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ABSTRACT
One of the serious impacts brought by artificial intelligence is the
abuse of deepfake techniques. Despite the proliferation of deep-
fake detection methods aimed at safeguarding the authenticity of
media across the Internet, they mainly consider the improvement
of detector architecture or the synthesis of forgery samples. The
forgery perceptions, including the feature responses and prediction
scores for forgery samples, have not been well considered. As a
result, the generalization across multiple deepfake techniques al-
ways comes with complicated detector structures and expensive
training costs. In this paper, we shift the focus to real-time per-
ception analysis in the training process and generalize deepfake
detectors through an efficient method dubbed Forgery Perception
Guidance (FPG). In particular, after investigating the deficiencies
of forgery perceptions, FPG adopts a sample refinement strategy to
pertinently train the detector, thereby elevating the generalization
efficiently. Moreover, FPG introduces more sample information as
explicit optimizations, which makes the detector further adapt the
sample diversities. Experiments demonstrate that FPG improves the
generality of deepfake detectors with small training costs, minor
detector modifications, and the acquirement of real data only. In
particular, our approach not only outperforms the state-of-the-art
on both the cross-dataset and cross-manipulation evaluation but
also surpasses the baseline that needs more than 3× training time.
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1 INTRODUCTION
The development of artificial intelligence not only elevates per-
formance in traditional visual tasks [5, 51] but also gives birth to
massive novel and heuristic vision applications [21, 30, 48]. Deep-
fake, a novel technique used to generate believable media via deep
neural networks [34], has quickly developed and aroused social
concerns due to the lifelikeness of the generation [11, 27, 66] and
the simplicity of usage [7, 60, 63]. To ensure the safety and credibil-
ity of publicly-oriented media, in the field of computer vision and
multimedia research, deepfake detection methods have recently
been proposed to discern the authenticity of media automatically.

Early investigations focus on several deepfake techniques [1, 62,
69]. Although these detectors achieve promising performance, their
vulnerabilities are exposed immediately when facing the media
manipulated by various advanced generative models. Maintaining
the detection performance across a broad spectrum of deepfake
techniques poses the primary challenge [22, 38].
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Figure 1: (a) Model-centric methods increase model complex-
ity or analyze the sample in parallel after Frequency-domain
Transformation (FT ). (b) Sample-centric methods generate
forgery samples by blending two different samples after land-
mark matching or blending a single sample and its variant
after Transformation (T ). (c) Our approach analyzes the per-
ception of the detector to the forgery sample and then refines
the sample to improve the forgery perception. The original
forgery trace (mask value > 0) and the refined one are respec-
tively denoted with red and blue dashed areas.

To generalize the deepfake detector, as depicted in Fig. 1(a) and
(b), recent works mainly focus on the improvement on model struc-
ture and the synthesis of forgery samples. Model-centric methods
modify the detector structure based on the public datasets for better
perceiving the forgery samples [9, 43, 61, 72], while sample-centric
methods deliberately manipulate the common forgery traces such
as boundary inconsistency to encourage the detector perceiving
these forgery traces [6, 28, 42]. Although there are enhancements
in the generalization, the trade-offs between costs and benefits have
been overlooked. To be specific, the improved generalization entails
integrating complex modules or constructing multiple parallel net-
works for the model-centric methods. In the case of sample-centric
methods, enhancements encompass expensive training costs such
as multiple training stages or lengthy training time. Therefore, the
efficiency problem motivates us to consider a methodology that ele-
vates the generalization of deepfake detectors with minor detector
modifications and small training costs.

To efficiently generalize the detector, one intuitive strategy is to
investigate the deficiencies of the forgery perceptions, including
the feature responses and prediction scores for forgery samples,
and immediately feedback to the detector during training. Based
on the insight, an efficient method called Forgery Perception Guid-
ance (FPG) is proposed from the perspective of real-time perception
analysis. As depicted in Fig. 1(c), after the gradient computation
through backpropagation, the sample is refined to emphasize the
forgery traces that were previously unperceived. Subsequently, the
detector is trained using the refined sample to strength its percep-
tion ability. More specifically, the gradients with respect to both
the detector and inputs are respectively converted to the feature
response and the adversarial perturbation for refining the shape
and magnitude of the forgery traces. As a result, the refined forgery
samples not only include forgery traces such as color mismatching
but also reflect the deficiencies of the forgery perceptions. This
training paradigm pertinently improves the perception ability re-
lated to the forgery samples and thus decreases the training costs.

Furthermore, consider the input samples encompass irrespective
factors, which are biased to the detectors and affect the perceiving
of forgery traces. FPG additionally collects information on image
qualities and forgery masks for extra explicit optimizations of the
detector. Consequently, the generalization can be improved through
FPG with less training costs, minor detector modifications, and the
acquirement of real samples only. Experimental results show that
FPG is not only superior to state-of-the-art on multiple evaluations
but surpasses the baseline that needs more than 3× training time as
well. These results demonstrate the high efficiency of our approach.
The contributions are summarized as follows:
• We shift the focus to the real-time analysis of the forgery
perceptions and elevate the generalization of deepfake de-
tectors through FPG with less training costs, minor detector
modifications, and real sample acquirements only.
• FPG refines the forgery samples by modifying the shape
and magnitude of the forgery traces based on the feature
responses and prediction scores. Moreover, explicit optimiza-
tions are further adopted during training by considering the
image qualities and forgery masks, respectively.
• Extensive experiments reveal that FPG significantly general-
izes deepfake detectors under unknown datasets and deep-
fake techniques. Moreover, the training time can be saved
around 3× compared with the comparable baseline method.

