \quad \mathbb{E}|\hat{\theta}_n - \theta^*| \leq 3e^{-Cn},$$

141 where $C > 0$ is a constant of p only.

142 **Key Challenges and Contributions.** We assume that $\theta^* \in (0, 1)$ for illustration purpose.
143 The basic idea is to show that $\hat{\theta}_n$ lies within a small interval around θ^* with high probability.
144 Partition $[0, 1]$ into K intervals $[(i-1)/K, i/K]$, $i = 1, 2, \dots, K$. Then there exists some i^*
145 such that $\theta^* \in [\delta_{i^*-1}, \delta_{i^*}]$. We can prove that

$$146 \quad \mathbb{P}(\hat{\theta}_n \in [\delta_{i^*-1}, \delta_{i^*}]) \geq 1 - 2K^2(K+1)e^{-Cn}. \quad (1)$$

147 Choosing $K = e^{Cn/4}$ yields the desired result.

148 Eq. 1 is equivalent to showing that the PBA estimator is unlikely to be much larger or
149 smaller than θ^* . By symmetry, it suffices to prove the upper-tail bound:

$$150 \quad \mathbb{P}(\hat{\theta}_n > \delta_{i^*}) \leq K^2(K+1)e^{-Cn}. \quad (2)$$

151 The key challenge is to establish the exponential decay result in Eq. 2.

162 We emphasize that although similar bounds were obtained in (Burnashev & Zigangirov, 1974;
 163 Waeber et al., 2013), their proofs rely on the argument that

$$164 \quad \mathbb{E}(M_{i+1} - M_i \mid M_i) \leq -C, \quad (3)$$

165 where M_i is a quantity, in particular, $\log(M_\theta(i))$ in Hero et al. (2007, Theorem 8.1) and
 166 $\log(A_i \wedge (1 - A_i))$ in Waeber et al. (2013, Proposition 5.3), that can upper bound $\mathbb{P}(\hat{\theta}_i > \delta_{i^*})$.
 167 That is, under the discretization or the Bayesian setting, there exists a stochastic process M_i 's
 168 that is equivalent to a geometric random walk with negative shift. Hence, Eq. 3 guarantees
 169 that the estimator moves closer to the truth after each query (in expectation), regardless
 170 of query location. However, our analysis reveals that this property fails for the original
 171 PBA: the accuracy improvement depends critically on the query position, and
 172 improvement is not always guaranteed.

173 To overcome this challenge, we conduct a finer-grid analysis of PBA's query dynamics, as
 174 detailed in the next subsection. Consequently, our proof of Eq. 2 employs a fundamentally
 175 different argument from those in (Burnashev & Zigangirov, 1974; Waeber et al., 2013), which
 176 constitutes a key methodological contribution of this work.

178 2.3 ANALYSIS OF QUERY BEHAVIORS

180 This subsection introduces two novel propositions on query behaviors, which are key for
 181 deriving Eq. 2. First, we recall a key property of PBA query: it is the median of posterior
 182 belief, meaning that X_{n+1} satisfies

$$183 \quad \mathbb{P}_n(X_{n+1}) = 1/2. \quad (4)$$

184 This equation establishes a direct connection between the query location and the posterior
 185 probability mass over intervals, which will play a critical role in our analysis.

186 We introduce the following critical quantities before presenting the results. Let δ be a
 187 constant such that $\theta^* < \delta < 1$. We divide the interval $[0, 1]$ into three sub-intervals:

$$188 \quad I_1 := [0, \theta^*], I_2 := (\theta^*, \delta), I_3 := [\delta, 1],$$

189 and define

$$190 \quad a_i^{(j)}(\delta) := \mathbb{P}_i(X \in I_j) := \int_{I_j} f_i(x) dx.$$

193 We will omit the dependence on δ when clear from context. Namely, $a_i^{(j)}$ is the posterior
 194 probability that the estimator $\hat{\theta}_{i+1}$ lies in the j -th sub-interval after the i -th query.

195 *Remark 2* (Motivation for $a_i^{(j)}$). At each round i , the query must fall into one of three
 196 sub-intervals, which is completely determined by $a_{i-1}^{(j)}$'s. Recall that $\hat{\theta}_n = X_{n+1}$. By Eq. 4,
 197 a large estimator $X_{n+1} > \delta$ implies $a_n^{(3)} = \int_{\delta}^1 f_n(x) dx > 1/2$. Thus, to establish that the
 198 probability of such a large estimator is exponentially small, it suffices to show that $a_n^{(3)}$ is
 199 unlikely to become large. It turns out that understanding the behavior of PBA queries is
 200 necessary for deriving such a result, which further relies on tracking the change of all three
 201 posterior probabilities.

203 For any realization of X_i, Y_i 's, we further define

$$205 \quad N_j := \sum_{i=1}^n \mathbb{1}_{X_i \in I_j}, G_j := \{i \in [1, n] : X_i \in I_j\}, j = 1, 2, 3.$$

207 N_j is the number of total occurrences of the event $X_i \in I_j$, and G_j contains the corresponding
 208 indices. We also define the following stopping times:

$$209 \quad \tau_0 = 0, \quad \tau_i = \inf \left\{ t : t > \tau_{i-1}, \text{sign}(a_t^{(1)} - 1/2) \neq \text{sign}(a_{t-1}^{(1)} - 1/2) \right\}, i = 1, 2, \dots,$$

211 where $\text{sign}(x) = 1$ for $x \geq 0$ otherwise $\text{sign}(x) = -1$. Namely, τ_i is the i -th time such that
 212 $a_t^{(1)}$ across $1/2$, meaning that the query's location transits from I_1 to $I_2 \cup I_3$ or vice versa.
 213 Finally, we define

$$214 \quad T := \sup\{i : i \geq 0, \tau_i \leq n\}, \quad (5)$$

215 which is the number of total times that the query crosses the truth θ^* .

216 **Proposition 1.** Let $M_i(\delta) := a_i^{(3)}(\delta)/a_i^{(2)}(\delta)$. For some constant $C_1, C_2 > 0$ of p only, we
 217 have

$$218 \quad 219 \quad \mathbb{P}(M_n/M_0 \leq e^{-C_1 n}) \geq 1 - e^{-C_2 n},$$

220 which implies $\mathbb{E}M_n \leq e^{-C_3 n}/|\theta^* - \delta|$ for some positive constant C_3 .

221 **Proposition 2.** There exists a constant η only depending on p , such that $\mathbb{E}(T) \geq \eta n$.

223 **Implications.** Together, Propositions 1 and 2 yield a sharp picture of the dynamics: the
 224 posterior distribution of PBA rapidly concentrates around θ^* , while the queries themselves
 225 are expected to oscillate across the truth. In other words, the queries repeatedly swing
 226 around θ^* but with steadily shrinking amplitude, driving convergence. This insight provides
 227 a fundamental explanation for the empirical success of PBA.

228 Regarding the convergence rate, Proposition 1 shows that M_n decays exponentially fast,
 229 which immediately implies an exponentially decaying probability of a large estimator. To
 230 see it, Markov's inequality gives that

$$231 \quad 232 \quad \mathbb{P}(a_n^{(3)} \geq \epsilon) \leq \mathbb{P}(M_n \geq \epsilon) \leq \frac{\mathbb{E}M_n}{\epsilon} \leq \frac{e^{-Cn}}{|\theta^* - \delta|\epsilon}.$$

233 As a result, $\mathbb{P}(X_{n+1} \geq \delta) \leq \mathbb{P}(a_n^{(3)} \geq 1/2) \leq 2e^{-Cn}/|\theta^* - \delta|$, establishing the key step (2) in
 234 Theorem 1.

235 **Proof Sketch.** The core idea behind the proof of Proposition 1 is to show that $\ln(M_i)$'s
 236 form a supermartingale, which decreases when the query lies in I_2 or I_3 . We note that
 237 $\ln(M_i)$ remains unchanged when $X_i \in I_1$, and the decrease can be arbitrarily small when
 238 $X_i \in I_2$. Fortunately, we find that $\ln(M_i)$ decreases by at least a constant amount when
 239 the query crosses the truth. That is, when $X_{i-1} < \theta^* \leq X_i$ or $X_{i-1} \geq \theta^* > X_i$. This
 240 boundary-crossing behavior is characterized by T . Hence, to ensure that $\ln(M_n)$ becomes
 241 sufficiently small, it suffices to show that $\mathbb{E}(T)$ grows linearly with n , as established in
 242 Proposition 2.

243 Technically, Propositions 1 and 2 hinge on a careful analysis of the changes in $a_i^{(j)}$ and
 244 their combinations such as M_i . These changes depend on the query location and leads to
 245 a discussion of three cases: $X_i \in I_1$, $X_i \in I_2$, and $X_i \in I_3$. To prove Proposition 2, first
 246 we need to construct appropriate sub- or super-martingales from the posterior probabilities.
 247 We then show that the queries cross the truth sufficiently often by analyzing the boundary-
 248 crossing times τ_i and invoking the stopping time theorem. This, together with a martingale
 249 concentration inequality, ensures a significant reduction in M_i , thereby completing the proof
 250 of Proposition 1. The full details of these two propositions are presented below.

