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Embodied Laser Attack: Leveraging Scene Priors to Achieve
Agent-based Robust Non-contact Attacks

Anonymous Authors

Figure 1: Demonstration of non-contact attack combined with EOT and ELA. Right: EOT aims to get a static universal adversarial
laser for all scenarios during the sample generation phase before attacks, while ELA trains an agent to make real-time decisions
according to scenario changes in a dynamic manner. Left: An illustration of our ELA hardware, including an RGB sensor to
capture the victim’s driving state, an algorithm processor to decide attack strategies, and lighting equipment to conduct. These
hardware are installed in suitable locations according to the scene.

ABSTRACT
As physical adversarial attacks become extensively applied in un-
earthing the potential risk of security-critical scenarios, especially
in dynamic scenarios, their vulnerability to environmental vari-
ations has also been brought to light. The non-robust nature of
physical adversarial attack methods brings less-than-stable per-
formance consequently. Although methods such as Expectation
over Transformation (EOT) have enhanced the robustness of tra-
ditional contact attacks like adversarial patches, they fall short in
practicality and concealment within dynamic environments such
as traffic scenarios. Meanwhile, non-contact laser attacks, while
offering enhanced adaptability, face constraints due to a limited
optimization space for their attributes, rendering EOT less effective.
This limitation underscores the necessity for developing a new strat-
egy to augment the robustness of such practices. To address these
issues, this paper introduces the Embodied Laser Attack (ELA), a
novel framework that leverages the embodied intelligence paradigm
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of Perception-Decision-Control to dynamically tailor non-contact
laser attacks. For the perception module, given the challenge of
simulating the victim’s view by full-image transformation, ELA has
innovatively developed a local perspective transformation network,
based on the intrinsic prior knowledge of traffic scenes and en-
ables effective and efficient estimation. For the decision and control
module, ELA trains an attack agent with data-driven reinforcement
learning instead of adopting time-consuming heuristic algorithms,
making it capable of instantaneously determining a valid attack
strategy with the perceived information by well-designed rewards,
which is then conducted by a controllable laser emitter. Experimen-
tally, we apply our framework to diverse traffic scenarios both in
the digital and physical world, verifying the effectiveness of our
method under dynamic successive scenes.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Object
recognition.

KEYWORDS
Dynamic Robustness, Non-contact Attack, Embodied Intelligence

1 INTRODUCTION
In many vision-critical applications [2, 27, 30], the perception sys-
tem heavily relies on deep neural networks (DNNs) to sense and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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analyze external information, and the security of these intelligent
systems is vital. However, since Kurakin et al. [15] propose achiev-
able physical adversarial samples, the increasing diversity of practi-
cal attacks [6, 14, 20, 34, 35, 39] have posed a significant threat to the
real-life DNNs’ deployment, which deserves further exploration to
pave the way for enhanced reliability. Notably, their performances
are unstable, which can be easily affected by various real-world
factors, especially the changes in the target’s viewpoint, distances,
etc. that often occur in dynamic continuous processes such as traf-
fic scenarios. Thus, an urgent need exists to enhance the practical
attacks’ robustness when faced with such possible variations in the
real world to obtain consistently stable performance.

To enhance the robustness of attack methods faced with dynamic
variations, Expectation over Transformation (EOT), introduced by
Athalye et al. [1], plays a crucial role, particularly in optimizing
contact attacks like adversarial patches. These patches, while robust
and universally applicable due to EOT optimization, suffer from
a lack of concealment and practical challenges associated with
their physical placement in the real world. Conversely, non-contact
optical attacks, leveraging light manipulations, i.e. manipulating the
slope, width, and wavelength of a laser, provide greater stealth and
are easier to deploy with no need for manual attachment. However,
the limited variability in light parameters makes it difficult for
EOT to effectively develop a universal strategy that can adapt to
changing conditions with a simple style.

Given the inherent challenges of enhancing such attacks in dy-
namic scenarios, this paper aims to focus on non-contact attacks
that are harder to boost performance and explores a new method
from the perspective of active adaptation. Specifically, We intro-
duce a dynamic, robust laser attack framework, the "Embodied
Laser Attack (ELA)", applied here within a traffic scenario as a
case study. The ELA framework leverages the core concepts of
embodied intelligence—"Perception-Decision-Control"—to dynami-
cally adjust a highly manipulable laser medium, crafting optimal
real-time attack strategies based on current perceived states. This
method represents a departure from traditional static, offline en-
hancements such as EOT, focusing instead on active adaptation to
enhance the robustness of non-contact attacks. A visual comparison
between EOT and our ELA method is illustrated in Figure 1.