2 RELATEDWORK
2.1 Deepfake Generation
The face generation with malicious intention mainly includes iden-
tity replacement and expression reenactment. Identity replacement
swaps the face of the target person in a video with the face of the
source person. Early techniques focus on one-to-one identity re-
placement. For instance, FaceSwap uses autoencoders trained on
faces with two persons for identity replacement [57]. The following
techniques expand the paradigm to many-to-many identity replace-
ment [7, 27, 58]. FaceShifter adopts Adaptive Attentional Denormal-
ization layers (AAD) to transfer localized feature maps between the
faces [27]. SimSwap increases the realism by injecting more identity
information [7]. In addition, expression reenactment modifies the
expression of the source person as arbitrary as the attacker wants.
To be specific, the work in [3] applies an improved CycleGAN with
two receptive field discriminators to execute one-to-one expression
reenactment. Also, some works consider many-to-many expression
reenactment [35, 52, 71]. ImaGINator not only considers the fusion
between emotion and content but also adopts 3D convolutions to
capture the distinct spatio-temporal relationships [52].

2.2 Deepfake Detection
Model-centric Methods. Since the deepfake techniques mainly
manipulate the local regions within the existing real images [34, 49].
To achieve automatic detection, deepfake detectors should carefully
observe the image spatial regions for the sake of finding the nuanced
artifacts generated through deepfake techniques. Besides, due to
the lack of regular textures and semantic information in the forgery
traces, conventional networks [10, 17, 44, 45] may not appropriate
to deepfake detection. Therefore, some methods aim to improve the
detection performance from the detector modifications. Specifically,
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a series of novel self-attentionmechanisms [36, 64], feature pyramid
strategies [4, 14], and graph network blocks [23, 53] are proposed
in previous works to elevate the extraction ability of spatial forgery
features for the networks. To further explore the samples, the other
methods design the parallel networks which can simultaneously
analyze the spatial and frequency information [8, 26, 39].

However, most datasets only provide coarse supervision such
as binary labels, which makes it difficult for detectors to clearly
learn the perceptions of forgery traces. Moreover, the perceptions
learned from the previous datasets may be incompatible with the
advanced deepfake techniques. Somemethods can not achieve great
detection performance under the newly generated forgery samples.
Sample-centric methods.Although multiple deepfake techniques
have appeared in recent years, their manipulation pipelines are
similar. For example, identity replacement involves the generation
of the source face and replacing the target face with blending. Some
detection methods thus focus on sample synthesis to remain the
common forgery traces like blending artifacts and avoid the traces
generated from specific techniques. Besides, more information can
be supplied, such as the forgery masks [42], boundaries [28], and
bounding boxes [14]. Consequently, the generalization is improved
with few [28] or even none [42] detector modifications.

3 FORGERY PERCEPTION GUIDANCE
3.1 Preliminary
Following the selection of a real sample, the attacker employs a
deepfake technique to generate the designated content. This con-
tent is defined as the forgery trace, while the operational area
of the deepfake technique can be succinctly represented with a
forgery mask. Therefore, the essence of deepfake detection is to
perceive these forgery traces, and the goal of generalizing a deep-
fake detector is to cultivate a strong perception ability for arbitrary
forgery samples. This entails significant alignments between fea-
ture responses and forgery masks, along with notable consistencies
between prediction scores and associated labels. To improve the
perception ability of the detector, after the analysis of the forgery
perception, the discrepancies of the consistencies and alignments
should immediately feedback to the detector during training. An
intuitive feedback path involves modifying the forgery samples
based on these discrepancies, thereby encouraging the detector to
learn the forgery traces that have been previously unperceived.
However, this modification needs the same deepfake technique on
the original forgery samples, which is complex and brings special
forgery traces that are adverse to the generalization. To ease the
generation of the original forgery samples and ensure these samples
reflect the common forgery traces from the deepfake techniques,
inspired by [42], the forgery samples are generated as follows:

𝒙′ = 𝑇 (𝒙) ⊙ 𝑴 + 𝒙 ⊙ (1 −𝑴) , (1)

where 𝒙′ ∈ R3×𝐻×𝑊 indicates the forgery sample, which is gen-
erated by blending the real sample 𝒙 and its variant 𝑇 (𝑥) after
geometric transformations. 𝐻 and𝑊 denotes the height and width
of the image.𝑴 ∈ R3×𝐻×𝑊 denotes the forgery mask. The forgery
traces of the 𝒙′ within the 𝑴 > 0. According to Eq. (1), the learned
perception of the detector from the forgery samples depends on
the geometric transformations and the variations of the forgery