251 *Remark 3 (Motivation of M_i).* Proposition 1 focuses on analyzing M_n rather than $a_n^{(3)}$. The
 252 quantity M_n is deliberately and carefully designed, not an arbitrary combination of the
 253 $a_n^{(j)}$'s. The key reason is that the evolution of $a_n^{(j)}$ depends intricately on the query locations,
 254 making them difficult to control directly. To establish Eq. 2, we seek a quantity that is
 255 guaranteed to be monotone on average across rounds. However, the $a_n^{(j)}$'s alone do not
 256 exhibit this property for all possible query positions. By introducing a ratio-based structure,
 257 M_n (specifically, its logarithm) acquires this desirable monotonicity, enabling a tractable
 258 analysis.

259 Proof of Proposition 1.

260 *Proof.* We prove this result by three steps: (1) M_i is expected to decrease or maintain the
 261 same at each round, (2) there is a sufficient number of time steps such that M_i is expected
 262 to decrease, (3) evoking a concentration inequality.

263 **Step 1:** Depending on the position of X_i , we discuss the update of M_i in three cases as
 264 follows.

265 **Case 1,** $X_i \in I_1$. Clearly, by the update rule of PBS, $a^{(2)}$ and $a^{(3)}$ will be multiplied by
 266 $2(1-p)$ (when $Y_i = 0$) or $2p$ (when $Y_i = 1$) simultaneously. As a result, $M_i = M_{i-1}$ in this
 267 case.

270 **Case 2,** $X_i \in I_2$. Now, a correct label ($Y_i = 1$ with probability $1 - p$) leads to $a_i^{(1)} = 2(1 - p)a_{i-1}^{(1)}$ and $a_i^{(3)} = 2pa_{i-1}^{(3)}$. As a result,

$$273 \quad 274 \quad 275 \quad M_i/M_{i-1} = \frac{2pa_{i-1}^{(2)}}{1 - 2(1 - p)a_{i-1}^{(1)} - 2pa_{i-1}^{(3)}} \in \left(\frac{p}{1 - p}, 1 \right).$$

276 A wrong label leads to

$$278 \quad 279 \quad 280 \quad M_i/M_{i-1} = \frac{2(1 - p)a_{i-1}^{(2)}}{1 - 2pa_{i-1}^{(1)} - 2(1 - p)a_{i-1}^{(3)}} \in \left(1, \frac{1 - p}{p} \right).$$

281 For notation simplicity, we denote $q_1 = a_{i-1}^{(1)}$, $q_2 = a_{i-1}^{(2)}$, $q_3 = a_{i-1}^{(3)}$. Some important properties
282 of them are summarized in Lemma 1. Evoking Lemma 1, we have

$$283 \quad \mathbb{E} \left(\frac{M_i}{M_{i-1}} \right) = (1 - p) \frac{2pq_2}{1 - 2(1 - p)q_1 - 2pq_3} + p \frac{2(1 - p)q_2}{1 - 2pq_1 - 2(1 - p)q_3} \\ 284 \quad = \frac{2p(1 - p)q_2}{q_2 - (1 - 2p)(q_1 - q_3)} + \frac{2p(1 - p)q_2}{q_2 + (1 - 2p)(q_1 - q_3)} \\ 285 \quad = \frac{4p(1 - p)(q_2)^2}{(q_2)^2 - (1 - 2p)^2(q_1 - q_3)^2} \\ 286 \quad = 1 - \frac{(1 - 2p)^2 \{(q_2)^2 - (q_1 - q_3)^2\}}{(q_2)^2 - (1 - 2p)^2(q_1 - q_3)^2} \\ 287 \quad < 1.$$

288 The last step is due to $q_2 > |q_1 - q_3|$ and the positivity of denominator.

289 Moreover, for any $\epsilon \in (0, 1/2)$, when $q_1, q_3 \leq (1 - \epsilon)/2$, the fourth point of Lemma 1 gives
290 that $q_2 - |q_1 - q_3| \geq \epsilon$ and

$$291 \quad \mathbb{E} \left(\frac{M_i}{M_{i-1}} \right) = 1 - \frac{(1 - 2p)^2 \{(q_2)^2 - (q_1 - q_3)^2\}}{(q_2)^2 - (1 - 2p)^2(q_1 - q_3)^2} \\ 292 \quad \leq 1 - (1 - 2p)^2\epsilon^2.$$

293 As a result, Jensen's Inequality gives

$$294 \quad \mathbb{E} \left\{ \ln \left(\frac{M_i}{M_{i-1}} \right) \right\} \leq \ln(1 - (1 - 2p)^2\epsilon^2) \leq -(1 - 2p)^2\epsilon^2.$$

305 **Case 3,** $X_i \in I_3$. In this case, a correct label ($Y_i = 1$ with probability $1 - p$) leads to
306 $a_i^{(2)} = 2(1 - p)a_{i-1}^{(2)}$ and $1 - a_i^{(3)} = 2(1 - p)(1 - a_{i-1}^{(3)})$, so that

$$310 \quad 311 \quad 312 \quad M_i/M_{i-1} = \frac{1 - 2(1 - p)(1 - a_{i-1}^{(3)})}{2(1 - p)a_{i-1}^{(3)}} \in \left(\frac{p}{1 - p}, \frac{1}{2(1 - p)} \right).$$

313 Similarly, a wrong label results in

$$314 \quad 315 \quad 316 \quad M_i/M_{i-1} = \frac{1 - 2p(1 - a_{i-1}^{(3)})}{2pa_{i-1}^{(3)}} \in \left(\frac{1}{2p}, \frac{1 - p}{p} \right).$$

317 As a result, we have

$$318 \quad \mathbb{E} \left\{ \ln \left(\frac{M_i}{M_{i-1}} \right) \right\} = (1 - p) \ln \left(\frac{1 - 2(1 - p)(1 - a_{i-1}^{(3)})}{2(1 - p)a_{i-1}^{(3)}} \right) + p \ln \left(\frac{1 - 2p(1 - a_{i-1}^{(3)})}{2pa_{i-1}^{(3)}} \right).$$

322 Let

$$323 \quad h(x) := (1 - p) \ln \left(\frac{1 - 2(1 - p)(1 - x)}{x} \right) + p \ln \left(\frac{1 - 2p(1 - x)}{x} \right).$$

324 Its first derivative is
 325

$$326 \quad h'(x) = \frac{2(1-p)^2}{1-2(1-p)(1-x)} + \frac{2p^2}{1-2p(1-x)} - \frac{1}{x}.$$

328 We have
 329

$$330 \quad h'(x) > 0 \iff 2(1-p)^2x + 2p^2x > \{1 - 2(1-p)(1-x)\}\{1 - 2p(1-x)\} \\ 331 \quad \iff (2 - 4p + 4p^2)x > 1 - 2(1-x) + 4p(1-p)(1-x) \\ 332 \quad \iff 2x > 2x - 1 + 4p(1-p) \\ 333 \quad \iff 1 > 4p(1-p),$$

335 which is true since $p \in (0, 1/2)$. Since $\mathbb{E}\left\{\ln\left(\frac{M_i}{M_{i-1}}\right)\right\} = h(a_{i-1}^{(3)}) - \ln(2) + H(p)$ where
 336 $H(p) = -p\ln(p) - (1-p)\ln(1-p)$ is the binary entropy function, we know that $\mathbb{E}\left\{\ln\left(\frac{M_i}{M_{i-1}}\right)\right\}$
 337 achieves its maximum when $a_{i-1}^{(3)} = 1$, leading to
 338

$$339 \quad \mathbb{E}\left\{\ln\left(\frac{M_i}{M_{i-1}}\right)\right\} \leq -\ln(2) + H(p) < 0.$$

340 **Step 2:** We show that M_i is expected to strictly decrease for sufficient number of rounds.
 341 Specifically, we know that $\mathbb{E}\left\{\ln\left(\frac{M_i}{M_{i-1}}\right)\right\}$ is strictly smaller than zero if (1) $X_i \in I_2$, and
 342 $q_1, q_3 < (1-\epsilon)/2$; and (2) $X_i \in I_3$. For a given realization of X_i, Y_i 's, the latter case happens
 343 for N_3 times. We define the number of the first case as
 344

$$345 \quad N'_2(\epsilon) := |G'_2(\epsilon)|, \quad G'_2(\epsilon) := \{i : X_i \in I_2, q_1, q_3 \leq (1-\epsilon)/2\}.$$

346 We will omit ϵ in the following as it will be chosen as a constant of p solely.
 347

348 Next, we show that $N'_2 + N_3 \geq \eta'n$ with high prob for some η' . The idea is to show that
 349 each down-crossing of τ_i leads to an instance of G'_2 or G_3 with a constant probability, and
 350 Proposition 2 shows that such down-crossing happens sufficiently often. Let us consider each
 351 time $a_t^{(1)}$ goes down and crosses $1/2$. Suppose $a_{t-1}^{(1)} > 1/2$ and $a_t^{(1)} \leq 1/2$. By update rule,
 352 we have $2p \leq a_t^{(1)} \leq 1/2$, thus either $X_{t+1} \in I_2$ or $X_{t+1} \in I_3$.
 353

