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Abstract

This paper introduces a new method to define and train continuous distributions such as
normalizing flows directly on categorical data, for example text and image segmentation.
The generative model is defined by a composition of a normalizing flow and an argmax
function. To optimize this model, we dequantize the argmax using a distribution that is a
probabilistic right-inverse to the argmax. This distribution lifts the categorical data to a
continuous space on which the flow can be trained. We demonstrate that applying existing
dequantization techniques näıvely to categorical data leads to suboptimal solutions. In
addition, the model is fast both in generative (for sampling) and inference direction (for
training), as opposed to autoregressive models.

1. Introduction

Typically, normalizing flows model continuous distributions. As a result, directly optimizing
a flow on discrete data may lead to arbitrarily high likelihoods. An example of this phe-
nomenon is when flows are trained on ordinal 8-bit image data. Pixels are discretely valued
from 0 to 255 and need to be dequantized (Uria et al., 2013; Theis et al., 2016), i.e. noise is
added to lift the discrete pixels into a continuous space. In their framework, dequantization
is the inference distribution that is the natural counterpart of generative rounding. Even
though rounding is a natural transformation to obtain ordinal discrete variables, it places
an unwanted inductive bias on categorical variables as different pairs of categories can be
closer or further apart.

In this paper we resolve these issues by proposing a generative model using an argmax
surjection and a corresponding family of probabilistic right-inverses for these argmax sur-
jections. Argmax surjections are a deterministic map to obtain categorical variables from
a continuous representation and they do not add uncorrelated noise to the sampling proce-
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Argmax Flows

Figure 1: Overview of the generative model of argmax flow. A continuous distribution
pV (v) is transformed into a categorical distribution Pmodel(x) using the argmax function.
In this example, the continuous distribution pV (v) is learned using a normalizing flow g
that maps from a latent base distribution pZ(z).

dure. To learn the underlying density model, we parametrize a probabilistic right-inverse
to the argmax surjection, referred to as dequantization.

2. Preliminaries and Problem Setup

Let X = {1, 2, · · · ,K}d be a d-dimensional categorical space with probability mass function
Pdata(x) for x ∈ X where x = (x1, x2, · · · , xd) and each xi is a univariate categorical random
variable of K categories.

Given V = Rd and Z = Rd with densities pV and pZ respectively, normalizing flows
(Rezende and Mohamed, 2015) learn a bijective and differentiable transformation g : Z → V
such that the change of variables formula gives the density at any point v ∈ V:

pV (v) = pZ(z)) ·
∣∣∣∇zg(z)

∣∣∣−1, v = g(z), (1)

where pZ can be any density (usually chosen as standard Gaussian). Thus, normalizing
flows provide a powerful framework to learn exact density functions in an unsupervised
manner. However, Equation (1) is restricted to continuous densities and cannot be applied
in a straight-forward manner to discrete random variables.

Theis et al. (2016) have shown that modeling this continuous density p(v) lower bounds
the discrete distribution P (x) for uniform distribution. Ho et al. (2019) extended this
framework for any variational distribution q(u|x). In (Hoogeboom et al., 2020) it is shown
that from a variational inference perspective, not only hypercubes but any partitioning
of the space V can be optimized using this objective. Furthermore, Nielsen et al. (2020)
reinterpreted the process of dequantization as a surjective transformation f : X → V that is
deterministic in one direction (since x = round(v)) and stochastic in the other (v = x+ u
where u ∼ q(u|x)). Using this interpretation, dequantization can be seen as a family of
probabilistic right-inverses for a rounding surjection in the latent variable model given by:

P (x) =

∫
P (x|v)p(v) dv, P (x|v) := δ

(
x = round(v)

)
In this case, the density model p(v) can be any distribution and is modeled using a nor-

malizing flow. Learning proceeds by introducing the variational distribution q(v|x) that
models the family of probabilistic right-inverses for rounding surjection and optimizing the
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Table 1: Surjective flow layers for applying continuous flow models to discrete data. The
layers are deterministic in the generative direction, but stochastic in the inference direction.
Rounding corresponds to the commonly-used dequantization for ordinal data.

Layer Generation Inference Applications

Rounding x = bvc v ∼ q(v|x) w/ support Ordinal Data
S(x) = {v|x = bvc} e.g. images, audio

Argmax x = arg maxv
v ∼ q(v|x) w/ support Categorical Data
S(x) = {v|x = arg maxv} e.g. text, segmentation

following bound:

logP (x) ≥ Ev∼q(v|x) [logP (x|v) + log p(v)− log q(v|x)]

= Ev∼q(v|x) [log p(v)− log q(v|x)]
(2)

Under the constraint that the support of q(v|x) is enforced to be only over the region
S = {v ∈ Rd : x = round(v)} which ensures that P (x|v) = 1. In the next section, we
will propose a novel surjective transformation called argmax flows that directly extends
the ideas of rounding surjection to categorical random variables by designing a probabilistic
right-inverse q(v|x) for a surjective transformation that maps a categorical random variable
to a continuous random variable.