Figure 2: Cross-dataset evaluation with different mask set-
tings. ‘Base’ denotes the forgery mask generated based on
the facial landmarks related to the jaw, nose ridge, and eyes.
‘Extended’ is the extension of the eyebrow points up the
forehead. ‘Full’ indicates the whole facial region. ‘Random’
means randomly selecting one of the mask settings.

mask. Since 𝑇 involves amount of discrete parameters, transfor-
mations, and non-differentiable during the detector training, we
convert to explore the impacts from different forgery mask settings.
From Fig. 2, the optimal average result arises from the random
mask setting, underscoring the diversities of forgery mask during
training. This observation inspires the refinement of the forgery
samples from the modifications of the forgery mask. Lastly, the
cross-entropy loss is used to measures the difference between the
prediction and the associate label of the input sample for guiding
the training direction, which is expressed as follows:

L𝐶𝐸 (𝒔𝑖 ) = −
[
𝑦𝑠𝑖 · log

(
𝑝𝑠𝑖

)
+

(
1 − 𝑦𝑠𝑖

)
· log

(
1 − 𝑝𝑠𝑖

) ]
, (2)

where 𝑦𝑠𝑖 and 𝑝𝑠𝑖 denote the binary label and the probability being
fake for 𝑖-th sample 𝒔𝑖 (𝒔𝑖 may be real or fake), respectively.

3.2 Forgery Sample Refinement
As shown in Fig. 3, this procedure entails refining the shape and
magnitude of the forgery traces by timely analyzing the forgery
perceptions of the deepfake detector. The goal is to adopt pertinent
training, thereby elevating the generalization with high efficiency.
Forgery Shape Refinement. Since the feature response is closely
related to the interested objects [41, 68], the perceived forgery
traces can be discerned through a comparative analysis of the dis-
tinctions between the responses and forgery masks. Given 𝑖-th fake
sample 𝒙′𝑖 , the weight 𝛼𝑐𝑖 to the feature 𝑭𝑥 ′𝑖 ∈ R𝐶×𝐻

′×𝑊 ′
in the last

backbone layer of the detector at the 𝑐-th channel is computed as:

𝛼𝑐𝑖 =
1
𝑍

𝐻 ′∑︁
𝑢

𝑊 ′∑︁
𝑣

𝜕L𝐶𝐸
(
𝒙′
𝑖

)
𝜕𝐹𝑐

𝑥 ′
𝑖 (𝑢,𝑣)

, (3)

where 𝑍 is the spatial size of the feature map. 𝐻 ′,𝑊 ′, and𝐶 denote
the height, width, and channel of the feature map. The feature
response 𝑹 ∈ R𝐻 ′×𝑊 ′

of the 𝑖-th sample is computed as follow:

𝑹𝑖 = ReLU

(
𝐶∑︁
𝑐

(
𝛼𝑐𝑖 · 𝑭

𝑐
𝑥𝑖

))
. (4)

As depicted in Fig. 3, the shape refinement involves retaining the
unperceived forgery traces while reverting the perceived regions
to their real counterparts. After generating the feature response
through Eq. (3) and (4), 𝑹𝑖 is resized to the sample size and compared
with the 𝑖-th forgery mask 𝑴𝑖 . Given the potential differences in
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Figure 3: Overview of the Forgery Sample Refinement. Given the forgery sample 𝒙′𝑖 , The detector is frozen and the feature
response 𝑹𝑖 is computed to refine the shape of the forgery traces. After the shape refinement, the perturbation 𝜖𝑖 of the mask
�̄�𝑖 is computed to further conduct the magnitude refinement. To the forgery shape refinement, the residual mask �̄�𝑖 related to
the unperceived forgery trace is acquired, and the perceived forgery traces are reverted to their real counterparts. To the forgery
magnitude refinement, �̄�𝑖 is added with the 𝜖𝑖 to adjust the magnitude. The �̂�′𝑖 is computed by blending the corresponding real
image and its variant 𝑇 (𝒙𝑖 ) after geometric transformations. The discrepancy between the shape-refined sample 𝒙′𝑖 and the �̂�′𝑖
with both the shape and magnitude refinement is highlighted in the saliency map.

orders of magnitude between feature responses and forgery masks,
if the magnitude at each location for both the resized responses and
masks exceeds 0, it will be binarized to 1. The binary mask with
respect to the unperceived forgery trace is thus computed as:

�̄�𝑏
𝑖 = 𝑴𝑏

𝑖 −𝑴𝑏
𝑖 ⊙ 𝑹

′𝑏
𝑖 , (5)

where for the 𝑖-th forgery sample, with the binarization, �̄�𝑏 , 𝑴𝑏 ,
and 𝑹

′𝑏 ∈ {0, 1}3×𝐻×𝑊 denote the residual mask of the unperceived
trace, original forgery mask, and the resized feature response.

