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Abstract

Training deep Graph Neural Networks (GNNs) has proved to be a challenging task. A key
goal of many new GNN architectures is to enable the depth scaling seen in other types of
deep learning models. However, unlike deep learning methods in other domains, deep GNNs
do not show significant performance boosts when compared to their shallow counterparts
(resulting in a flat curve of performance over depth). In this work, we investigate some
of the reasons why this goal of depth still eludes GNN researchers. We also question the
effectiveness of current methods to train deep GNNs and show evidence of different types of
pathological behavior in these networks. Our results suggest that current approaches hide
the problems with deep GNNs rather than solve them, as current deep GNNs are only as
discriminative as their respective shallow versions.

1 Introduction

Graph Neural Networks (GNNs) have been extensively used for graph representation learning in several
different domains, such as social sciences, drug design, biology and particle physics. Since the proposi-
tion of Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), new network architectures have
emerged aiming to improve expressivity (Veličković et al., 2018; Xu et al., 2018a), decrease computational
cost (Hamilton et al., 2017), handle graph oversmoothing (Chen et al., 2020; Zhao & Akoglu, 2020) and
overcome harmful node-level heterophily (Yan et al., 2022; Pei et al., 2020; Bodnar et al., 2022).

Deep GNNs show very different trends from other deep learning methods. Unlike conventional neural net-
works used in other domains (e.g. CNNs in computer vision), for which increasing the number of stacked
layers is generally associated with greater expressive power and improved performance, the basic versions of
GNNs (such as GCN (Kipf & Welling, 2017) or SGC (Wu et al., 2019)) do not benefit from depth; on the
contrary, increasing depth leads to a significant drop of performance (see GCN in Figure 1). This trend is
generally explained by the oversmoothing problem – a phenomenon in which all nodes in a graph become
indistinguishable as a consequence of multiple aggregations of node representations through message-passing
operations.
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Figure 1: Examples of the flat curve behavior (performance stagnation over depth in GNNs). Results for
GCNII, GGCN, GPRGNN and GCN were extracted from Yan et al. (2022). GCN+InitRes refers to results
of this work (for α = 0.5).

At the same time, the motivation to train deep GNNs still stands, as a k-layer GNN could potentially
capture useful long-range dependencies by enabling the aggregation of relevant information k-hops away.
This observation has led to the proposition of more complex network architectures, which do enable us to
train deep networks to solve challenging tasks with adequate performance (e.g., GCN with initial residual
(Gasteiger et al., 2018; Chen et al., 2020; Jaiswal et al., 2022), GCNII (Chen et al., 2020), GGCN (Yan
et al., 2022), GPRGNN (Chien et al., 2021), G2 (Rusch et al., 2023b)). However, these deep architectures
often lead to equivalent or even deteriorated performance when compared to their shallow counterparts, as
Figure 1 clearly shows. This opens unresolved questions regarding the pursuit of depth in GNNs.

Previous works have elaborated on the theoretical role of depth, but their conclusions often lack further
empirical validation, and it is even possible to find contradictory arguments regarding the potential benefits
of depth following theoretical reasoning (Keriven, 2022; Cong et al., 2021). Poor GNN performance due to
apparent oversmoothing or loss of expressivity in deeper GNNs has also been investigated in some works
(Yan et al., 2022; Li et al., 2018; Balcilar et al., 2020; Keriven, 2022; Oono & Suzuki, 2019), while other
authors argued that it is not oversmoothing, but rather the training difficulty of GNNs that leads to poor
results (Luan et al., 2023; Cong et al., 2021). This scenario evidences that the way that GNNs learn is still
poorly understood, and dedicated empirical analyses on learning behaviour and depth scaling are in demand.

In this work, we aim to explain the plateau of performance over depth illustrated in Figure 1 by conducting an
empirical study using eleven of the most common benchmark datasets for semi-supervised node classification
tasks. We leverage GCN with initial residual (GCN+InitRes) as a case study, as these networks exhibit an
analogous behavior to that of the remaining (more complex) architectures depicted in Figure 1 in terms of
performance over depth (the flat curve). Our experiments show the extent to which this behavior manifests,
and are followed by the study of the intermediate hidden node representations of several state-of-the-art deep
networks to provide a justification for the observed phenomenon. These analyses disclose relevant empirical
insights on how deep GNNs learn and whether/how they can actually leverage depth. We further discuss how
these insights generalize between different deep architectures, and propose a depth evaluation protocol that
should be adopted by other researchers to dismiss the possibility of pathological behavior in their networks.
Our main contributions are:

• Bringing forward – for the first time, to the best of our knowledge – the discussion of how current
methods are hiding the problems with deep GNNs rather than solving them, as these are only as
discriminative as their shallow counterparts;

• Showing evidence of different types of pathological behavior in current deep GNN architectures,
which manifest as redundant hidden embedding representations and seemingly useless/noisy layers;

• A protocol to identify pathological behavior when scaling GNNs with respect to depth (code publicly
available1).

1https://github.com/dsg95/gnn-depth-eval
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The manuscript is organized in five sections. Section 2 introduces some fundamental concepts behind deep
GNNs (2.1), and proceeds to compare state-of-the-art approaches (2.2) and present a case study on the
discriminative power of deep networks (2.3). Section 3 introduces previous methods for evaluating depth
scaling in GNNs and other deep networks (3.1), proposes a depth evaluation protocol that overcomes some
limitations of the previous (3.2), and discloses several types of inefficient learning behaviors in state-of-the-art
deep GNNs following the application of our protocol (3.3). Section 4 discusses how our insights generalize
between different deep GNNs and justify the flat curve phenomenon (4.1), including some additional re-
flections on how other well-known challenges of the field can be tied to the learning inefficiencies brought
forward in this work (4.2 and 4.3); a discussion of limitations and future work wraps up this section (4.4).
Section 5 summarizes the conclusions of the work.

2 Deep GNNs

2.1 Preliminaries

2.1.1 Graph Convolutional Networks

We introduce GCNs as proposed by Kipf & Welling (2017) in the context of semi-supervised node classifi-
cation. Considering a graph G = (V, A), let us define V as the set of all n vertices {v1, ..., vn} and A as an
adjacency matrix of size n×n where aij defines the edge between nodes vi and vj : if vi and vj are connected,
aij ∈]0, 1]; otherwise, aij = 0. Let us also define D, the diagonal degree matrix of G, where the degree of
vi can be defined as di =

∑
j aij . The normalized adjacency matrix of G with added self-loops can now be

written as ˆ̃A = D̃−1/2ÃD̃−1/2, where Ã = A + In and D̃ = D + In. Each node vi is also associated with
a m-dimensional feature vector xi. Stacking all n feature vectors, we get a n × m feature matrix X, which
consists of the initial node representations H0.

