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Abstract

Machine learning models fail catastrophically un-
der distribution shift, but a surprisingly effec-
tive way to empirically improve robustness to
some types of shift (e.g., Imagenet-A/C) is to use
stronger open-vocabulary classifiers derived from
foundation models. In this work, we first note that
for shifts governed by spurious correlations (fea-
tures spuriously correlated with the label on the
training data, but not on test), the zero-shot and
few-shot performance of foundation models is no
better than ERM models, and remains unchanged
when pretrained data/model size is scaled. Sec-
ondly, even in these situations, foundation models
are quite accurate at predicting the value of the
spurious feature. In a simplified setup, we theo-
retically analyze both these findings. Specifically,
we show that during contrastive pretraining, the
simplicity bias of foundation models tends to re-
sult in the learning of features that mostly rely
on the spurious attribute, compared to more ro-
bust features. We leverage these observations to
propose Prompting for Robustness (PfR) which
first uses foundation models to zero-shot predict
the spurious attribute on labeled examples, and
then learns a classifier with balanced performance
across different groups of labels and spurious at-
tribute. Across 5 vision and language tasks, we
show that PfR’s performance nearly equals that of
an oracle algorithm (group DRO) that leverages
human labeled spurious attributes'.

1. Introduction

Machine learning classifiers are often trained on datasets
with hidden confounders that are spuriously correlated with
the label. For example, waterbirds tend to occur in pictures
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with water backgrounds (Blodgett et al., 2016; Barocas
& Selbst, 2016; Hovy & Sggaard, 2015; Tatman, 2017).
Empirical risk minimization (ERM) latches onto these con-
founders and can consequently fail catastrophically on un-
derrepresented (minority) groups where the confounder is
uncorrelated with the label, e.g., pictures of waterbirds
on land (Lyu et al., 2021; Shah et al., 2020; Nagarajan
et al., 2020). Numerous algorithmic interventions have been
proposed to make ERM models more robust to such con-
founders (e.g., Ben-Tal et al., 2013; Arjovsky et al., 2019).

On the other hand, with the advent of foundation mod-
els trained on heterogeneous datasets, we are observing
a paradigm shift in how we learn classifiers. Driven by
their unprecedented zero-shot prediction capabilities, the
common strategy of learning classifiers has been to simply
prompt models with class names directly (Wei et al., 2020;
Brown et al., 2020). In fact, zero-shot prompting sometimes
yields classifiers that are more robust than ERM classifiers
trained on downstream data (Hendrycks et al., 2020; Fang
et al., 2022), e.g., as seen in robustness gains observed on
benchmarks like ImageNet with distribution shifts (Radford
et al., 2021). However, as we show in our work, such gains
do not proportionately transfer to other forms of distribution
shift such as when confounders that are highly predictive
of the label in training distribution are no longer correlated
with the label on test (Yang et al., 2023; Tu et al., 2020; Hall
et al., 2023). Thus, robustness to hidden confounders in the
training data remains an open challenge.

In this work, we aim to improve the performance of founda-
tion models on paritions of the distribution (groups) where
the confounder is not correlated with the label (minority
group). One way is to incorporate downstream labeled
data. Unfortunately, unless we have access to deconfounded
data (without the spurious correlation), simply fine-tuning
naively would result in the same issues as standard ERM
training, as we confirm experimentally. However, with open-
vocabulary foundation models, we can provide for robust-
ness by telling the model about the confounder directly (i.e.,
by describing it in a prompt). One natural way to use this
knowledge is to incorporate the description into the classifi-
cation prompt. However, we observe that even this doesn’t
improve zero-shot robustness (see Sec. 3.2).
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Figure 1: (a): Foundation models are not robust to spurious correlations, but can predict them; Averaged across four tasks
with spurious correlations, we see that while zero-shot foundation models perform much worse on groups where the spurious
correlation is absent, they are highly accurate at predicting the spurious attribute itself, across all groups. (b): Prompting for
Robustness (PfR): Leveraging findings in (a), we propose prompting for robustness (PfR), that learns robust classifiers from
foundation models in two steps. In Step 1, armed with a text description of the spurious feature, PfR prompts foundation
models to zero-shot predict the spurious attribute on a labeled dataset with spurious correlations, and in Step 2 it learns a
robust classifier by minimizing worst group loss, across groups given by the combination of the predicted attribute and label.

We make an intriguing observation: while foundation mod-
els are not robust zero-shot classifiers of the true label, they
perform remarkably well in predicting the presence of spu-
rious attributes. Moreover, we observe that while scaling
up the model size and pretraining data does not improve
the performance of label prediction on minority groups, the
worst group performance of spurious attribute prediction
does. Motivated by these findings, we propose a simple
technique that we call Prompting for Robustness (PfR). PfR
learns robust classifiers for downstream tasks with a few
labeled examples and a language description of the con-
founding attribute. PfR first uses the language description
to prompt for a zero-shot classifier that accurately predicts
the spurious feature on each labeled example. The value
of the label and the predicted confounder jointly define a
set of disjoint groups in our data. Then, a robust predictor
is learnt by minimizing worst group loss, similar to group
DRO, as described by Sagawa et al. (2019), but without
ground-truth knowledge of examples in the minority group.
This simple method yields surprising performance gains of
> 40% (averaged across datasets) relative to zero-shot per-
formance of foundation mdoels and ERM on downstream
data alone. We further illustrate the applicability of our
findings by showcasing its efficacy in extracting group an-
notations for auditing zero-shot (or ERM) models to assess
their robustness. Specifically, we prompt GPT-4V to an-
notate Chest-Xray 14 dataset (Wang et al., 2017b) for the
presence of chest drains (the spurious attribute) and observe
a significant robustness gap among ERM models.

Finally, in a simplified setup for multimodal contrastive pre-
training, we show that when the spurious correlations in the
downstream task are also present in the pretraining distribu-
tion over image, and text pairs, then contrastive pretraining
learns: (i) image features that couple the spurious feature

with other robust features, while placing a higher weight on
the spurious one; and (ii) text features that are almost iden-
tical for the text descriptions of the label and the spurious
attribute. As a consequence of this, we prove that even with
infinite pretraining data, the zero-shot performance for the
pretrained model would be provably worse than random on
examples where label and spurious attributed are uncorre-
lated. On the other, when it comes to predicting the spurious
attribute it has almost perfect accuracy on all examples —
precisely the observations we make empirically as well.

In summary our key contributions are as follows. First,
we study the performance of foundation models across five
vision and language classification tasks with hidden con-
founders, and observe that while foundation models have
poor zero-shot performance on minority examples (that does
not improve with scale), they are accurate at predicting the
value of the confounder. Second, we leverage this finding to
propose a new and simple method: PfR which first zero-shot
predicts the confounder when given a text description of it,
and then learns a robust classifier across predicted groups.
Theoretically, we tie the performance of PfR to the zero-shot
accuracy of foundation models on tasks with spurious corre-
lations. Thus, in a simplified setup we provide a theoretical
analysis for the zero-shot performance of solutions learned
by multimodal contrastive pretraining, and reconcile our
theoretical insights with practical findings. Empirically, we
show PfR’s worst group performance nearly matches the
oracle (group DRO) on all datasets.