3. Argmax Flows

We propose a novel method to learn categorical data with continuous distributions. This
method consists of two parts: (1) the generative model that comprises of an argmax function
i.e. x = arg maxv, and (2) an inference model that requires a probabilistic right inverse
q(v|x) with support over the region S = {v ∈ Rd : x = arg maxv} where v ∼ p(v) can be
any underlying continuous distribution. Such a latent variable model induces the following
discrete distribution Pmodel:

Pmodel(x) :=

∫
P (x|v)p(v), P (x|v) := δ

(
x = arg max(v)

)
(3)

where p(v) may be modelled by any continuous distribution, such as a normalizing flow.
Importantly, P (x|v) denotes a Kronecker delta peak such that P (x|v) = δ(x = arg maxv).
Intuitively, one can see P (x|v) as partitioning the space V for different values of x. To be
precise, we define the (elementwise) argmax operation as:

arg max : RD×K → {1, . . . ,K}D : v 7→
(

arg max
k∈{1,...,K}

vd,k

)
d
, (4)

assigning for each dimension d separately the index kd such that vd,kd ≥ vd,k for all
k = 1, . . . ,K. Consequently, in concise notation, the corresponding categorical variable
is defined to be x = arg maxv, where x ∈ {1, . . . ,K}D. See Fig. 1 for an illustration.

The main difficulty lies in optimizing this generative model. Suppose one would näıvely
choose any variational distribution, then a sample v ∼ q(v|x) may lead to samples where
there is no probability at all because δ(x = arg maxv) = 0. Instead, we need to learn
the probabilistic right-inverses to the generative argmax function. In other words, for any
sample v ∼ q(v|x) it is desired that δ(x = arg maxv) = 1. Recall that under this condition,
the expected lowerbound (ELBO) can be simplified as in Equation 2.
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3.1. Dequantization by asymptotic thresholding

A relatively straightforward method to construct a distribution satisfying the argmax con-
straint, is by thresholding values using injective functions. More concretely, assume a
distribution with infinite support q(u|x) where u ∈ RD×K , for example a Gaussian distri-
bution or a normalizing flow. We can map u injectively to an argmax partition using a
threshold function and x. The injectivity of the map is important, because in that case the
likelihood q(v|x) is easily computed via the change of variables formula q(u|x)

∣∣du
dv

∣∣. In our
implementation thresholding is implemented using a softplus function such that all values
are mapped below a limit T .

v = threshold(u, T ) = −softplus(−(u− T )) + T, where softplus(x) = log(1 + ex), (5)

for which it is guarenteed that v ∈ (−∞, T ). In particular, the variable u is injectively
mapped to v such that vd,k = ud,k if xd equals k and otherwise vd,k = threshold(ud,k, ud,xd

)
if k 6= xd where xd is used as an index. In other words, all values except for the argmax
indices are thresholded to be below the argmax values.

3.2. Alternative methods for dequantization

For a detailed description of alternative dequantization methods based on Gumbel reparametriza-
tion see Appendix A. Further, we outline a method to trade-off between symmetry and the
number of dimensions in Argmax Flows, which we term Cartesian products of Argmax
Flows (further details in Appendix A).

4. Experiments

In this section we compare the performance of our method to alternative dequantization
methods, a standard VAE baseline with flexible posterior and prior, and to a VAE-based
latent normalizing flow approach. In the first experiment, we fit a toy 50 class problem
using maximum log-likelihood using different dequantization methods. As can be seen in
Table 6, our proposed Argmax based methods perform better than existing approaches

Table 2: Comparison of dequantization methods on a toy 50 class categorical distribution
problem, in bits.

Model ELBO IWBO

Hypercube / Uniform (Uria et al., 2013) 9.78 7.64
Hypercube / Var. (Ho et al., 2019) 5.32 4.91

Argmax / Asymptotic thresholding (ours) 5.00 4.82
Argmax / Gumbel distribution (ours) 4.86 4.82
Argmax / Gumbel thresholding (ours) 4.88 4.82

Data Entropy 4.82

4.1. Image data

To show that our method also generalized to images, we introduce an unconditional im-
age segmentation learning experiment. In contrast with the standard setting where the
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(a) Samples from Argmax Flow using
Gumbel dequantization.

(b) Squares segmentation data.

Figure 2: Visualization of samples of the squares segmentation data.

(a) Samples from Argmax Flow using
thresholding dequantization.

(b) Cityscapes data.