Hl = σ( ˆ̃AHl−1Wl) (1)

The output representations Hl of each graph convolution layer l ∈ {1, ..., L} can now be defined by Equation
1, where Wl consists of a matrix of learned weights and σ is a nonlinear activation function, such as ReLU.
Finally, for node-level tasks, a classification head consisting of a linear layer and an activation function
receives HL and provides the final predictions Y ∈ Rn×c, where c is the number of classes.

2.1.2 Oversmoothing

Given the smoothing nature of graph convolutions, training deep GNNs presents very specific challenges,
in particular how to overcome graph oversmoothing. Oversmoothing is a consequence of the multiple ag-
gregations of node representations in consecutive graph convolutional layers, which results in the loss of
their expressive power as all nodes in the graph will exponentially converge to the same constant (Rusch
et al., 2023a). Therefore, a network that produces oversmoothed node representations inevitably decreases
its discriminative power to the point of random classification. As such, pursuing depth in GCNs inherently
assumes that the network architecture accommodates a method that enables them to avoid this phenomenon.

2.2 Current Recipes for Depth Scaling

Inspired by the success of deep learning in other domains, searching for GNN layers that can scale with respect
to depth has been a driver for researchers in the field, despite well-known bottlenecks (e.g., oversmoothing).
Table 1 shows some examples of such layers. The following sections elaborate on the used methods and how
these have been combined in layers that enable deep architectures. We further discuss what these approaches
have in common and what may distinguish them.
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2.2.1 Residual Connections

Residual connections are one of the most commonly employed methods to mitigate oversmoothing, thus
enabling the training of deep GNNs. The terms residual and skip connections are often used interchangeably
to refer to a family of methods that enable the flow of information directly from representations of previous
layers to later, deeper ones in deep neural networks. If we stay closer to the initial proposition of residual
connections (He et al., 2016), we can define them by Equation 2, as also proposed in the original GCN work
(Kipf & Welling, 2017) with the purpose of containing oversmoothing and the inherent performance drop
associated with increasing depth.

Hl = σ( ˆ̃AHl−1Wl) + Hl−1 (2)

However, in its simplest form, this method only seems to be moderately effective, as results show that
oversmoothing tends to be delayed but not fully prevented and we should expect a performance drop as we
stack more layers. As such, subsequent works (Chen et al., 2020; Gasteiger et al., 2018) proposed a direct
connection to the initial node representation in the form of Equation 3, where α ∈ [0, 1] is a parameter that
controls the strength of the residual connection.

Hl = σ(((1 − α) ˆ̃AHl−1 + αH0)Wl) (3)

Other connections (dense (Guo et al., 2019), jumping knowledge (Xu et al., 2018b)) have also been proposed,
but these have hardly managed to prevent the performance drop trend (Jaiswal et al., 2022). The initial
residual connection defined by Equation 3 (GCN+InitRes), on the other hand, has been consistently assisting
the training of deep GNNs without significant performance loss, which has motivated their adoption (either
as described or with subtle adaptations) in recent works (Jaiswal et al., 2022; Kulatilleke et al., 2022; Feng
et al., 2021; Liu et al., 2021; Zhang et al., 2022).

2.2.2 Other Methods

Several other methods have been proposed with the purpose of mitigating/reducing oversmoothing, such as
normalization and regularization techniques (Zhao & Akoglu, 2020; Rong et al., 2019). Others use more
complex layers and have been broadly categorized as architectural tweaks (Jaiswal et al., 2022) or changing
GNN dynamics (Rusch et al., 2023a). Methods such as GraphCON (Rusch et al., 2022), GRAFF (Di Giovanni
et al., 2022), G2 (Rusch et al., 2023b), GGCN (Yan et al., 2022), GPRGNN (Chien et al., 2021) fall under
this category. These methods frequently combine several other strategies into the same expression, including
residual connections which have been deemed necessary to avoid their oversmoothing by Rusch et al. (2023b).

2.2.3 Comparison of State-of-the-art Approaches

Table 1 shows examples of layers that have been used to create deep architectures while attaining adequate
performance. Despite the different levels of complexity of these layers, one can observe that they share some
key ingredients:

• A way to preserve the information of earlier node representations in latter, deeper ones, ei-
ther by adding a residual connection to Hl−1 (GGCN, G2), an initial residual connection to H0

(GCN+InitRes, GCNII), or by weighting all intermediate representations in the final embedding
(GPRGNN);

• Coefficients (learnable or not) that weight the graph convolution term(s), and, thus, the effect of
the increasingly smoothed representations in the latter embeddings.

While the first point helps preventing oversmoothing by having a sharpening effect in the later, more
smoothed node representations, the second has the potential to hold back the smoothing effect of the graph
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Table 1: Examples of layers that have been empirically shown to enable deep architectures. All layers
include some type of residual connection or another method that enables the preservation of previous node
representations. For a full explanation of all terms and coefficients, please refer to 5 of the Appendix and/or
the original publications.

Method Layer

Deep GNNs

GCN+InitRes Hl = σ

( (
(1 − α) ˆ̃AHl−1 + αH0

)
Wl

)
GCNII Hl = σ

( (
(1 − α)ȦHl−1 + αH0)((1 − β)I + βWl

) )
GPRGNN HL =

∑L

l=0 γlȦHl−1

GGCN Hl = Hl−1 + η

(
σ

(
αl(βl

0Ĥl−1 + βl
1(Sl

pos ⊙ Ȧ ⊙ Tl)Ĥl−1 + βl
2(Sl

neg ⊙ Ȧ ⊙ Tl)Ĥl−1
) )

G2 Hl = (1 − τ l) ⊙ Hl−1 + τ l ⊙ σ
(

ȦHl−1Wl
)

convolutions and decrease the speed of convergence to a constant value that defines oversmoothing. Contin-
uous GNN approaches, such as GraphCON (Rusch et al., 2022) and GRAFF (Di Giovanni et al., 2022), were
left out of the scope of this analysis for conciseness, but similar extrapolations could be performed for these
architectures, which notably also include a term for preserving earlier node representations and smoothing
control coefficients (see ∆t for GraphCON and τ for GRAFF).