354 (Step 2.1) We have $t+1 \in G'_2 \cup G_3$ when $X_{t+1} \in I_3$ or $X_{t+1} \in I_2$ with $a_t^{(1)}, a_t^{(3)} \leq (1-\epsilon)/2$.
 355

356 (Step 2.2) Now, suppose $t \notin G'_2 \cup G_3$, namely $X_{t+1} \in I_2$ and at least one of $a_t^{(1)}, a_t^{(3)}$ is larger
 357 than $(1-\epsilon)/2$.
 358

359 We first consider the case where $a_t^{(1)} > (1-\epsilon)/2$. With probability p , Y_{t+1} is a wrong
 360 label, and $X_{t+2} \in I_1$ since $a_{t+1}^{(1)} = 2(1-p)a_t^{(1)} > 1/2$ for any $\epsilon \in (0, 1 - 1/(2 - 2p))$. With
 361 probability $1-p$, Y_{t+1} is a correct label, leading to (i) $X_{t+2} \in I_3$, or (ii) $X_{t+2} \in I_2$. While (i)
 362 automatically leads to $t+2 \in G_3$, (ii) again leads to two possible outcomes: (ii.a) $X_{t+3} \in I_3$,
 363 or (ii.b) $X_{t+3} \in I_2$. We note that (ii.b) results in $t+3 \in G'_2$ for a sufficiently small ϵ . To see
 364 it, we have $a_{t+2}^{(1)} = 4p(1-p)a_t^{(1)} < (1-\epsilon)/2$ and $a_{t+2}^{(3)} = 4p(1-p)a_t^{(3)} < (1-\epsilon)/2$ for any
 365 $\epsilon \in (0, (1-2p)^2)$. Next, we consider the case $a_t^{(3)} > (1-\epsilon)/2$. With probability p , Y_{t+1} is a
 366 wrong label, we therefore have $t+2 \in N_3$ because $a_{t+1}^{(3)} = 1 - 2p(1-a_t^{(3)}) > 1 - p(1+\epsilon) > 1/2$
 367 for any $\epsilon \in (0, (2p)^{-1} - 1)$. Combining these two cases, we have that with probability at
 368 least p , such time step t will lead to an occurrence of N'_2 or N_3 before the next occurrence of
 369 $a_t^{(1)}$ going down and crossing $1/2$.
 370

371 (Step 2.3) WLOG, let $a_0^{(1)} < 1/2$ as explained in the proof of Proposition 2. Let R_k
 372 denoting whether $a_{\tau_{2k}}^{(1)}$ leads to an occurrence of N'_2 or N_3 , we have R_k being IID Bernoulli
 373 random variables with $\mathbb{P}(R_k = 1) \geq p$. We can therefore construct a sub-martingale
 374

378 $S_l = \sum_{k=1}^l R_k - pl$, $l = 1, 2, \dots$, and $S_0 = 0$. Now, applying the optional stopping theorem,
 379 we have $\mathbb{E}S_{\lfloor T/2 \rfloor} \geq \mathbb{E}S_0 = 0$, yielding
 380

$$381 \quad \mathbb{E}(N'_2 + N_3) \geq \mathbb{E}\left(\sum_{k=1}^{\lfloor T/2 \rfloor} R_k\right) \geq p\mathbb{E}(\lfloor T/2 \rfloor).$$

384 Now, evoking Proposition 2, we have $\mathbb{E}(N'_2 + N_3) \geq \eta'n$ for $\eta' = p\eta/2$.
 385

386 **Step 3:** Finally, we show that M_n is small with high probability by applying Azuma-Hoeffding
 387 inequality. Note that
 388

$$389 \quad M_n = M_0 \exp\left\{\sum_{i=1}^n \ln(M_i/M_{i-1})\right\}.$$

391 Step 1 indicates that $\sum_{i=1}^n \ln(M_i/M_{i-1})$ is a super-martingale with respect to n , because
 392

$$393 \quad \mathbb{E}\left\{\sum_{i=1}^n \ln(M_i/M_{i-1}) \mid \sum_{i=1}^{n-1} \ln(M_i/M_{i-1})\right\} = \mathbb{E}\ln(M_n/M_{n-1}) \leq 0.$$

396 Moreover, all $\ln(M_i/M_{i-1})$'s have a uniform upper bound on their absolute value and
 397 variance, denoted as $B_1, B_2 > 0$, respectively. Let $C_6 := \min\{(1-2p)^2\epsilon^2, \ln(2) - H(p)\} > 0$
 398 and $\zeta = \eta'C_6/2$. Azuma-Hoeffding's inequality gives that

$$\begin{aligned} 400 \quad & \mathbb{P}\left(\sum_{i=1}^n \ln(M_i/M_{i-1}) > \mathbb{E}\left(\sum_{i=1}^n \ln(M_i/M_{i-1})\right) + n\zeta\right) \leq e^{-2n\zeta^2} \\ 401 \quad & \iff \mathbb{P}\left(\sum_{i=1}^n \ln(M_i/M_{i-1}) > -\mathbb{E}(N'_2 + N_3)C_6 + n\zeta\right) \leq e^{-2n\zeta^2} \\ 402 \quad & \iff \mathbb{P}\left(\sum_{i=1}^n \ln(M_i/M_{i-1}) > -\eta'C_6n/2\right) \leq e^{-2n\zeta^2} \\ 403 \quad & \end{aligned}$$

408 As a result, with probability at least $1 - e^{-2n\zeta^2}$, we have
 409

$$410 \quad M_n \leq M_0 \exp(-n\eta'C_6/2).$$

411 We therefore complete the proof by noting $M_0 = (1-\delta)/(\delta-\theta^*)$ since $f_0(x) = 1$ for all
 412 $x \in [0, 1]$. \square

413 Proof of Proposition 2.

415 *Proof.* Let $b_i^{(1)} = 1 - a_i^{(1)}$. Depending on the position of X_i , The change of $a_i^{(1)}$ in each
 416 round is also categorized into three cases.
 417

418 **Case 1**, $X_i \leq \theta^*$. A correct label ($Y = 0$ with probability $1-p$) leads to $1 - a_i^{(1)} = 2(1-p)(1 - a_{i-1}^{(1)})$. Therefore,
 419
 420

$$421 \quad \frac{a_i^{(1)}}{a_{i-1}^{(1)}} = \frac{1 - 2(1-p)(1 - a_{i-1}^{(1)})}{a_{i-1}^{(1)}}, \quad \frac{b_i^{(1)}}{b_{i-1}^{(1)}} = 2(1-p),$$

424 A wrong label leads to
 425

$$426 \quad \frac{a_i^{(1)}}{a_{i-1}^{(1)}} = \frac{1 - 2p(1 - a_{i-1}^{(1)})}{a_{i-1}^{(1)}}, \quad \frac{b_i^{(1)}}{b_{i-1}^{(1)}} = 2p.$$

428 Therefore,
 429

$$430 \quad \mathbb{E}\left\{\ln\left(\frac{a_i^{(1)}}{a_{i-1}^{(1)}}\right)\right\} = (1-p)\ln\left(\frac{1 - 2(1-p)(1 - a_{i-1}^{(1)})}{a_{i-1}^{(1)}}\right) + p\ln\left(\frac{1 - 2p(1 - a_{i-1}^{(1)})}{a_{i-1}^{(1)}}\right) < 0.$$

432 The last inequality is because function $h(a_{i-1}^{(1)}) := (1-p)\ln\left(\frac{1-2(1-p)(1-a_{i-1}^{(1)})}{a_{i-1}^{(1)}}\right) +$
 433 $p\ln\left(\frac{1-2p(1-a_{i-1}^{(1)})}{a_{i-1}^{(1)}}\right)$ monotonously increases when $a_{i-1}^{(1)} \in (1/2, 1)$, which can be verified
 434 by taking its first derivative.
 435

436 Also,

437

$$\mathbb{E}\left\{\ln\left(\frac{b_i^{(1)}}{b_{i-1}^{(1)}}\right)\right\} = (1-p)\ln(2(1-p)) + p\ln(2p) = \ln(2) - H(p) > 0,$$

438

439 where $H(p) = -p\ln(p) - (1-p)\ln(1-p)$ is the binary entropy function.

