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Abstract001

We present a narrative review of recent ad-002
vances in Natural Language Processing for au-003
tomating patient pre-screening in clinical tri-004
als. We review the state-of-the-art across three005
core tasks: (1) automatic generation of eli-006
gibility surveys from trial protocols, (2) ex-007
traction of structured patient information from008
electronic health records (EHRs) and (3) au-009
tomatic patient-trial matching. We analyze re-010
cent trends in using neural architectures, and011
we highlight current bottlenecks in linguistic012
variability, data interoperability and hallucina-013
tion in generative systems. Our survey aims to014
synthesize a fragmented landscape and provide015
future directions towards clinical trials improve-016
ment.017

1 Introduction018

The digitalisation of healthcare data transformed019

the management of patient information, opening020

opportunities to improve clinical trials and the pre-021

screening process. However, this process remains022

a challenge due to the complexities of determining023

eligibility from the unstructured data contained in024

EHRs. Identifying eligible patients for clinical025

trials involves analysing inclusion and exclusion026

criteria, a task conducted manually by healthcare027

professionals. This approach is time consuming,028

error prone, and limited by the resources available029

at each healthcare institution.030

In the matrix Table 2Appendix B, we synthe-031

size works that contributed to the state-of-the-art032

in biomedical NLP and EHR processing. Rows033

represent the goals aimed by the studies, columns034

the NLP tasks. Since the 1960s (Slack et al., 1966),035

there has been a transition from manual processing036

to more sophisticated, automated methods for man-037

aging clinical data. Prototypes such as COSTAR038

(Barnett et al., 1979) laid the groundwork for mod-039

ern EHR systems (Embi et al., 2005). Improve-040

ments in computational power, storage, and data041

management systems have made widespread adop- 042

tion of EHRs feasible, marking a shift toward their 043

use in research settings, including clinical trials. 044

NLP has emerged as an enabler in the automa- 045

tion of EHR interpretation. Clinical NLP systems 046

such as cTAKES (Savova et al., 2010) and Med- 047

CAT (Kraljevic et al., 2021) have been developed 048

to extract structured information—diagnoses, med- 049

ications and observations from free-text records. 050

Others like MedEX (Xu et al., 2010) based on se- 051

mantic taggers were developed to extract medica- 052

tion information from discharge summaries. These 053

capabilities are leveraged to identify trial-eligible 054

patients. However, the task remains difficult due 055

to linguistic variability, inconsistencies in clinical 056

documentation and limited interoperability across 057

EHR systems. 058

The landscape has been transformed by LLMs 059

and deep learning. Models such as BioBERT (Lee 060

et al., 2020), ClinicalBERT (Huang et al., 2019) 061

and GPT-4 have demonstrated performance in med- 062

ical text understanding and text generation. They 063

offer promise in automating clinical trial recruit- 064

ment process, from generating patient-facing eligi- 065

bility questions to matching structured EHR out- 066

puts. 067

Despite the advances, challenges remain. Lin- 068

guistic diversity within medical texts, including 069

synonyms, abbreviations... complicate the extrac- 070

tion of relevant information. Furthermore, the in- 071

teroperability of different healthcare systems re- 072

mains a barrier to data sharing and integration be- 073

tween institutions. Finally, maintaining data pri- 074

vacy and ensuring compliance with regulations 075

such as Health Insurance Portability and Account- 076

ability Act (HIPAA) adds complexity to the imple- 077

mentation of automated systems for clinical trial 078

recruitment (Zhang et al., 2020). 079

This narrative review synthesizes recent ad- 080

vances in automating patient pre-screening for clin- 081

ical trial. As a high-level review of existing sys- 082
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tematic and narrative studies, it offers a compre-083

