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ABSTRACT

Instance attribution has emerged as one of the most crucial methodologies for
model explainability because it identifies training data that significantly impacts
model predictions, thereby optimizing model performance and enhancing trans-
parency and trustworthiness. The applications of instance attribution include data
cleaning, where it identifies and rectifies poor-quality data to improve model out-
comes, and in specific domains such as detection of harmful speech, social net-
work graph labeling, and medical image annotation, it provides precise insights
into how data influences model decisions. Specifically, current instance attribu-
tion methods facilitate the identification of causal relationships between training
data and model predictions. A higher Instance-level Training Data Influence value
(IL value) indicates that the training data used for the computation play a more
significant role in the model’s prediction process. However, the current methods
can only indicate that a training sample is important, but they do not explain why
this sample is important. A feasible algorithm is urgently needed to provide an
explanation for this behavior. This paper discovers that artificially manipulating
the attribution score by modifying samples (e.g., changing a pixel value in image
data) can significantly intervene in the importance of training samples and yield
explainability results at the feature-level during the intervention process. The pro-
posed Feature Level Instance Attribution (FLIA) algorithm assists in identifying
crucial feature locations in training data that significantly impact causality. To
avoid the frequent retraining of models for evaluation, we introduce an unlearn-
ing algorithm as an assessment method and provide detailed empirical evidence
of our algorithm’s efficacy. To facilitate future research, we have made the code
available at: https://anonymous.4open.science/r/FIIA-D60E/.

1 INTRODUCTION

The development of artificial intelligence (AI) faces several challenges: improving model perfor-
mance, defending against attacks, protecting data privacy, promoting fairness, enhancing inter-
pretability, reducing computational requirements, and lowering annotation costs (Scherer, 2015;
Hammoudeh & Lowd, 2024). Improving model performance is essential for accuracy and effi-
ciency. Security measures are crucial to protect against attacks and data breaches. Addressing
fairness prevents biases and social injustice. Enhancing interpretability builds trust and controllabil-
ity. Reducing computational and annotation costs makes AI more accessible and practical. Failing
to address these issues can significantly hinder AI development and application.

Training Data Influence Analysis (TDIA) evaluates the impact of individual training instances on
a model’s performance and predictions (Krishnan et al., 2016; Kong et al., 2021; Thimonier et al.,
2022). By identifying influential data, this method can address key AI challenges. Removing prob-
lematic data improves performance and security by defending against poisoning and backdoor at-
tacks (Shafahi et al., 2018; Oh et al., 2022; You et al., 2023). Influence analysis promotes fairness by
detecting biases in data (Mehrabi et al., 2021). It also enhances interpretability by highlighting key
training instances, making the model’s decisions more transparent (Sui et al., 2021). Furthermore,
it reduces computational requirements by selecting high-quality training subsets and lowers anno-
tation costs by prioritizing significant unlabeled data, thereby improving efficiency and facilitating
large-scale dataset creation (Braun et al., 2022).

Current TDIA algorithms, particularly those in the Gradient-Based Methods category like TracIn
series, are relatively mature (Pruthi et al., 2020). However, these algorithms are limited to instance-
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Figure 1: Flowchart of the FLIA process and Schematic Representation of Core arguments. The
left section illustrates the FLIA workflow, while the middle section aligns with the arguments from
Section 3 (Arguments 1 and 2) and the experimental designs of Section 4.2 (Experiment A) and
Section 4.3 (Experiment B). To demonstrate that IL values can be altered, and that such alterations
can affect the model’s behavior, we employ unlearning techniques to assess this impact. The right
section uses attribution results to evaluate the model, where gray occlusion areas represent adversar-
ially attacked samples with occlusions applied to the original images.

level, meaning they can only assess the impact of an entire training sample on the model’s decision.
In other words, TDIA algorithms can only identify training samples that are highly correlated with
the prediction but cannot explain why the sample has a high influence. Intuitively, if a TDIA al-
gorithm cannot be explained or understood, we cannot trust that it has truly identified the most
influential training samples. For example, as shown in Figure 2, TDIA algorithms may find back-
door attack samples but fail to determine which specific trigger caused the backdoor attack. In such
cases, further analysis of these samples becomes difficult and requires substantial manual judgment
to identify the problematic elements (such as the additional human costs to compare images to find
triggers). If the trigger is not visually obvious Nguyen & Tran (2020), it is hard to distinguish be-
tween backdoor samples and supportive samples used in training. Based on this, our curiosity lies in
identifying which features within a sample are key to its influence. Furthermore, we aim to develop
a fine-grained influence assessment method capable of determining each feature’s influence on the
training data.

