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Abstract

While most current approaches rely on further001
training techniques, such as fine-tuning or re-002
inforcement learning, to enhance model capac-003
ities, model merging stands out for its ability004
of improving models without requiring any ad-005
ditional training. In this paper, we propose a006
unified framework for model merging based007
on low-rank estimation of task vectors without008
the need for access to the base model, named009
LORE-MERGING. Our approach is motivated010
by the observation that task vectors from fine-011
tuned models frequently exhibit a limited num-012
ber of dominant singular values, making low-013
rank estimations less prone to interference. We014
implement the method by formulating the merg-015
ing problem as an optimization problem. Ex-016
tensive empirical experiments demonstrate the017
effectiveness of our framework in mitigating018
interference and preserving task-specific infor-019
mation, thereby advancing the state-of-the-art020
performance in model merging techniques.021

1 Introduction022

Large Language Models (LLMs) have become023

ubiquitous in numerous real-world applications024

(Bommasani et al., 2021; Zhuang et al., 2020). The025

utilization of LLMs typically involves fine-tuning026

them for specific tasks, a process that often yields027

superior performance compared to general-purpose028

LLMs. A rapidly emerging technique in this do-029

main is model merging (Garipov et al., 2018; Worts-030

man et al., 2022; Yu et al., 2024b), which aims031

to create a single multi-task model by combining032

the weights of multiple task-specific models. This033

approach facilitates the construction of multi-task034

models by integrating knowledge from fine-tuned035

(FT) models without requiring additional training.036

Building on recent studies (Ilharco et al., 2022;037

Yadav et al., 2024; Yu et al., 2024b), task vector-038

based merging approaches have demonstrated sig-039

nificant effectiveness, where task vectors are de-040

fined as the parameter differences between fine- 041

tuned models and the base LLM. Achieving opti- 042

mal results in model merging often requires min- 043

imizing interference between task vectors associ- 044

ated with different tasks. To address this, existing 045

approaches utilize modified task vectors instead of 046

the original ones. For instance, Yu et al. (2024b) ap- 047

plied random dropping with probability p to obtain 048

a sparse representation of task vectors, while Ya- 049

dav et al. (2024) retained only the top-k elements 050

of each task vector based on magnitude, setting 051

the remaining elements to zero. These strategies 052

aim to produce sparse estimations of task vectors, 053

a common technique for mitigating interference. 054

Nevertheless, task vector-based model merging 055

approaches remain constrained by two fundamental 056

limitations. First, the computation of task vectors 057

necessitates access to the base model parameters 058

and demonstrates heightened sensitivity to para- 059

metric variations (Yu et al., 2024b). As fine-tuning 060

progress goes deeper, substantial parametric diver- 061

gence emerges between the original base model and 062

its fine-tuned counterpart, thereby greatly hindering 063

them merging effectiveness (Yu et al., 2024a). Sec- 064

ond, empirical evidence from Yadav et al. (2024) 065

reveals that conflicting task vectors interactions 066

could appear even when employing sparse esti- 067

mation techniques. On the other hand, the spar- 068

sification process risks inadvertently eliminating 069

essential task-specific features, thereby compro- 070

mising the efficacy of the resultant merged model. 071

These inherent constraints of sparse approximation 072

methodologies underscore the necessity for devel- 073

oping alternative frameworks to estimate higher- 074

fidelity low-rank task vector representations. 075

To this end, we first empirically validate that 076

task vectors exhibit a small number of dominant 077

singular values, with the remaining singular values 078

being significantly smaller in magnitude, as shown 079

in Figure 1. Additionally, the dimension of the in- 080

tersection of the images of two matrices is bounded 081
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Figure 1: Singular value distributions for the task vector
in layer 1. We show the top-100 singular values, out of
4096 within the full rank.