440 **Case 2,** $X_i \geq \delta$. A correct label ($Y = 1$ with probability $1-p$) leads to $a_i^{(1)} = 2(1-p)a_{i-1}^{(1)}$
 441 and

442

$$\frac{a_i^{(1)}}{a_{i-1}^{(1)}} = 2(1-p), \quad \frac{b_i^{(1)}}{b_{i-1}^{(1)}} = \frac{1-2(1-p)(1-b_{i-1}^{(1)})}{b_{i-1}^{(1)}}.$$

443

444 A wrong label leads to

445

$$\frac{a_i^{(1)}}{a_{i-1}^{(1)}} = 2p, \quad \frac{b_i^{(1)}}{b_{i-1}^{(1)}} = \frac{1-2p(1-b_{i-1}^{(1)})}{b_{i-1}^{(1)}},$$

446

447 Therefore,

448

$$\mathbb{E}\left\{\ln\left(\frac{a_i^{(1)}}{a_{i-1}^{(1)}}\right)\right\} = (1-p)\ln\{2(1-p)\} + p\ln(2p) = \ln(2) - H(p) > 0, \quad \mathbb{E}\left\{\ln\left(\frac{b_i^{(1)}}{b_{i-1}^{(1)}}\right)\right\} < 0.$$

449

450 **Case 3,** $\theta^* < X_i < \delta$. The update rule for $a_i^{(1)}$ is exactly the same as Case 2, hence we have

451

$$\mathbb{E}\left\{\ln\left(\frac{a_i^{(1)}}{a_{i-1}^{(1)}}\right)\right\} = (1-p)\ln\{2(1-p)\} + p\ln(2p) = \ln(2) - H(p), \quad \mathbb{E}\left\{\ln\left(\frac{b_i^{(1)}}{b_{i-1}^{(1)}}\right)\right\} < 0.$$

452

453 For now, we assume that $2p < a_0^{(1)} < 1/2$; otherwise we can start the count of N_1 at the
 454 first time t such that $2p < a_t^{(1)} < 1/2$, as explained later. Therefore, $\tau_{2k-1}, k = 1, 2, \dots$ is
 455 the time that $a_t^{(1)}$ goes up and crosses $1/2$, while $\tau_{2k}, k = 1, 2, \dots$ is the time that $a_t^{(1)}$ goes
 456 down and crosses $1/2$, and T is the number of total cross times.
 457

458 We note that $Z_i := \tau_i - \tau_{i-1}, i = 1, 2, \dots$ are IID random variables with $\mathbb{E}Z_k \leq z$, where z is
 459 a constant. To see it, we have

460

$$a_{\tau_{2k-1}}^{(1)} = a_{\tau_{2k-2}}^{(1)} \exp\left\{\sum_{i=0}^{\tau_{2k-1}-\tau_{2k-2}} \ln\left(\frac{a_{\tau_{2k-2}+i}^{(1)}}{a_{\tau_{2k-2}+i-1}^{(1)}}\right)\right\} \geq \exp\left(\sum_{i=1}^{\tau_{2k-1}-\tau_{2k-2}} V_i\right)/(2p),$$

461

$$b_{\tau_{2k}}^{(1)} = b_{\tau_{2k-1}}^{(1)} \exp\left\{\sum_{i=0}^{\tau_{2k}-\tau_{2k-1}} \ln\left(\frac{b_{\tau_{2k-1}+i}^{(1)}}{b_{\tau_{2k-1}+i-1}^{(1)}}\right)\right\} \leq 2(1-p) \exp\left(-\sum_{i=1}^{\tau_{2k}-\tau_{2k-1}} V_i\right), \quad (6)$$

462

463 where V_i 's are independent random variable with $\mathbb{E}V_i = \ln(2) - H(p) := v$. Moreover, V_i 's are
 464 uniformly bounded by a constant of p solely, denoted by B . Therefore, $\ln(a_t^{(1)})$ is a random
 465 walk starting from (or above) $-\ln(2p)$ with a positive drift, which is expected to across
 466 $\ln(1/2)$ in a finite time by random walk theory (can be easily verified by applying Hoeffding's
 467 inequality). Similarly, $\ln(b_t^{(1)})$ is a random walk starting from (or below) $\ln(2(1-p))$ with
 468 a negative drift. We further define $S_l = \sum_{k=1}^l Z_k - kz$ and $S_0 = 0$. Clearly, S_l is a
 469 super-martingale. Finally, optional stopping theorem yields that $\mathbb{E}S_T \leq S_0$, leading to

470

$$\mathbb{E}(T+1)z \geq \mathbb{E}\left\{\sum_{k=1}^{T+1} (\tau_k - \tau_{k-1})\right\} = \mathbb{E}(\tau_{T+1}) \geq n.$$

471

486 As a result, we have $\mathbb{E}(T) \geq \eta n$ for $\eta = 1/(2z)$.
 487

488 Finally, we show that we can assume $2p < a_t^{(1)} < 1/2$. By Hoeffding's inequality, $a_t^{(1)}$
 489 will cross $1/2$ both up and down at least once within $n/2$ steps with probability at least
 490 $1 - e^{-C_4 n}$ with some constant C_4 . Ever since that, we will have $2p \leq a_{\tau_i}^{(1)} < 1/2$ when
 491 $\text{sign}(a_{\tau_i}^{(1)}) = -1$ and $1/2 \leq a_{\tau_i}^{(1)} < 2(1-p)$ when $\text{sign}(a_{\tau_i}^{(1)}) = 1$, due to the update rule. We
 492 therefore conclude the proof. \square
 493

494 **3 CONCLUSION AND FURTHER REMARKS**
 495

496 This work investigates the dynamics of PBA queries, revealing the intriguing pattern that
 497 they oscillate around the truth while steadily converging toward it. Building on this insight,
 498 we establish the exponential convergence rate of PBA, thereby bridging the long-standing
 499 gap between its theoretical guarantees and empirical performance. A natural direction for
 500 future research is to examine whether PBA still converges exponentially when the actual
 501 noise level p exceeds the one assumed in the update rule, and, if not, to determine the
 502 resulting convergence rate. Another intriguing problem is the implementation of PBA, as it
 503 may be numerically challenge to exactly find the posterior median.
 504

505 **REFERENCES**
 506

507 Javed A Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors.
 508 In *Proceedings of the twenty-third annual ACM symposium on Theory of computing*, pp.
 509 486–493, 1991.

510 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
 511 *Communications of the ACM*, 18(9):509–517, 1975.

512 Marat Valievich Burnashev and Kamil'Shamil'evich Zigangirov. An interval estimation
 513 problem for controlled observations. *Problemy Peredachi Informatsii*, 10(3):51–61, 1974.

515 Rui M Castro and Robert D Nowak. Minimax bounds for active learning. In *International
 516 Conference on Computational Learning Theory*, pp. 5–19. Springer, 2007.

517 Rui M Castro and Robert D Nowak. Minimax bounds for active learning. *IEEE Transactions
 518 on Information Theory*, 54(5):2339–2353, 2008.

520 Dariusz Dereniowski, Stefan Tiegel, Przemyslaw Uznanski, and Daniel Wolleb-Graf. A
 521 framework for searching in graphs in the presence of errors. In *2nd Symposium on
 522 Simplicity in Algorithms (SOSA 2019)*, pp. 4–1. Schloss Dagstuhl–Leibniz-Zentrum für
 523 Informatik, 2019.

524 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and proba-
 525 bility binary search in graphs. In *Proceedings of the forty-eighth annual ACM symposium
 526 on Theory of Computing*, pp. 519–532, 2016.

528 Peter I Frazier, Shane G Henderson, and Rolf Waeber. Probabilistic bisection converges
 529 almost as quickly as stochastic approximation. *Mathematics of Operations Research*, 44
 530 (2):651–667, 2019.

531 Alfred Olivier Hero, David Castañón, Doug Cochran, and Keith Kastella. *Foundations and
 532 applications of sensor management*. Springer Science & Business Media, 2007.

534 Michael Horstein. Sequential transmission using noiseless feedback. *IEEE Transactions on
 535 Information Theory*, 9(3):136–143, 1963.

536 Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In
 537 *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*, pp.
 538 881–890, 2007.

539 Donald Ervin Knuth. *The art of computer programming*, volume 3. Pearson Education, 1997.

540 Robert Nowak. Noisy generalized binary search. *Advances in neural information processing*
541 *systems*, 22, 2009.
542

543 Sergio Rodriguez and Michael Ludkovski. Generalized probabilistic bisection for stochastic
544 root finding. *ACM Transactions on Modeling and Computer Simulation (TOMACS)*, 30
545 (1):1–27, 2020a.
546

547 Sergio Rodriguez and Michael Ludkovski. Probabilistic bisection with spatial metamodels.
548 *European Journal of Operational Research*, 286(2):588–603, 2020b.
549

550 Rolf Waeber. *Probabilistic bisection search for stochastic root-finding*. Cornell University,
551 2013.
552

553 Rolf Waeber, Peter I Frazier, and Shane G Henderson. Bisection search with noisy responses.
554 *SIAM Journal on Control and Optimization*, 51(3):2261–2279, 2013.
555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A MISSING PROOFS.
595596 Proof of Theorem 1
597598 *Proof.* We handle the case with $\theta^* \in (0, 1)$ first, and defer proof of the corner case to the
599 end of this proof. For now, let δ be a constant such that $1 > \delta > \theta^* > 0$. We denote
600

601
$$M_i(\delta) := \frac{a_i^{(3)}(\delta)}{a_i^{(2)}(\delta)}. \quad (7)$$

602
603

604 Proposition 1 shows that for some constant $C > 0$ of p only, we have
605

606
$$\mathbb{E}M_n \leq \frac{e^{-Cn}}{|\theta^* - \delta|}. \quad (8)$$

607

608 Since $a_i^{(j)} \in (0, 1)$ for $j = 1, 2, 3$ and all $i \geq 0$, we know that M_n is positive, and Markov's
609 inequality gives that
610