However, to implement this idea, there exist two challenges: (1)
Perception Transformation for Victim’s Perspective. In practi-
cal scenarios, acquiring information from the victim is challenging,
while data from a third-party sensor is more obtainable, meanwhile
posing a necessity of transforming data from the attacker’s view to
the victim’s. Moreover, unlike static attacks focusing on a singular
scene, dynamic scenarios present both the attack target and sur-
rounding environment as ever-changing, requiring the real-time
and precise acquisition of target information. Therefore, our first
challenge is to efficiently and rapidly utilize such accessible data
to establish real-time inference between the two perspectives, on
which attack strategies depend. (2) Dynamic Decision with Flex-
ible Control. For the decision and control (DC) stage, we need
to interactively learn from the dynamic scenario and achieve a
rapid response with a flexible way to conduct as well. Existing
non-contact optical attacks in traffic scenarios often fail to provide
instantaneity and efficiency due to their reliance on query-based
algorithms that are time-consuming. So, how to utilize perceived

information to construct and launch instantaneous attacks is our
second challenge.

To address the above issues, firstly, we innovatively utilize the
intrinsic geometric priors of traffic scenes, which significantly re-
duce the computational cost associated with traditional full-image
perspective transformation technologies. Specifically, a few-layer
Multilayer Perceptron (MLP) is utilized to construct the Perspective
Transformation Network (PTN), which could enable a real-time and
efficient estimation of the target’s distorted states in the victim’s
view from the attacker’s accessible imaging. Secondly, we propose
agent-based decision-making and manipulate the laser (shooting
angles, wavelength, etc) — a flexible and controllable medium to
implement in the physical world for the DC module, which trains
an attack agent with reinforcement learning, capable of instanta-
neously determining a valid strategy based on the perceived status
estimation during the attack phase. Besides, we carefully design the
reward function to further guarantee the immediacy of attacks and
the laser’s physical properties. Main contributions are as follows:

• We propose the first dynamic robust non-contact attack
framework called ELA, which utilizes the paradigm of em-
bodied intelligence: Perception-Decision-Control to dynam-
ically and timely adjust a manipulable laser towards valid
attack strategies according to current situations, rather than
statically enhancing a fixed physical adversarial example’s
robustness in an off-line manner like EOT ahead of time.
• We address two challenges in ELA: A novel Perspective
Transformation Network (PTN) is proposed to enable rapid
simulation of object variations relying on the intrinsic geo-
metric priors of traffic scenes; An adversarial laser decision-
making agent is designed to facilitate real-time valid strate-
gies for dynamic successive processes.
• We evaluate ourmethod on the sign recognition task in traffic
scenarios based on data collected from the CARLA simulator
and the real world. Experimental results demonstrate the
effectiveness of our framework for different categories and
complex scenes, including various viewpoints, distances, etc.

2 RELATEDWORKS
2.1 Robust Physical Adversarial Attacks
Considering that physical attacks [4, 5, 9, 22] are vulnerable to
changeable environmental conditions, several works have been
proposed to ensure the robustness of attack methods in the real
world. Among them, EOT [1] is a classic technique utilized in the
majority of existing physical attacks, which applies various random
transformations, such as scaling, rotation, and blurring, to a single
sample, thereby improving the universality of adversarial exam-
ples across environmental variations. In addition, there also exist
some other works, like Robust Physical Perturbations (RP2) [9] by
Eykholt et al. that create visually deceptive modifications to ob-
jects like road signs, Xu et al. [37]’s Adversarial T-shirt that models
non-rigid deformation to enhance the robustness towards human
movement. These advancements indicate a growing sophistication
in adversarial techniques, focusing on practical challenges such as
dynamic environments and deformable objects, thereby pushing
the boundaries of physical-world adversarial research.
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Figure 2: An overview of the ELA framework, which consists of two main modules for robust laser attacks. The attacker first
captures the vehicle through a fixed sensor, and the perception module infers the object’s state (location, scale, and distortion)
in the victim’s view based on the characteristic of shape change. Then the DC module utilizes such region information to
autonomously make real-time decisions and controls the light projection hardware to achieve continuous physical attacks.

However, these robustness enhancement techniques, predomi-
nantly designed for contact attacks, tend to be less effective when
applied to non-contact adversarial attacks such as those involv-
ing lasers or other remote manipulation methods. Non-contact
attacks typically use mediums like lasers, which are inherently ho-
mogenous compared to textured patches, making techniques like
EOT difficult to find a unified attack strategy within such a limited
parameter space for optimization. Therefore, despite non-contact
attacks’ flexibility and concealment, their robustness is often poor.
To bridge this gap, our work shifts focus towards enhancing the
robustness of non-contact adversarial attacks through an active
adaptation framework rather than static enhancement like EOT.