2. Problem setup

We aim to study the robustness of zero/few-shot founda-
tion models, to distribution shifts in classification tasks with
spurious correlations. We ground this statement more for-
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mally by first defining the task distribution, the model of
distribution shift, and what it means to be robust to it.

For a classification task, we use X’ to denote input text/image
and Y for the set of labels. Additionally, we also de-
fine a set C of spurious attributes (or confounders). With
G =:{G1,Ga,...,G}}, we define a set of disjoint subsets
of X x Y x C where each G| has distribution P;(z, y, ¢).
Then, our task distribution is a mixture of distributions over
g,ie, >, i P;(z,y,c) where a; is the proportion of data
from each group. In particular, each group G; corresponds
to a unique pair of label and confounder values (y;, ¢;), i.e.,
1((x,y,c) € G;) = 1(y = y;)1(c = ¢;). When the label y
and spurious attribute c are heavily correlated, a classifier
that only learns the spurious feature c can easily predict the
label y. But, this creates a performance disparity across
groups where correlations do not hold. For e.g., in Wa-
terbirds (Sagawa et al., 2019), the spurious attribute is the
background of the bird, the labels are the category of the
bird (landbird vs waterbird) and the groups are defined over
the joint space of the bird category and its background.

Under distribution P, the average error of a label classifier
fiserry'8(f) =: Ep [1(f(x) # y)] and spurious atribute
classifier g is err§y®(g) =: Ep [1(g(z) # ¢)]. Similarly,
their corresponding worst-case error counterparts, taken
over groups is: ert)'®(f) =: maxgeg Ep|g [1(f(x) # y)]
and erry?(g) =: maxgeg Ep|e [1(g(x) # c)]. We define
the robustness gap as the difference between the average
case and worst case performance. Consequently, a classi-
fier with low robustness gap for label prediction performs
similarly on any distribution that only reweights group pro-
portions c;. Alternatively, robustness to such group shifts is
achieved by having a low robustness gap.

In this work, our goal is to learn a label classifier with (i)
high average accuracy, and (ii) low robustness gap. For this,
we assume that we are given a text description ¢, of the
confounder ¢, along with a few i.i.d. labeled samples D
from P(x,y). Unless specified otherwise, we assume that
group annotations are not given to us. Finally, we use FM
to denote a foundation model, whose zero-shot prediction
of the spurious attribute in input x is FM(z, t..).

3. Zero-shot robustness of foundation models

In this section, we examine the zero-shot performance of
open-vocabulary foundation models on common bench-
marks for spurious correlations with known confounders.

We find that the zero-shot performance of foundation models
suffers from a large robustness gap, indicating a substantial
difference between average-case and worst-group perfor-
mance (also demonstrated by Yang et al. (2023); Tu et al.
(2020); Lee et al. (2023)). As we increase the scale of pre-
training datasets for foundation models, although the models

might become better, the robustness gap stays the same or
widens, indicating that scale alone does not provide robust-
ness to confounders. Subsequently, we experiment with
incorporating a natural language description of the spuri-
ous attribute when prompting the model to predict the label.
Our findings indicate that while the inclusion of spurious at-
tribute descriptions through naive zero-shot prompting does
not yield improvements, these models demonstrate high ac-
curacy in predicting the presence of the spurious attribute
itself. Building on these findings, we propose our method,
Prompting for Robustness (PfR), in Section 5.

Finally, we test our observation of identifying spurious corre-
lations using foundation models on a practical medical diag-
nosis task. In particular, we annotate Chest Xray-14 (Wang
et al., 2017a) dataset for the presence of chest-drain which
is a known spurious correlation when predicting pneumoth-
orax (Oakden-Rayner et al., 2020). On the groups annotated
by GPT-4V (Achiam et al., 2023), ERM models trained on
MedCLIP features (Wang et al., 2022) show large differ-
ence between average case and worst-group performance.
This exemplifies GPT-4V’s ability to identify performance
imbalances from descriptions of spurious attributes.

3.1. Setup

Datasets. We experiment with datasets in both language
and vision modalities. For language, we experiment with:
(i) MNLI (Williams et al., 2017), where the prediction task
is relationship between two input sentences: contradiction,
entailment, or none of the two. Here the spurious attribute
is the presence of negation words, e.g., ‘no’, and ‘never’;
(i1) CivilComments (Borkan et al., 2019; Koh et al., 2021),
where the task is toxicity prediction and the spurious corre-
lation lies with the underlying attribute annotating the com-
ment, e.g., male vs. female, Christian vs. Muslim, efc. For
vision, we experiment with: (i) Waterbirds (Sagawa et al.,
2019), where the prediction task is waterbird vs. landbird,
and the spurious attribute is the background of the image
(i.e., land versus water background); (iv) CelebA (Sagawa
et al., 2019), where the prediction task is gender and the
spurious attribute is the color of hair. We also experiment
with the CXR-drain dataset introduced in Sec. 3.3.

Experimental setup. For our zero-shot probing results
on vision datasets, we experiment with CLIP model fam-
ily (Radford et al., 2021; Gadre et al., 2023). For language,
we use Llama-2 (Touvron et al., 2023) and Pythia model
families (Biderman et al., 2023). We mainly pick these
publicly available models for their reasonably good per-
formance on standard benchmarks. Additionally, we can
vary the model and pretraining dataset sizes for each family.
For our ERM experiments, we train linear classifiers on the
penultimate layer outputs, and for our zero-shot probes, we
leverage standard prompts commonly used in the literature.
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Figure 2: Robustness gap versus average performance as pretraining data and model sizes increase. We observe that while
the robustness gap for confounder prediction decreases the gap between average and worst case increases or remains the

same for label prediction.

Precise details about prompts used for each dataset are in
App. C. We report: (i) prediction accuracy of the label on the
worst-group (across combinations of spurious attribute and
label values), and (ii) average performance across groups.
We also evaluate the performance of predicting the spurious
attribute with zero-shot probes.

3.2. Observations

Large zero-shot performance gap between the average
and worst group. Zero-shot results are in Table 2. When
evaluating CLIP L/14 models on vision datasets, a notable
drop of 32% is observed between average and worst group
accuracy on Waterbirds dataset, and a drop of 3.5% is ob-
served on CelebA. Turning to language datasets, the evalua-
tion of the Llama-2 13b model indicates a significant 25%
performance decline in CivilComments and a 7% drop in
MNLI. Notably, the drops observed here are similar to the
performance drops observed with models trained with ERM
on their corresponding labeled data (Sagawa et al., 2019;
Idrissi et al., 2022). The decline seen with ERM models is
typically ascribed to the existence of hidden confounders
in the training data (Sagawa et al., 2019), suggesting that
pretraining datasets also frequently suffer from analogous
spurious correlations. We formalize this intuition in Sec. 4.

Incorporating the group description naively does not
help out of the box. We incorporate spurious attribute
description in our zero-shot prompt to predict the label
and the spurious attribute jointly. Results are shown in
Table 1. However, the zero-shot performance for the worst-
case group doesn’t improve — there is less than a 1% change
between the zero-shot and zero-shot with spurious attribute
description rows in Table 1. We also evaluated other vari-
ants, where we explicitly instructed the model to ignore
spurious attributes, but this did not substantively impact
worst-group performance (details are in App. C).