611
$$\mathbb{P}(a_n^{(3)} \geq \epsilon) \leq \mathbb{P}(M_n \geq \epsilon) \leq \frac{\mathbb{E}M_n}{\epsilon} \leq \frac{e^{-Cn}}{|\theta^* - \delta|\epsilon}.$$

612

613 When $0 < \delta < \theta^* < 1$, we can apply Proposition 1 after performing the transformation
614 $x' = 1 - x$, which yields $\mathbb{P}(1 - a_n^{(3)} \geq \epsilon) \leq e^{-Cn}/(|\theta^* - \delta|\epsilon)$. Therefore,
615

616
$$\mathbb{P}(\min\{a_n^{(3)}, 1 - a_n^{(3)}\} \geq \epsilon) \leq e^{-Cn}/(|\theta^* - \delta|\epsilon). \quad (9)$$

617

618 When $\theta^* = 0$ or $\theta^* = 1$, we have $\mathbb{P}(\min\{a_n^{(3)}, 1 - a_n^{(3)}\} \geq \epsilon) = 0$ by definition (see, Eq. 7),
619 therefore satisfying Eq. 9 as well.
620621 Now, let $\delta_i = i/K, i = 0, \dots, K$, where K will be determined shortly. If $\min_i |\theta^* - \delta_i| <$
622 $1/\{2K(K+1)\}$, we can increase K by 1, which ensures that $\min_i |\theta^* - \delta_i| \geq 1/\{2K(K+1)\}$.
623 Clearly, there exists some $i^* \geq 1$ such that $\theta^* \in (\delta_{i^*-1}, \delta_{i^*})$. Evoking Eq. 9, we know that
624 with probability at least $1 - 2K(K+1)e^{-Cn}/\epsilon$, we have
625

626
$$\mathbb{P}_n(X \in (\delta_{i^*-1}, \delta_{i^*})) \geq 1 - 2\epsilon,$$

627

628 implying that $|X_{n+1} - \theta^*| \leq 1/K$ for any $\epsilon < 1/4$. Therefore, for $K > 4$ and $\epsilon = 1/K$, we
629 have
630

631
$$\mathbb{P}(|X_{n+1} - \theta^*| > 1/K) \leq 2K^2(K+1)e^{-Cn}.$$

632

633 Finally, taking $K = e^{Cn/4}$ yields
634

635
$$\mathbb{E}|X_{n+1} - \theta^*| \leq 1/K + \mathbb{P}(|X_{n+1} - \theta^*| > 1/K) \leq 3e^{-Cn/4}.$$

636

637 Regarding the corner case, we analyze with $\theta^* = 0$ as $\theta^* = 1$ can be handled with an
638 analogous argument. In this case, Lemma 2 gives that
639

640
$$\mathbb{E}(a_n^{(3)}) \leq e^{-Cn}.$$

641

642 Let $\delta = \epsilon = 1/K$. Similar to the argument in the case of $\theta^* \in (0, 1)$, we have with probability
643 at least $1 - e^{-Cn}/\epsilon$,
644

645
$$\mathbb{P}_n(X \in [0, \delta]) \geq 1 - \epsilon.$$

646

647 Choosing $K = e^{Cn/2}$ gives
648

649
$$\mathbb{E}|X_{n+1} - \theta^*| \leq 1/K + \mathbb{P}(|X_{n+1} - \theta^*| > 1/K) \leq 2e^{-Cn/2}.$$

650

651 We thus conclude the proof. \square
652653 **Lemma 1.** When $X_i \in (\theta^*, \delta)$, we have the following facts: (1) $q_1 + q_2 + q_3 = 1$. (2)
654 $q_1, q_3 \in (0, 1/2)$. (3) $|q_1 - q_3| < q_2$. (4) For any $\epsilon < 1/2$, $q_2 - |q_1 - q_3| \geq \epsilon$ if and only if
655 $q_1, q_3 \leq (1 - \epsilon)/2$.
656

648 *Proof.* Fact (1) is by definition of $a_{i-1}^{(j)}$, $j = 1, 2, 3$. Their summation equals to $\mathbb{P}_{i-1}(X \leq 649 1) = 1$.
650

651 Fact (2) holds since $X_i \in (\theta^*, \delta)$; otherwise, if $q_1 \geq 1/2$ for example, we have $X_i \leq \theta^*$ since
652 $P_{i-1}(X < \theta^*) = q_1 \geq 1/2$, which is a contradiction.

653 We prove Fact (3) by contradiction. If $|q_1 - q_3| \geq q_2$, then $q_1 \geq q_2 + q_3$ or $q_3 \geq q_1 + q_2$.
654 However, $q_1 \geq q_2 + q_3$ with Fact (1) imply that $q_1 \geq 1/2$, which is a contradiction to Fact
655 (2). Similarly, $q_3 \geq q_1 + q_2$ cannot hold as well.

656 Regarding (4), we use a similar argument as (3). Note that
657

$$\begin{aligned} 658 \quad & q_2 - |q_1 - q_3| < \epsilon \\ 659 \quad \iff & q_1 > q_2 + q_3 - \epsilon \text{ or } q_3 > q_2 + q_1 - \epsilon \\ 660 \quad \iff & q_1 > (1 - \epsilon)/2 \text{ or } q_3 > (1 - \epsilon)/2. \end{aligned}$$

661 We thus complete the proof. \square
662

663 **Lemma 2.** *When $\theta^* = 0$ and $\delta < 1$, for some constant $C_1, C_2 > 0$ of p only, we have*

$$664 \quad \mathbb{P}(a_n^{(3)} \leq e^{-C_1 n}) \geq 1 - e^{-C_2 n},$$

665 *which implies $\mathbb{E}a_n^{(3)} \leq e^{-C_3 n}$ for some positive constant C_3 .*
666

668 *Proof.* The spirit of this proof is the same as Proposition 1. Instead of studying the change
669 of M_i , we can directly focus on $a_i^{(3)}$ when $\theta^* = 0$. Notably, when $\theta^* = 0$, there are only two
670 potential locations of X_i .
671

672 **Case 1:** $X_i \in I_2$. A correct label ($Y_i = 1$ with probability $1 - p$) leads to $a_i^{(3)} = 2pa_{i-1}^{(3)}$,
673 while a wrong label leads to $a_i^{(3)} = 2(1 - p)a_{i-1}^{(3)}$. As a result,
674

$$675 \quad \mathbb{E}\left\{\ln\left(\frac{a_i^{(3)}}{a_{i-1}^{(3)}}\right)\right\} = (1 - p)\ln(2p) + p\ln(2(1 - p)) < 0.$$

678 **Case 2:** $X_i \in I_3$. Now, a correct label ($Y_i = 0$ with probability $1 - p$) leads to $a_i^{(3)} = 1 - 2(1 - p)a_{i-1}^{(3)}$,
679 while a wrong label leads to $a_i^{(3)} = 1 - 2pa_{i-1}^{(3)}$. Therefore, by Jensen's
680 inequality, we have
681

$$\begin{aligned} 682 \quad & \mathbb{E}\left\{\ln\left(\frac{a_i^{(3)}}{a_{i-1}^{(3)}}\right)\right\} \leq \ln\left\{\mathbb{E}\left(\frac{a_i^{(3)}}{a_{i-1}^{(3)}}\right)\right\} \\ 683 \quad & = \ln\left\{(1 - p)\frac{1 - 2(1 - p)a_{i-1}^{(3)}}{1 - a_{i-1}^{(3)}} + p\frac{1 - 2pa_{i-1}^{(3)}}{1 - a_{i-1}^{(3)}}\right\} \\ 684 \quad & = \ln\left\{1 - \frac{a_{i-1}^{(3)}}{1 - a_{i-1}^{(3)}}(1 - 2p)^2\right\} \\ 685 \quad & < 0. \end{aligned}$$

692 With a similar argument as Proposition 1, we only have to show that Case 1 occurs sufficiently
693 many times. Specifically, we define $\tilde{\tau}_i = \inf_{t > \tilde{\tau}_{i-1}} \text{sign}(a_t^{(3)}) \neq \text{sign}(a_{t-1}^{(3)})$, $i = 1, 2, \dots, \tilde{\tau}_0 = 0$,
694 and $\tilde{T} = \sup_{i \geq 0} \{\tilde{\tau}_i \leq n\}$. We show $\mathbb{E}\tilde{T} \geq \eta n$ for some constant η by tracking $a_i^{(2)}$. When
695 $X_i \in I_3$, a correct label ($Y_i = 0$ with probability $1 - p$) leads to $a_i^{(2)} = 2(1 - p)a_{i-1}^{(2)}$, while a
696 wrong label leads to $a_i^{(2)} = 2pa_{i-1}^{(2)}$. Therefore, we have
697

$$698 \quad \mathbb{E}\left\{\ln\left(\frac{a_i^{(2)}}{a_{i-1}^{(2)}}\right)\right\} = (1 - p)\ln(2(1 - p)) + p\ln(2p) = \ln(2) - H(p) > 0.$$

700 The rest of proof is akin to Proposition 2. We thus complete the proof. \square
701

702 B DISCUSSION ON THE NOISE LEVEL

704 Our results apply to general responses Y with a noise level up to p . That is, $\mathbb{P}(Y = h_{\theta^*}(X)) \geq 1 - p$ and $\mathbb{P}(Y = 1 - h_{\theta^*}(X)) \leq p$. To see it, an intuitive explanation is that at 705 each round i , a correct response will drive the PBA estimator to be closer to the truth θ^* , 706 while an incorrect response will push it away from the truth. As a result, a higher noise level 707 corresponds to a harder learning problem, and we discuss the most difficult learning scenario 708 ($\mathbb{P}(Y = 1 - h_{\theta^*}(X)) = p$) in the main paper.