by the minimum of their ranks. Therefore, we pro-082

pose LORE-MERGING, a unified framework for083

model merging based on Low-Rank Estimation084

of task vectors, which eliminates the need for ac-085

cess to the base model. Specifically, given a set086

of FT models, we formulate the merging problem087

as an optimization problem whose goal is to si-088

multaneously identify an approximate base model089

integrated with a set of low-rank task vectors that090

collectively approximate the behavior of the FT091

models. By leveraging low-rank estimations, task092

vectors become inherently less susceptible to in-093

terference, effectively addressing a fundamental094

challenge in model merging. We conduct extensive095

experiments on optimization modeling problems096

and math word problems to confirm the effective-097

ness of our method.098

2 Related Works099

Merging fine-tuned models has been shown to offer100

several benefits, such as improving performance101

on a single target task (Gupta et al., 2020; Choshen102

et al., 2022; Wortsman et al., 2022), enhancing out-103

of-domain generalization (Cha et al., 2021; Arpit104

et al., 2022; Ilharco et al., 2022; Ramé et al., 2023),105

creating multi-task models from different tasks (Jin106

et al., 2022; Li et al., 2022; Yadav et al., 2024),107

supporting continual learning (Yadav and Bansal,108

2022; Yadav et al., 2023), and addressing other 109

challenges (Don-Yehiya et al., 2022; Li et al., 2022). 110

Among these methods, task-vector-based merging 111

approaches play an important role. Task Arithmetic 112

(Ilharco et al., 2022) first introduced the concept 113

of task vectors and shows that simple arithmetic 114

operations can be performed to obtain the merged 115

models. Building on this idea, methods like DARE 116

(Yu et al., 2024b) and Ties (Yadav et al., 2024) 117

adopt pruning-then-scaling techniques to merge 118

task vectors, based on the assumption that not all 119

parameters equally contribute to the final perfor- 120

mance. However, these methods based on sparsity 121

estimation consistently suffer from the interference 122

among task vectors and require access to the base 123

model, thus limiting their overall effectiveness. 124

3 Methodology 125

3.1 Problem Setting 126

We denotes Mi as the candidate models to be 127

merged, where each Mi is parameterized by θi. In 128

this work, we focus on the homogeneous model 129

merging (Wortsman et al., 2022; Ilharco et al., 130

2022; Yadav et al., 2024), suggesting that the base 131

models share the same model architecture. Specifi- 132

cally, these models can be obtained from the train- 133

ing process, such as checkpoints, or fine-tuned 134

from the same pre-trained model, referred to as 135

task-specific models. The primary objective of 136

model merging is to construct a new model, M∗, 137

having better performance on the target single or 138

multiple tasks. 139

3.2 Implicit Low-Rank Estimation for Model 140

Merging 141

As demonstrated in Yu et al. (2024b,a), model 142

pairs would exhibit limited mergeability, especially 143

when comprehensive fine-tuning or extended pre- 144

training procedures are employed and result in sub- 145

stantial parameter shifts. Under such conditions, 146

existing task-vector based merging methods strug- 147

gle to work due to the significant representational 148

divergence between the base model and its fine- 149

tuned derivative. To address this challenge, we pro- 150

pose an implicit low-rank estimation model merg- 151

ing method, named LORE-MERGING, which not 152

only employs the robustness of low-rank estima- 153

tion against the interference but also eliminates the 154

need for access to the base model. 155

The core idea of LORE-MERGING is straight- 156

forward: instead of using the original base model, 157
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we first construct an approximate base model and158

subsequently integrate the task-specific vectors via159

a low-rank approximation technique. Formally, de-160

note the approximate base model as θ0 and the161

low-rank task vectors {δi}ni=1 where n is the num-162

ber of FT models, our objective is to minimize163

the discrepancy between each FT model and its164

corresponding integrated version derived from the165

constructed base model, expressed as θ0+ δi ≈ θi.166

To ensure the low-rank structure of δ, we apply167

a nuclear norm penalty, as suggested in Cai et al.168

(2008). Then, we formulate the merging problem169

as the following optimization problem:170

min
θ0,δ1,...,δn

f :=

n∑
i=1

(
∥θ0 + δi − θi∥2F + µ∥δi∥2∗

)
,

(1)171

where ∥·∥∗ represents the nuclear norm, and µ >172

0 is a hyperparameter. In Equation (1), the first term173

minimizes the difference between θ0 + δi and θi,174

ensuring reconstruction accuracy. The second term175

acts as a penalty that encourages the task vectors176

δi to exhibit low-rank properties.177

This problem is a standard multi-variable con-178

vex optimization problem. To solve it effi-179

ciently, we employ the coordinate descent method180

(Wright, 2015). Starting from an initial point181

{θ0
0, δ

0
1 , . . . , δ

0
n}, each iteration (round k + 1) up-182

dates the variables by iteratively solving the follow-183

ing single-variable minimization problem:184 
θk+1
0 = argmin

θ
f(θ, δk1 , · · · , δkn)