Comparing these layers suggests that the occasional offset in accuracy between different models (Figure 1) is
due to the unique terms/learnable coefficients of their layers, which can make them more or less expressive
in some cases. However, the performance stagnation over depth phenomenon can still be verified (Figure 1),
for the simplest of the models and the most complex ones alike, despite the architectural tweaks which add
to their complexity.

2.3 On the discriminative power of deep GNNs: a case study for GCN+InitRes

The works presented in Table 1 show that we can design deep GNN architectures; but are there actual
empirical gains in going deeper? And can we measure them? In this subsection, we conduct a series of
analyses using the simplest of deep GNN models (GCN+InitRes) to provide further and more thorough
insights on the potential of depth as a means to increase the discriminative power of GNNs.

GCN+InitRes layers can be defined by a graph smoothing term, equivalent to that of vanilla-GCNs, and an
initial feature encoding term (the residual connection) with a sharpening effect. The influence of these terms
in the layer-wise node representations is weighted by α and its symmetric (Equation 3), i.e., for α = 0 we
have the vanilla-GCN and for α = 0.5 the smoothed representations have the same weight as the initial ones.
We will expand on the problem of performance stagnation over depth for GNNs by exploiting GCN+InitRes
properties, as the simplest of the deep GNN examples. We aim to find the practical benefits of scaling these
models with respect to depth, while enhancing these empirical insights through comparisons with the base
models that compose GCN+InitRes (i.e., GCN and MLP).

Methodology. We investigate the effect of using initial residual connections to train deep GCNs by con-
ducting a thorough ablation study of the depth (L) and residual connection strength (α). To that end, we
conceive a framework, taking L and α as input variables, where each layer assumes the form of Equation
3. We also consider a shallow vanilla-GCN and a 2-layer MLP as baselines for performance comparison.
We use eleven of the most common dataset benchmarks, including homophilic and heterophilic networks
(more benchmarking and training details in Appendix A). The results of the full ablation study are shown
in Appendix B.1; Table 2 shows a compact version with the results for the best α for each network depth
(further details on the comparison of models can be found in Appendix B.1.2).

Benchmark patterns. Comparing GCN+InitRes with the baseline models in Table 2, we can identify three
distinct patterns within our benchmark datasets. Case 1 groups benchmarks for which GCN+InitRes shows
no evidence of superiority when compared to a vanilla-GCN. For these cases, a vanilla-GCN is able to deliver
an equivalent or superior outcome compared to that of a GCN+InitRes, regardless of its depth. As such,
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Table 2: Node classification accuracy of GCN+InitRes of increasing depth (L) and Vanilla-GCN and MLP
baselines for eleven dataset benchmarks. Bold values correspond to largest mean accuracy (top performance)
for each benchmark; Underlined values highlight results that show no statistically significant difference from
the best performing GCN+InitRes on each benchmark (row-wise). [Case 1 ] Vanilla-GCN performance is
superior or equivalent to GCN+InitRes. [Case 2 ] GCN+InitRes performs better than both baselines. [Case
3 ] MLP performance is superior or equivalent to GCN+InitRes.

Baselines GCN+InitRes
Vanilla-GCN MLP L = 1 L = 2 L = 4 L = 8 L = 16 L = 32 L = 64 L = 128

Case 1
Citeseer .73±.02 .68±.06 .74±.02 .72±.02 .70±.06 .69±.06 .68±.06 .70±.04 .69±.05 .71±.03
Squirrel .44±.01 .33±.02 .39±.02 .41±.02 .41±.02 .42±.02 .42±.02 .42±.01 .42±.01 .42±.02
Chameleon .60±.03 .50±.03 .49±.03 .55±.03 .54±.03 .54±.03 .53±.03 .53±.03 .54±.02 .54±.03
Cora .82±.03 .68±.05 .84±.02 .82±.01 .81±.02 .80±.03 .80±.03 .81±.02 .81±.02 .81±.03
Physics .97±.00 .95±.03 .97±.00 .97±.00 .97±.00 .97±.00 .97±.00 .97±.00 .97±.00 .97±.00
Case 2
Pubmed .87±.01 .86±.02 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01
CS .93±.00 .91±.03 .95±.00 .95±.00 .95±.00 .95±.00 .95±.00 .95±.01 .95±.01 .95±.00
Case 3
Cornell .43±.06 .75±.02 .42±.05 .73±.04 .73±.06 .74±.05 .73±.04 .75±.04 .75±.04 .74±.05
Texas .59±.07 .82±.04 .51±.13 .78±.05 .81±.04 .80±.06 .81±.05 .80±.03 .80±.06 .80±.05
Wisconsin .51±.08 .87±.02 .59±.05 .85±.05 .86±.03 .84±.03 .84±.04 .84±.03 .84±.05 .84±.03
Actor .27±.01 .35±.04 .34±.01 .36±.01 .36±.01 .35±.01 .35±.01 .35±.01 .35±.01 .35±.01

adding a sharpening component in the form of an initial residual connection seems not to bring an evident
empirical benefit in these cases. Case 2 evidences benchmarks for which GCN+InitRes is consistently
superior than its basic components alone. For these benchmarks, the combination of a smoothing and
sharpening component in a single model is able to marginally improve the results, thus evidencing a benefit
of practical utility. This benefit, however, seems to be independent of depth, as both shallow and deep
GCN+InitRes models were able to deliver top performance of classification. Concerning Case 3 benchmarks,
we verify that GCN+InitRes achieves top performance for all L ≥ 2, showing equivalence to the performance
of a feature-only MLP in this case.

Deep GCN+InitRes are as discriminative as their shallow counterparts. Our results support that,
while GCN+InitRes can be more discriminative than the base models that compose it (Case 2 ), using this
method as a means to pursue depth shows no empirical benefit in any scenario. In fact, we find that there
is always at least one shallow GCN+InitRes network (up to 2 layers) able to reach top performance.