710 Technically, inspecting the proof of Proposition 1, we find that the expectation of M_i/M_{i-1} 711 is even smaller when the probability of incorrect label is smaller than p . Meanwhile, the 712 crossing time T is still guaranteed to be at the order of $O(n)$. Therefore, the probability of 713 an ill-performed estimator remains an exponentially decaying rate.

715 C EXTENSION TO HIGH DIMENSIONAL DATA

718 In this section, we extend our results to high dimensional setting where $d \geq 2$.

720 **Setup.** Consider the query $X \in [0, 1]^d$, $d \geq 2$ and the label $Y \in \{0, 1\}$. Similar to the setting 721 when $d = 1$, let $p \in (0, 1/2)$ represent the noise level in the labels, $\mathbb{P}(Y = h(X)) = 1 - p$ 722 and $\mathbb{P}(Y = 1 - h(X)) = p$, where h is a classifier $h : [0, 1]^d \rightarrow \{0, 1\}$, which a learner 723 wants to estimate. Recall that in one dimensional setting, we consider a hypothesis class 724 $\mathcal{H} = \{h_\theta : \theta \in [0, 1]\}$ and work with a threshold classifier $h_{\theta^*}(x) = \mathbb{1}_{x \geq \theta^*}$. This ordered, 725 one-parameter structure enables a probabilistic bisection algorithm (PBA, see Section 2), 726 yielding an estimator $\hat{\theta}_n$ which converges to θ^* exponentially fast, i.e. $\mathbb{E}|\hat{\theta}_n - \theta^*| \leq \mathcal{O}(e^{-n})$ 727 (see Theorem 1).

728 For $d \geq 2$, the natural analogue of a “threshold” is a decision boundary, whose shape should be 729 restricted by additional geometric assumptions, such as smoothness, to ensure identifiability 730 and control the complexity of the hypothesis class. In this work, we adopt a standard 731 assumption in the literature that the decision boundary is Hölder smooth (Castro & Nowak, 732 2007; 2008). In particular, we consider the hypothesis class $\mathcal{H} = \{h_g : g \in \Sigma(L, \alpha)\}$, where 733 $\Sigma(L, \alpha)$ denotes α -Hölder smooth with parameters L (see Definition 1).

734 **Definition 1.** A function $g : [0, 1]^{d-1} \rightarrow \mathbb{R}$ is Hölder smooth if it has continuous partial 735 derivatives up to order $k = \lfloor \alpha \rfloor$ and $\forall \mathbf{z}, \mathbf{x} \in [0, 1]^{d-1} : g(\mathbf{z}) - \text{TP}_{\mathbf{x}}(\mathbf{z}) \leq L \|\mathbf{z} - \mathbf{x}\|^\alpha$, where 736 $L, \alpha > 0$, and $\text{TP}_{\mathbf{x}}(\cdot)$ denotes the order k Taylor polynomial approximation of g expanded 737 around \mathbf{x} .

738 The classifier is $h_{g^*}(x) = \mathbb{1}_{x \in G^*}$, where g^* is the decision boundary of G^* and $G^* = \{(\tilde{X}, x_d) \in 739 [0, 1]^{d-1} \times [0, 1] : x_d \geq g^*(\tilde{X})\}$. In the following, we use h , g^* , and G^* interchangeably. The 740 learner wants to construct an estimator \hat{g}_n , or equivalently, a classifier $\hat{G}_n = \{(\tilde{X}, x_d) \in 741 [0, 1]^{d-1} \times [0, 1] : x_d \geq \hat{g}_n(\tilde{X})\}$, with small expected L_1 error $\mathbb{E}\|\hat{g}_n - g^*\|_1$.

742 **Theorem 2.** *There exists an estimator \hat{g}_n such that $\mathbb{E}\|\hat{g}_n - g^*\|_1 \leq \mathcal{O}\left(\left(\frac{\log n}{n}\right)^{\frac{\alpha}{d-1}}\right)$.*

746 In the proof, we explicitly construct \hat{g}_n by generalizing the PBA to $d \geq 2$. At a high 747 level, we recursively partition the $(d-1)$ -dimensional base domain into dyadic cells and 748 on each vertical lines, we deploy a one-dimensional PBA to localize the decision boundary 749 within each cell. By combining these local estimates across the cells, we obtain a piecewise 750 approximation of the boundary. The Hölder regularity of g^* governs both the approximation 751 error within each cell and the number of cells required at a given resolution, allowing a 752 sample allocation that achieves the convergence rate in Theorem 2. Moreover, the matching 753 information-theoretic lower bound of Castro & Nowak (2008) for learning Hölder-smooth 754 decision boundaries implies that no estimator can achieve L_1 error smaller than a constant 755 multiple of $n^{-\frac{\alpha}{(d-1)}}$ (up to logarithmic factors). Therefore, the upper bound in Theorem 2 is 756 nearly minimax optimal.

Special Case of $\alpha = \infty$. A linear decision boundary is arbitrarily smooth, corresponding to the special case of $\alpha = \infty$. Theorem 2 implies that learning such a function using a PBA-based algorithm is faster than any polynomial rate. In fact, Theorem 3 below shows that one can still achieve an optimal exponential rate by leveraging PBA.

Theorem 3. *When the true boundary g^* is linear, corresponding to the case $\alpha = \infty$, there exists an estimator \hat{g}_n satisfying $\mathbb{E}\|\hat{g}_n - g^*\|_1 \leq C_1 \exp(-cn)$, where $C_1 > 0$ depending only on d and $c > 0$ depending only on d and the noise level p .*

Proof of Theorem 2.

Proof. Estimator: constructing $\hat{g}_n(\cdot)$ by grid-lines-interpolate.

Pick an integer $M \geq 2$ and set $h = 1/M$. For each multi-index $\tilde{\ell} \in \{0, \dots, M\}^{d-1}$ let the base-grid node be $\tilde{\mathbf{x}}_{\tilde{\ell}} := M^{-1}\tilde{\ell} \in [0, 1]^{d-1}$. Along the vertical line $L_{\tilde{\ell}} = \{(\tilde{\mathbf{x}}_{\tilde{\ell}}, x_d) : x_d \in [0, 1]\}$, we collect N samples and run a 1-d threshold estimator (using PBA as described in Section 2) to obtain $\hat{g}(\tilde{\mathbf{x}}_{\tilde{\ell}})$ as an estimate $g^*(\tilde{\mathbf{x}}_{\tilde{\ell}})$. This yields a total of $N(M+1)^{d-1}$ samples, where the total number of samples n satisfying $n \geq N(M+1)^{d-1}$. We then interpolate the estimates of g^* at these points to construct a final estimates of the decision boundary.

In particular, we begin by dividing $[0, 1]^{d-1}$ into cells. Without loss of generality, we assume that $\alpha > 1$ ($\alpha = 1$ can be handled in similar way) and $\frac{M}{\lfloor \alpha \rfloor}$ is an integer (since this can always be achieved by the proper choice of M). For the ease of notation, let $r := \lfloor \alpha \rfloor \in \{1, 2, \dots\}$, and let the cell index $\tilde{q} = (\tilde{q}_1, \dots, \tilde{q}_{d-1}) \in \{0, \dots, \frac{M}{r} - 1\}^{d-1}$ define the axis-aligned cell $I_{\tilde{q}} = \prod_{i=1}^{d-1} [\frac{r\tilde{q}_i}{M}, \frac{r(\tilde{q}_i+1)}{M}]$. In this way, the $(r+1)^{d-1}$ lattice nodes inside $I_{\tilde{q}}$ have multi-indices $\tilde{\ell} = (\ell_1, \dots, \ell_{d-1}), \ell_i \in \{r\tilde{q}_i, r\tilde{q}_i + 1, \dots, r\tilde{q}_i + r\}$, and coordinates $\tilde{\mathbf{x}}_{\tilde{\ell}} := M^{-1}\tilde{\ell}$. For bookkeeping in coordinate i , set the node locations $z_{i,j} := \frac{r\tilde{q}_i + j}{M}, j = 0, 1, \dots, r$, and the local index of ℓ_i within its cell $m_i := \ell_i - r\tilde{q}_i \in \{0, 1, \dots, r\}$.