2.2 Attacks in Traffic Scenarios
It should be noted that most robust physical attack methods need
to be manually attached to the target, which is not always practical,
and it is difficult to adapt to other situations once implemented, thus
causing limitations in traffic scenarios. To address this issue, some
achievable non-contact attacks in the physical world are designed
with adversarial light as an easy-to-control medium, such as [12,
18] using a projector to attack recognition tasks with a designed
texture projection, and [8, 11, 38] conducting attacks with geometric
light on the whole image to mislead traffic sign recognition. In our
method, we also utilize light due to its flexibility, specifically adding
a laser beam on the traffic sign to promise being wholly captured
by the lens, which is easy to conduct.

Notably, we find that most light attacks adopt real-time optimiza-
tion using evolutionary algorithms like Genetic algorithm (GA)
[11] and Particle Swarm Optimization algorithm (PSO) [29, 40], or
greedy algorithm [8, 16], which will lead to uncontrollable perfor-
mance and time costs and hinder those applications in dynamic
scenarios. Unlike those methods, we attempt to design a differ-
ent optimization method with reinforcement learning, ensuring its
attack performance and speed simultaneously.

3 METHODOLOGY
In this section, we introduce our proposed Embodied Laser At-
tack (ELA) based on the safety-critical task: traffic sign recognition.
The whole framework is presented in Figure 2.

3.1 Problem Definition
The inherent challenge in non-contactly attacking traffic sign recog-
nition tasks lies in dynamic scenarios. The variability and unpre-
dictability of real-world conditions range from changes in alter-
ations in the vehicle’s speed to the angle of view, which demand an
adaptive attack method that can consistently fool the recognition
systems under such fluctuating circumstances.

To address the identified challenge, we propose a novel attack
framework ELA, which effectively integrates the paradigm of em-
bodied intelligence: perception-decision-control. Specifically,
our ELA is first meticulously designed to enable the active per-
ception of real-time, precise data. This process involves a critical
perspective transformation T that could transform the attacker
view o𝑡𝑎 observed by a third-party sensor into the victim view o𝑡𝑣 .
Then, we combine o𝑡𝑣 with light parameters 𝒍𝑡

𝜃
into the state s𝑡

to an agent developed within a reinforcement learning paradigm,
enabling it to make an instantaneous decision a𝑡 corresponding to
each state s𝑡 . Additionally, the chosen medium for this agent’s inter-
action with the environment is laser beam, selected for its inherent
controllability, and the action space of the agent is represented by
the laser’s several attributes.

Based on the above, the objective of optimization within our
ELA framework can be succinctly summarized as follows:

max
𝜙,𝜃

∑︁
𝑡=1,· · · ,𝑇

I(y𝑡 ≠ y𝑡 ), (1)

with y𝑡 = 𝑓 (A(s𝑡 , a𝑡 )) , s𝑡 = {(T (o𝑡𝑎 ;𝜙T ), 𝒍𝑡𝜃 }, a𝑡 ∼ 𝜋 (·|s𝑡 ;Θ),

where I(·) signifies an indicator function that equals 1 when y𝑡 ≠
y𝑡 , 𝜙T and Θ respectively represent parameters for the perspective
transformation T and the decision-making policy 𝜋 . s𝑡 is the actual
state with an estimation of the victim’s perspective from T as well
as 𝒍𝑡

𝜃
. A(·) represents an operation that performs the laser attack

strategy determined by a𝑡 , which is chosen by 𝜋 according to cur-
rent state s𝑡 , to generate the final adversarial image for recognition
through the classifier 𝑓 . In the following sections, we will detail
the core designs in the perception module and the DC module.
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Figure 3: Left: The training and inference process of PTN. By leveraging the vehicle’s position in sensor imaging, PTN could
simulate the target’s region in the victim’s view by spatial transformation. Right: Derivation process executed by PTN.

3.2 Perception Module
Typically, in the actual attack scenarios, directly accessing data from
the victim’s perspective is impractical. To address this, we propose
a third-party perception module (shown in Figure 3), grounded in
the concept that acquiring third-party scene data via an externally
placed sensor is more feasible. However, it’s obvious that the data
acquired from such a third-party standpoint does not align with
the imaging observed from the victim.

To address the inherent imaging inconsistencies at different view-
points, traditional approaches often rely on multi-view imagery for
new viewpoint synthesis, which suffers from high time costs and
loss of actual precision. Given that traffic sign recognition in real
scenarios involves critical region localization before classification,
slight position deviations in generated viewpoint information may
hinder the attack performances drastically. Compared to such full-
image perspective simulations, we propose a local transformation
method by leveraging traffic-specific shape priors, significantly
enhancing accuracy and efficiency in perspective estimation.

3.2.1 Prior Knowledge in Traffic Scenarios. Traffic scenarios pos-
sess unique prior knowledge, inherently existent in both the third-
party attacker and the victim’s perspective, such as geometric
shapes. For instance, vehicles in the scene from the attacker’s view
can be represented by rectangles, while traffic signs in the scene
from the victim’s view often adhere to fixed shapes as well, such
as circles or octagons. For traffic sign recognition, what is essen-
tial is merely the portion of the victim’s viewpoint containing the
traffic sign. Therefore, we can abstract complex scenes from pixel
representations to representations based on shape priors.