3 Depth Evaluation

Benchmark results such as the ones disclosed in our case study (2.3) and Figure 1 make us question how
we have been evaluating depth for GNNs. Works that conduct analyses on deep versions of new GNNs
have been mostly relying on measuring whether they can successfully avoid oversmoothing, but have hardly
evaluated whether progressively stacking more layers actually increases the discriminative power of the
network. Depth scaling claims have been frequently supported by insufficient benchmarking tables including
a single performance metric, frequently accuracy (mean and standard deviation), and consider a method to
be superior if it exhibits the highest mean absolute accuracy, even if they have high, overlapping standard
deviations and marginal performance gains (Chen et al., 2020; Bodnar et al., 2022; Rusch et al., 2023b).

This section introduces some background on previous depth evaluation approaches and where they fail. We
further propose a new protocol that addresses some of their challenges, based on which we disclose a set of
learning inefficiencies in state-of-the-art deep GNNs.
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3.1 Background

3.1.1 Insufficiency of Oversmoothing Measures

Previous works have evaluated deep GNNs’ capacity to overcome oversmoothing by studying the Dirichlet
energy (Jaiswal et al., 2022; Rusch et al., 2023a). Dirichlet energy can be given by Equation 4 and can
essentially be described as a metric of local node similarity which satisfies useful conditions, namely if Xi

is constant for all nodes vi ∈ V , E(X) = 0. As such, the layer-wise exponential convergence of E(X) to 0
defines oversmoothing with respect to this measure.

E(X) =
√

1
n

∑
i∈V

∑
j∈Ni

||Xi − Xj ||22 (4)

Nonetheless, to evaluate the need for depth, it is not sufficient to just evaluate whether we are avoiding
oversmoothing. In fact, according to Rusch et al. (2023a), the simple addition of a bias in each layer is
enough to keep the Dirichlet energy from exponentially dropping to zero as we increase depth; however, this
does not directly imply that we are gaining expressivity and deriving more meaningful node representations
by stacking more layers.

3.1.2 Finding Pathological Behavior in Deep Networks

Central Kernel Alignment (CKA) was introduced by Kornblith et al. (2019) as a robust measure of the
relationship between feature representations within the same network and across different networks. In
particular, the authors show that CKA (Equation 5) is invariant to orthogonal transform and isotropic
scaling and can be used to understand network architectures, revealing when depth can become pathological
in neural networks representations (e.g., when a big part of the network produces representations that are
very similar and, thus, redundant). Following its introduction, CKA has been extensively used to study
how deep neural networks learn representations (Nguyen et al., 2020; Raghu et al., 2021), although never to
understand the specific case of deep GNNs.

Linear CKA(Hl, Hk) = ||HkT Hl||2F
||HlT Hl||F · ||HkT Hk||F

(5)

Recently, some researchers have been pointing out some handicaps of CKA and defending that its inter-
pretation can be counterintuitive (Davari et al., 2022). Thus, it can be prudent to complement it with
other methods that were previously employed to measure representation similarity, such as linear regression.
Such methods have been used to validate CKA in its original work, and we argue that they can lead to
complementary information towards understanding how deep networks are learning.

3.2 Depth Evaluation Protocol for GNNs

In order to study the representations learned by GNNs over depth, we propose a protocol that inspects the
layer-wise hidden node representations with two different measures of similarity—Logistic Regression and
linear CKA:

1. Train a Logistic Regression classifier on the intermediate hidden representations Hl ∈ {1, ..., L} of
the same network, as a metric of the linear separability of the clusters at each consecutive layer;

2. Compute CKA to measure the pairwise similarity of hidden node representations of layers l, k ∈
{1, ..., L} within the same GNN.

Ideally, hidden node representations of consecutive layers should lead to increasingly more separable clusters
(evidenced by higher accuracies if classified by Logistic Regression models) and progressively become more

7



Published in Transactions on Machine Learning Research (04/2024)

Figure 2: Examples of healthy vs. pathological learning behaviors. Layer-wise Logistic Regression is mea-
sured in terms of accuracy of classification using the intermediate hidden representations Hl ∈ {1, ..., L};
pairwise CKA of layers l, k ∈ {1, ..., L} is represented by the similarity matrices. Type I Pathology manifests
as a sequence of noisy layers (particularly evident for l < 6); Type II Pathology manifests as a sequence of
nearly identical layers (particularly evident for l > 10).

dissimilar from the earlier node representations of more shallow layers, as stacking more layers is expected to
increase the discriminative power of the network. For concision, we will call this a healthy behavior (Figure
2); a deviation from this trend will be referred to as a pathology—a term already coined by previous works
(Kornblith et al., 2019) for other types of deep learning models.

Kornblith et al. (2019) used Logistic Regression classification as a reference to validate CKA’s efficacy in
detecting depth-related pathologies. In this case, we propose an analogous protocol, in which analysing the
linear separability of the clusters over depth is not irrelevant/redundant, but complementary. That is because,
not only are we interested in identifying cases in which hidden embeddings might show high similarity (and
thus be deemed redundant), but also whether we are progressively increasing the discriminative power of the
network by stacking more layers. This latter analysis cannot be fully given by CKA alone (e.g. if Hl and
Hl+1 evidence low similarity, we cannot know if this dissimilarity is beneficial or not without the assistance
of a complementary method able to show whether the classes are becoming progressively more separable).

3.3 Pathological Depth in GNNs

We apply our depth evaluation protocol to three deep GNN models: GCN+InitRes, GCNII, G2. Our
experiments intend to verify the hypothesis of pathologic behavior in deep GNNs as a justification for the
flat curve phenomenon. We show the results for one benchmark of each case surveyed in Table 2, to remain
succinct while showing evidence of different patterns of behaviors.

Methodology. We evaluate depth through layer-wise inspection of hidden node embeddings, according to
the protocol proposed in the previous section. Higher accuracy in Logistic Regression classification means
that the clusters are more linearly separable. Representations with low similarity should lead to a CKA close
to 0 and highly similar representations to a CKA of up to 1. Figure 3 illustrates the results of this protocol
for three different deep GNN models (16/64-layers) on three benchmark datasets.

3.3.1 Identification and Categorization of Pathologies

Our depth evaluation protocol shows evidence of unhealthy behavior for all of the studied deep GNNs. We
categorise such behavior as two different types of pathologies. Figure 2 shows an example of healthy learning
behavior as opposed to the pathological trends identified in this work. The following paragraphs elaborate
on how these pathologies manifest in the different deep GNNs (Figure 3).
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Figure 3: Results of our depth evaluation protocol for GCN+InitRes, GCNII and G2 (16/64-layers) on three
benchmarks (Cora, Pubmed, Texas). Layer-wise Logistic Regression is measured in terms of accuracy of
classification using the intermediate hidden representations Hl ∈ {1, ..., L}; pairwise CKA of layers l, k ∈
{1, ..., L} is represented by the similarity matrices.