Figure 3: Note that the model is trained on segmentations unconditionally, that is there is
no photograph which the model is conditioned on.

prediction is conditioned on photographs, this problem is designed to be more compli-
cated by learning a distribution over the target without this photograph. We introduce
a 5-class toy segmentation problem named ”Squares” (see Figure 2). Further, we rescale
segmentation maps from cityscapes to 32 × 64 images and use the global category for an
8-class segmentation problem. The results of these experiments are depicted in Table 3.
Results depicted are the ELBO and IWBO (with 1000 samples) measured in bits per di-
mension. The thresholded-based argmax dequantization peforms best in terms of ELBO
values, and Gumbel-thresholded dequantization performs best in terms of IWBO evaluation
for cityscapes.

Table 3: Performance of different dequantization methods on squares and cityscapes dataset,
in bits per dimension for the ELBO and (IWBO) in parentheses. Lower is better.

Model Rectangles Cityscapes

Argmax / Gumbel (ours) 0.105 (0.089) 0.307 (0.287)
Argmax / Threshold (ours) 0.098 (0.088) 0.303 (0.290)

Hypercube / Uniform (Uria et al., 2013) 0.303 (0.220) 1.011 (0.930)
Hypercube / Var. (Ho et al., 2019) 0.102 (0.088) 0.334 (0.315)

VAE (Flow prior, Flow var. posterior) 0.101 (0.089) 0.306 (0.293)

4.2. Text data

In this section we learn a normalizing flow on the text8 dataset. Instead of using a K = 27
argmax space, we find empirically that using a 5 × 2-binary space with threshold dequan-
tization (see Appendix A) work better. Further, the same density model as proposed in
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(Lippe and Gavves, 2020) is utilized. This experiment shows that Argmax Flow achieve
lower bits per character (bpc) than CategoricalNF on text8 (see Table 4).

Table 4: Comparison of dequantization methods on text8 dataset, in bits. Both models use
the same underlying density model from CategoricalNF. Lower is better.

Model ELBO IWBO

CategoricalNF (Lippe and Gavves, 2020) 1.45 bpc -
Argmax Flow (ours) 1.43 bpc 1.43 bpc

5. Related Work

Deep generative models broadly fall into the categories autoregressive models ARMs (Ger-
main et al., 2015), Variational Autoencoders (VAEs) (Kingma and Welling, 2014), Adversar-
ial Network (GANs) (Goodfellow et al., 2014), Normalizing Flows Rezende and Mohamed
(2015) and Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Normalizing
Flows and Diffusion models typically learn a continuous distribution and dequantization
is required to train these methods. A large body of work is dedicated to building more
expressive continuous normalizing flows (Dinh et al., 2017; Germain et al., 2015; Kingma
et al., 2016; Papamakarios et al., 2017; Chen et al., 2018; Song et al., 2019; Perugachi-Diaz
et al., 2020).

To learn ordinal discrete distribution, adding uniform noise in-between ordinal classes
was proposed in (Uria et al., 2013) and later theoretically justified in (Theis et al., 2016).
An extension for more powerful dequantization based on variational inference was proposed
in Ho et al. (2019). Dequantization for binary variables was proposed in (Winkler et al.,
2019).

In other works, VAEs have been adapted to learn a normalizing flow for the latent space
(Ziegler and Rush, 2019; Lippe and Gavves, 2020). However, these approach typically still
utilize an argmax heuristic to sample, even though this is not the distribution specified dur-
ing training. Further, Tran et al. (2019) propose invertible transformations for categorical
variables directly, but results on images have thus far not been demonstrated. In addition
flows for ordinal discrete data (integers) have been explored in (Hoogeboom et al., 2019;
van den Berg et al., 2020)

6. Conclusion

In this paper we introduce a principled method to train continuous distributions such as
flows on categorical data. The generative model is defined by an argmax function which
can be evaluated using a variational distribution over right-inverses. Different from other
approaches is that our method does not require a stochastic decoder in the generative
process, and as a result our model does not suffer from undesired uncorrelated noise in the
model distribution. We demonstrate that our method performs competitively on similar
approaches on unconditional image segmentation and text.
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Appendix A. Further methods for dequantization

A.1. Dequantization with Gumbel distributions

An alternative method to construct q(v|x) is to first define a marginal q(v) from which
we can sample conditioned on the argmax q(v| arg maxv = x). A natural distribution to
do such manipulations is the Gumbel distribution because of its favourable properties: the
arg max and max are independent and the max is also distributed as a Gumbel distribution.
As a result it is straightforward to sample from a Gumbel distribution conditioned on its
argmax. For simplicity in notation, we will write that v ∈ RK and x ∈ {1, . . . ,K} without
dimension d, as the distribution is defined independently over the dimension axis d. We first
define a distribution for v as the Gumbel distribution with location parameters φ ∈ RK :

v ∼ Gumbel(φ) (6)