For the scene o𝑡𝑎 under the attacker view, as demonstrated in Fig-
ure 3, we can represent o𝑡𝑎 into the minimal bounding box wrapping
tightly around the vehicle’s contour in the imaging, a rectangle
whose shape depends on the vehicle’s location and rotation. This
representation captures the scene’s essence by focusing on the geo-
metric stability of vehicles, a persistent element in traffic scenarios.
Mathematically, o𝑡𝑎 could be formulated as follows:

o𝑡𝑎 = [x𝑡min, y
𝑡
min, x

𝑡
max, y

𝑡
max], (2)

where x𝑡min, y
𝑡
min denotes the coordinates of the top-left vertex, and

x𝑡max, y𝑡max represents the coordinates of the bottom-right vertex of
the minimal bounding rectangle at time t.

For the scene o𝑡𝑣 under the victim view, it can similarly be char-
acterized using the constant presence of the traffic sign. Specifically,
with distinct shapes such as circular or octagonal, we can repre-
sent each using the coordinate of its center position along with a
geometric parameter set 𝜼𝑡𝑔𝑒𝑜 . Thus, o𝑡𝑣 can be expressed as:

o𝑡𝑣 = [x𝑡center, y𝑡center,𝜼𝑡𝑔𝑒𝑜 ], (3)

where (x𝑡center, y𝑡center) denotes the coordinate of the sign’s center
at time t, and 𝜼𝑔𝑒𝑜 can be further reduced to its geometric shape
in the victim’s view, for example, a circle sign 30’s 𝜼𝑡𝑔𝑒𝑜 consists
of the respective lengths 𝑎, 𝑏 of an ellipse’s long and short axes as
well as the angle Δ of deflection to characterize the distorted circle,
i.e. 𝜼𝑡𝑔𝑒𝑜 = [𝑎, 𝑏,Δ].

3.2.2 Perspective Transformation with Scene-prior Knowledge. Af-
ter obtaining scene representations o𝑡𝑣, o𝑡𝑎 based on scene-prior
knowledge, we need to consider how to conduct a transforma-
tion from o𝑡𝑎 to o𝑡𝑣 . Drawing inspiration from pioneering research
[17, 19] that exploits the potent modeling prowess of multi-layer
perceptrons (MLP), we have conceived and implemented a learning-
based Perspective Transformation Network (PTN) tailored to our
specific requirements, as illustrated in Fig 3. Thus, the transforma-
tion process T can be expressed as follows:

o𝑡𝑣 = T (o𝑡𝑎 ;𝜙T ), (4)

where 𝜙T represents the learnable parameters of PTN.
Regarding the training of this network, once the state o𝑡𝑣 is

obtained, we employ geometric knowledge to further locate the
traffic sign. Taking a circular sign 30 as an example, we define the
sign’s religion based on the sign’s geometric parameters 𝜼𝑡𝑔𝑒𝑜 =

[𝑎, 𝑏,Δ]. This process allows us to generate a mask that precisely
indicates the traffic sign’s region. For example, the creation of a
mask M for the sign area, based on the geometric parameters 𝜼𝑡𝑔𝑒𝑜 ,
can be formalized as follows:

M(𝑖, 𝑗) =


1 if ( (𝑖−xcenter ) cos(Δ)−( 𝑗−ycenter ) sin(Δ) )

2

𝑎2

+ ( (𝑖−xcenter ) sin(Δ)+( 𝑗−ycenter ) cos(Δ) )
2

𝑏2
≤ 1

0 otherwise

(5)

where (𝑖, 𝑗) represents the coordinates of pixel in the maskM.
Then, upon obtaining the predicted mask M, it can be compared

with the ground truth mask on a pixel-by-pixel basis to calculate the
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Mean Squared Error (MSE) loss. This computed loss is then utilized
to iteratively update the PTN. The loss function is as follows:

LMSE =
1
𝑁𝐾

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1
(M(𝑖, 𝑗) −MGT (𝑖, 𝑗))2 (6)

where 𝑁,𝐾 denote the number of rows and columns in the mask
matrix,M(𝑖, 𝑗) is the value of the predicted mask at pixel (𝑖, 𝑗), and
MGT (𝑖, 𝑗) is the value of the ground truth mask at the same pixel.

As the PTN converges through the training process, it becomes
good at transforming perspectives from the attacker’s to the victim’s
viewpoint across various scenes. This capability is derived from
the PTN’s focus on inferring the location mask without the need to
consider the specific content within the scene, where the simulation
of the target sign generally aligns with the actual distortion state
of the target. Therefore, during the whole moving process, PTN
can generalize the attacker’s perspective information shift to the
victim’s viewpoint.