Backdoor Training Sample Attribution Result Testing Sample

Figure 2: Backdoor Training Sample, Attribution Result, and Testing Sample

To achieve this, we devised a novel method to modify Instance-level TDIA values (referred to as IL
values) by adding very small perturbations to the samples (Pruthi et al., 2020). To avoid repeatedly
retraining the model to evaluate the impact of training data, we utilized unlearning algorithms to
design a new evaluation method (Graves et al., 2021; Thudi et al., 2022; Liu et al., 2024). We found
that these small perturbations could significantly influence the impact of training samples on model
decisions (the larger the IL value, the greater the impact). Through the analysis of these perturba-
tions, we rigorously derived the FLIA algorithm and provided strict proofs. The FLIA algorithm
can capture all IL value changes and offer fine-grained feature-level TDIA. The flowchart of our
FLIA method is shown in Figure 1, which illustrates how the algorithm computes influence changes,
evaluates them through unlearning, and uses attribution results to assess model performance. Our
contributions are as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We discovered that TDIA results could be altered by very small perturbations (for images,
changes less than one pixel value), and these changes could significantly affect the model’s
decision-making process without altering the sample’s confidence.

• We proposed the FLIA algorithm, a novel attribution algorithm that can obtain feature-
level instance attribution results. To our knowledge, this is the first study to analyze the
fine-grained impact of parts of the training data on model decisions.

• To facilitate further research and ensure experimental reproducibility, we provided a de-
tailed derivation and rigorous mathematical proof of the FLIA algorithm’s principles and
have open-sourced all experimental code.

2 RELATED WORK

According to the study by Hammoudeh & Lowd (2024), TDIA methods can be categorized into
retraining-based methods and gradient-based influence analysis methods, where gradient-based
methods include both static and dynamic methods. In this section, we compare the principles, advan-
tages, and disadvantages of different methods to clarify their application scenarios and limitations.

2.1 RETRAINING-BASED METHODS

Retraining-based methods assess the impact of each sample in the training data on the model output
by removing each sample one by one and retraining the model. Leave-One-Out (LOO) (Weisberg &
Cook, 1982) is the most classic retraining-based method. The core idea is to retrain the model after
removing one training sample each time, and measure the impact of the sample by comparing the
predictions of the new model and the original model on specific test instances. The main advantage
of LOO is that it is intuitive and can accurately measure the influence of training instances. However,
the computational cost of LOO is very high. For large datasets or complex models, the process
of removing samples one by one and retraining the model is very time-consuming and resource-
intensive, making it impractical for real-world applications.

2.2 GRADIENT-BASED METHODS

Gradient-based methods provide efficient influence analysis by analyzing the gradient impact of
training data on model parameters and prediction results. Static methods and dynamic methods are
the two main types.

2.2.1 STATIC METHODS

Influence Functions (Koh & Liang, 2017) are a classic static method used to estimate the impact of
small changes in training data on model parameters and prediction results. By slightly adjusting one
instance in the training data and using gradient and Hessian matrix information, Influence Functions
approximate the impact of this adjustment on model predictions. The main advantage of Influence
Functions is that they do not require retraining the model. However, the Hessian matrix is compu-
tationally intractable for large model parameters and can only be approximated. Additionally, static
methods are mainly applied to models at their final state, thus assuming the model is converged,
which is not always the case in practice.

2.2.2 DYNAMIC METHODS

TracIn (Pruthi et al., 2020) and HyDRA (Chen et al., 2021) are two main dynamic methods. TracIn
tracks the gradient changes of each instance during the training process, records the gradient in-
formation at multiple time points, and accumulates these gradient changes to estimate the dynamic
impact of each training instance on the prediction results of specific test instances. Its advantage is
that it can dynamically capture the impact of training instances on the model, particularly suitable for
deep learning models. HyDRA unfolds the test loss hypergradient concerning training data weights,
comprehensively evaluating the contribution of training data to test data points. HyDRA simpli-
fies the computation process by omitting the Hessian term, improving computational efficiency and
performing well in handling noisy training data, but may introduce errors in certain cases.
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2.3 OTHER RELEVANT METHODS