Type I Pathology. One of the major inefficiencies that we can observe in the examples of Figure 3 is
a succession of noisy layers. This manifests as a sequence of layers that show no specific pattern in terms
of similarity (visually producing a noisy square in the similarity matrix) and whose hidden representations
prove not to be linearly separable (Logistic Regression accuracy equivalent to random classification). We
call this pattern a Type I pathology. This pathology is very evident in the early layers of GCN+InitRes and
GCNII networks, and gets more and more pronounced as we increase network depth because the number of
noisy layers seems to increase proportionally with the overall depth of the network. Texas seems to be the
benchmark that is more affected by this pathology (only the last 3-4 layers appear to contribute to improve
the discriminative power of the network, regardless of its overall depth).

Type II Pathology. The last layers of GCN+InitRes and GCNII models for Cora and Pubmed seem to be
able to progressively learn, but we can also verify an occasional redundancy of some consecutive layers. This
redundancy is showed by semi-constant accuracy when it comes to the linear separability of the clusters and
nearly identical node representations (similarity close to 1). In practice, this means that these layers could
potentially be pruned with little expected consequences for the final performance of the network. We call
this a Type II pathology. The impact of this pathology in the overall outcome is very limited for the example
described above (as we only observe it for a small number of consecutive layers), but the same pathology can
be easily identified for large parts of the G2 networks. The extent to which we observe this pathology in G2

models is particularly cumbersome for Texas, for which the large majority of every network shows identical
node representations.

Severe cases. The severity of these pathologies varies with benchmark, model type and depth, but the
phenomenons are the same. Both types of pathologies can coexist in the same network, with different levels
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of severity (e.g., 16-layer GCN+InitRes on Pubmed). The fact that Texas exhibited the most exacerbated
examples of the described pathologies is very significant, as Texas is a benchmark for which a feature-
only MLP remains relevant by delivering state-of-the-art results, even when compared with complex GNN
architectures (see Case 3 of Table 2). This observation is not a coincidence, and similar patterns that show
severe pathological behaviors can be found for the remaining Case 3 benchmarks (see examples in Figure
7 of the Appendix). This finding hints at the conclusion that the key ingredients that have been enabling
GNNs to go deep also give them the ability to completely obliterate the usage of graph structure when these
networks are not able to encode such structure productively.

3.3.2 Causes

Going back to the comparison of deep GNN layers in section 2.2.3, we can yet find that these inefficient
learning behaviors can be a direct and logical consequence of the key ingredients that have been enabling
GNNs to go deep.

Looking into GCN+InitRes and GCNII in Figure 3, we see similar patterns of unhealthy learning, mostly
through the development of Type I pathologies. These networks are also the ones that use direct connections
to the initial node embeddings H0 in their layers (Table 1). We hypothesise that such connections are
responsible for enabling Type I pathologies, as the networks are able to recreate the information lost due
to the excessive smoothing of the consecutive graph convolutions in later embeddings, by using the initial
representations. For this reason, the first p layers are essentially useless/noisy (see drop in accuracy to
random classification level from H0 to H1 for all deep GCN+InitRes and GCNII experiments), while the
last L − p layers seem to be able to progressively learn useful embeddings. By learning to obliterate the
usage of its first layers, the networks are able to deliver HL with optimal smoothing for the downstream
task. The same optimal level of smoothing could, however, be achieved with a shallower network.

Pathologies of Type II seem to be related with the coefficients that weight the graph convolution term and
the residual connection. All studied models (GCN+InitRes, GCNII, G2) consider these coefficients to be
symmetrical. The main difference between these approaches is that G2 learns a scalar per layer (τ l), while
GCN+InitRes and GCNII consider a tunable hyperparameter (α) that is fixed for all layers of the network.
The results of Figure 3 show that G2 is particularly affected by Type II pathologies, especially in the final
layers of the networks. The high similarity of consecutive node embeddings for the deeper representations
suggests that, as depth increases, τ l tends to zero, at which point Hl = Hl−1 and layers become redundant.
For Texas, a dataset for which graph convolutions do not seem to be particularly useful, this can even mean
repetitive representations for all l > 1. We hypothesize that for GCN+InitRes and GCNII networks, α is
also playing a role in refraining the smoothing speed, as occasional repetitive representations can be found
for the last L − p layers that progressively learn (e.g., semi-constant accuracy and high similarity of 16-layer
GCNII on Cora for 8 < l < 11). Further analyses on the role of the residual connection strength (α) in
GNNs can be found in Appendix B.1.

4 Generalization of Insights Between Different Deep GNNs

This section aims to further bridge the conclusions of sections 2 and 3 by discussing two key points of our
work:

1. Pathologies are a consequence of the addition of residual connections and the smoothing refraining
coefficients to GNN layers (as discussed in 3.3.2);

2. All surveyed methods in Table 1 (i.e., works that claim depth scaling) rely on both of these “ingre-
dients” to create deep architectures (as discussed in 2.2.3).

The direct correspondence between the causes of the pathologies and the identified key ingredients of depth
scaling suggests that similar behavior should be expected whenever these components are part of deep GNN
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architectures, i.e., our conclusions are not limited to the examples we inspected. For this reason, we expand
on the generic relation between the “flat curve” and the pathologies (4.1), on the role of residual connections
– one of the most frequently adopted and unquestioned methods in the literature – in GNN learning (4.2),
and on how pathologies can not only justify the “flat curve” but also other puzzling phenomena whose
causes still lack general agreement in the community (like the equivalence between GNNs and MLPs on
some heterophilic benchmarks).

4.1 Performance stagnation over depth: the flat curve

The inefficient learning behaviours identified as pathologies in the previous section provide a deeper under-
standing of the results presented in Table 2 for GCN+InitRes and, consequently, the flat curve phenomenon.