3.3 Decision and Control Module
After estimating the scenario o𝑡𝑣 from the victim’s perspective, there
remains a need for an instantaneous attack method. Consequently,
we have developed a novel agent-based attack framework, which
is particularly well-suited to autonomous and timely decisions in
dynamic scenarios. Detailed explanations will follow.

3.3.1 Basic Definition. Regarding our agent-based attack frame-
work tailored for dynamic environments, we first focus on basic
components in the RL agent A, i.e. states s𝑡=1,· · · ,𝑇 and action space
U of A. As mentioned in Eq. (3), the victim view o𝑡𝑣 at time t can
be transformed from the attacker view o𝑡𝑎 by PTN T (·;𝜙T ). Thus,
combining the scene o𝑡𝑣 under the victim view with the parameter
𝒍𝑡
𝜃
of the laser beam to be applied in the scene, we can characterize

the state s𝑡 at this time as follows:

s𝑡 = {o𝑡𝑣 ← T (o𝑡𝑎 ;𝜙), 𝒍𝑡𝜃 }, with 𝒍𝑡
𝜃
= {k𝑡 ,𝝎𝑡 ,𝝀𝑡 }, (7)

where k𝑡 ,𝝎𝑡 ,𝝀𝑡 denote the slope, width, and wavelength of the
laser beam at time t, respectively.

Given our selection of the laser beam as the control medium, the
action space A of the agent A is defined by the parameters 𝒍𝜃 of
the light encoded within the state representation. Mathematically,
the action space A can be characterized as follows:

A = {(k,𝝎,𝝀 | k ∈ R,𝝎 ∈ R+,𝝀 ∈ [𝝀min,𝝀max]}, (8)

where the range 𝝀min = 400 nm ∼ 𝝀max = 700 nm encompasses all
the colors that the human eye can perceive. Next, we will discuss
how to train policy network 𝜋 .

3.3.2 Training Stage of Policy Network. To ensure the adaptability
of the adversarial laser beam across consecutive time frames, and
different driving environments, our training dataset is collected
from various driving scenes and pre-processed into distinct, contin-
uous five-frame segments. The agent is trained on these segments
via random sampling to enhance its ability to generalize across dy-
namically changing scenarios. Then, given the continuous nature
of the light parameter space, and to enable more effective explo-
ration and adaptation, our optimization framework employs the
Proximal Policy Optimization (PPO) algorithm, as detailed in [21].
This method leverages a modified objective function that facilitates

stable and effective policy updates by utilizing the probability ratio
and advantage estimates. The training objective of PPO is designed
to minimize the expected cost, formalized as:

min
Θ
E𝑡,𝜏

[
−min

(
𝑟𝑡 (Θ)𝐴𝑡,𝜏 , clip(𝑟𝑡 (Θ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡,𝜏

) ]
, (9)

where Θ denotes the parameters of the policy 𝜋 . The term r𝑡 (Θ) =
𝜋 (a𝑡 |s𝑡 ;Θ)
𝜋 (a𝑡 |s𝑡 ;Θ𝑜𝑙𝑑 ) represents the probability ratio, comparing the likeli-
hood of selecting action a𝑡 under the current policy with that under
the previous policy. 𝐴𝑡,𝜏 denotes the advantage function at time
𝑡 within the training segment 𝜏 , measuring the relative benefit of
the chosen action over the expected value of all possible actions in
that state. 𝜖 is a critical hyperparameter that controls the clipping
range, ensuring that updates are appropriately scaled to prevent
destabilizing the learning process or stalling improvements.

Because the relationship between the advantage function𝐴𝑡 and
the reward function R in PPO is well-understood and straightfor-
ward, here we directly introduce the design of reward functions.
Specifically, we first design a reward 𝑅attack for the efficiency of
the attack and its time cost. It should be noted that since direct
interaction with the victim model is impractical, we utilize ensem-
ble surrogate models 𝐹1,· · · ,𝑛 to evaluate the effectiveness of our
strategies. The formulation of 𝑅attack is represented as follows:

Rattack =

{
r𝑠 − 𝛼 · 𝑁steps, if success
− 1
𝑛

∑𝑛
𝑖=1 𝑐𝑖 · 𝐹𝑖 − 𝛼 · 𝑁steps, otherwise

, (10)

where r𝑠 is the reward for a successful attack. 𝐹𝑖 represents the
confidence score from the 𝑖-th model in the ensemble. 𝑐𝑖 is the
scaling factor for the 𝑖-th model’s contribution to the penalty. 𝛼 is
a penalty factor for the number of steps 𝑁steps, which encourages
the development of more efficient strategies.