Gumbel have the nice property that the argmax and max are independent distributions,
and are accessible in closed-form. In particular, the variable maxi vi is distributed as a
Gumbel distribution itself and importantly does not depend on i:

max
i
vi ∼ Gumbel(φmax) (7)

where φmax = log
∑

i expφi. These properties make it very easy to sample conditionally
from the Gumbel distribution when the argmax index is given by x. Conditioned on x, the
variable vx is distributed as:

vx ∼ Gumbel(φmax). (8)

Furthermore, given this sampled maximum, the remaining indices can be directly sampled
using truncated Gumbel distributions:

vi ∼ TruncGumbel(φi;T ) where i 6= x (9)

where the truncation value T is given by vx. By computing first Equation 8 and subsequently
Equation 9 we have drawn our sample v ∼ q(v|x) for which arg maxv = x. Recall that to
optimize Equation 2, the log-likelihood log q(v|x) is also required. This can be computed
in closed-form expressions using the log density functions. Another useful property of
the Gumbel distribution is that its argmax is distributed as the categorical distribution
P (arg maxv = i) = expφi/

∑
i expφi. As such, the location parameters φ can be initialized

to match the empirical distribution of the first minibatch of the data.
For completeness here follows a quick summary of Gumbel properties: To sample g ∼

Gumbel(φ), sample u ∼ U(0, 1) and compute g = − log(− log(u)) + φ. Further the log-
likelihood log Gumbel(g|φ, 1) = φ − g − exp(φ − g). To sample g ∼ TruncGumbel(φ, 1;T ),
sample u ∼ U(0, 1) and compute g = φ−log(exp(φ−T )−log(u)). Further the log-likelihood
log TruncGumbel(g|φ, 1, T ) = exp(φ − T ) − exp(φ − g) + φ − g under the condition that
g < T and otherwise −∞.

A.2. Unifying Thresholding and Gumbel dequantization into Gumbel
Thresholding

This section combines the results from the previous two sections. The key insight is that
the Gumbel sampling procedures as defined above can be seen as a reparametrization of a
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uniform noise distribution on (0, 1]d which is put through the inverse CDF of the Gumbel
distributions. Additionally, the log-likelihoods can be seen as log-derivatives of the (for-
ward) CDF. Consequently, instead of using uniform noise, we may learn any distribution
on the interval (0, 1]d and reparametrize using the same inverse CDF functions, where the
log Jacobian determinant is equal to the log likelihood at that point. The idea is that
the smoothness of the Gumbel distribution is retained more while correlations across di-
mensions can still be learned by the interval distribution. Compared to the plain Gumbel
dequantization, the interval noise can now be conditioned on x and can be further cor-
related across dimensions d, which leads to more expressive dequantization distributions.
Suggestions to learn an interval distribution are (1) to learn a flow with infinite support
composed with a sigmoid that injectively maps to (0, 1)d or (2) learn a flow starting from a
uniform distribution that is transformed using interval preserving transformations such as
splines.

A.3. Cartesian products of Argmax Flows

In the current description, Argmax flows require the same number of dimensions in v as
there are classes in x. To alleviate this constraint we introduce Cartesian products of argmax
flows. To illustrate our method, consider a 256 class problem. One class can be represented
using a single 256-onehot vector, but also using two hexadecimal numbers or alternatively
using eight binary numbers. Formally, any categorical variable x(K) ∈ {1, . . . ,K}d in baseK
can be converted to x(M) ∈ {1, . . . ,M}dm×d in base M ≥ 2, where at least dm = dM logKe
M -categorical variables are required to model a single K-categorical variable. Then the
variable x(M) with dimensionality M · dm · d is dequantized instead of the variable x(K)

with dimensionality K · d. Even though this may lead to some unused additional classes,
the ELBO objective in Equation 2 remains valid and thus the model can be optimized
using an M -categorical argmax flow. To illustrate the changes in dimensionality, in Table
5. Finally note that binary class problems are a special case where the variable can be
straightforwardly encoded symmetrically into a single dimension. As a consequence the
last row in Table 5 is a special case that can alternatively be encoded using only dm = 11
dimensions.

Table 5: Example of the trade-offs when taking Cartesian products of Argmax Flows, in a
hypothetical problem with K = 2000 classes.

M dm max neighbours max distance total dimensions

2000 1 1999 1 dm ·M = 2000
45 2 M = 45 2 dm ·M = 90
13 3 M = 13 3 dm ·M = 39
2 11 M = 2 11 dm ·M = 22
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A.4. Ablation study: Gumbel distribution versus Gumbel thresholding

Table 6: Ablation on cityscapes.

Model ELBO IWBO

Argmax / Gumbel distribution 0.365 0.341
Argmax / Gumbel thresholding 0.307 0.287
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