hensive perspective on three key tasks: generat-084

ing structured eligibility surveys from trial proto-085

cols, extracting clinical information from EHRs086

and matching patients to trials. We examine how087

NLP approaches address persistent challenges in088

recruitment, including linguistic variability, data089

heterogeneity and decision accuracy.090

The primary contributions of this review are as091

follows:092

• Comprehensive synthesis: we consolidate a093

fragmented body of literature by comparing094

rule-based, statistical and LLM-driven ap-095

proaches across the clinical trial pre-screening096

pipeline. The rule-based system is a determin-097

istic automat that takes as input the feature098

extracted from text mining.099

• Critical analysis of challenges: we identify100

and analyze barriers that hinder the real-world101

deployment of NLP systems.102

• Improvement with LLMs: we check the bene-103

fits that language models provide to the task.104

• Future research agenda: we outline promising105

directions for advancing the field106

2 Related works107

Systematic literature reviews (SLRs), umbrella re-108

views (UR) and narrative reviews play a vital role in109

structuring knowledge in areas such as clinical NLP.110

While SLRs and URs aim to answer defined ques-111

tions through exhaustive evidence collection, narra-112

tive reviews are closer to manual search overviews113

where the position is based on qualitative literature114

review.Table 1 in the appendix B summarizes the115

most cited SLRs and umbrella reviews on NLP in116

clinical domain.117

Some SLRs and umbrella reviews traced the evo-118

lution of patient-trial matching. (Meystre et al.,119

2008; Uzuner, 2008) describe the challenges and120

opportunities for extracting structured data from121

clinical narratives. The development of tools like122

cTAKES (Savova et al., 2010) marked a turning123

point in domain-specific NLP pipelines becoming124

a top-level software of Apache 1.125

Early systems demonstrated gains in efficiency126

(Ni et al., 2015) by targeting trial recruitment di-127

rectly. Efforts toward automation of systematic128

1"An integral part of Mayo’s clinical data management
infrastructure, processing more than 80 million clinical notes"
https://en.wikipedia.org/wiki/Apache_cTAKES

reviews emerged with (Beller et al., 2018), who 129

proposed coordination frameworks like ICASR 130

and (Ofori-Boateng et al., 2024), who synthesized 131

deep learning applications across literature reviews, 132

although neither focused on clinical trials. (Id- 133

nay et al., 2021)conducted the first systematic 134

review dedicated to NLP systems for eligibility 135

pre-screening, categorizing models and evaluat- 136

ing performance and (Panayi et al., 2023) demon- 137

strated how machine learning tools can support 138

semi-automated data extraction, yet their evalua- 139

tion was limited to literature review workflows. In 140

contrast, (Jin et al., 2024; Hamer et al., 2023) intro- 141

duced LLMs into trial-patient matching, highlight- 142

ing the potential of transformer-based models for 143

joint text understanding, though both lacked robust- 144

ness studies and real-world clinical deployment. 145

(Rahmanian et al., 2023) proposed a prompt-based 146

eligibility classification model with high adaptabil- 147

ity, but minimal attention to interoperability or eth- 148

ical constraints. 149

(Kuziemsky et al., 2024) propose an UR to de- 150

scribe AI in healthcare and describe a systematic re- 151

view protocol. Most recently, (Sharif and Rehman, 152

2025) conducted a systematic review comparing 153

LLM-based and classical approaches to eligibility 154

matching. While these studies provide insights, 155

LLM matching—there is no unified synthesis cov- 156

ering the entire clinical trial recruitment pipeline. 157

This work addresses that gap by synthesizing ap- 158

proaches across clinical trial questionnaire genera- 159

tion and automatic patient pre-screening.In the next 160

section, we describe our methodology to achieve 161

it. 162

3 Methodology 163

As it is a narrative review, the knowledge and liter- 164

ature gathering and absorption is unconventional. 165

It is based on a qualitative, non-systematic search 166

of the literature using Google Scholar, ACL An- 167

thology and PubMed, supplemented by iterative 168

queries to ChatGPT for cross-verification and ex- 169

ploratory surfacing of under-indexed works. The 170

use of ChatGPT instead of other commercial mod- 171

els is due to the fact that we are used to it and how 172

to engineer prompts so it does what it’s asked. 173

We first looked in Google Scholar for the key- 174

words historical, biomedical, NLP in the same 175

query. We used them to extract the most relevant 176

articles that match the topic. We opened the first 20 177

results of the search and kept the articles that men- 178
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tioned NLP and a medical-related concept in the ti-179