GCN+InitRes case study. Case 1 benchmarks correspond to datasets for which the underlying structure
of the graph encodes relevant information under the smoothing assumptions of graph convolutions. These
benchmarks benefit from at least one graph convolution operation, which is why vanilla-GCN can perform
on par with GCN+InitRes. In these cases, GCN+InitRes develops a pathology of Type I—which ultimately
turns a large part of the networks into useless representations—and, occasionally, some cases of redundant
representations (Type II); as such, these networks only turn out to effectively take advantage of a small
number of convolutions, leading to results equivalent to those of a shallow vanilla-GCN. We hypothesise that
this behavior is possible due to the initial residual connection, which enables direct flows of information from
the first, non-smoothed levels into the deeper, potentially oversmoothed ones (as discussed in 3.3.2).

Analogously, for benchmarks of Case 2, we observe pathologies of both types. In this case, GCN+InitRes
derives more meaningful representations than its baseline counterparts; however, a shallow GCN+InitRes
of 1 or 2 layers is sufficient to achieve top performance. As such, stacking more layers leads to inefficient
learning behaviors.

Finally, Case 3 benchmarks seem not to benefit from graph convolutions, as both a feature-only MLP and a
GCN+InitRes can achieve top performance. Benchmarks of this case undergo the most severe consequences
of the pathologies and are not able to leverage the large majority of the network. Developing Type I or
Type II pathologies enables them to circumvent the smoothing effects of graph convolutions. This leads
them to rely mostly on linear transformations of the initial features (only possible due to the initial residual
connection), followed by non-linearities—hence the empirical equivalence to the MLP.

Other deep GNNs. These observations for GCN+InitRes could be generalized for the remaining, more
complex deep GNNs, since they are sustained by the theoretical analysis of the layers’ expressions that led
us to conclude that they share some key ingredients. The fact that all of them combine terms that preserve
previous, non-smoothed representations and have coefficients that can refrain the smoothing (see Section
2.2.3) strongly hints at the conclusion that these networks are undergoing learning handicaps analogous to
the ones identified in this work as pathologies when they attempt to go deep. This would justify why we
also verify the flat curve in their case, and is corroborated by the results exhibited in Figure 3 for GCNII
and G2. Showing exhaustive evidence of the pathologies for the remaining models is out of the scope of this
work, but we encourage other researchers to do so. We also discuss the case of GPRGNN and GGCN in
slightly more detail in Appendix B.2.

Since the pathologies are rooted in the addition of residual connections and smoothing controlling coefficients
to each layer, and not in the convolution operation itself (which can be more or less expressive in some cases),
we expect that our conclusions can extend to other architectures (see an example for GAT+InitRes in Figure
9 of Appendix B.3). Evidently, we do not advocate that the proposition of the new and more complex layers
is useless. These models have proved their potential to deliver state-of-the-art results in several benchmarks,
which validates their practical utility and relevance within the field of GNN research. We do, however,
emphasize that, at this point, we could find no evidence of any benefit of practical utility when scaling them
with respect to depth, both in the literature and in our own experiments. This finding makes us question
whether the pursuit of depth within the field is being properly addressed, as current approaches seem to
overshadow the problems with deep GNNs rather then solving them. For this reason, we encourage other
researchers to evaluate their claims of appropriate depth scaling more thoroughly, and propose a protocol to
assist them in doing so.
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4.2 The role of residual connections

The importance of residual connections has been highlighted in previous works (Di Giovanni et al., 2022;
Jaiswal et al., 2022). However, we clarify the extent of their contribution from an empirical perspective
(explicitly for initial residuals, but with implicit assumptions for other architectures), by looking into the
intermediate hidden node representations. By doing this, we bring forward, for the first time, the fact that top
performing GNNs with residual connections can converge to a solution in which they avoid oversmoothing by
reconstructing non-smoothed representations from earlier embeddings in later layers and disregard the noisy
information of the previous ones (Type I pathology). This means that while residual connections can make
GNNs more powerful to some level, by enabling the combination of smoothed with sharp representations,
they are not effective as a means to achieve depth.

We verify this for GNN+InitRes, but we cannot rule out that analogous behavior might be observed for more
complex architectures, as all the surveyed architectures include coefficients that enable them to preserve pre-
vious node representations for indefinite depth (Table 1). For this reason, we encourage other researchers to
perform similar analyses as the ones performed in this work when proposing new layer types that enable deep
architectures by pertaining residual connections (or analogous strategies of preservation of the information of
early hidden representations), and not just to evaluate if oversmoothing is avoided using the Dirichlet energy
(which can be kept constant without that actually meaning that GNNs are increasing their discriminative
power, as discussed in 3.1.1).

4.3 Overcoming harmful heterophily

The methods that have been proposed to address oversmoothing have also often been empirically verified
to help overcoming harmful heterophily. This has led to some works looking into the two concepts – over-
smoothing and heterophily – at once (Yan et al., 2022; Di Giovanni et al., 2022; Bodnar et al., 2022), namely
using the Dirichlet Energy. Our results also provide a justification for this phenomenon by suggesting that
for cases in which we cannot leverage the smoothing component (because the graph structure is not helpful
(Gomes et al., 2022)), networks that use earlier, non-smoothed embeddings can ultimately just resort to
these for their final representations (by evidencing a Type I or Type II pathology). This implies that the
same phenomena that causes inefficient depth scaling can also explain the equivalence to MLPs in these
cases: if neighbourhood aggregation through graph convolutions does not lead to improved representations
for the downstream task, networks will learn to resort to noisy or identity layers (i.e., in this case, optimal
smoothing is found for L = 0). This conclusion is novel and justifies why these networks have been perform-
ing on par with MLPs for these cases, a problem that had been previously brought forward (Gomes et al.,
2022; Luan et al., 2022), but never fully explained, to the best of the authors’ knowledge.