Foundation models are surprisingly good at predicting
the presence of hidden confounders. Results are in Ta-
ble 1. Instead of incorporating spurious attribute description
together with the label, we experiment with predicting the

presence of a spurious attribute alone. On all standard spuri-
ous correlation benchmarks, we observe that the average per-
formance of predicting the presence of the spurious attribute
is around 95% with a similar worst-case group performance.
This consistent performance is observed across different
groups, emphasizing that, despite foundation models ex-
hibiting significant robustness gaps in the joint prediction
of spurious attributes and labels, the predictive accuracy for
spurious attributes alone remains superior.

Scaling pretraining datasets and models does not im-
prove zero-shot group robustness. The scaling trend
results are presented in Fig. 2 (a)-(c), showcasing the per-
formance plotted on average against the difference between
average performance and worst-case performance. We an-
alyze this difference in comparison to the average case for
both zero-shot label and spurious attribute prediction. As
we scale up the pretraining datasets and models, we observe
that while the difference reduces for the cofounder predic-
tion, the difference doesn’t improve for the label prediction
task. This highlights that the prediction performance on
standard spurious correlation benchmarks don’t improve
with scaling and will require post-training interventions.

Scaling pretraining datasets and models does improve
underlying representations. As expected we observe that
the average and worst-case accuracy (trained with DRO on
downstream labeled data) improves as we increase the scale
of model size and pretraining data (Fig. 2 (d)).

3.3. CXR-Drain: Annotating confounders with GPT-4V

Previously, we used ground-truth annotations of spurious
attributes to establish the high zero-shot accuracy of foun-
dation models in predicting them. Now, we start with a
language description of a real-world spurious attribute in a
medical task and annotate examples by prompting GPT4-
V with this description. By first predicting the spurious
correlation in a zero-shot way on a task where annotations
are not public (not even for validation), and then showing
the performance imbalance of ERM models across anno-
tated groups, we validate the ability of foundation models
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Prompt Predict Waterbirds CelebA CivilComments MNLI
WG Avg WG Avg WG Avg WG Avg
Is this label L? L 59.38 9197 77.69 81.11 59.25 8575 76.54 84.79
Is this label L? Ignore confounder C. L 61.37 9258 86.73 90.28 5281 87.41 7795 80.56
Is this label L and confounder C? L,C 57.38 88.15 78.54 83.11 5429 86.60 75.73 8291
Is this confounder C? C 90.55 96.33 9501 99.15 86.73 9270  92.37 96.19

Table 1: Naively incorporating the confounder description into the label classification prompt does not improve robustness.
Results with leveraging natural language description of the group and label for zero-shot classification.

CXR-Drain

Without
Pneumothorax

With
Pneumothorax

%

Chest drain: Present

Chest drain: Absent

Figure 3: Samples from Chest-Drain dataset in each cate-
gory. The presence of a drain is identified by prompting
GPT-4V. Fig. 5 shows an annotated chest drain image.

to detect the presence of spurious features in practice. We
annotate 2400 images from Chest Xray-14 dataset (Wang
et al., 2017b) for the presence of chest drain with GPT-4V
(details in App. C.3). On this dataset, the goal is to predict
the whether the patient suffers from pneumothorax disease
given their chest x-ray image and the presence of a chest
tube in the chest cavity acts as a confounder. It is noteworthy
that while previous studies have underscored the issue of
spurious correlations in pneumothorax prediction (Oakden-
Rayner et al., 2020), the spurious attributes pertinent to this
task are not openly available. We refer to the subset of Chest
Xray 14 with annotated spurious attributes as CXR-Drain.

While the annotations obtained with GPT-4V are expected
to be noisy (different from ground truth annotations for the
presence of chest drain), we observe that models trained
with ERM show a significant performance gap on the con-
structed CXR-Drain dataset (Table 2). Next, we also note
that CXR-drain differs from existing semi-synthetic spu-
rious correlation benchmarks, e.g., the worst group is not
the minority group which, and hence, re-weighting based
methods (Idrissi et al., 2022; Kirichenko et al., 2022) that
simply re-weight different groups may perform poorly when
compared with DRO. Due to its unique properties, we be-

lieve that CXR-drain will also serve as a crucial benchmark
for future research on spurious correlations, and we publicly
release the dataset here.

4. Theoretical analysis of multimodal
contrastive pretraining

In Sec. 3, we empirically identified that the worst group
zero-shot performance for predicting the label of a task (with
hidden confounders) never improves with scale. So, why
does the worst-group performance for confounder prediction
improve? In this section, we analyze both these trends the-
oretically when the label is correlated with the confounder
in the pretraining data, similar to the task (Sec. 2). We anal-
yse multimodal contrastive pretraining, mainly because: (i)
we can derive and analyze the closed form solution for the
population level contrastive pretraining objective; and (ii) it
is commonly used in practice for training vision-language
foundation models (e.g., CLIP) that align features of image
and text pairs (Radford et al., 2021; Wang et al., 2022).

Broadly speaking, we show that when spurious correlations
in the downstream task are also present in pretraining, then
contrastive learning learns an image encoder that almost
fully couples (no linear separability) the spurious feature
with other robust features predictive of the label. In this
coupling, the component along the spurious feature is higher
when the signal-to-noise ratio along the robust feature is
relatively poor. Exacerbating this failure, the text encoder
learns almost identical features (in £5) for the confounder
and label. We show that even when training on population
level pretraining data, the worst group accuracy of zero-shot
label predictor is worse than random, while that of zero-shot
confounder predictor is nearly perfect. Since the solution
learnt on population data is itself “bad”, under the following
setup, our result highlights a more serious failure of the
contrastive objective, than the one typically discussed for
ERM (Nagarajan et al., 2020; Sagawa et al., 2020).

Setup. The downstream task 7" has joint distribution
P(z,y,c) over image z, label y, and confounder, where
both y and c take values in {+1, —1}, see (1) for the data
model. In this data model, the degree of spurious corre-
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lation between label y and confounder c increases when
the random variable b is sampled from a Bernoulli with
higher mean p. The input z is split into three components
[y, Tc, Zn ], where 2, € R is the robust feature determined
solely by v, x. € R equals the confounder ¢, and z,, € R%
is high dimensional noise independent of y, c.

y ~ Unif{+1, -1}, b ~ Bern(p), c=y(2b—1) (1)
Ty ~ N(yvaf)a Te =C, Tp ~ N(Odn7031dn)~

Contrastive pretraining. The pretraining distribution
for multimodal learning is denoted by Q(x,t) (with den-
sity g(z,t)), and is defined over X x T, where X image
set and 7T is the set of captios (text descriptions) for the
images. Contrastive pretraining learns an image encoder
¢ : X — R¥ and a text encoder w : 7 — R* by pushing
together features of image and text pairs sampled from joint
distribution @Q(z,t), and pulling apart representations of
independently sampled images from Q(z), and texts from
Q(t). The pretraining objective is in (2). We can view
(2) as the multimodal version of the spectral contrastive
loss (HaoChen et al., 2021), which is mathematically equiv-
alent to more general contrastive and non-contrastive objec-
tives (Johnson et al., 2022; Garrido et al., 2022).