However, using the �̄�𝒃 directly leads to the noticeable bound-
ary inconsistency in the refined forgery samples. To smooth the
boundary, we adopt the GaussianBlur transformation to get the
forgery mask �̄� . Consequently, the sample 𝒙′𝒊 with forgery shape
refinement is generated as follow:

𝒙′𝑖 =
(
1 − �̄�𝑖

)
⊙ 𝒙𝑖 + �̄�𝑖 ⊙ 𝒙′𝑖 . (6)

A straightforward method entails refining each forgery sam-
ple throughout the detector training process. Nevertheless, due
to the diversities of forgery traces, it is important to notice the
potential variability of the forgery perceptions. To the original hard
forgery samples, the detector may still not predict them accurately
in the early stage. Fewer forgery traces in these samples after refine-
ment will further increase the training difficulties. To the original
easy forgery samples, the resized feature responses are close to the
forgery masks, the corresponding refined forgery samples will con-
tain fewer forgery traces and are similar to the real counterparts. In
the extreme case, 𝒙′

𝑖
will approximate 𝒙𝑖 if 𝑹

′𝑏
𝑖 = 𝑴𝑏

𝑖 , which is also
adverse to the training. Therefore, to make the strategy adaptively
refine the forgery samples, the refinement probability is dependent
on the sample prediction score, which means the refinement to
the hard original forgery samples can be lower than the easy ones.
Besides, a forgery sample will be refined if the overlapped size

Algorithm 1 Forgery Shape Refinement

Input: 𝐵: the batch size; 𝒙′1, . . . , 𝒙
′
𝐵
: batch of original forgery sam-

ples; 𝑝𝑥 ′1 , . . . , 𝑝𝑥 ′𝐵 : batch of original forgery sample predictions;
𝑴1, . . . ,𝑴𝐵 : batch of original forgery masks; 𝒙1, . . . , 𝒙𝐵 : batch
of corresponding real samples;

Output: 𝒙′1, . . . , 𝒙
′
𝐵
: batch of shape-refined forgery samples;

�̄�1, . . . , �̄�𝐵 : batch of shape-refined forgery masks;
for 𝑖 = 1 to 𝐵 do

Get the refinement label 𝑜𝑖 ∼ Bernoulli(𝑝𝑥 ′
𝑖
);

𝑴𝑏
𝑖 ← Binarization(𝑴𝑖 );

Compute the response 𝑹𝑖 through Eq. (3) and Eq. (4);
𝑹′𝑖 ← Resize(𝑹𝑖 );
𝑹′𝑏
𝑖
← Binarization(𝑹′𝑖 );

if 𝑜𝑖 = 1 and Overlap(𝑹′𝑏
𝑖
,𝑴𝑏

𝑖
) < 𝑡 then

�̄�𝑏
𝑖 ← 𝑴𝑏

𝑖 −𝑴𝑏
𝑖 ⊙ 𝑹

′𝑏
𝑖 ;

�̄�𝑖 ← GaussianBlur(�̄�𝑏
𝑖 );

𝒙′
𝑖
←

(
1 − �̄�𝑖

)
⊙ 𝒙𝑖 + �̄�𝑖 ⊙ 𝒙′𝑖 ;

else
𝒙′𝑖 ← 𝒙′𝑖 , �̄�𝑖 ← 𝑴𝑖 ;

end if
end for

between the 𝑹
′𝑏
𝑖 and𝑴𝑏

𝑖 lower than a preset threshold 𝑡 . The whole
implementation is summarized in Algorithm 1.
Forgery Magnitude Refinement. Inspired by the adversarial
attack researches which introduce imperceptible adversarial per-
turbations thereby causing erroneous predictions [15, 24, 32]. Since
these perturbations are closely related to the discrepancies between
the prediction scores and the corresponding labels, adding these
perturbations to the samples can enlarge the discrepancies and
encourage the detector to further reduce the discrepancies during
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Figure 4: Overview of the Extra Explicit Optimizations. The
detector is unfrozen and updated by inputting the real sam-
ple 𝒙𝑖 and the forgery sample �̂�′𝑖 . To further adapt the sample
diversities, the detector is optimized by additionally intro-
ducing the image quality information as the attention to the
detector. Besides, the difference within the local region be-
tween the 𝒙𝑖 and �̂�′𝑖 is also strengthened through L𝑠𝑖𝑚 . ‘Reg’
denotes the extra regression branch. The circle ‘R’ and ‘B’
have already been described in Fig. 3.

training, which is suggested to improve the forgery perceptions
pertinently. Following the insight, the work in [55] introduces ad-
versarial perturbations as the parameters of GaussianBlur trans-
formation and elevates the generalization of deepfake detection
with a large margin. As we focus on refining the forgery mask, for
the 𝑖-th shape-refined sample 𝒙′𝑖 , we further compute the gradient
with respect to the forgery mask 𝜕L𝐶𝐸 (�̄�′

𝑖 )
𝜕�̄�𝑖

. After that, �̄�𝑖 is added
with the perturbations computed from the gradients to refine the
magnitude of the forgery mask. However, the inherent irregularities
from gradient computations will lead to the refined forgery samples
being unnatural and inconsistent with the real-world forgery sam-
ples. Considering both the adversarial property and the similarity
with the real-world forgery samples, for the 𝑖-th forgery mask �̄�𝑖 ,
we collect the gradients with sign function from each pixel and
compute a unifying perturbation as follows:

𝜖𝑖 =

{
𝜖, if

∑𝐻 ′
𝑢

∑𝑊 ′
𝑣 sign

(
𝜕L𝐶𝐸 (�̄�′

𝑖 )
𝜕�̄�𝑖 (𝑢,𝑣)

)
> 0

−𝜖, otherwise
, (7)

where 𝜖 is the magnitude of the perturbation. Since we focus on
the regions within the forgery traces, the perturbations should not
affect the real regions. The forgery mask added with the unifying
perturbation at the (𝑢, 𝑣)-th location is expressed as follows:

�̂�𝑖 (𝑢,𝑣) = Clip
(
�̄�𝑖 (𝑢,𝑣) + 𝜖𝑖�̄�𝑖 (𝑢,𝑣) , 0, 1

)
, (8)

where Clip is the truncation function that constrains the magnitude
of the �̂�𝑖 within [0, 1]. Then the forgery sample �̂�′𝑖 with both the
shape and magnitude refinement is computed by following Eq. (1).

Moreover, considering the training difficulties if the process
includes the adversarial forgery samples only, the adversarial per-
turbation is added to the forgery mask with a 0.5 probability.

3.3 Extra Explicit Optimization
Considering the sample diversities, certain attention modules are
employed to make the detector adaptively focus on the forgery

traces. However, these modules are updated based on the binary la-
bels only, which are implicit and lack additional explicit supervision.
This implicitness hampers the improvement in forgery perception.
Therefore, two extra supervisions are introduced as explicit opti-
mizations for the detector, i.e., image quality and forgery mask.

Given a forgery sample, various image qualities can yield dispar-
ities within the forgery traces. It becomes essential to adjust the
detector to accommodate such quality variations. In Fig. 4, based
on the advanced quality assessment network related to the facial
images [37], an extra regression network branch is built into the
detector to output the regression results which are supervised by
the output of the quality assessment network as follows:

L𝑟𝑒𝑔 (𝒔𝑖 ) = ∥Reg (𝒔𝑖 ) −𝑄 (𝒔𝑖 )∥22 , (9)

where𝑄 is the pretrained quality assessment network. ∥·∥2 denotes
Euclidean norm. Reg is the extra regression branch that consists of
several convolutional layers. Subsequently, a preset lightweight at-
tention module called Squeeze-and-Excitation [20] is supervised by
the image quality information directly, which enables the detector
to search for optimal detection patterns for the samples exhibiting
diverse image qualities. The details of the regression branch and
the attention module are described in the supplementary material.

Furthermore, considering the differences between the 𝒙𝑖 and
the corresponding fake sample �̂�′𝑖 located in �̂�𝑖 > 0, contrasting
the differences of the paired samples is beneficial to the detector
perceiving the forgery traces more directly. The mask �̂�𝑖 is hence
introduced to extract the local features within the forgery region.

Specifically, the �̂�𝑖 is resized to the feature size and binarized
to get �̂�

′𝑏
𝑖 ∈ {0, 1}𝐶×𝐻

′×𝑊 ′
. After getting the feature of 𝒙𝑖 and 𝒙′𝑖

from the detector as 𝑭𝑥𝑖 and 𝑭𝑥 ′𝑖 , the feature within the local forgery

region are extracted by multiplying �̂�
′𝑏
𝑖 . Then the extracted local

features are averaged from the spatial dimension to get 𝒇𝑥𝑖 and
𝒇𝑥 ′

𝑖
∈ R𝐶×1, respectively. An extra loss function L𝑠𝑖𝑚 is adopted

to the detector for enlarging the difference between 𝒇𝑥𝑖 and 𝒇𝑥 ′
𝑖

through cosine similarity:

L𝑠𝑖𝑚
(
𝒙𝑖 , �̂�

′
𝑖

)
=

1
2

©«1 +
𝒇𝑥𝑖 · 𝒇𝑥 ′𝑖𝒇𝑥
𝑖


2
·
𝒇𝑥 ′

𝑖


2

ª®®¬ . (10)

Based on these extra explicit optimizations, the whole loss func-
tion during the detector training can hence be expressed as follow:

L =
1
𝐵

𝐵∑︁
𝑖=1

(
L𝐶𝐸 (𝒙𝑖 ) + L𝐶𝐸

(
�̂�′𝑖

)
+

L𝑟𝑒𝑔 (𝒙𝑖 ) + L𝑟𝑒𝑔
(
�̂�′𝑖

)
+ 𝛼L𝑠𝑖𝑚

(
𝒙𝑖 , �̂�

′
𝑖

) )
,

(11)

where 𝐵 indicates the batch size, and 𝛼 denotes the scale factor.