4.4 Limitations and Future Work

While our protocol addresses the limitations of previous depth evaluation methods, it is mostly focused in
assisting the identification and interpretation of learning inefficiencies and does not provide a final statistical
metric that can be directly used to compare different methods. This can limit its potential application
scenarios. However, we believe that it would not be possible to derive such insightful empirical analyses from
a single metric alone, without incurring in limitations analogous to those of the methods that precede this
work, due to GNNs’ complexity. Our study also mainly addresses how different GNNs learn the most useful
representations for a certain task. It is not our goal to achieve state-of-the-art results or to particularly
optimize the training process. For this reason, we do not perform hyperparameter tuning or inspect further
regularization methods, providing the same base of comparison for all networks. All training details and
hyperparameters are available in Appendix A.2 for reproducibility. As future work, we intend to find further
evidence of our hypotheses with respect to what is causing the pathologies and study whether we could
circumvent them to create more useful deep GNNs.
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5 Conclusion

This work unwraps the performance stagnation over depth phenomenon (the flat curve) which has been
verified in the context of current GNN research. We survey and explore both simple and complex/state-
of-the-art deep GNNs that empirically show adequate performance and find no evidence that these models
are superior to their shallow counterparts. We further justify this phenomenon by showing evidence of
pathological behavior in these deep networks, following layer-wise hidden embeddings’ inspection, in the
form of noisy (Type I pathology) and redundant (Type II pathology) layers. As such, concerning depth
in GNNs, the main take home message is that just because you can, does not mean you should. For this
reason, we encourage other researchers to thoroughly validate the claims that their newly proposed models
are able to appropriately scale with respect to depth by measuring the effective gains of these deep models,
and propose a depth evaluation protocol to assist them in doing so. Showing evidence of such gains would
justify that the pursuit of depth within the field actually has a practical/empirical benefit.
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A Experimental details

A.1 Benchmarks overview

• Citation networks Yang et al. (2016) are homophilic networks where nodes correspond to scientific
papers and links encode citations.

• Coauthor datasets Shchur et al. (2018) are an homophilic graph problem where edges connect authors
(nodes) that coauthored a paper.

• Wikipedia datasets Rozemberczki et al. (2021) correspond to heteropilic graphs where nodes corre-
spond to web pages and edges to hyperlinks between them.

• WebKB were introduced in Pei et al. (2020). Similarly to Wikipedia, these networks also encode
web pages and hyperlinks.

• The Actor network was also used in Pei et al. (2020) and consists of a sub-problem of the film-
director-actor-writer network. In this dataset, an actor-only subgraph is considered, where nodes
represent actors and edges define co-occurrences in the same Wikipedia page.
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Table 3: Properties of benchmark datasets. Legend: N–Nodes; E–Edges; F–Features; C–Classes; H–
Homophily; ED–Edge Density.

Dataset # N # E # F # C H ED Type
Cora 2708 5429 1433 7 .81 .00074 Citation
CiteSeer 3327 4732 3703 6 .74 .00043 Citation
Pubmed 19717 44338 500 3 .80 .00011 Citation
CS 18333 163788 6805 15 .81 .00049 Coauthor
Physics 34493 495924 8415 5 .93 .00042 Coauthor
Chameleon 2277 36101 2325 5 .23 .0070 Wikipedia
Squirrel 5201 217073 2089 5 .22 .0080 Wikipedia
Actor 7600 33544 931 5 .22 .00058 Actor
Cornell 183 295 1703 5 .30 .0088 WebKB
Texas 183 309 1703 5 .11 .0092 WebKB
Wisconsin 251 499 1703 5 .21 .0079 WebKB

We consider the ten dataset partitions of Pei et al. (2020), where each partition consists of randomly splitting
the nodes of each class in 60%-20%-20% for training-validation-testing, respectively. An analogous splitting
was applied for Coauthor, not considered by Pei et al. (2020).

A.2 Training conditions

All GNN architectures consist of a single linear layer for input feature transformation into 16 channels,
followed by L message-passing layers (or a fixed number of 2 linear layers for the MLP baseline), and a node
classification head (linear layer). Besides L and α, all hyperparameters are fixed, as Table 4 shows, including
the number of hidden channels.

Table 4: Hyperparameters.

Hyperparameter Value
Network Architecture
No. Layers (L) {1, 2, 4, 8, 16, 32, 64, 128}
Residual strength (α) {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Hidden channels 16
Training
Dropout rate 0.5
Weight decay 0.0005
Max. Epochs 500
Early Stopping (patience) 50
Learning rate 0.01
Optimizer Adam

This setup means that each ⟨L, α⟩ pair defines a different GNN, culminating in a total of 48 architectures.
We run this setup for all ten partitions of each dataset as a 10-fold cross-validation process. This results
in a total of 48 × 11 × 10 = 5280 experiments, for which we log the following, with respect to the test
set: 1) the performance in terms of test accuracy; 2) the hidden embeddings, Hl, of all intermediate node
representations after each convolution layer l ∈ {1, ..., L}.
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B Further analyses

B.1 GCN+InitRes Ablation Study

B.1.1 Statistical Tests for Performance Comparison

Figure 4: Results of the ablation study of depth (L) vs. residual connection strength (α) in terms of node
classification accuracy for 2 benchmark examples of each case. [Plots] Mean test accuracy over depth per
studied α (faded areas correspond to standard deviation). [Performance matrices] Mean accuracy ±
standard deviation for each ⟨L, α⟩ architecture: black shading corresponds to µd

best; grey shading highlights
the cases which satisfy the null hypothesis, µd

⟨L,α⟩ = µd
best.

We compare the average test accuracy of the different network architectures on each benchmark dataset
through statistical tests. Let us consider that each dataset d is associated with a set Ad

⟨L,α⟩ = {acc1, ..., acc10},
where acci refers to the test accuracy of the network defined by ⟨L, α⟩ on the i-th partition of d. Let us yet
define µd

⟨L,α⟩, the average of all elements in Ad
⟨L,α⟩. We can finally define µd

best which corresponds to the
network architecture leading to the largest average test accuracy in d, Ad

best. This set is taken as a reference
of the best performance in d, against which all other sets Ad

⟨L,α⟩ shall be compared. For that purpose, we
conduct a paired t-test on the following hypotheses:

• H0 (null hypothesis): µd
best = µd

⟨L,α⟩;

• Ha (alternate hypothesis): µd
best ̸= µd

⟨L,α⟩

We consider a 95% confidence interval, thus rejecting the null hypothesis for p-values < 0.05. This means
that for p-values > 0.05 we cannot discard with statistically significant relevance that the averages under
comparison are equal, i.e. equivalent to top performance in the cases under analysis.
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Figure 4 shows the performance over depth for different values of α in two views: 1) a plot chart of mean
accuracy ± standard deviation over number of layers; 2) a matrix of accuracies per ⟨L, α⟩ network, our
search space. We conduct paired t-tests to find evidence of statistically significant differences of performance
between each ⟨L, α⟩ and the architecture leading to the best absolute mean accuracy for each dataset. Shaded
areas correspond to architectures for which we could not reject the null hypothesis.