Fast Influence Functions (Guo et al., 2020) and LeafInfluence (Sharchilev et al., 2018) are two
other important methods, both of which, along with mentioned Influence Functions (Koh & Liang,
2017), represent different versions of Influence Function-based approaches.. Fast Influence Func-
tions achieve significant computational efficiency improvements through simple modifications to
traditional Influence Functions. They mainly reduce computational complexity by narrowing the
search space using k-nearest neighbors (kNN) algorithm and optimizing inverse Hessian-vector
product estimation. Fast Influence Functions are suitable for large-scale datasets but may have some
approximation errors. LeafInfluence is specifically designed for decision tree models, estimating
the specific impact of each training instance on model predictions by analyzing the leaf nodes of
decision trees. LeafInfluence is computationally efficient and applicable to single decision trees and
ensemble models but is limited to decision tree models and not applicable to other types of models.

2.4 FEATURE ATTRIBUTION METHODS

Feature attribution methods aim to calculate the contribution of individual input features to model
decisions, and they can be broadly divided into gradient-based and perturbation-based approaches.
Gradient-based methods, such as Integrated Gradients (IG)(Sundararajan et al., 2017), compute at-
tributions by integrating gradients from a baseline to the input, with extensions like Baseline Inte-
grated Gradients (BIG)(Wang et al., 2021) and Adversarial Gradient Integration (AGI) introducing
adversarial baselines and non-linear paths, respectively, to enhance robustness and accuracy. More
advanced methods like More Faithful and Accelerated Boundary-based Attribution (MFABA)(Zhu
et al., 2024) use second-order Taylor expansions to improve the efficiency of attributions, while
AttEXplore(Zhu et al., 2023) focuses on incorporating model parameter information to refine fea-
ture importance. Despite the efficiency of gradient-based methods, they often suffer from sensi-
tivity to model parameters and poor robustness to input perturbations, limiting their reliability in
tasks such as insertion and deletion metrics. On the other hand, perturbation-based methods, like
LIME (Ribeiro et al., 2016) and SHAP (Lundberg, 2017), work by modifying or removing input
features and observing the effects on the model’s output. LIME approximates local decision bound-
aries with surrogate models, while SHAP uses Shapley values from game theory to offer globally
consistent attributions. Although these perturbation-based methods provide model-agnostic and in-
terpretable explanations, they are computationally expensive and may lack robustness in complex
data scenarios. Both approaches predominantly focus on local explanations for individual samples,
making them less suitable for addressing the broader issue of TDIA.

Additionally, the TDIA introduced above is limited to the instance level, meaning it can only analyze
the impact of a single sample on training (typically analyzing the association between the presence
of one training sample and the model’s decision on a single test sample at a time). The FLIA
algorithm proposed in this paper can achieve feature-level analysis, i.e., analyze the contribution of
each feature dimension within training samples to the TDIA.

3 METHOD

In this section, we will introduce the specific details of the FLIA algorithm. The core logic behind
FLIA is to observe the contribution of different dimensions of a sample during the process of
modifying IL values. To ensure that this core logic holds, we need sufficient experimental results
to support three arguments.

• Argument 1: The IL values can be modified. This will be analyzed and proven in Sec-
tion 4.2.

• Argument 2: We need to demonstrate that modifying IL values can directly affect the
influence of a training example on a prediction made by the model. This will be analyzed
and proven in Section 4.3.

• Argument 3: We must ensure that modifying IL values does not alter the inherent proper-
ties of the sample (such as the semantic information of the image or the model’s confidence
in the sample). This will be analyzed and proven in Section 4.4.
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We will first introduce the instance-level algorithm TracIn used for TDIA and analyze the stability
of the TracIn algorithm and the impact of minor sample modifications on TracIn results. Then, we
will introduce how to use these perturbations to obtain feature-level instance attribution results.

3.1 INSTANCE-LEVEL TRAINING DATA INFLUENCE ANALYSIS

We first introduce the calculation process of IL values and the underlying derivation. From the
derivation, we observe the connection between the IL values and the influence of a training example
on a prediction made by the model.

Let f represent the neural network, w represent the parameters of the neural network, and f(x;w)
represent the output of the neural network for sample x and parameters w. L denotes the loss
function, which typically represents the fit quality; the lower the loss function, the better the fit. For
simplicity, we abbreviate the Instance-level TDIA algorithm as IL.

In Pruthi et al. (2020), the core principle of TracIn is to observe the impact of training sample xtr

on test sample xte after updating the parameters using xtr. The model’s decision performance
on test sample xte can be represented by the loss function L(f(xte;w), y).