δk+1
i = argmin

δ
f(· · · , δki−1, δ, δ

k
i+1, · · · ), ∀i

(2)185

The update for θ∗
0 is trivial, while the update186

for δ is less straightforward due to the presence187

of the nuclear norm. Fortunately, as shown in Cai188

et al. (2010), closed-form solutions for the coor-189

dinate descent method iterations in Problem (1)190

can be obtained using the Singular Value Thresh-191

olding (SVT) technique. Recall that for a given192

matrix δ with the Singular Value Decomposi-193

tion (SVD) δ = UΣV ⊤, and a hyperparameter194

µ, the SVT operator is defined as follows. Let195

Σ+(µ) := diag((σi − µ)+), where (·)+ denotes196

the positive part function. The SVT(δ;µ) op-197

erator with hyperparameter µ is then defined as198

SVT(δ;µ) := UΣ+(µ)V ⊤. Using the SVT opera-199

tor, the update for δi can be expressed as: δk+1
i =200

SVT(θi − θk+1
0 ;µ).201

Algorithm 1 Implicit low-rank merging method
Input: fine-tuned models {θi}ni=1, parameter di-
mension d, and hyperparameter λ, µ.
Output: merged model θ∗.
� Step 1: Coordinate descent method to solve
problem (1).
Set δi = 0 for i = 1, 2, . . . , n.
while iteration NOT converges do
θ0 =

1
n

∑n
i=1(θi − δi)

for i = 1, . . . , n do
δi = SVT(θi − θ0;µ);

end for
end while

� Step 2 (Optional 1): Direct sum.
τ =

∑n
i=1 δi.

� Step 2 (Optional 2): TIES selection (Yadav
et al., 2024).
γ = sgn(

∑n
i=1 δi).

for p = 1, 2, . . . , d do
Ap = {i : γp

i = γp}
τ p = 1

|Ap|
∑

i∈Ap τ p

end for

� Step 3: Obtain merged checkpoint.
θ∗ = θ0 + λτ .
return θ∗

Once the optimization problem is solved, we can 202

obtain the approximate base model and a set of low- 203

rank task vectors. Then, existing task-vector based 204

approaches, such as Average Merging and Ties- 205

Merging, can be applied to combine the task vec- 206

tors and the base model. In this work, we directly 207

adopt Average Merging as our post-calculation 208

merging methods for simplicity, as as it demon- 209

strated comparable performance to Ties-Merging 210

in our preliminary experiments. The overall pro- 211

cess is outlined in Algorithm 1. 212

4 Experiments 213

Baselines & Settings We compare LORE- 214

MERGING with following popular merging meth- 215

ods. Average Merging (Choshen et al., 2022): 216

This method computes the element-wise mean of 217

all the individual models. DARE (Yu et al., 2024b): 218

This approach randomly drops task-specific vectors 219

and rescales the remaining vectors back to the base 220

model. We set the hyperparameter for the random 221

probability to 0.5. Ties-Merging (Yadav et al., 222
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Method Deepseek & NuminaMath WizardLM & WizardMath Checkpoints Avg.GSM8K MATH GSM8K MATH EasyLP ComplexLP NL4OPT
Baseline 76.3 55.8 54.8 12.4 81.9 39.3 94.0 59.21
Average 75.0 45.8 58.8 12.6 75.9 40.3 91.6 57.14
DARE 81.0 54.2 14.9 3.7 80.7 35.1 95.1 52.10

Ties-Merging 80.8 51.6 58.5 11.8 82.4 42.7 94.8 60.37
LORE-MERGING 81.0 52.7 60.3 13.0 83.4 47.4 94.8 61.80

Table 1: The evaluation results on math word problems and optimization modeling problems. We use the best
performance of base models as the baseline.