The chart view evidences the flat curve behavior that we aim to explain. We can further observe a relation
between the magnitude of α and the performance drop to a semi-constant accuracy range over depth, more
evident for some benchmarks than others (e.g. Cora). This proves that the behavior under analysis is
directly tied to our smoothing/sharpening weighting coefficient, which in this case corresponds to controlling
the initial residual connection strength. At the same time, we observe equivalent accuracy ranges for all α
larger than a certain, dataset-specific threshold, especially for deeper networks.

We can also see different patterns with respect to α for each of the cases outlined in Table 2 by analysing the
matrix view. Coherently to what we saw before, Case 1 strongly benefits from the smoothing component,
which can even be optimal after a single graph convolution, regardless of the value of α, or can only be
achieved for α = 0. Case 2 benchmarks benefit from high residuals (α ≥ 0.3); and Case 3 benchmarks
achieve top performance for any α ≥ 0.1. On the other hand, by inspecting the depth dimension, we can
observe that shallow versions are mostly preferred in Case 1, but top performing architectures for Cases 2
and 3 are mostly independent of depth.

B.1.2 Model comparison methodology

The comparison basis for the results of Table 2 was best performance for each model type. We considered
the same number of hidden dimensions for all networks, meaning that the number of parameters of each
network varies only with depth. For GNNs, we ran a grid search of α and depth and report the results for the
best performing (α, depth) pair (see per shown in B.1.1). For vanilla-GCN, this meant that Table 2 shows
results for 1- or 2-layers networks for all benchmarks, with the exception of Texas (4-layer GCN was reported
because the absolute average of accuracy was superior; however, no statistically significant difference was
found compared to the 2-layers version). For the MLPs, we considered networks of 2-layers, as per most
frequently seen in the literature in benchmarking analysis with these datasets.

B.2 Description of Deep GNN Layers

Table 5 provides a description of all terms and coefficients of the layers of the surveyed deep GNNs.

GCNII and G2 models were considered in our empirical analyses, and we show evidence of pathologies for
some of their deep versions, following the application of our depth evaluation protocol, for exemplification.
Despite not having considered GPRGNN and GGCN in these analyses, we have reasons to believe that
analogous pathologies can be happening in their case. For example, the ablation studies on γl published in
the original GPRGNN publication Chien et al. (2021) show that this variable frequently tends to zero as
depth increases (meaning that the deeper, more smoothed representations will be negligible for attaining the
final representations; thus, we should expect hidden embeddings of high similarity as we go deeper, making
them redundant–Type II pathology). For the GGCN case, the complexity of the layers can hamper its close
analysis; in order to be thorough, it would be important to look into all variables (learned or tuned) and study
their downstream impact. However, just by looking into η, we find that this function easily tends to zero
after a small number of iterations (which can be tuned), again making the smoothing term nearly irrelevant
as we go deeper. These analyses, however, are mostly hypotheses and should be further investigated through
the application of dedicated protocols.

B.3 Depth Evaluation: further examples

Figures 5, 6 and 7 show the results of our depth evaluation protocol for 16-layers GCN+InitRes, GCNII
and G2 for all benchmarks of Cases 1, 2 and 3, respectively. Figure 8 shows an example of the severity
of pathological behavior particularly observed for benchmarks of Case 3, for progressively deeper networks.
Figure 9 showcases the pathological behavior observed in 16-layers GAT+InitRes networks.
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Table 5: Description of the terms and coefficients of the surveyed layers. These layers have been empirically
shown to enable deep architectures. Please refer the original publications for further information.

Method Layer

GCNII (Chen et al., 2020)
Hl = σ

( (
(1 − αl)ȦHl−1 + αlH0)((1 − βl)I + βlWl

) )
αl Scalar (hyperparameter)
βl Scalar (hyperparameter)

GPRGNN (Chien et al., 2021)
HL =

∑L

l=0 γlȦHl−1

γl Scalar (learned)

GGCN (Yan et al., 2022)
Hl = Hl−1 + η

(
σ

(
αl(βl

0Ĥl−1 + βl
1(Sl

pos ⊙ Ȧ ⊙ Tl)Ĥl−1 + βl
2(Sl

neg ⊙ Ȧ ⊙ Tl)Ĥl−1
) )

η Decay function (based on hyperparameters)
αl Scalar (learned)
βl

0 Scalar (learned)
Ĥl−1 Hl−1Wl−1 + bl−1, b (bias) ∈ Rn×m

βl
1 Scalar (learned)

Sl
pos Positive messages matrix, Rn×n

Tl Degree correction matrix, Rn×n

βl
2 Scalar (learned)

Sl
neg Negative messages matrix, Rn×n

G2 (Rusch et al., 2023b)
Hl = (1 − τ l) ⊙ Hl−1 + τ l ⊙ σ

(
ȦHl−1Wl

)
τ l Rates matrix (learned), Rn×m

l Layer
n Number of nodes
m Number of channels
Ȧ Normalized adjacency matrix, Rn×n

Hl Hidden embeddings matrix of the l-th layer, Rn×m

Wl Weights matrix of the l-th layer, Rm×m

σ Activation function (e.g., ReLU, softmax)
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Figure 5: Results of our depth evaluation protocol for GCN+InitRes, GCNII and G2 (16-layers) on Case 1
benchmarks (Citeseer, Squirrel, Chameleon, Cora, Physics).

Figure 6: Results of our depth evaluation protocol for GCN+InitRes, GCNII and G2 (16-layers) on Case 2
benchmarks (Pubmed, CS).
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Figure 7: Results of our depth evaluation protocol for GCN+InitRes, GCNII and G2 (16-layers) on Case 3
benchmarks (Cornell, Texas, Wisconsin, Actor).

Figure 8: Results of our depth evaluation protocol for GCN+InitRes, GCNII and G2 (4/8/16/32/64-layers)
on Texas benchmark, as an example of severe cases of Type I and Type II pathologies for all studied depths.
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Figure 9: Results of our depth evaluation protocol for GAT+InitRes (16-layers) on Cora, Pubmed and
Texas benchmarks. The implemented architecture of GAT+InitRes is analogous to that of GCN+InitRes
(as described in the main paper). Similar trends of pathological behaviour are verified.
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