L(f(xte;w
t), y)− L(f(xte;w

t−1), y) ≈ (∆wt−1)⊤ · ∂L(f(xte;w
t−1), y)

∂wt−1
(1)

As shown in Equation 1, by performing a first-order Taylor expansion on L(f(xte;w
t−1), y) at

time t − 1, we can observe the impact of parameter changes on the test sample. The parameter
change ∆wt−1 can be obtained by updating the parameters using the training sample xtr. Under
parameter wt−1, the parameter update ∆wt−1 with gradient descent using training sample xtr is ηt ·
∂L(f(xtr;w

t−1),y)
∂wt−1 . To observe the participation of training samples throughout the training process,

we consider all parameter states during the training process, resulting in Equation 2.

IL(xtr, xte) =

T∑
t=1

L(f(xte;w
t), y)− L(f(xte;w

t−1), y)

=

T∑
t=1

ηt ·
⊤

∂L(f(xtr;w
t−1), y)

∂wt−1︸ ︷︷ ︸
gt(xtr)

· ∂L(f(xte;w
t−1), y)

∂wt−1︸ ︷︷ ︸
gt(xte)

=
T∑

t=1

ηt · gt(xtr)
⊤ · gt(xte)

(2)

Using Equation 2, we obtain the IL result. For convenience, we abbreviate the two gradients in
Equation 2 as gt(xtr) and gt(xte). This result indicates the impact of the training sample xtr on
the test sample xte over multiple training processes. Here, we summarize that the calculation of the
IL value considers the impact on the loss function with and without the test sample xte at different
stages of training. Since the loss function is the most direct way to reflect the model’s prediction
results, we can observe the influence of a training example on the model’s prediction directly through
the IL value.

3.2 PERTURBATION OF IL VALUES

The effectiveness of IL has been thoroughly validated in prior work Pruthi et al. (2020); Hammoudeh
& Lowd (2024), so we do not delve into further details here. We observed that IL results can be eas-
ily perturbed by introducing minimal modifications to the samples (for image tasks, this typically
involves altering each pixel by a very small amount). Notably, such perturbations do not alter the se-
mantic information of the original images or affect the model’s predictions. For instance, as demon-
strated in Section 4.4, even when IL values experience significant shifts, the model’s confidence in
predicting the perturbed samples remains unchanged. This discussion aligns with Argument 3.

5
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xt
tr = xt−1

tr ± η · sign
(
∂IL(xt

tr, xte)

∂xt
tr

)
(3)

We update the training sample xtr using Equation 3, where x0
tr denotes the initial state of xtr.

The step size η is set to 1
2550 (as each pixel is normalized to a granularity of 1

255 ), and the number
of updates is set to 10. With this configuration, the maximum perturbation after 10 updates is
constrained to within a single pixel value, which reason is that we found this small perturbation
is already sufficient to induce significant changes in the IL value while maintaining the model’s
confidence. If we were to perturb more than a single pixel value, the IL value might change too
drastically. When the perturbation direction is negative, the goal is to reduce the IL output, thereby
decreasing the influence of the training sample on the test sample. We observe that over 10 iterations,
the IL value decreases by at least 50%. Conversely, when the perturbation direction is positive, the
goal is to enhance the training sample’s influence on the test sample, with some cases showing an
increase in IL by over 34 times after 10 iterations. This analysis supports Argument 1.

Additionally, we found that the pixel values of the samples and the model’s confidence in those
samples remained nearly unchanged during the perturbation process, as demonstrated in Section 4.2.
Furthermore, we performed unlearning on the same sample under different IL values and observed
the impact on the model’s prediction before and after unlearning. This revealed a clear correlation
between IL changes and the influence of the training sample on the model’s decision-making, which
we discuss in Sectionn 4.3. This finding suggests that adjusting the IL value can either enhance or
weaken the influence of a training sample on the model’s decision, supporting Argument 2.