4 EXPERIMENTS
4.1 Settings
Dataset. To evaluate the generalization of deepfake detectors, our
experiments are conducted on multiple large-scale and widely used
datasets: FaceForensics++ (FF++) [40], DeepfakeDetection (DFD)
[18], CelebDF (CDF) [29], Deepfake Detection Challenge (DFDC)
[19], preview version of DFDC (DFDCP) [13], and Face Forensics in
the Wild (FFIW) [70]. FF++ is a large-scale dataset comprising 720
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Table 1: Cross-dataset evaluation on CDF, DFD, DFDC, DFDCP, and FFIW. The results from previous methods are collected
from their paper statements. FPG is trained on real samples only from FF++(c23). † indicates the results are performed by [42].
The best and second-best detection results are represented in bold and underline, respectively.

Method Venue Input Type Training Set Test Set AUC(%)
Real Fake CDF DFD DFDC DFDCP FFIW All

Face X-ray + BI [28] CVPR’20 Frame ✓ - - 93.47 - 71.15 - -
PCL + I2G [65] ICCV’21 Frame ✓ - 90.03 99.07 67.52 74.37 - -
UIA-ViT [72] ECCV’22 Frame ✓ ✓ 82.41 94.68 - 75.80 - -

SBI [42] CVPR’22 Frame ✓ - 93.18 97.56 72.42 86.15 84.83 86.83
UCF [61] ICCV’23 Frame ✓ ✓ 82.40 94.50 - 80.50 - -
L&V [43] MM’23 Frame ✓ ✓ 86.00 95.50 - 83.50 - -

SeeABLE[25] ICCV’23 Frame ✓ - 87.30 - 75.90 86.30 - -
AUNet [2] CVPR’23 Frame ✓ - 92.77 99.22 73.82 86.16 81.45 86.68

Two-branch [33] ECCV’20 Video ✓ - - 93.47 - 71.15 - -
DAM [70] CVPR’21 Video ✓ ✓ 78.26 89.24 - 76.53 - -

LipForensics [16] CVPR’21 Video ✓ ✓ 79.40 91.90 - 79.70 - -
FTCN [67] ICCV’21 Video ✓ ✓ 86.90 94.40† 71.00† 74.00 74.47† 80.15

TALL+EffNetB4 [59] ICCV’23 Video ✓ ✓ 83.37 - - 67.15 - -
AltFreezing [54] CVPR’23 Video ✓ ✓ 89.50 98.50 - - - -

FPG - Frame ✓ - 94.49 96.41 74.75 87.24 87.93 88.16

training videos, 140 validation videos, and 140 test videos. The fake
videos are produced by two identity replacement techniques, Deep-
Fakes (DF) [56] and FaceSwap (FS) [57], as well as two expression
reenactment techniques, Face2Face (F2F) [47] and NeuralTexture
(NT) [46]. We use the fake videos from the FF++ dataset for evalu-
ating cross-manipulation performance. Following previous works
[4, 39, 53], the c23 version of FF++ is adopted for training. More-
over, since the CDF-v2 is more challenging than the v1 version, the
results in CDF come from the v2 version in default.
Implementation Details. Each pristine video is sampled 8 frames
as the training sample. By default, we employ EfficientNetB4 [45]
as the deepfake detector, which is initialized through pre-training
on the ImageNet [12]. The batch and image size are the same as
the baseline settings [42]. The threshold 𝑡 and 𝜖 in forgery sample
refinement is set to 0.2 and 0.01, respectively. Empirically, the scale
factor 𝛼 is set as 0.075. The maximum of training epochs is 50. The
learning rate equals 1e-4. The optimizer is AdamW [31] with 0.9
and 0.98 betas, alongside 0.2 weight decay. The experiments are
conducted on four RTX 3090 GPUs and the Pytorch framework.
Evaluation. Following previous works in [2, 16, 42], we use video-
level predictions to evaluate detectors. Each video are predicted
through sampling 32 frames and averaging their predictions for
comprehensive evaluation. We use the Average Precision (AP) and
Area Under the Receiver Operating Characteristic Curve (AUC) as
the metrics to evaluate the detection performance.

4.2 Generalization Performance Evaluation
Cross-Dataset Evaluation. The generalization constitutes the pri-
mary determinant for a deepfake detector. Since the public forgery
datasets involve multiple deepfake techniques, complex real-world
scenes, and various personal characteristics, the detection results

across multiple datasets hold significant reference value for assess-
ing the generalization performance. Therefore, we first evaluate
the AUC results under five prevalent and challenging datasets that
remain unknown to the deepfake detector. Table 1 presents our
cross-dataset evaluation results. Compared with previous promis-
ing methods, the detector with FPG is trained on real samples only
and outperforms the second-best method on CDF, DFDCP, and
FFIW by 1.31%, 1.08%, and 3.10% points, respectively. To the DFD,
we can also achieve a comparable result. As a result, leveraging the
refinement strategy and the explicit optimizations, our approach
attains 88.16 % AUC on average for five datasets and surpasses the
baseline method [42] by 1.33% (88.16 % vs. 86.83%). These outcomes
demonstrate the effectiveness of our approach.
Cross-Manipulation Evaluation. Given the difference in deep-
fake techniques significantly affects the generalization, the next
experiments are hence conducted to evaluate the detection results
under different deepfake techniques. We follow the previous pro-
tocols [2, 25, 28, 42, 54, 65] by using the raw version of FF++ for
evaluation. To be specific, our approach is evaluated through four
deepfake techniques: DF, F2F, FS, and NT. Similar to the above
evaluation, we compare the performance with both the video-level
and frame-level methods. The evaluation results are listed in Table
2. As seen, the results evaluated on DF and FS nearly equal the
best performance (with only 0.02% and 0.25% AUC discrepancy).
On the other hand, the detector attains the best results on F2F
and NT and outperforms state-of-the-art methods on average. The
promising detection results exhibited by the detector underscore
the enhancements in generalization achieved by FPG.