Besides, to generate a valid light with the principle of keeping the
disturbance as little as possible, we need to limit the area covered by
the light, which mainly depends on its width, and the wavelength
should also be proper or it cannot be captured by the victim’s sensor.
Based on the above requirements, we design another rewardRappear
for the natural appearance of lights:

Rappear = (𝝎0 − 𝝎) · r𝜔 + I[(𝝀 − 𝝀min) · (𝝀max − 𝝀)] · 𝒓𝜆, (11)

where r𝜔 represents a predefined reward value for the beam width.
When the beam width, denoted as 𝝎, is less than a threshold 𝝎0,
a reward of (𝝎0 − 𝝎)r𝜔 is granted. Conversely, if the beam width
exceeds this threshold, it results in a penalty. Similarly, r𝜆 follows
a comparable mechanism. 𝝀min and 𝝀max could be set by 400 and
700 as the range borders, and I is the signum function.

Finally, those rewards work together as a comprehensive evalua-
tion to train our agent 𝐴 with guidance:

R = 𝛾1Rattack + 𝛾2Rappear, (12)

where 𝛾1 and 𝛾2 are the weights that adjust the importance.
Then, utilizing the trained policy network 𝜋 , we can sample

action a𝑡 from 𝜋 , to adjust the laser beam parameters 𝒍𝑡
𝜃
for gen-

erating adversarial examples A(s𝑡 , a𝑡 ) at time t during inference.
Additionally, during the inference process, aside from the initial
state s0 where random light parameters are used, the light param-
eters for subsequent frames are derived by using the parameters
from the previous frame as the initial parameters for inference.
Compared with [8, 16, 29, 40] treating separate frames equally and
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randomly, our agent could cope with the whole consecutive process
through interaction and learning, making effective use of scenarios
and empirical information, and our attack phase is more efficient.

4 EXPERIMENTS
4.1 Settings
Simulation of Physical Implementation: Due to the inherent
risks and complexities of implementing ELA in the real world, we
conduct most validations within the near-realistic environment of
the CARLA Simulator [7] with reference to other physical attacks
in autonomous driving scenarios [3, 24, 25, 31–33, 36]. CARLA is an
autonomous driving simulator, owning 3Dmaps with realistic build-
ings, traffic signs, dynamic vehicles, diverse weather, and manually
placable RGB sensors, which is just right for our needs. Specifically,
to consider the variety of scenes, we choose three maps with differ-
ent settings in CARLA: a small village embedded in mountains
with a special infinite highway, a town with skyscrapers, resi-
dential buildings and an ocean promenade, as well as a small
rural area with a river and several bridges. Such selections nat-
urally cover various environmental conditions in terms of sunlight,
fog, etc. with four different sign settings by default: Sign “30", Sign
“60", Sign “90" and Sign “Stop" since the traffic requirements for
these scenarios are diverse. Then we record several aligned video
pairs (a total of 3200 frames) for each category as training data. For
the data obtained from the fixed sensor, we annotate signs at the
pixel level, and for data from the victim’s view, we annotate the
vehicle at the box level. Besides, each category uses frames of an
extra video pair shot for a whole driving route (each 100 frames)
as the test data. We carry out attacks in CARLA and record videos
of the corresponding attack status of signs, and then evaluate the
classification results after attacks in an off-line way.
Victim Models: For the DC module, our ensemble surrogate mod-
els contain some commonly used kinds including ResNet50 [10],
Inception-v3 [26], EfficientNet [28], and we select another three
main classifiers to test: ResNet101 [10], DenseNet121 [13] and
GoogLeNet-V3 [26]. We first train in GTSRB [23] with officially
pre-trained weights, and then finetune the models by our own video
frames, which achieves 100% precision on clean test samples.
Metrics:We choose a commonly used metric to indicate the overall
performance: Attack Successful Rate (ASR). Specifically, ASR shows
the attack performance as a ratio of successfully misclassified sam-
ples in the test set. In our paper, we record a video about the attack
and compute the corresponding ASR for the video’s frames.
Other Implementations: For the part of active perception, we
directly apply our trained weights with the best performances to
the perspective transformation work during attacks. For the agent
training, we set 𝑒𝑝𝑜𝑐ℎ as 100 with sampling operations.

4.2 Effectiveness of Active Perception
To show the accuracy of our first-perspective inference, we utilize
a common metric in the field of computer vision to conduct an as-
sessment: Intersection over Union (IOU). Specifically, we train PTN
and make predictions on test datasets of the four categories, and
then calculate the average IOU as their overall performances, which
here doesn’t merely represent the overlap degree of two areas in
2D images, but the effect after many variations involving rotation,

Figure 4: Perception results of targets’ states. We choose two
examples with different shapes, where the green line in each
image is the inference result of our perceptionmodule, where
we can see that the generated contour coincides well with the
actual outline of the ground truth. Such reasoning results
could act as a chronological prior insight for decision.

distortion, and scaling, etc. The results of each category are shown
in Tab 1, where we can see that all are above 90%, showing our
method’s validity. To be clearer, we also give visualized examples
of the perception results of two kinds of signs with different shapes:
Sign “60" and Sign “Stop" in Fig 4. We can find that the predicted
region of the target sign is basically the same as the real imaging
situation, which demonstrates the accuracy of our perception mod-
ule and lays the foundation for effective decision-making on the
current state in the next stage.