3.3 FEATURE-LEVEL INSTANCE ATTRIBUTION

In this section, we introduce how the FLIA algorithm determines the importance of each feature
dimension and provide the corresponding derivation process. To maintain simplicity in the deriva-
tion process, we abbreviate IL(xtr, xte) as IL(xtr), and perform a Taylor expansion on xtr as the
independent variable at time t:

IL(xt
tr) = IL(xt−1

tr +∆xt−1
tr ) = IL(xt−1

tr ) + ∆xt−1
tr · ∂IL(x

t−1
tr )

∂xt−1
tr

+O (4)

where O represents higher-order infinitesimals, indicating that the approximation is accurate up to
first-order terms, with higher-order terms contributing insignificantly for small perturbations. And
∆xt

tr = ±η · sign
(

∂IL(xt
tr,xte)

∂xt
tr

)
. Considering each moment:{ ∑T

t=1 IL(x
t
tr +∆xt

tr) =
∑T

t=1

(
IL(xt

tr) + ∆xk⊤

tr · ∂IL(xt−1
tr )

∂xt
tr

+O
)

xt+1
tr = xt

tr +∆xt
tr

(5)

We finally derive the core formula for Feature-Level Instance Attribution:

FLIA(xtr, xte) = IL(xT
tr)− IL(x0

tr) =

T∑
t=1

∆xt−1⊤

tr · ∂IL(x
t−1
tr )

∂xt−1
tr

(6)

The contribution of the i-th dimension feature in xtr to the IL can be derived as:

FLIA(x
(i)
tr , xte) =

T∑
t=1

∆x
t−1(i)
tr · ∂IL(x

t−1
tr )

∂x
t−1(i)
tr

(7)

In the process of calculating ∂IL(xt−1
tr )

∂x
t−1(i)
tr

, only gt(xtr)
⊤ is related to the sample xtr, while gt(xte)

acts only as a weight. This means that ∂IL(xt−1
tr )

∂x
t−1(i)
tr

evaluates the second-order curvature of the sample

with respect to the parameter space manifold, establishing a connection between the parameters and
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the sample. It is worth noting that the above derivation process proves that any change in xtr leading
to a change in the IL value will inevitably be captured by the FLIA algorithm. Moreover, the sum
of the importance of all feature dimensions equals the change in the IL value. This also implies that
as long as the change in the IL value is meaningful, the attribution results will be able to distinguish
the contribution of each feature to the IL value.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

We conducted experiments on the following datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100, GTSRB (The German Traffic Sign Recognition Benchmark) (Houben et al., 2013), and SVHN
(The Street View House Numbers) (Netzer et al., 2011). To ensure reproducibility and reliability of
the results, a fixed random seed of 0 was used in all experiments. The attack steps were set to 10,
and the learning rate was set to 1/2550. We used two model architectures: ResNet-18 (He et al.,
2016) and DenseNet-121 (Huang et al., 2017). We conducted all experiments via two NVIDIA A
100 graphics cards.

The specific settings are as follows:

• CIFAR-10: Randomly selected 100 images per class from the training set and 10 images
per class from the test set, totaling 10,000 samples.

• CIFAR-100: Randomly selected 10 images per class from the training set and 10 images
per class from the test set, totaling 10,000 samples.

• GTSRB: Randomly selected 15 images per class from the training set and 15 images per
class from the test set, totaling 9,675 samples.

• SVHN: Randomly selected 100 images per class from the training set and 10 images per
class from the test set, totaling 10,000 samples.

4.2 EXPERIMENT A: ADVERSARIAL ATTACKS CAN AFFECT IL VALUES

Table 1: Changes in IL values and confidence under adversarial attacks across different datasets and
models. The Confidence Change column represents the variation in confidence values for the true
class of the training samples, and the IL Change column represents the variation in IL values.

ResNet-18 DenseNet-121

Dataset Sample
Number

Gradient
Direction IL Change Confidence

Change IL Change Confidence
Change

CIFAR-10 10000 Gradient Descent -0.5097 0.0004 -0.6158 0.0007
Gradient Ascent 2.5005 -0.0099 2.2480 -0.0121

CIFAR-100 10000 Gradient Descent -0.7403 0.0059 -0.7434 0.0042
Gradient Ascent 42.0748 -0.1403 110.6082 -0.1794

GTSRB 9675 Gradient Descent -0.6107 0.0414 -0.7008 0.1132
Gradient Ascent 10.2616 -0.0548 6.8963 -0.0470

SVHN 10000 Gradient Descent -0.6705 0.0033 -0.7023 0.0079
Gradient Ascent 4.7778 -0.0499 5.5495 -0.0844

The results in Table 1 demonstrate that adversarial attacks have a pronounced effect on IL values,
while the corresponding changes in class confidence are minimal. Across all datasets and models,
the IL values exhibit significant shifts under both gradient ascent (increasing influence) and gradient
descent (decreasing influence). For example, on the CIFAR-100 dataset using DenseNet-121, the
IL value increased by over 110 during gradient ascent, but the confidence only decreased slightly
by 0.1794. This pattern is consistent across other datasets such as GTSRB and SVHN, where IL
changes are substantial, while confidence variations remain small.