4.3 Ablation Study
Training Efficiency Analysis. As stated, FPG is proposed to not
only elevate the generalization of deepfake detectors but also the
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Table 2: Cross-manipulation evaluations on DF, F2F, FS, and
NT. ‡ indicates the results are reimplemented on FF++(c23)
through the official code. The best and second-best detection
results are represented in bold and underline, respectively.

Method Venue Test Set AUC
DF F2F FS NT Avg

Face X-ray + BI CVPR’20 99.17 98.57 98.21 98.13 98.52
PCL + I2G ICCV’21 100 98.97 99.86 97.63 99.11

SBI‡ CVPR’22 99.98 99.80 99.42 98.07 99.32
SeeABLE ICCV’23 99.20 98.80 99.10 96.90 98.50
AUNet CVPR’23 99.98 99.60 99.89 98.38 99.46

AltFreezing CVPR’23 99.80 98.20 99.70 96.20 98.48

FPG - 99.98 99.83 99.64 98.46 99.48

(b)(a)

Figure 5: Detection performance on multiple unknown
datasets. (a) The comparison between our approach and the
baseline is based on averaged detection results obtained from
the CDF, DFDCP, and FFIW datasets. (b) The variation of the
detection performance with respect to the scale factor 𝛼 .

training efficiency. To analyze the efficiency in detail, the detector
with FPG is trained with three different epochs, i.e., 10, 25, 50. As
comparison, the baseline is also trained with the corresponding
epochs and the same training settings for fairness. Fig. 5(a) lists
the average AUC results on CDF, DFDCP and FFIW. As seen, since
the diversities of forgery traces are increased through FPG, too
short training epochs make the detector under-fitting and insuffi-
cient for generalization. However, the advantage of utilizing FPG
appears apparent when continues to increase the epoch. When
the epoch number equals 50, all metrics from our approach sur-
pass the baseline with significant margins. To further explore the
number of epochs required for the baseline to approximate the
performance achieved by FPG, we extend the maximum of training
epochs to 100 and 250, respectively. Apparently, the improvement
rate in detection results is sluggish. We conjecture the reason is
the lack of a compact correlation between forgery sample genera-
tion and the cultivation of forgery perception. Consequently, using
the original forgery samples to cultivate a comprehensive forgery
perception proves to be inefficient. Even when the epoch number
equals 250, the average detection results with the baseline method
remain inferior to FPG trained with only 50 epochs.

Table 3 presents more details related to the detection perfor-
mance and the costs. As we bridge the forgery sample generation
and the cultivation of forgery perception through the FPG. From
the third row of Table 3, after adopting the refinement strategy

Table 3: Ablation study of different component settings. ‘B’,
‘R’, and ‘O’ indicate baseline, forgery sample refinement, and
extra explicit optimizations. AP and AUC are averaged from
the results on CDF, DFDCP, and FFIW. The bracket of ‘H’ and
‘M’ denotes hour and million bytes, respectively.

Method Epoch AP (%) AUC (%) Time (H) Param (M)B R O

✓ - - 50 90.33 88.71 1.6 16.7
✓ - - 250 91.86 89.35 8.3 16.7
✓ ✓ - 50 91.72 89.27 2.5 16.7
✓ ✓ ✓ 50 92.48 89.88 2.6 18.2

Table 4: Ablation study of different detectors. The AUC re-
sults are tested from CDF, DFDCP, and FFIW. ‡ indicates the
results are implemented on FF++(c23) through the official
code since [42] does not support VGG-19 results.

Backbone Test Set AUC (%)
CDF DFDCP FFIW Avg

Xception + Baseline [42] 90.27 78.85 76.72 81.95
Xception + FPG 90.68 83.57 78.98 84.41

ResNet-50 + Baseline [42] 90.66 82.88 79.30 84.28
ResNet-50 + FPG 90.72 82.93 81.77 85.14