tle or the abstract. Then we combined the keywords180

with EHR, criteria extraction, question generation,181

patient pre-screening, patient-trial matching, LLM,182

few-shot, zero-shot, filtering by the dates of 2001-183

2010 to get an historic overview and from 2019 to184

LM-related articles. As Google Scholar prioritises185

cited articles, we used this method to search in the186

ACL Anthology and PubMed.Whereas the ACL187

Anthology search engine struggled to provide re-188

sults, the PubMed provided bibliography that made189

possible our work.190

As for ChatGPT, using the model 4o (Shahriar191

et al., 2024) we instructed it with prompts, which 3192

of them are available in the Appendix A. ChatGPT193

was useful regarding the search of recent overviews194

and surveys. We doubled-checked all the refer-195

ences provided by the tool,and forced it to search196

in NLP conference proceedings as well as medi-197

cal databases. As we did not conduct a rigorous198

evaluation of its hallucination rate, around 80% of199

the references actually existed. The remaining 20%200

where either invented or did not correspond to the201

same article as the output claimed. However, the202

systematic reviews described in the Section 2 have203

been found by ChatGPT. Besides, the search is eas-204

ier to customize in natural language than in Google205

Scholar. We were able to instruct it to look for spe-206

cial venues: LREC for resources and evaluation,207

TALN and SEPLN for linguistics-related topics.208

In the next two sections, we discuss about ques-209

tionnaire generation state-of-the-art and techniques210

to realize automatic patient pre-screening.211

4 Questionnaire generation from212

eligibility criteria213

According to the literature, the transformation of214

clinical trial eligibility criteria into patient-directed215

questionnaires can be implemented through two pri-216

mary approaches: (1) a modular pipeline in which217

criteria are first structured into formal representa-218

tions before being converted into questions and (2)219

an end-to-end generative approach in which models220

produce questions from free-text eligibility state-221

ments using LLMs. The most famous clinical trials222

database is clinicaltrial.gov2, mentioned in Section223

5.3.2, where the trial description is written in natu-224

ral language, with a distinction between inclusion225

and exclusion criteria (Zarin and Keselman, 2007).226

Figure 1 illustrates a question generation227

2https://clinicaltrials.gov/

Figure 1: Questionnaire generation scheme: on top
is the criteria extraction phase and on the bottom the
questionnaire generation.

pipeline. The upper section represents the crite- 228

ria extraction phase where, after an manual anno- 229

tation phase, a named entity recognizer (NER) is 230

trained to detect entities in the criteria (see matrix 231

in Table 2 in Appendix B). Recent studies show 232

that few-shot learning approaches (Naguib et al., 233

2024) reach similar accuracy than fully supervised 234

NER, as well as zero-shot learning (Wornow et al., 235

2025) and even prompt-tuning-based systems such 236

as Autocriteria (Datta et al., 2024). The lower sec- 237

tion represents the questionnaire generation model 238

training, that takes as input the clinical trials and 239

examples of human generated questionnaires (Lei 240

et al., 2024). Few-shot (Izacard et al., 2022), zero- 241

shot (Zeng et al., 2023) and LLM-based solutions 242

were also implemented. Depending on whether it 243

is strategy (1) or (2), the generation model takes as 244

input the extracted criteria (Dhomse, 2024). 245
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4.1 Criteria extraction and question246