Table 1: Perception Performances on four categories.

Category

mIOU 0.9361 0.9632 0.9145 0.9686

4.3 Effectiveness of DC Module
To demonstrate the effect and rapidity of our decision and control
module, we also compare the attack performance with two open-
source light attack methods: Adversarial Laser Beam (AdvLB) [8]
and Adversarial Laser Spot (AdvLS) [11]. It’s clear that they are
faced with different application situations: first, the former two
methods are black-box static methods designed to search parame-
ters for one scene with no time limit, optimizing through random
search and retaining better solutions in an off-line manner, while
our method is trained ahead for the whole process to promise real-
time and changeable attacks; secondly, their light could appear
anywhere on the whole image, while ours is limited by the sign’s
area. To ensure fairness, we restrict their rays to be only added to
the sign area as ours, then we calculate ASR and average time cost
(Time) for comparison. Since the above methods use a fixed way
to attack, we just calculate the optimization period as a time value,
and for our method, we record the time costs of each attack and
use the mean of the set as the final result. Here we take attacks
on Inception-V3 as an example. The results are shown in Tab 2,
where we find that our approach is generally in a good position,
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Figure 5: Examples of ELA’s attack for various scenes. Under this framework, we can first accurately estimate the imaging area
of the target sign, and our agent can make effective decisions based on perceived information at different moments.

Table 2: Attack performances and time costs of the three
attacks against the surrogate classifier Inception-V3.

Category

Method ASR↑ Time↓ ASR↑ Time↓ ASR↑ Time↓ ASR↑ Time↓
AdvLB 7% 13.76s 1% 18.56s 15% 7.10s 6% 14.10s

AdvLS 5% 2.13s 0% 2.77s 17% 0.46s 1% 2.69s

ELA 60% 0.22s 33% 0.18s 76% 0.20s 40% 0.13s

achieving the best ASR of up to 76% with the highest speed since
our agent has learned before, although in some cases the ASR is not
particularly high. Since we just use a common light beam without
complex texture and attack once, we believe such results are ac-
ceptable for this simple pattern. Among them, possessing the same
attack form as ours, AdvLB’s performance especially highlights the
superiority of our attack decision-making, proving that our light
attack’s significant superiority depends on the decision process,
rather than the light design itself which is not our main innova-
tion. Besides, it is worth emphasizing that all methods experience
a training phase interaction and cannot receive feedback on the
classification information during the one-step attack phase, which
is in line with the real application in physical scenarios and means
a more challenging attack level.

4.4 Systemic Verification for ELA Framework
To conduct systemic verification for our ELA, we have done a
comparative experiment with EOT to show the effects of the two
different robust attack methods. Considering that EOT and ELA
have quite different detail settings, we apply both to our scenario
with well-thought-out condition settings for relatively objective ver-
ification, and here we both choose to attack three unseen classifiers:
ResNet101, DenseNet121, and GoogleNet-V3 to test the transferabil-
ity of the two methods, simulating real implementation conditions.
For EOT, we allow it to use part of the whole training data (1/10)
with random variations like random cropping, rotating, blurring,etc,
and also choose a laser beam as the attack form. For ours, we remain
in the same setting. The results of the four categories against three
classifiers are shown in Tab 3, where we can see that our ASR is far
higher than Advlb’s results, roughly reflecting the effective coop-
eration between our perception module and the decision module.
Obviously, for physical attacks like ray attacks, although they have
been improved by the enhancement method EOT, it is still difficult
to work for all samples with a unified style like using a complex
noise-based patch in the digital world. At this point, our approach
is better suited to solve this scenario, which can make changeable
decisions with rapid speed, as represented in Fig 5.

Table 3: Transfer-based Attack performances of AdvLB [8]
under the enhancement of EOT and ELA, respectively.