VGG-19 + Baseline‡ 81.17 75.07 82.54 79.59
VGG-19 + FPG 82.31 75.94 85.07 81.11

only, the generalization performance can be effectively improved
with the same detector structure. Besides, since the robustness of
the detector to the irrespective factors within the input samples is
also important to the detection results, we implement extra explicit
optimizations to adapt sample diversities by considering image
qualities and local forgery traces. Consequently, the generalization
is further improved with only 1.5M parameter increasing (18.2 vs.
16.7). Remarkably, our approach substantially reduces training cost,
saving around 3× training time compared to the baseline method
(8.3 vs. 2.6), underscoring the high efficiency of our approach.
Method Applicability Analysis. To evaluate the effectiveness of
FPG on the other deepfake detectors, i.e., Xception [10], ResNet50
[17], and VGG [44]. These detectors are trained with the baseline
method and FPG, respectively. As shown in Table 4, with the help of
the refinement strategy and explicit optimizations, FPG outperforms
the baseline method on multiple detectors. For example, FPG can
elevate the detection results of Xception to 84.41%, which surpasses
the baseline method by over 2.46%. Moreover, these results pro-
duced by FPG can effectively demonstrate its applicability, which
is important in scenarios where the computing source, technique
compatibility, or model scalability are constrained. Moreover, the
experiments related to the applicability of different image distor-
tions are listed in the supplementary material.
Hyperparameter Setting Analysis.We first analyze the impact
brought by the scale factor 𝛼 . Fig. 5(b) lists the detection results
on CDF, DFDCP and FFIW. 𝛼 is used to measure the strength of
the direct contrast between a real sample and the fake counterpart
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(a) (b)

Figure 6: The variation of Detection results. (a) The impact
with different 𝑡 . (b) The impact with different 𝜖.

in the local forgery traces. Increasing the 𝛼 from 0.025 to 0.075
leads to an improved detection performance. This is because the
direct contrast of the local features elevates the sensitivity of the
detector to the forgery traces. The decline appears when 𝛼 beyond
0.075. This may be attributed to the respective field of the feature
map. L𝑠𝑖𝑚 uses the local features that are selected from the resized
forgery mask. Since these deep layer features possess high receptive
fields, indicating that the selected features related to the image area
outside local forgery regions and increase the 𝛼 thus enlarging the
biases. To get correlated features, a more precise feature selection
strat egy will be considered in our future work.

In the forgery sample refinement, 𝑡 is the overlapped threshold
between the forgery masks and the corresponding resized feature
responses. 𝜖 involves the modifications to the magnitude within
the forgery trace. To investigate the impact of the hyperparame-
ter, as depicted in Fig. 6(a), the upward trend appears when 𝑡 is
increased from 0 to 0.2, which means the forgery samples generated
through the shape refinement can reflect the detector omissions
to the forgery traces and then conduct more efficient training. Fur-
ther increasing leads to fewer forgery traces within the samples,
exacerbating the detection difficulties and hard to converge during
training. Fig. 6(b) illustrates the detection result related to 𝜖 . Sim-
ilarly, increasing the perturbation improves the detection result.
Nevertheless, since the magnitude of the mask is adjusted through a
one-step attack strategy [15], perturbations are generated by linear
approximation of the gradients. This approximation introduces bi-
ases and decreases the detection result when 𝜖 is further increased.

4.4 Qualitative Study
Forgery Perception Analysis. To investigate the perception of
detector to the forgery samples more intuitively, the saliency map
of forgery samples with different deepfake techniques is shown
in Fig. 7. It can be apparently observed that, with the help of FPG,
there are higher salient values than the baseline method within the
forgery traces, which means the detector can perceive the forgery
traces more completely. As a result, the deepfake detector can better
adapt to the forgery samples with various deepfake techniques so
that the generalization can be improved remarkably. More qualita-
tive results are shown in the supplementary material.
Sample Distribution Analysis. To make the detector adapt to the
sample diversities, extra explicit optimizations are introduced to
further consider the facial image qualities and local forgery traces
during the detector training. Fig. 8 illustrates the impact brought by

DF

F2F

FS

NT

Baseline FPG FPGBaselineOriginal Original

Figure 7: The saliency visualization for samples with differ-
ent deepfake techniques. FPG is compared to the [42].

w/o explicit optimizations w explicit optimizations

Figure 8: The T-SNE [50] visualization of our approach with-
out and with the extra optimizations. The distributions of
the samples with the same category exhibit more compact
by optimizing the detector with more explicit information.

the optimizations to the sample distributions when facing unknown
deepfake techniques. In the absence of explicit optimizations, the
distributions of samples with the same class present dramatic vari-
ations such as sparse scattered or long trails, suggesting that the
detector is sensitive to the irrespective factors. With explicit opti-
mizations, the detector can better adapt the various samples and
focus on the features related to the forgery traces. Due to the similar
characteristics of samples with the same deepfake techniques, these
distributions thus becomes clustered.

5 CONCLUSION
In this paper, an efficient method dubbed Forgery Perception Guid-
ance (FPG) is proposed to elevate the generalization of deepfake
detectors from the perspective of real-time perception analysis,
which has inadequate attention in previous studies. Specifically,
FPG encompasses the forgery sample refinement and the extra
explicit optimizations. The refinement strategy pertinently facili-
tates perceiving the forgery traces by modifying the samples based
on the feature responses and prediction scores. The extra explicit
optimizations promote adapting sample diversities by consider-
ing facial image qualities and local forgery masks, thereby further
improving the forgery perceptions. Experiments demonstrate that
FPG is superior to state-of-the-art methods on the cross-dataset and
cross-manipulation protocols. Notably, the enhanced generalization
is achieved with small training costs, minor detector modifications,
and the acquirement of real samples only.
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