—2B (. 1~00(z) w(t) + EpgEig(d(z) w(t))? (2)

For simplicity, we consider a pretraining distribution Q(x, t)
that is most relevant for the downstream task 7. Thus, the
set of text descriptions T is: {ty 1,ty,—1,%c1,tc,—1}, and
the marginal Q(¢) is uniform. For the conditionals, given
a € {—1,1}, the images are sampled from Q(x | t,.q) =
Pz |y = a),and Q(z | tc,) = P(z | ¢ = a). Note
that as p in (1) increases, not only does the downstream
correlation between label and confounder (Ep[yc]) increase,
the overlap between Q(x | t,,) and Q(z | t.q) in the
pretraining distribution also increases.

Zero-shot predictors. In practice, pretrained ¢, w are used
as zero-shot classifiers by evaluating ¢(x) Tw(t), where ¢
is the labels’s text description. Adhering to this, we de-
fine zero-shot label classifier f =: 2 - 1(¢(x) T (w(ty 1) —
w(ty,—1)) = 0) — 1, and zero-shot confounder classifier
9 =2 1(6(2) (@(ten) — wlte1)) > 0) — L.

4.1. Key insights and main result.

In Theorem 4.1 we provide an informal statement of our
main result on the worst group zero-shot performance of
label and confounder classifiers. We note that as the spurious
correlation p increases, the worst group error worsens for the
label predictor and improves for the confounder predictor.

Theorem 4.1. (zero-shot robustness) Let the zero-shot
label (f) and confounder classifier (g) be obtained by
minimizing the loss in (2) on infinite pretraining data for
linear functions ¢,w. Then, for o, = Q(1), label clas-

sifier is worse than random on the worst group, since
erry®(f) = l2erfc(—cipoy). On the other hand, the con-
founder classifier suffers small error on all groups since
erri®(g) = 12 erfc(capo,). Here, c1,ca > 0 are constants.

Our analysis in Sec. 4.2 shows that the above result is a
consequence of (i) image encoder relying more on non-
robust z. compared to robust z, when o, is higher; (ii) text
encoder failing to learn separate representations for the label
and confounder descriptions.

Intuition. During multimodal contrastive pretraining fea-
ture alignment of the image and corresponding text features
is achieved when images z;, z; ~ Q(x | t) sampled from
the text have well clustered representations, and the clusters
of different text inputs are well separated. Our understand-
ing relies on two key observations. First, when the pretrain-
ing distribution replicates the task distribution’s spurious
correlations (as Q(z, t) does with P(z,y, ¢)), then the clus-
ters learned for the label and confounder necessarily overlap
since Q(x | ty.a) & Q(x | tcq) (matches on all but the
group where correlation is absent). Thus, given this distribu-
tion overlap the optimal text encoder’s features for the label
and the confounder would be very similar. Second, when
the noise along the robust feature o, is high, the intra cluster
variance along the non-robust feature x. is relatively lower.
This biases contrastive learning to place higher weight on
the non-robust feature, in learning features that separate
clusters corresponding to the different text inputs with large
margins. Together, this would lead to poor robustness for
the label predictor, and opposite for the spurious attribute
predictor, as we note in Theorem 4.1.

4.2. Optimal solutions for spectral contrastive loss.

In this subsection, we present Theorem 4.2 which states
the solutions for the image and text encoders learned by
minimizing the objective in (2), for linear ¢, w and k = 2. In
Appendix A we prove results for more general families. We
make two observations that are consistent with our intuition
above. First, we see that when the noise along robust feature
(oy) is large, then any increase in spurious correlation (p),
increases the optimal image feature weights along spurious
atttribute (z.). Second, we see that the optimal solution for
the text learns identical features for label and confounder.
Thus, on any group that they disagree, the upweighted x.
feature contributes more to the prediction.

Theorem 4.2 (Optimal linear ¢*, w*). Let p > 0.5 and ¢, w
be linear functions over X, T. Then, 3 constants c1,co > 0
such that for the constraint set: § . $3(x) dQ(z) < c1, Vi
and { - w?(t) dQ(t) < ¢y, Vi, and $,w that are orthogonal
in L*(Q), the optimal solutions for the objective in (2) are

¢y = [cos(0)/\ /o271, —sin(0)]",
s = [5in(0)/ /o751, cos(0)],

where 6 = O (1/po?). Also, the text features match for
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Algorithm 1 Prompting for Robustness (PfR)
Input: Foundation model FM, text description of
counfounder ¢, labeled dataset D = {z;, y; }7_;.
Stage I: Predict confounder (spurious attribute)

* Prompt FM with ¢.. to get zero-shot head FM(-, ¢..).

* For each datapoint predict confounder ¢; « FM(x;, t.).

* Partition dataset into set of disjoint groups G based on
value of label and predicted confounder: (y, ¢).
Stage II: Optimize worst group loss with DRO

¢ Learn robust classifier f by minimizing the worst loss
over predicted groups in (3).

label and confounder; i.e., w(ty ) = W(tcq) = [1,a]" for

ae{l,—1}.

5. Prompting for Robustness

Our results in Section 3 suggest that zero-shot classification
with foundation models often attains high average group
accuracy but low worst-group accuracy. However, we note
that they are surprisingly accurate at predicting the presence
of a confounder. We leverage this finding to propose a
simple but effective method: Prompting for Robustness
(PfR). PfR learns a robust classifier given a few labeled
examples and a text description of the confounder. While
standard techniques of using labeled data or foundation
model alone fail, we show that PfR efficiently uses both to
recover a classifier with worst group performance close to
that of methods that have ground truth group information
(i.e., Group DRO).

Prompting for Robustness (PfR). PfR (summarized in
Algorithm 1) runs in two stages. In the first stage, PfR
prompts an open vocabulary foundation model FM with
the text description ¢. of the confounding attribute and re-
covers a zero-shot prediction of the confounder ¢ on any
given input (for e.g., in the case of CivilComments the con-
founder is described as “race, religion or gender”). Using
this, each training example (x;), which was previously an-
notated only for the label of interest (y;), is additionally
annotated with the value of the confounding attribute (c;)
(for e.g., “black/white and christian/muslim”). The train-
ing dataset is then split into disjoint groups G based on the
paired value (y;, ¢;) of the label and predicted confounder.
In the second stage, PfR learns a robust classifier by min-
imizing the worst group loss over each predicted group,
minimizing:

minmax E[¢(f(z),y) | x € G]. 3)

fGeg

The above objective can be optimized with an online algo-
rithm that treats f and G as players in a minimax game, anal-
ogously to the group DRO algorithm described by Sagawa

et al. (2020). Hence, we reuse their Algorithm 1 to optimize
our objective in Equation (3). The key difference between
our objective and standard Group DRO is that the latter min-
imizes worst group loss over ground truth groups obtained
by using human annotations of the confounder attribute.
Based on our findings from Section 3, we should expect
that the confounder can be predicted accurately in zero shot,
enabling PfR to possibly match the performance of Group
DRO. This is indeed what we will see in experiments.

5.1. PfR is more robust than zero-shot and ERM

On the five datasets we introduced previously, we evaluate
the performance of PfR and compare with both zero-shot
and few-shot algorithms that have access to a few labels (but
not the ground-truth group labels).