Victim Model ResNet101 DenseNet121 GoogLeNet-V3

Methods EOT ELA EOT ELA EOT ELA

30 SPEED LIMIT 13% 65%/+52% 21% 73%/+52% 46% 67%/+21%

60 SPEED LIMIT 35% 63%/+28% 9% 48%/+39% 10% 39%/+29%

90 SPEED LIMIT 28% 52%/+24% 11% 49%/+38% 26% 45%/+19%

STOP 1% 39%/+38% 0% 16%/+16% 33% 42%/+9%

4.5 Additional Results
Convergence Discussions: As an optimization method based on
reinforcement learning, it is necessary to explore its convergence
to prove its training validity from a quantitative perspective. There-
fore, we count the rewards and attack time during the training
process and then use line charts to reflect the training trend. Fig 6
demonstrates both the change of rewards and attack time during
the training process of the sign “Stop" as an example, where we
clearly observe that the rewards have shown a total increasing trend
despite relatively obvious volatility. We believe that this change is
reasonable since our agent training for each scenario is based on
sampling from the whole train dataset, and each frame does not
correspond to a unique solution. Meanwhile, it’s obvious that when
the training epoch arrives at almost 40, the mean optimization step
number drops sharply, and then changes always within our step
threshold, which could finally promise the attack for each scene to
be accomplished timely.
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Figure 6: Demonstration of evolutionary trends of rewards
and average attack steps (time) respectively in the training
process of sign “Stop”.

Validity of Agent Training: To prove the learning capability of
our agent, we also compare the results of random attacks with our
trained agent-based attacks for different scenarios. The results are
shown in Tab 4, where we can clearly see that each category has
an extremely significant difference in ASR before and after agent
training. Even though the difference in attack difficulty on those
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Figure 7: Comparison of partial clean video frames and antagonistic video frames when conducting our laser attack. During
such a process, we target the simulation of dynamic driving scenarios in the physical world.

classifiers is huge, where some agent attacks have relatively worse
performance with a gap of almost 30% than the optimal one, our
performance is still significantly better than theirs. Such results
fully prove that our agent-based decision module can effectively
learn and take attack strategies suitable for different situations, and
can make timely decisions within the specified time.

Table 4: Comparison of attack effects before (random) and
after agent training in our framework.

Category

Random 10% 13% 11% 0%

Agent 65%/+55% 63%/+50% 52%/+41% 39%/+39%

Verification in the Physical World: Although we are not at lib-
erty to achieve real-vehicle verification, we still attempt to simulate
such a process and validate our method under the approximation
of the real-world conditions. In fact, the perspective transformation
relations fitted by the perception module are not easily disturbed by
other factors in the real world and are sufficiently verifiable in the
digital world. Thus, we focus on mimicking a vehicle’s real move-
ment. Imitating the real driving situation, one person is asked to
stand at a fixed position against the side holding a stop sign, while
another person moves forward with a shooting camera, obtaining a
video from a pseudo-vehicle imaging perspective. The visual exam-
ples of partial frames are listed in the first row of Fig. 7. It is clear
that the sign is scaling and shifted with slight deformation during
the successive process, which is consistent with real scenarios. We
shoot for 7 seconds at twenty frames a second (total 140 frames)
within an indoor scene and perform our attack on this video, which
finally obtains an average ASR of 31.3% on the three classifiers, the
result suggests that the external environment has a certain impact
on the performance but it’s not particularly significant compared
with digital results. We also consider it acceptable since the sign
“STOP" has unique discriminatory characteristics and is more dif-
ficult to attack than most categories. The attack results of partial
frames are listed in the second row of Fig. 7, where we can find that
the multi-frame training strategy brings part of the similarity to
light patterns across frames.
Statistical Insights on Attack Results: We consider that each
category has its own representative characteristics as well as a

corresponding misleading tendency, so we discuss the effect of
our ELA attack from a macro point of view, globally analyzing
the statistical results of the false determinations triggered by the
attack and revealing potential risk warning insights. Specifically,
we count the frequencies of labels that are incorrectly predicted
after successful attacks and attempt to find out such rules with the
results in Tab 5, where we can observe that a speed limit sign "30"
with an adversarial light can be mostly mistaken for sign “70" or less
frequent “60" with higher restrictions, and the action-determining
sign “Stop" could also be vulnerable to be misled as others. Based
on this, we can easily recognize what weak points the embodied
agents tend to dig out for each category, and then future work could
focus more on the top frequent labels to ensure reliability.

Table 5: Statistical findings on the error labels that occurmost
frequently in misclassifications of the four origin categories.

Frequent Mistaken labels First Label Second Label

30 SPEED LIMIT (57 times) (22 times)

60 SPEED LIMIT (82 times) (8 times)

90 SPEED LIMIT (69 times) (9 times)

STOP (67 times) (14 times)

5 CONCLUSION
In this paper, we proposed a dynamic robust laser attack framework
combined with embodied intelligence: ELA, which contained three
stages: perception, decision and control to achieve the attack. For
the perception stage, a PTN was designed to infer key local informa-
tion in the victim’s view without direct interaction with its sensor.
For the decision and control stage, an attack decision-making agent
was designed and trained with reinforcement learning, which could
timely generate proper strategies according to scene variations and
then implement them flexibly. This is a new paradigm to enhance
the robustness of contactless attacks better suitable to real-world
successive scenarios, which may pave a new path for enhancing
the robustness of physical attacks.
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