Given these notations, we construct $\hat{g}_n(\cdot)$ by the piecewise polynomial, shown as follows.

$$\hat{g}_n(\tilde{\mathbf{x}}) = \sum_{\tilde{q}} \hat{L}_{\tilde{q}}(\tilde{\mathbf{x}}) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}, \quad (10)$$

where $\hat{L}_{\tilde{q}}(\tilde{\mathbf{x}}) = \sum_{\tilde{\ell}: \tilde{\mathbf{x}}_{\tilde{\ell}} \in I_{\tilde{q}}} \hat{g}(\tilde{\mathbf{x}}_{\tilde{\ell}}) Q_{\tilde{q}, \tilde{\ell}}(\tilde{\mathbf{x}})$, and $Q_{\tilde{q}, \tilde{\ell}}(\tilde{\mathbf{x}})$ is the multidimensional tensor-product basis on the cell. In particular,

$$Q_{\tilde{q}, \tilde{\ell}}(\tilde{\mathbf{x}}) := \prod_{i=1}^{d-1} L_{i, \tilde{q}_i, \ell_i}(\tilde{\mathbf{x}}_i) = \prod_{i=1}^{d-1} \prod_{j=0}^r \frac{\tilde{\mathbf{x}}_i - \frac{r\tilde{q}_i + j}{M}}{\frac{\ell_i}{M} - \frac{r\tilde{q}_i + j}{M}},$$

where $L_{i, \tilde{q}_i, \ell_i}(t) := \prod_{j=0, j \neq m_i}^r \frac{t - z_{i,j}}{z_{i,m_i} - z_{i,j}}$. $\hat{g}_n(\cdot)$ defines a classification rule \hat{G}_n .

By Equation 10, we have the follows.

$$\begin{aligned} \mathcal{O}(\|\hat{g}_n - g^*\|_1) &= \mathcal{O}\left(\sum_{\tilde{q}} \|(\hat{L}_{\tilde{q}} - g^*) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})}\right) \\ &= \mathcal{O}\left(\sum_{\tilde{q}} \|(L_{\tilde{q}} - g^*) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\} + (\hat{L}_{\tilde{q}} - L_{\tilde{q}}) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})}\right) \\ &= \mathcal{O}\left(\sum_{\tilde{q}} \|(L_{\tilde{q}} - g^*) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})} + \|(\hat{L}_{\tilde{q}} - L_{\tilde{q}}) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})}\right), \end{aligned}$$

where $L_{\tilde{q}}(\tilde{\mathbf{x}}) = \sum_{\tilde{\ell}: \tilde{\mathbf{x}}_{\tilde{\ell}} \in I_{\tilde{q}}} g^*(\tilde{\mathbf{x}}_{\tilde{\ell}}) Q_{\tilde{q}, \tilde{\ell}}(\tilde{\mathbf{x}})$ is the Clairvoyant version of $\hat{L}_{\tilde{q}}$.

Note that

$$\|(L_{\tilde{q}} - g^*) \mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})} = \int_{I_{\tilde{q}}} |L_{\tilde{q}}(\tilde{\mathbf{x}}) - g^*(\tilde{\mathbf{x}})| d\tilde{\mathbf{x}} = \mathcal{O}(\int_{I_{\tilde{q}}} M^{-\alpha} d\tilde{\mathbf{x}}), \quad (11)$$

810 by using Lemma 3 and resulting in $\mathcal{O}(M^{-\alpha}M^{-(d-1)})$. Moreover, by conditioning on the
 811 good event where $|\widehat{g}(\tilde{\mathbf{x}}_{\tilde{l}}) - g^*(\tilde{\mathbf{x}}_{\tilde{l}})| \leq \epsilon_N$, we have
 812

$$813 \quad \|(\widehat{L}_{\tilde{q}} - L_{\tilde{q}})\mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})} = \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} |\widehat{g}(\tilde{\mathbf{x}}_{\tilde{l}}) - g^*(\tilde{\mathbf{x}}_{\tilde{l}})| \|Q_{\tilde{q}, \tilde{l}}\|_{L^1([0,1]^{d-1})} \quad (12)$$

$$816 \quad \leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} \epsilon_N \left(\int_{I_{\tilde{q}}} Q_{\tilde{q}, \tilde{l}}(\tilde{\mathbf{x}}) d\mu_{\tilde{\mathbf{x}}} \right) \quad (13)$$

$$819 \quad \leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} \epsilon_N \left(\int_{I_{\tilde{q}}} r^{(d-1)r} d\mu_{\tilde{\mathbf{x}}} \right) \quad (14)$$

$$822 \quad = \mathcal{O}(\epsilon_N M^{-(d-1)}). \quad (15)$$

824 Note that μ is a Lebesgue measure of $\tilde{\mathbf{x}}$ which is uniform on $[0, 1]^{d-1}$. By Equation 11 and
 825 12, we have
 826

$$827 \quad \|\widehat{g}_n - g^*\|_1 \leq \mathcal{O}\left(\sum_{\tilde{q}} \|(\widehat{L}_{\tilde{q}} - g^*)\mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})} + \|(\widehat{L}_{\tilde{q}} - L_{\tilde{q}})\mathbf{1}\{\tilde{\mathbf{x}} \in I_{\tilde{q}}\}\|_{L^1([0,1]^{d-1})}\right) \\ 828 \quad \leq \mathcal{O}\left(M^{d-1}(M^{-\alpha}M^{-(d-1)} + \epsilon_N M^{-(d-1)})\right) \\ 830 \quad = \mathcal{O}(M^{-\alpha} + \epsilon_N).$$

833 According to Theorem 1, we know $\mathbb{P}(|\widehat{g}(\tilde{\mathbf{x}}_{\tilde{l}}) - g^*(\tilde{\mathbf{x}}_{\tilde{l}})| > \epsilon_N) \leq \frac{3}{\epsilon_N} \exp(-CN)$. Therefore,
 834 we choose $N = \lceil K \log n \rceil$, where $K > \frac{2\alpha}{C(d-1)}$, $M = \lfloor (\frac{n}{K \log n})^{1/(d-1)} \rfloor$ and $\epsilon_N = \sqrt{3} e^{-cN/2}$,
 835 leading to
 836

$$837 \quad \mathbb{E}\|\widehat{g}_n - g^*\|_1 \leq \mathcal{O}(M^{-\alpha} + \epsilon_N) + \frac{3}{\epsilon_N} \exp(-CN) = \mathcal{O}\left(\left(\frac{\log n}{n}\right)^{\frac{\alpha}{d-1}}\right).$$

□

840 **Lemma 3.** $\sup_{g^* \in \Sigma(L, \alpha)} \max_{\tilde{\mathbf{x}} \in I_{\tilde{q}}} |L_{\tilde{q}}(\tilde{\mathbf{x}}) - g^*(\tilde{\mathbf{x}})| = \mathcal{O}(M^{-\alpha})$.
 841

842 *Proof.* Let $\tilde{\mathbf{x}} \in I_{\tilde{q}}$ and $g \in \Sigma(L, \alpha)$, we have the follows.
 843

$$844 \quad |L_{\tilde{q}}(\tilde{\mathbf{x}}) - g^*(\tilde{\mathbf{x}})| = |L_{\tilde{q}}(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}}) - g^*(\tilde{\mathbf{x}}) + \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}})| \\ 845 \quad \leq |L_{\tilde{q}}(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}})| + |g^*(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}})| \\ 846 \quad \leq |L_{\tilde{q}}(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}})| + L\|\tilde{\mathbf{x}} - \tilde{q}rM^{-1}\|^{\alpha} \\ 847 \quad \leq |L_{\tilde{q}}(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}})| + \mathcal{O}(M^{-\alpha}).$$

848 Note that the tensor-polynomial approximation space contains the space of degree r polynomials.
 849 Therefore we can write $L_{\tilde{q}}(\tilde{\mathbf{x}})$ as a tensor-product polynomial. Therefore, we
 850 have
 851

$$852 \quad |L_{\tilde{q}}(\tilde{\mathbf{x}}) - g^*(\tilde{\mathbf{x}})| \leq \left| \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} g^*(\tilde{\mathbf{x}}_{\tilde{l}}) Q_{\tilde{q}, \tilde{l}}(\tilde{\mathbf{x}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}}) \right| + \mathcal{O}(M^{-\alpha}) \\ 853 \quad = \left| \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} (g^*(\tilde{\mathbf{x}}_{\tilde{l}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}}_{\tilde{l}})) Q_{\tilde{q}, \tilde{l}}(\tilde{\mathbf{x}}) \right| + \mathcal{O}(M^{-\alpha}) \\ 854 \quad \leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} |g^*(\tilde{\mathbf{x}}_{\tilde{l}}) - \text{TP}_{\tilde{q}rM^{-1}}(\tilde{\mathbf{x}}_{\tilde{l}})| |Q_{\tilde{q}, \tilde{l}}(\tilde{\mathbf{x}})| + \mathcal{O}(M^{-\alpha})$$

$$\begin{aligned}
&\leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} L \|\tilde{\mathbf{x}} - \tilde{q} r M^{-1}\|^{\alpha} |Q_{\tilde{q}, \tilde{l}}(\tilde{\mathbf{x}})| + \mathcal{O}(M^{-\alpha}) \\
&\leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} L \|\tilde{\mathbf{x}} - \tilde{q} r M^{-1}\|^{\alpha} r^{(d-1)r} + \mathcal{O}(M^{-\alpha}) \\
&\leq \sum_{\tilde{l}: \tilde{\mathbf{x}}_{\tilde{l}} \in I_{\tilde{q}}} \mathcal{O}(M^{-\alpha}) + \mathcal{O}(M^{-\alpha}) = r^{d-1} \mathcal{O}(M^{-\alpha}) + \mathcal{O}(M^{-\alpha}) = \mathcal{O}(M^{-\alpha}).
\end{aligned}$$

□

Proof of Theorem 3

For a linear boundary, we denote $g^*(\tilde{\mathbf{x}}) = a_*^\top \tilde{\mathbf{x}} + b_*$, $\tilde{\mathbf{x}} \in [0, 1]^{d-1}$. Similar to the previous setting, the labels satisfy $\mathbb{P}(Y = h_{g^*}(X)) = 1 - p$ and $\mathbb{P}(Y = 1 - h_{g^*}(X)) = p$ with $p \in (0, \frac{1}{2})$. We show that there exist an estimator that achieves exponential L_1 error decay.