Setup and baselines.  On the language tasks we use
Llama2-7b and Llama2-13b models (Touvron et al., 2023)
for zero-shot prediction (reporting max of the two), and
on the vision tasks we use CLIP-ViT-L/16 (Radford et al.,
2021). We compare PfR with standard ERM and four base-
line methods: JTT (Liu et al., 2021), DebiAN (Li et al.,
2022), EIIL (Creager et al., 2021), ReBias (Bahng et al.,
2020) that were originally proposed to learn robust classi-
fiers without relying on ground truth group annotations. Ad-
ditionally, we also evaluate on two recent approaches (Yang
et al., 2023; Zhang et al., 2022) that specifically aim to ro-
bustify training with contrastive learning objectives. For
baselines excluding ERM, JTT and Zhang et al. (2022), we
only evaluate on vision datasets, since they involve tech-
niques that do not translate easily to language tasks. We
also include Group DRO (Sagawa et al., 2019) as an ora-
cle baseline that has access to true group labels. All few-
shot methods including PfR are used to train a linear head
over fixed features. In the language task we train a linear
head on top of features learned by finetuning a RoOBERTa
encoder (Liu et al., 2019) on the MNLI/CivilComments
dataset, and for vision tasks we train a linear head over
CLIP’s image encoder.

Results. In Table 2, we compare average and worst group
performance for different methods. First, we observe that
averaged across datasets, PfR reduced worst group error
by 47% compared to zero-shot, and 52% and 30% com-
pared to ERM and JTT, respectively. On some datasets like
Waterbirds, the worst group gains are as high as > 75%.
More importantly, PfR’s performance closely matches that
of the oracle Group DRO algorithm across all datasets. Ad-
ditionally, unlike overly pessimistic DRO objectives like
CVaR-DRO (Hu et al., 2018), the average performance is
not significantly compromised from trying to improve worst
group accuracy. Thus, we see that PfR learns a classifier
robust to spurious correlations without much human annota-
tion overhead beyond a description of the confounder.
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Method Waterbirds CelebA CivilComments MNLI CXR-Drain
WG Avg WG Avg WG Avg WG Avg WG Avg

Zero-shot 59.38 91.97 77.69 81.11 59.25  85.75 76.54  84.79 - -
ERM 70.71  98.75 54.84  94.96 61.35  92.42 67.30 87.71 51.79 76.10
JTT 85.86  95.47 82.49 92.74 72.73  90.54 72.75 86.73 56.52  77.53
Zhangetal. 86.90 96.20 84.60  90.40 50.10  54.20 69.83  86.59 60.15 78.11
Yangetal. 90.13 95.80 88.12 91.64 — — - - 59.37 74.58
ReBias 79.24  95.83 70.79  93.52 — — - — 51.39 78.54
DebiAN 82.36  93.79 7429 92.76 — - - - 5291 7542
EIIL 81.18 96.84 79.53  91.75 — - - - 56.62 7945
PfR (ours) 91.05 94.32 88.05 91.97 77.83 88.70 81.28 84.60 68.55 76.73

Group DRO  93.23  94.40 90.79 92.32 80.21  86.52 81.54 84.37 - -

(oracle)

Table 2: PfR improves worst group performance over ERM and zero-shot foundation models: On five benchmarks from
Section 3 we evaluate average and worst-group performance of PfR and compare it with baselines JTT, ERM, and zero-shot.

5.2. Comparing PfR with in-context learning

For language tasks, in-context learning (ICL) is a commonly
used few-shot method to improve performance when zero-
shot methods are poor (Brown et al., 2020). In ICL, some
labeled training examples are fed along with a language de-
scription of the classification task to large language models
(e.g., GPT-3.5, Llama). Since PfR also uses labeled exam-
ples, we compare our method with ICL on CivilComments
and MNLI (see Fig. 4). We observe that while ICL improves

100

s ERM ICL PFREEE AvgEE WG

Accuracy
0]
o

[e)]
o

CivilComments

Figure 4: In-context learning with 128 examples does not
improve robustness gap, instead hurts it: Average and worst-
group performance of ICL, ERM and PfR on language tasks.

over zero-shot inference on average, the worst-group per-
formance remains almost unchanged for CivilComments
and worsens for MNLI. We can therefore see that ICL is
not a viable alternative to PfR. One reason for why ICL can
hurt worst group performance is prior works have shown
ICL in language models to make predictions consistent with
ERM models trained with gradient descent (Ahn et al., 2023;
Akyiirek et al., 2022; Von Oswald et al., 2023). Since such
ERM models are known to latch onto spurious correlations
in the training data (Shah et al., 2020; Nagarajan et al.,
2020), we would expect ICL to improve average perfor-
mance at the expense of worst group performance.

5.3. Theoretical analysis of PfR

PfR relies on foundation models to accurate predict the
confounding attribute (Sec. 3), even when they cannot in
zero shot disentangle this confounder from the class la-
bel. Given the description t., the confounder prediction
error suffered by the zero-shot model in the first stage of
PfR is err.(FM(+, t.)). In Theorem 5.1 we provide worst-
group generalization error guarantees for PfR (proof in Ap-
pendix B). Our shows that the worst group accuracy of PfR
is upper bounded by two terms. The first term is the gen-
eralization error suffered by the oracle algorithm (Group
DRO), and the second is the zero-shot error in predicting
the confounder. Thus, as the the zero-shot accuracy of con-
founder prediction improves, it linearly affects worst-group
error guarantees for PfR.

Theorem 5.1 (PfR’s worst group error). For PfR output
J?, w.h.p. 1 — 0, worst group generalization error of f is

log &(F)K/3/n+err.(FM(t.)), where €(F) is complex-
ity of F, K is number of groups and latter term is FM’s
zero-shot performance on confounder prediction.

6. Related Work

Zero-shot and few-shot robustness of foundation mod-
els. There has been a recent growth in the capabilities of
pretrained open vocabulary models (Radford et al., 2021;
Jia et al., 2021; Brown et al., 2020; Chowdhery et al., 2023;
Rombach et al., 2022; Alayrac et al., 2022; Wei et al., 2021).
In vision modality, models such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) offer unprecedented
zero-shot capabilities simply by assessing the relative com-
patibility of a given image with an arbitrary set of textual
“prompts” Radford et al. (2021). For language modality,
large language models have shown unprecedented capa-
bilities on a wide range of tasks despite not being trained
explicitly to do many of those tasks (Brown et al., 2020;



Prompting is a Double-Edged Sword: Improving Worst-Group Robustness of Foundation Models

Chowdhery et al., 2023; Touvron et al., 2023; Wei et al.,
2021; 2022). More recent GPT4-V (Bubeck et al., 2023)
and Flamingo (Alayrac et al., 2022) models can take inter-
leaved image-text input to generate text output. However,
these models do suffer from robustness problems. For exam-
ple, existing works have shown that during fine-tuning, the
performance of models on distributions away from training
data drops (Wortsman et al., 2022; Goyal et al., 2023; Zhang
et al., 2022), including the scenarios where the downstream
data contains spurious correlations (Yang et al., 2023; Tu
et al., 2020; Hall et al., 2023; Lee et al., 2023). We evaluate
zero-shot robustness models to spurious correlations and
propose solutions to mitigate the observed robustness gap.