2024): In this method, task-specific vectors are ran-223

domly dropped, and only the parameters aligned224

with the final agreed-upon sign are merged. For225

Ties-merging, we set the top-k value to 20%, and226

the hyperparameter λ is fixed at 1. For LORE-227

MERGING, the rank r is determined dynamically.228

For a given task vector δ ∈ Rm×n, we set the rank229

r = 0.2×min{m,n} to get a low-rank estimation.230

Evaluation We first evaluate LORE-MERGING231

on math word problems using the popular bench-232

marks GSM8K (Cobbe et al., 2021) and MATH233

(Hendrycks et al.). For comprehensive eval-234

uation, we test both DeepSeek-series models235

(NuminaMath-7B (Beeching et al., 2024) and236

DeepSeek-Math-7B-Base (Shao et al., 2024)) and237

LLaMA-series models (WizardLM-13B (Xu et al.,238

2023) and WizardMath-13B (Luo et al., 2023)).239

Additionally, we also evaluate the effectiveness240

of LORE-MERGING on another advanced task,241

i.e. mathematical optimization modeling problems242

(Ramamonjison et al., 2023; Huang et al., 2024,243

2025). This task aims to generate solvable mathe-244

matical models given an optimization problem in245

natural language. As the lack of public models on246

this task, we first fine-tune Qwen-2.5-Coder-7B-247

Instruct model (Hui et al., 2024) with the datasets248

provided by Huang et al. (2025) and merge the249

checkpoints in the training process. The evalu-250

ations are conducted on MAMO dataset (Huang251

et al., 2024) which includes two subsets EasyLP252

and ComplexLP, and NL4OPT dataset (Ramamon-253

jison et al., 2023).254

Main Results As shown in Table 1, LORE-255

MERGING achieves superior performance across256

most metrics, as well as the highest overall score.257

For the math word problem evaluation, our method258

demonstrates consistently superior performance259

compared to the baselines, except for the evaluation260

on the MATH dataset when merging DeepSeek-261

Math with NuminaMath. due to the significant262

performance gap between the base models, where263

DeepSeek-Math achieves only a score of 36.2 on264

the MATH dataset, while NuminaMath reaches 265

55.8. As indicated in Yao et al. (2024), a large 266

performance gap can significantly impact the ef- 267

fectiveness of model merging. Another worthy- 268

noting observation is that DARE demonstrates sig- 269

nificantly poorer performance when merging Wiz- 270

ardLM and WizardMath. This can likely be at- 271

tributed to the substantial parameter divergence 272

between these models, which results in the failure 273

of calculating the task vector derived from the base 274

model. In contrast, our LORE-MERGING with the 275

approximate base model and low-rank task vectors 276

demonstrates superior robustness and effectiveness 277

in solving math word problems. For the evaluations 278

on optimization modeling with checkpoints merg- 279

ing, we can see existing task-vector based merging 280

methods consistently improve the performance be- 281

cause of the marginal gap between the checkpoints. 282

Therefore, we believe that checkpoint merging can 283

serve as a highly effective technique complemen- 284

tary to training methods, particularly our LORE- 285

MERGING method. We also conduct a detailed 286

analysis how our method enhance the modeling 287

capacity on ComplexLP dataset. We found that the 288

earlier checkpoint is more good at identifying the 289

variables and parameters in the questions while the 290

later one focuses on more complex components, 291

such as formulating variables and the constraints. 292

With the merging of task vectors, the merged model 293

exhibits superior overall performance on the task. 294

5 Conclusion 295

In this paper, we propose a unified framework for 296

merging homogeneous models based on low-rank 297

estimation, named LORE-MERGING. The main 298

motivation of our work is to estimate task vectors 299

using low-rank approximation without the need of 300

access to the base model. We achieve it by for- 301

mulating the merging problem as an optimization 302

problem. Extensive experiments demonstrate the 303

efficacy and efficiency of our proposed methods. 304
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Limitations305

Although we have demonstrated the effectiveness306

of our method on merging homogeneous models,307

we have not yet evaluated it on merging hetero-308

geneous models which is a much more challeng-309

ing task. Compared to existing task-vector based310

model merging methods, our method is the most311

suitable one that can be adapted to heterogeneous312

model merging, as we disentangle the base model313

and task vectors. We think how to expand LORE-314

MERGING to heterogeneous model merging should315

be a promising future direction.316
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