These findings suggest that adversarial perturbations are particularly effective at altering the model’s
sensitivity to specific training samples without causing drastic changes in its confidence in the true
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class. This highlights the vulnerability of IL values to adversarial manipulation, where the influ-
ence of training data on model predictions can be significantly amplified or reduced, even when the
model’s overall certainty about its predictions is largely unaffected. The disproportionately large
changes in IL during gradient ascent, particularly on datasets like CIFAR-100, indicate that adver-
sarial attacks can exploit the model’s inherent sensitivity to specific data points, leading to significant
shifts in influence even when starting from a relatively small baseline.

This analysis supports the Argument 1 that adversarial attacks primarily target the influence of in-
dividual training samples on model decisions, rather than directly modifying the model’s confidence
in its predictions.

4.3 EXPERIMENT B: THE IMPACT OF IL VALUES ON TRAINING INFLUENCE

In Experiment B, we aim to verify Argument 2 that the correlation between the influence of IL
values and the effect of a training example on the model’s predictions. To avoid retraining the model
each time to evaluate the Training Data Influence, we adopted the Gradient ascent (GA) unlearning
method (Graves et al., 2021; Thudi et al., 2022; Liu et al., 2024). Unlearning was performed using
the SGD optimizer with a learning rate of 0.01, momentum set to 0, weight decay set to 0, and
other parameters kept at their default values. Each unlearning step involved inputting one training
sample and its corresponding label. During each unlearning iteration, a deep copy of the model was
made, and the cross-entropy was calculated based on the output of the input training data followed
by gradient ascent.

To evaluate relevance, we define a new evaluation metric called the Confidence Difference Corre-
lation Index (CDCI). CDCI calculates the covariance by using the attack steps and the confidence
difference at each step of the model. The confidence difference at each step is the absolute value
of the change in the model’s confidence for a test sample when unlearning a single training sam-
ple. The larger the difference, the greater the influence that training sample has on the model’s
training process. This metric is used to observe whether the influence of a training example on a
model’s prediction changes along with the IL value. If the CDCI is greater than 0, it indicates a
clear positive correlation, and the larger the value above 0, the stronger the correlation (typically, a
value greater than 0.5 indicates a strong correlation). We conducted experiments on the CIFAR-
10, CIFAR-100, GTSRB, and SVHN datasets and recorded the Confidence Difference Correlation
Index (CDCI). The results are shown in Table 2.

Table 2: Confidence Difference Correlation Index
(CDCI) across different datasets and models un-
der adversarial attacks.

Dataset CIFAR-10 CIFAR-100 GTSRB SVHN

CDCI 0.6440 0.7958 0.7573 0.660

As shown in Table 2, the results of unlearn-
ing under adversarial attacks exhibit a signifi-
cant positive correlation with IL values. This
indicates that as the number of attack steps in-
creases, the absolute value of the impact caused
by unlearning (i.e., the absolute difference in
class confidence before and after unlearning)
becomes larger, representing a stronger rela-
tionship between unlearning and the influence
of training data on model predictions. This suggests that the influence of unlearning intensifies with
the progression of adversarial attacks. Negative values represent gradient descent, which reduces IL
values and thus decreases the impact caused by unlearning.

To further illustrate this correlation, we plotted the output difference curves against the number of
attack steps (see Figures 3a-3d). These figures show that as the number of attack steps increases,
the output differences gradually increase, indicating a growing influence of unlearning on model
predictions. This further validates the strong correlation between IL values and the influence of
training examples.

In summary, as long as the change in IL values is meaningful, the attribution results are neces-
sarily meaningful. This experimental result supports the effectiveness of our proposed method in
evaluating the impact of training data.
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Figure 3: Output difference vs. attack steps on ResNet-18. The red line represents the Output
difference without attack.

Table 3: Insertion (INS) and Deletion (DEL) results across different datasets and models.