Robustness to spurious correlations. Several prior works
use distribution robust optimization (DRO) to learn predic-
tors robust to shifts in an uncertainty set (Ben-Tal et al.,
2013; Blanchet & Murthy, 2019; Duchi et al., 2016; Duchi
& Namkoong, 2021). For spurious correlation problems
that result in more specific group shifts, DRO tends to be
overly pessimistic (worse than ERM) (Hu et al., 2018). To
address this, previous works assume knowledge of the spu-
rious attribute, and either only minimize worst loss over
known groups (Sagawa et al., 2019) or average loss over
re-weighted ones (Idrissi et al., 2022; Kirichenko et al.,
2022). Since it is restrictive to assume group knowledge,
other works used relied on two observations: spurious at-
tributes are easier to learn (than robust features) and ERM
suffers from a simplicity bias (Shah et al., 2020; Sagawa
et al., 2020). Using this, they either reconfigure DRO’s un-
certainty set (Setlur et al., 2023) (or make it random (Zhai
et al., 2021)), while other works (Liu et al., 2021; Nam et al.,
2020) exploit it to recover the hidden minority group with
ERM losses. Finally, some other works on robustness to
hidden confounders (Sohoni et al., 2021; Bao & Barzilay,
2022; Creager et al., 2021) either rely on dataset dependent
heuristics, or the ability to query test samples (Lee et al.,
2022). Different from the above, we assume a language de-
scription of the confounder (as opposed to groups). Armed
with this, we use open vocabulary models to predict the
presence of a confounder, and then learn robust predictors
with DRO over predicted groups. Thus, while we leverage
DRO formulation for robustness guarantees, we also avoid
its pitfalls by relying on zero-shot foundation models.

Robustness of self-supervised learning: theoretical anal-
ysis. While several works theortically analyze (Tian et al.,
2020; HaoChen et al., 2021; Mitrovic et al., 2020; Wang
& Isola, 2020; Saunshi et al., 2022; HaoChen & Ma, 2022)
models pretrained with contrastive learning, masked image
and language modeling, they mainly do this for few-shot
in-distribution generalization on downstream tasks. In con-
trast, there are fewer works that focus on out-of-distribution
robustness (Shen et al., 2022; Kumar et al., 2022; HaoChen
et al., 2022), and even fewer on robustness to spurious cor-

relations (Garg et al., 2023), and all of them do this for
unimodal few-shot settings. In contrast, we theoretically
analyse zero-shot generalization for multimodal contrastive
learning. (Zhang et al., 2023; Chen et al., 2023) are recent
works that also theoretically analyze the multimodal set-
ting, and the former only studies few-shot in-distribution
generalization, similar to Lee et al. (2021). Closest to our
analysis is Zhang et al. (2023), which analyzes zero-shot
performance of CLIP, but unlike us they do not specifically
model the pretraining distribution to also include spurious at-
tributes from the downstream task, which we show impacts
robustness to spurious correlations.

7. Conclusion and Limitations

In this work, we focus on the robustness of zero-shot models
to tasks with spurious correlations. While foundation mod-
els have shown unprecedented zero-shot capabilities, we
show that these models struggle when confounders lose cor-
relation with labels. To address this, we propose Prompting
for Robustness (PfR), leveraging language descriptions to
prompt zero-shot classifiers and train robust models. Empir-
ical results reveal significant performance gains in the worst
accuracy groups. Overall, this work offers insights and a
practical approach to enhance foundation model robustness
against hidden confounders, contributing to bias mitigation
and improved fairness in machine learning.

There are several directions for future work. Currently,
we assume knowledge about what are potential contenders
for “spurious attributes”. Discovering spurious attributes
in an automated manner is an interesting direction for fu-
ture work. To improve the robustness of the classifier, we
need some labeled downstream data for our post-training
intervention. Near-perfect zero-shot accuracy in predicting
groups, coupled with the presence of a robust linear clas-
sifier atop fixed features, hints that we should be able to
improve post-training robustness in a zero-shot way This
potential improvement represents an intriguing and valuable
avenue for future inquiry.

Impact Statement

In this work we study the ability of foundation models to im-
prove robustness to spurious features, and propose approach,
PfR, that is highly effective in practice. A key insight in our
work is the observation that foundation models are surpris-
ingly good at predicting the presence of hidden confounders.
While we explore using this for the beneficial purpose of
improving classifier robustness, we note that it may be pos-
sible to exploit this same information to attack the model or
degrade model performance. Understanding and mitigating
such attacks is an important area of study, and we hope
our approach provides a simple technique for identifying
potential vulnerabilities.
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A. Analysis of multimodal contrastive pretraining

In Sec. 4 we analyzed the solutions of the multimodal spectral contrastive loss in (2), when optimized over the pretraining
distribution in (1). Our setup mainly captures the spurious correlation between the label and confounder, that is present to
the same extent in both the pretraining distribution, as well as the downstream task. In such cases, we show how the image
encoder almost fully couples (no linear separability) the spurious feature with other robust features predictive of the label
(Theorem 4.2). In this coupling, the component along the spurious feature is higher when the signal-to-noise ratio along the
robust feature is relatively poor (o, is higher). Exacerbating this failure, the text encoder learns almost identical features (in
l5) for the confounder and label.

Based on the above finding, we arrive at the zero-shot results in Theorem 4.1, characterizing the poor worst group accuracy
of zero-shot label predictor (worse than random), and the near perfect zero-shot confounder prediction performance.

We shall firt present the proof of Theorem 4.2, followed by the zero-shot results i Theorem 4.1. But, before either of these,
we will first prove a key result that presents a functional form of the solutions for multimodal spectral contrastive loss, when
the image encoder ¢ and text encoder w are constrained to be orthonormal in L?(Q(x)) and L?(Q(t)) respectively.

Theorem A.1 (Optimal ¢* and w* for objective in (2)). When ¢,w are restricted to orthonormal functions in L?(Q) and
L?(Q) respectively, then the objective in Equation (2) is equivalent to:

w3 [ 4 (o) o

W

j & (2) dQ(z) = 1, f WA () dQ(t) = 1 Vi, 4
X T

where A : L*(Q) — L*(Q) is the following linear operator and ¢;(x) and w;(t) are the i*" image and text features
respectively. :

q(z, t)
A(f) = - f(z) dz. )

x +/q(x)q(t)
Furthermore, the optimal solutions for (2) are ¢;(x) = fi(*)/\/p(z) and w;(t) = 9i(t)/, /p(t where {fi}¥_, and {g;}%_, are
the top k eigen functions of self-adjoint operators AAY and A A respectively. Here, Al is the adjoint of A and is deﬁned as:

=: { a0/ /a(@)a®) - g(t) dt
Proof. When ¢, w are orthonormal functions in L?(Q) and L?(Q), then:

EMQ(@EtNQ(t)(qb( z)Tw(t))?

k k
—ZEM B @i(@)’wi(@)? + D] 3110 # DEanq Eian ¢i(2)9;(@)wi(2)w; (@)

i=1 i=1j=1
= k. (6)
From the above result, we can redefine the objective in (2) as:
k
sup Z J J q(z,t) wi(t) " ¢i(x) dadt,
woj=1 JAIT
| s@ 0w -1, | w2 ) -1 vi )
X T

The objective in (4) is obtained by substituting the definition of A into the above formulation.