We first pick $m \geq d$ anchor points $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_m \in [0, 1]^{d-1}$ in general position so that the augmented design

$$Z = \begin{bmatrix} \tilde{\mathbf{x}}_1^\top & 1 \\ \vdots & \vdots \\ \tilde{\mathbf{x}}_m^\top & 1 \end{bmatrix} \in \mathbb{R}^{m \times d}$$

satisfies $\text{rank}(Z) = d$. For each fixed $\tilde{\mathbf{x}}_j$, query along the vertical line $\{(\tilde{\mathbf{x}}_j, t) : t \in [0, 1]\}$ and run a PBA to estimate the one-dimensional threshold $t_j^* := g^*(\tilde{\mathbf{x}}_j) = a_*^\top \tilde{\mathbf{x}}_j + b_*$.

One concrete choice with $m = d$ is to take $\tilde{\mathbf{x}}_1 = \mathbf{0}$, $\tilde{\mathbf{x}}_{k+1} = e_k$ for $k = 1, \dots, d-1$, where e_k denotes the k -th standard basis vector in \mathbb{R}^{d-1} . Then the augmented design matrix Z is

$$Z = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{d \times d}.$$

Let \hat{t}_j be the PBA estimate after n_j queries on line j , and set $\hat{t} = (\hat{t}_1, \dots, \hat{t}_d)^\top$. Estimate $\theta_* := (a_*, b_*) \in \mathbb{R}^d$ by least squares: $\hat{\theta}_n := \arg \min_{\theta \in \mathbb{R}^d} \|\hat{t} - Z\theta\|_2^2 = (Z^\top Z)^{-1} Z^\top \hat{t}$, where $\hat{t} = \hat{g}(\tilde{\mathbf{x}}) := \hat{a}^\top \tilde{\mathbf{x}} + \hat{b}$. Let the total sample be $n = \sum_{j=1}^d n_j$. Let $\varepsilon := (\varepsilon_1, \dots, \varepsilon_d)^\top$ with $\varepsilon_j = \hat{t}_j - t_j^*$. Then we can express

$$\hat{\theta}_n - \theta_* = (Z^\top Z)^{-1} Z^\top \varepsilon,$$

and $\|\hat{\theta}_n - \theta_*\|_2 \leq \frac{1}{\sigma_{\min}(Z)} \|\varepsilon\|_2$, where $\sigma_{\min}(Z) > 0$ is the smallest singular value of Z . Let $\Delta a := \hat{a} - a_*$ and $\Delta b := \hat{b} - b_*$. Then we have

$$\begin{aligned}
\mathbb{E} \|\hat{g}_n - g^*\|_1 &:= \mathbb{E} \int_{[0, 1]^{d-1}} |\Delta a^\top u + \Delta b| du \leq |\Delta b| + \frac{1}{2} \sum_{k=1}^{d-1} |\Delta a_k| \leq \left(1 + \frac{\sqrt{d-1}}{2}\right) \|\hat{\theta} - \theta_*\|_2 \\
&\leq \frac{\left(1 + \frac{\sqrt{d-1}}{2}\right)}{\sigma_{\min}(Z)} \mathbb{E} \|\varepsilon\|_2 = \frac{\left(1 + \frac{\sqrt{d-1}}{2}\right)}{\sigma_{\min}(Z)} \mathbb{E} \|\hat{t} - t^*\|_2 \leq \frac{\left(1 + \frac{\sqrt{d-1}}{2}\right)}{\sigma_{\min}(Z)} \sqrt{\sum_{j=1}^d (\mathbb{E} |\varepsilon_j|)^2} \\
&\leq 3 \frac{\left(1 + \frac{\sqrt{d-1}}{2}\right)}{\sigma_{\min}(Z)} \sqrt{d} \max_j \exp(-Cn_j).
\end{aligned}$$

We have the last equation by Theorem 1, which shows $\mathbb{E} |\hat{t}_j - t_j^*| \leq 3 \exp(-Cn_j)$, $\forall j$, where C is a constant of p only. By taking $n_j = \frac{n}{d}$, we show that $\mathbb{E} \|\hat{g} - g^*\|_1 \leq 3 \frac{\left(1 + \frac{\sqrt{d-1}}{2}\right)}{\sigma_{\min}(Z)} \sqrt{d} \exp(-C \frac{n}{d})$.

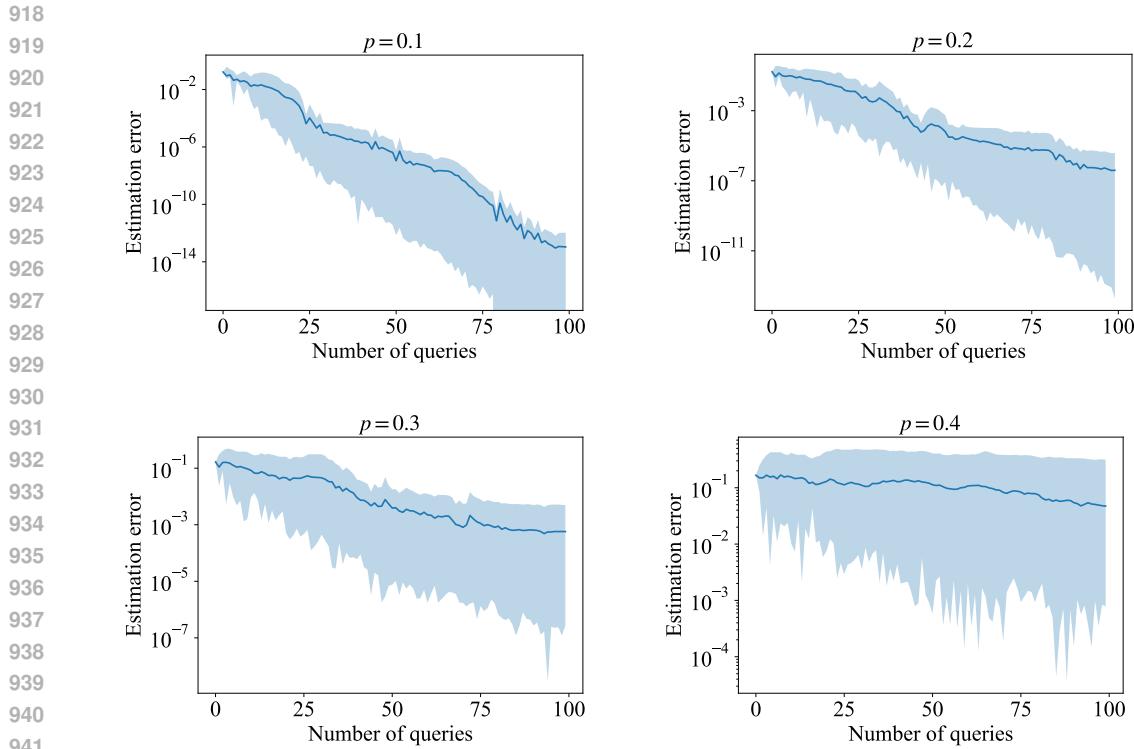


Figure 1: Estimator error rate of PBA estimator with respect to the query size n , under various noise level p .

Since the matrix Z has full column rank and $\sigma_{\min}(Z)$ is bounded below by a positive constant depending only on d , we can write $\mathbb{E}\|\hat{g} - g^*\|_1 \leq C_1 \exp(-cn)$, where $C_1 > 0$ depends only on d and $c > 0$ depends only on p and d . \square

D EXPERIMENTS

In this section, we conducted simulation experiments to corroborate our theoretical findings. WLOG, we choose $\theta^* = 1/3$ and vary the noisy level p from a list of values 0.1, 0.2, 0.3, 0.4. We report the average estimation error of the PBA estimator with respect to the query size n on 20 replicated experiments. The results are shown in Figure 1. The maximum query size is 100 because the convergence rate is exponentially fast and the calculation of estimation error will encounter numerical issues, as seen in Figure 1.

Figure 1 clearly displays an exponential decay of the estimation error by PBA (a linear trend in the log-plot), aligned with our Theorem 1. In addition, a larger noise level p results in a significantly smaller constant in the exponent of the convergence rate, leading to a slower convergence.

E THE USE OF LARGE LANGUAGE MODELS STATEMENT

Large language models were used solely as a writing aid. Their use was limited to minor language editing, such as correcting grammar, improving clarity, and polishing the phrasing, without altering the substantive content or analysis of the article.