Model CIFAR-10 CIFAR-100 GTSRB SVHN

INS DEL INS DEL INS DEL INS DEL

ResNet-18 0.6882 0.8807 0.4568 0.7773 0.8810 0.8835 0.9040 0.9794

DenseNet-121 0.6024 0.8545 0.4582 0.7870 0.8922 0.9397 0.8868 0.9773

4.4 EXPERIMENT C: EVALUATING THE PROPORTION OF CORE FEATURES IN THE DATASET
THROUGH IL VALUES

In Experiment C, we aim to evaluate the proportion of core features in the dataset through Insert-
Deletion Analysis. Specifically, the insert operation gradually replaces the original image with the
adversarial image, while the deletion operation gradually replaces the adversarial image with the
original image. Each operation replaces 10% of the region according to the attribution results,
performs a total of 10 replacements, and calculates the IL score to assess the impact of these changes
on the model.

We conducted experiments on the CIFAR-10, CIFAR-100, GTSRB, and SVHN datasets using
ResNet-18 and DenseNet-121 models. The specific experimental steps are as follows: First, we
performed the insert operation, replacing 10% of the region of the original image with the adver-
sarial result according to the attribution results each time, and calculating the IL score after each
replacement, performing a total of 10 replacements. Second, we performed the deletion operation,
replacing 10% of the region of the adversarial image with the original image according to the attri-
bution results each time, and calculating the IL score after each replacement, performing a total of
10 replacements. To ensure data consistency and comparability, we normalized each replacement
step by dividing by the maximum value and averaged the results over samples. The insert operation
yielded the Insertion (INS) results, and the delete operation yielded the Deletion (DEL) results. If
the INS result is less than the DEL result, it indicates that the attribution process is effective, and a
larger gap indicates that the model utilizes fewer features from the training samples.

A smaller Insertion value indicates that a small number of attribution results can cover the entire
IL attribution, suggesting that these core features occupy a smaller proportion during training but
have a significant impact on model decisions. Conversely, a larger Insertion value indicates more
concentrated key information. This can be used to assess whether the model fully utilizes the features
in the training data and may also indicate the model’s generalization ability. A model with a lower
Insertion and higher Deletion value may have learned less concentrated key features during training,
potentially leading to better generalization.

On the CIFAR-10 dataset, the ResNet-18 model’s Insertion score (INS) is 0.6882, while the Deletion
score (DEL) is 0.8807, indicating that the model can effectively reduce the IL value with fewer core
feature changes. Similarly, the DenseNet-121 model on the same dataset has Insertion and Deletion
scores of 0.6024 and 0.8545, respectively. For the CIFAR-100 dataset, the Insertion scores for the
ResNet-18 and DenseNet-121 models are 0.4568 and 0.4582, while the Deletion scores are 0.7773
and 0.7870, respectively, further verifying the concentration of key information. The results on the
GTSRB and SVHN datasets also show that the insert and delete operations can effectively identify
and evaluate core features.
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Training Sample Attribution Result Testing Sample

Figure 4: FLIA result on the normal training
sample.

Backdoor Training Sample Attribution Result Testing Sample

Figure 5: FLIA result on the backdoor attack
training sample.
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Figure 6: FLIA result on the NLP task.

Thus, using the FLIA method, we can see which regions of the training data are important for the
test samples. Under normal circumstances, as shown in Figure 4, certain features in the training
samples significantly affect the test samples. In the case of backdoor attacks, as shown in Figure
5, the trigger in the backdoor attack has the greatest impact on the test sample, indicating that our
method could potentially detect backdoor attack samples. For any testing sample, the trigger in the
backdoor attack plays a significant role in the model’s final decision. Additionally, our method can
also be applied in natural language processing, as shown in Figure 6, lighter colors indicate more
important features. Key words such as ”abbott,” ”british,” and ”1929” contribute most to the model’s
decisions, while padding tokens like ”[PAD]” have minimal impact. These attribution results help
identify the most influential information for the model’s decision-making.

5 CONCLUSION

In this paper, we propose for the first time a feature-level method for Estimating Training Data In-
fluence, named FLIA. This method identifies which specific features in the training samples have an
impact on the model’s decisions. We provide rigorous mathematical derivations and proofs to ensure
its validity. Additionally, we designed three types of experiments to demonstrate the effectiveness
and potential impact of the FLIA algorithm. A limitation of the current method is that, although
theoretically effective, our validation relies on indirect evidence through the unlearning method.
Further evaluation methods are needed to comprehensively verify the effectiveness of FLIA.
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A IMAGE ATTRIBUTION ANALYSIS

Training Sample Attribution Result Testing Sample

Figure 7: Normal Training Sample, Attribution Result, and Testing Sample

Backdoor Training Sample Attribution Result Testing Sample

Figure 8: Backdoor Training Sample, Attribution Result, and Testing Sample

Figure 7 shows a comparison between a normal training sample, its attribution result, and the corre-
sponding testing sample. The left side of the figure displays the training sample, which is an image
of a bird. The attribution result in the middle highlights the areas of the image that the model fo-
cused on, with lighter colors indicating more important features. The right side of the figure shows
the testing sample, which is another image of a bird. The attribution result helps to understand which
features in the training sample are crucial for the model’s decision on the testing sample.