Following Eckart & Young (1936), the solution to the above optimization problem is given by the eigenfunctions of the
self-adjoint operators AA" and ATA. Thus, the optimal solutions for ¢}, w are realized by fi/,/q(=) and 9i/,/q(t) Where
{fi}5_, and {g;}%_, are the top k eigen functions of self-adjoint operators AAJr and AT A respectively. O

Leveraging the result in Theorem A.1, we can now analyze the impact the of the spurious correlations in pretraining data in a
special case, when ¢, w when are linear functions. Note, given the one hot encoding of the text in 7 the linearity assumption

in no way restricts the class of text encoders. We now present our proof for the result in Theorem 4.2.
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Theorem A.2 (Optimal linear ¢*,w*). Without loss of generality, let p > 0.5. Let, ¢,w be linear functions over X,
T, ie., ¢ = ATz, w = BTt, with A B € R¥*4_ Then, there exists constants c1, co such that for the constraint set:
§¢ 07 () dQ(z) < c1, Viand §w?(t) dQ(t) < ca, Vi, and ¢, w that are orthogonal in L*(Q), the optimal solutions
A* B* for the objective in (2) are the top k columns of the matrices:

+1 41 41 -1

Cos(e)/1/0x2_+1 Sin(g)/1/0'12_+1 0;— 41 +1 -1 +1

AT | h(0)eost)) 0 | BTt , ®
0 0 U, +1 -1 -1 -1
dn dn dn R
where tan(20) = 2;{11/1731;;)_1.

Proof. We start with the equivalence established between the constrained spectral contrastive loss (in (2)) and the objectives
in (4) and (7). Using the result in Theorem A.1, and plugging in the definitions of the linear operator A, we can redefine the
objective in (7). Before that, we first note that for linear ¢, w, the orthonormality constraint translates to:

E[¢(z)p(x) "] =1 and Elw(t)w(t)'] =1,

Now, we are ready to redefine the multimodal contrastive objective for linear w, ¢ that are constrained to be orthonormal in
L?(Q). Since, the solutions are given by the eigenvectors of AAT and AT A matrices, we can write down the optimization
over ¢ and w as two separate optimization objectives. For simplicity, we start with the case where k = 1, and then show
how we can obtain the result for higher values of k.

We will start with the objective for ¢:

max ¢'Y,¢
¢ T Epp=1
S, =Efzz'] 8, = E,[E[«|t]E[z[]]. ©)

Here, we encode text as a one-hot vector: Thus, the set of text descriptions 7T is: { “yis +17, “cis +17, “cis —1” and “y is
—17 }, which we input as one hot encodings [1, 0, 0, O]—r ,[0,1,0, ()]—r , [O, 0,1, OT] and [0, 0,0, 1]—r respectively to the text
encoder w.

The objective for w is defined symetrically:

max w' 2w,
:wT Bw=1

S =E[tt'] 5, = EL[E[t|2]E[t]2]T].
Since both the above objectives are similar but involve different matrices, we show our working for one, and plug in values

from the distribution for the other.

First we note that changing the constraint from ¢ ¥,¢ = 1to ¢ X,¢ < 1, does not change the optimal solution, since
these are eigen vectors and X is full rank in both cases. Second, we use the identity:

¢TZ$¢ <2- ¢leag(2z)¢

Thus, we replace the constraint on ¢, with the right right hand side of the above expression. Thus, when ¢ " diag(¥,)¢ < 1,

we satisfy the constraint in Theorem A.2 with ¢; = 2. Thus, we are optimizing over a constraint set of orthogonal functions
in L*(Q), where Vi, { ,, ¢? () dQ(z) < 2.

Recall that in our setup both ¥, and ¥, are positive definite and invertible matrices. To solve the above problem, let’s
consider a re-parameterization: ¢/ = diag(X,)"/2¢, thus ¢ "diag(X,)¢ = 1, is equivalent to the constraint |¢/||2 = 1.
Based on this re-parameterization we are now solving:
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argmax ¢ diag(E,) 7> 3, - diag(S,) 724 (10)

ler3<1

which is nothing but the top eigenvector for diag(3,) ™72 - &, - diag(3,) 2.

Now, to extend the above argument from k = 1 to k > 1, we need to care of one additional form of constraint in the form of
feature diversity, or orthogonality: qSiTEIqu = 0 when 7 # j. For this, we can simply repeat the steps above and arrive at the
following reformulated optimization problem:

arg max [0, 0., 0] diag(S,) ™7 - S, - diag(Se) 72 [¢), by - 1] (11)
|¢513 < 1, Vi
P =0, Vi#j

where ¢, = diag(X)'/2¢;. The solution for the above is nothing but the top & eigenvectors for the matrix diag(3,) > -
3, - diag(S,) 2.

Let SVDy, is the top k singular vectors of an SVD decomposition. Now, from our problem description we state values of the
four matrices above. For the image encoder, the solution is given by:

A* = diag(2,)"1? - SVD, (diag(zz)*l/z B, diag(zr)*l/z) (12)

where X2, 3 are defined as follows:

1+02 2p—1 04,

Y. = |2p—1 1 04, (13)
0] 0; I
N (14 (2p—1)?)/2 2p—1 04,
Y, =: 2p—1 1+ (2p—1)2)/2 04, |. (14)
0}” 0(}” I

Similarly, the optimal text encoder is given by:

B* = diag(%,) V2 - SVDy (diag(zt)*l/z 3, -diag(zt)*l/z) (15)
Here, >; = I, and it is:
1 P 1—p 0
S P 1 0 1—p
. p 0 1 P (16)
0 1-p D 1

Plugging the values of 3, ix, DI 3, into the equations for A* and B*, and using Lemma A.3, we get the final result:

+1 +1 +1 -1

cos(a)/\/grzﬁ sin(@)/m Og

A* — —sin(6) cos(6) 0;: , B*=1/. i} ii :} —’__1 )
04, 04, Uq, +1 -1 +1 +1
where tan(26) = %- -
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Lemma A.3 (closed-form eigenvalues and eigenvectors of 2 x 2 real symmetric matrices (Deledalle et al., 2017)). For a

. . |a
2 x 2 real symmetric matrix [c
k)

b
d] the eigenvalues \1, Ao are given by the following expressions:

(a+b+0) (a+b—0)
e e
2 2

where § = \/4c? + (a — b)?. Further, the eigenvectors are given by

- [

A =

b—a+d
2c¢ ¢

where tan(0) =

In summary, we defined functional forms for optimal orthogonal ¢, w in Theorem A.1. Next, we presented closed form
solutions for optimal linear and “nearly” orthonormal ¢, w in Theorem A.2. Now, we can easily characterize the zero-shot
performance of these learned feature extractors. Following presents the proof of our result in Theorem 4.1.

Theorem A.4. (zero-shot robustness; restated) Let the zero-shot label (f) and confounder classifier (g) be obtained by
minimizing the loss in (2) on infinite pretraining data. Then, for o, = Q(1), label classifier is worse than random on the
worst group, since erry®(f) = 1/2erfc(—c10,p). On the other hand, the confounder classifier suffers small error on all
groups since err?(g) = /2 erfc(coo,p). Here, c1,c2 > 0 are constants .

Proof. First, we state the formal version of the theorem statement. Let f be zero-shot label predictor, and g be the zero-shot
confounder predictor extracted from ¢, w in Theorem A.2. Then, the worst group error for f is:

erry®(f) = 1/2 - erfc (¢/v2),
and for g is:

errlE(g) = 12 -ext (s/v2),

sp

where p = —1/o, — cot(6)+/Y/o2 + 1. Here, 0 is the value defined in Theorem A.2.

Using our expressions for the zero-shot predictor in Sec. 4, we use the result from Theorem A.2 to define:

2z, sin 0

f([oe,2e]) = g([@r, ze]) = 21(_ﬁ

+ 2z cosf) — 1

Now, based on the signs along z, and ., we conclude that the worst group for fisy = 1,¢ = —1.

Pr(f([zr, zc]) < 1| (y,¢) = (1,-1))
—2sin6

\1+0?

r—1 1 1
:Pr(x > —— 44| — + lcotfcost)
or o\ 02

= %erfc(_l — cot 0(+/1+ 1/02))

r

= Pr( < —2cosb)

= %erfc(p/\/ﬁ).

On the other hand the worst group for the confounder is (y, ¢) = (1, 1), but even here, the error is negligible.
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Pr(f([ae,zc]) < 1] (y;¢) = (1,1))

1 -1
= §erfc(— + cot O(+/1 + 1/02))
o

r

1
= §erf(P/ V2).
This completes our proof of zero-shot performance guarantees. O

B. Worst group guarantees for PfR

Theorem B.1 (PfR’s worst group error). For PfR output f, w.h.p. 1 — 0, worst group generalization error of f is
log &(F)K/3/n + err.(FM(t.)), where €(F) is complexity of F, K is number of groups and latter term is FM’s
zero-shot performance on confounder prediction.

Proof. Recall the objective for PfR which minimizes worst group loss over predicted groups G Tyeeny G - Let,
f* = inf sup Ep, [l(h(x),y) | (x,y) € ék] (17
JeF ke[K]

Lemma B.2 (worst-case risk generalization (Group DRO)). With probability = 1 — § over dataset D ~ P", the worst
group risk for f* can be upper bounded by the following, where opt is the minimum on the training objective,

~ log (&£
sup Ep, [l(h(X),y) | (x,y) € Gk] < opt + log (57) ;
ke[K] n

where € is the complexity of class F (e.g., the covering number (Wainwright, 2019)).

(0] < . .
Proof. We first apply the generalization bound for a single group, which is given by # (Wainwright, 2019), followed
by a union bound over the K groups. O

We can break down down the worst group loss for the learned function f on the true groups G, . .., Gk in the following
way, where we assume loss £ is M bounded:

sup Bp, [U((x),) | (x.y) € Ge| < sup Ep, [1(F(x),y) | (x,¥) € Gi 2 Gi| (8)
ke[K] ke[ K]
+ MEp, []1(;,; eG)|ze Gk] (19)
+ MEp, []l(x €Gy)|ze ék] (20)

Since maxj 2(a1 + b1, a2 + b2) < maxy 2(a1,az2)+ < maxy 2(by, ba) for some scalars ay, as, by, b2, we can upper bound
supges) Ery [1F(),y) | (xy) € G| as:

sup Ep,. [l(f(x),y) | (x,y) € Gk] < sup Ep, []1(90 € ék) |z € é\k] + E[1(FM(z,t.) # ¢)]

ke[K] ke[K]

= sup Ep, []l(x eGp)|ze C/?\k] + errfy & (FM(w, t.)).
ke[K]

for positive losses. Above, we replaced the group mixmatch error with the error of the zero-shot classifier FM(x, t.).
Further, in our case M = 1.

The above result when used in a simple triangle inequality with the result in Lemma B.2 completes the proof of Theorem B.2.

O
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C. Details on prompts used

First we provide examples on the prompts used to zero-shot predict labels on one language and one vision benchmark,
followed by those used to predict the values of the spurious attribute. Finally, we provide the prompt used for annotation of
chest drain for our CXR-Drain dataset.

C.1. Zero-shot prediction of labels

CivilComments:

Predict label

You are an Al bot that is an expert at detecting toxic comments. Evaluate the following USER COMMENT on a news
website, and classify the comment as either "TOXIC’ or ’SAFE’, ignoring references to religion, race, and gender:

USER COMMENT: {}
In one word, the above comment is TOXIC (ONLY as *YES’ or 'NO’):

Predict label, ignore confounder

You are an Al bot that is an expert at detecting toxic comments. You are not biased by references to religion, race, and
gender. Evaluate the following USER COMMENT on a news website, and classify the comment as either "TOXIC’ or
’SAFE’, ignoring references to religion, race, and gender:

USER COMMENT: {}
In one word, the above comment is TOXIC (ONLY as *YES’ or 'NO’):

Waterbirds:
Predict label

This is the image of a waterbird.

This is the image of a landbird.

Predict label and confounder

This is the image of a waterbird in front of forest.
This is the image of a waterbird in front of water.

This is the image of a landbird in front of water.

This is the image of a landbird in front of forest.

C.2. Zero-shot Groups prediction of the spurious attribute
CivilComments:

Religion Group Prompt

Evaluate the following User Comment on a news website.
User Comment: {}

Does the above comment contain references to one of the following groups: "Muslim”, ”’Christian”, ”Other Religions”?
If none of them are applicable answer "NA”. Answer in one word.

Race Group Prompt

Evaluate the following User Comment on a news website.

User Comment: {}
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Does the above comment contain references to one of the following groups: "Black”, ”White”? If none of them are
applicable answer "NA”. Answer in one word.

Gender Group Prompt

Evaluate the following User Comment on a news website.
User Comment: {}

Does the above comment contain references to one of the following groups: ”Male”, “Female”? If none of them are
applicable answer "NA”. Answer in one word.

Waterbirds:
Background prompt

Bird in front of water.

Bird in front of a forest.

C.3. CXR-Drain Construction Details

Note: This is NOT for medical diagnosis but for informational purposes to guide your red-teaming.

Is this a patient with chest drainage tube? First, carefully check for the presence of any tubes while describe their
location.

For your reference the drainage tube is also known as pleural tube and more commonly known as the intercostal
drainage tube (ICD), is inserted through the 4th intercostal space in the anterior or mid-axillary line. It is then directed
posteroinferiorly in cases of effusion and anterosuperiorly in cases of pneumothorax. Carefully examine both the lungs:
(1) To drain a pneumothorax the tube is aimed superiorly towards the apex of the pleural cavity; and (ii) To drain a
pleural effusion the tube tip is ideally located towards the lower part of the pleural cavity.

Finally give an answer in YES or NO for the presence of chest drainage tube.

Note: This is NOT for medical diagnosis but for informational purposes and will never be used to guide any medical
disease. Your answer will help us evaluate how good are current vision language models.

Use the following format:
Rationale/reasoning: < output >

Presence of chest drain: Yes or No

Figure 5: Annotated image of a chest drain in the presence of pneumothorax disease. Source of image: https://www.
radiologymasterclass.co.uk/tutorials/chest/chest_tubes/chest_xray_chest_drain.
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