Figure 8 presents a comparison between a backdoor training sample, its attribution result, and the
corresponding testing sample. The left side of the figure shows the backdoor training sample, which
is an image of a bus with a backdoor attack marker. The attribution result in the middle highlights
the key areas the model focused on, with the white patch in the lower right corner being particularly
significant. The right side of the figure displays the testing sample, which is an image of an airplane.
The attribution result reveals which features in the backdoor training sample influenced the model’s
decision on the testing sample.

B NLP ATTRIBUTION ANALYSIS

Figure 9a shows the FLIA attribution result for a text about ”schwan-stabilo.” Lighter colors indicate
more important features. The model attributes higher importance to key terms such as ”schwan-
stabilo,” ”german,” ”pens,” ”highlight,” and ”marker,” which are crucial for understanding the con-
text of the text.

Figure 9b presents the FLIA attribution result for a text about ”goldilocks bakeshop.” Key terms
like ”goldilocks,” ”philippines,” ”cakes,” and ”family business” are highlighted as important by the
model, indicating their significant contribution to the text’s meaning.

Figure 9c displays the FLIA attribution result for a text about ”orange music electronic company.”
Important features include terms such as ”orange,” ”amplifier,” ”british,” and ”distinctive sound,”
which the model considers crucial for the text’s interpretation.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[ C L S ] s c # # h w a # # n - s t a b # # i l o i s

a g e r m a n m a k e r o f p e n s f o r w r i t i n g c o l o u r

# # i n g a n d c o s m e t i c s a s w e l l a s m a r k e r s a n d

h i g h l i g h t # # e r s f o r o f f i c e u s e . i t i s

t h e w o r l d ' s l a r g e s t m a n u f a c t u r e r o f h i g h l i g h t

# # e r p e n s s t a b # # i l o b o s s . [ S E P ] [ P A D ]

[ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ]

[ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ]
0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

(a) FLIA Attribution Result for ”schwan-stabilo”

[ C L S ] g o l d # # i l o # # c k s b a # # k e s # # h o p i s

a b a # # k e s # # h o p c h a i n b a s e d i n t h e

p h i l i p p i n e s w h i c h p r o d u c e s a n d d i s t r i b u t e # # s p h i l i p p i n e c a k e s

a n d p a s t # # r i e s . t h e c h a i n w a s n a m e d

a f t e r g o l d # # i l o # # c k s a c h a r a c t e r f r o m t h e

f a i r y t a l e g o l d # # i l o # # c k s a n d t h e t h r e e

b e a r s . g o l d # # i l o # # c k s w a s f i r s t o p e n e d

i n 1 9 6 6 a s a f a m i l y b u s i n e s s a n d [ S E P ] 0.05

0.00

0.05

0.10

0.15

0.20

(b) FLIA Attribution Result for ”goldilocks bakeshop”

[ C L S ] o r a n g e m u s i c e l e c t r o n i c c o m p a n y i s a b r i t i s h

a m p l i f i e rm a n u f a c t u r i n gc o m p a n y f a m o u s f o r i t s d i s t i n c t i v e s o u n d

a n d b r i g h t o r a n g e t o # # l e # # x - l i k e

c o v e r i n g o n a m p l i f i e r h e a d s a n d s p e a k e r c a b i n e t s .

o r a n g e a l s o m a n u f a c t u r e sa m p l i f i e r s f o r b a s s g u i t a r s p e a k e r

c a b i n e t s f o r i n s t r u m e n t a m p l i f i e r s a n d c o m b i n a t i o n ( c o m b o

) a m p l i f i e r s . [ S E P ] [ P A D ] [ P A D ] [ P A D ] [ P A D ]

[ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] [ P A D ] 0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

(c) FLIA Attribution Result for ”orange music electronic company”

Figure 9: FLIA Attribution Results for Various NLP Tasks
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