generation247

This initial step involves transforming unstructured248

eligibility criteria texts into structured, computable249

representations. Systems such as MedSpaCy (Eyre250

et al., 2021) implement rule-based or hybrid meth-251

ods that link clinical entities to controlled vocab-252

ularies (UMLS, SNOMED...). These structured253

outputs facilitate subsequent automated reasoning254

or question generation tasks.255

However, these methods require extensive man-256

ual annotation, ontological grounding and prede-257

fined rule sets, limiting their adaptability and scal-258

ability to heterogeneous criteria texts (Tian et al.,259

2023). Recent approaches addressing these limita-260

tions incorporate neural-based strategies, such as261

BioBERT and zero-shot methods leveraging pre-262

trained transformer models for entity extraction263

(Averly and Ning, 2025).264

Nevertheless, limitations remain significant,265

including semantic ambiguity, domain speci-266

ficity, negation handling and temporal reasoning267

(Mehrabi et al., 2015). Errors in the extraction stage268

propagate downstream, potentially compromising269

questionnaire accuracy, clinical relevance and over-270

all system performance (Olex and McInnes, 2021).271

Performance evaluation in two-step approaches272

involves distinct metrics for each stage. For criteria273

extraction, metrics include precision, recall and274

F1-score, benchmarked on datasets such as n2c2275

shared tasks (Mahajan et al., 2023).276

The second phase converts structured represen-277

tations derived in the first step into natural lan-278

guage questions. Traditional generation methods279

rely on template-based approaches, where prede-280

fined linguistic templates map structured slots to281

surface-level question forms (Yuan et al., 2019). Al-282

though these approaches are straightforward and in-283

terpretable, they lack flexibility when criteria com-284

plexity increases or novel expressions appear.285

Recent studies employ neural generation mod-286

els trained on aligned datasets of structured crite-287

ria and human-authored questions. Such methods288

demonstrate greater fluency, adaptability and lin-289

guistic variability. These methods are analogous to290

machine translation tasks, where encoder-decoder291

architectures have been used to transform input292

texts into semantically equivalent target languages293

or formats (Ma et al., 2022). Nevertheless, these294

neural approaches face issues regarding logical con-295

sistency, semantic fidelity, and clinical appropri-296

ateness, requiring rigorous human validation and 297

specialized evaluation frameworks. 298

BLEU (Papineni et al., 2001), METEOR (Baner- 299

jee and Lavie, 2005), ROUGE (Lin, 2004) and 300

BERTScore (Zhang et al., 2019) are used to evalu- 301

ate surface fluency and lexical overlap, but they 302

fail to capture semantic equivalence or clinical 303

soundness, prompting recent calls for domain- 304

specific validation metrics such as expert scoring 305

or scenario-based evaluation. Moreover, these met- 306

rics assess surface-level linguistic fluency rather 307

than clinical accuracy or logical consistency. Con- 308

sequently, recent reviews mentioned in Section 2 309

advocate for more clinically-oriented evaluation- 310

sto more accurately measure real-world utility and 311

robustness of generated questions. 312

4.2 End-to-end questionnaire generation 313

Unlike modular approaches, end-to-end methods 314

map raw, free-text clinical trial eligibility criteria to 315

patient-facing questions, eliminating explicit inter- 316

mediate structuring steps. Leveraging advances 317

in LLMs, these approaches formulate the ques- 318

tionnaire generation task as a single sequence-to- 319

sequence problem (Brown et al., 2020). The un- 320

derlying hypothesis is that LLMs can implicitly 321

learn internal representations capable of capturing 322

linguistic, logical, and semantic complexities with- 323

out separate structuring modules. These methods 324

improve scalability, adaptability to new medical 325

domains and flexibility for heterogeneous criteria 326

(Frayling et al., 2024). 327

Recent studies investigate few-shot learning: us- 328

ing a limited set of criteria-question examples, 329

these methods demonstrate generalization to new 330

criteria without substantial domain-specific annota- 331

tions (Lin et al., 2024; Poon et al., 2024). Zero-shot 332

and prompt-based learning were also experimented: 333

leveraging pretrained LLMs through specialized 334

task prompts eliminating fine-tuning entirely (Elsa- 335

har et al., 2018). 336

End-to-end methods simplify the pipeline by 337

modeling eligibility criteria-to-question mappings, 338

thus avoiding cascading errors inherent to mod- 339

ular approaches (Ferber et al., 2024). Addition- 340

ally, LLMs capture linguistic complexity, provid- 341

ing scalability across diverse medical contexts with- 342

out explicit rule engineering or ontology mapping 343

(Bohra et al., 2023; Wong et al., 2023). However, 344

they suffer from logical inconsistencies and seman- 345

tic inaccuracies, including omissions and halluci- 346

nations, compromising clinical reliability (Wang 347
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Figure 2: Automatic patient-trial matching scheme

et al., 2024a). Furthermore, their limited inter-348

pretability and reliance on high-quality training349

data pose challenges for clinical validation, trust-350

worthiness and generalization (Singh et al., 2024).351

The question that arises now is how this question352

generation can be used to fulfill the patient-trial353

matching task. We first discuss the challenges in354

EHR parsing and the solutions to tackle them as355

well as for patient pre-screening.356

5 Automatic patient-trial matching357

This section describes the challenges we face when358

trying to solve the criteria extraction task from359

EHR. It also presents methods and tools aimed at360

achieving the automatic pre-screening of patients.361

It can be summarized by: if a patient meets all in-362

clusion criteria and none of the exclusion criteria,363

they are eligible; otherwise, they are not.364

A diagram is provided to illustrate a possible365

workflow pipeline in Figure 2, which distinguishes366

between the extraction process of criteria from367

EHR medical reports. It uses a NER model similar368

to that described in Section 4 and the mapping pro-369

cess between the extracted eligibility criteria and370

the patients’ pathological and molecular character-371

istics.372

5.1 Challenges in extracting inclusion and373

exclusion criteria374

The extraction eligibility criteria presents chal-375

lenges due to linguistic variability, both diachronic376

(evolution of word meaning through time) and syn-377

chronic (different usage of the same word in the378

same time period). Additionally, clinical reports379

may be written in different languages, introducing380

complexity when aiming to extract features.381

One challenge is terminological variability (Co- 382

hen and Elhadad, 2013), including synonyms and 383

technical jargonFurthermore, complex grammati- 384

cal structures (Lonsdale et al., 2008) and the pres- 385

ence of conditional expressions (Ross et al., 2010) 386

demand advanced syntactic analysis techniques to 387

avoid misinterpretations. Added to this is semantic 388

ambiguity (Amosa et al., 2023), since many med- 389

ical terms are polysemous and require contextual 390

understanding. Expressions like “patients with a 391

history of cardiovascular disease” can be ambigu- 392

ous if the term “history” is not defined. 393

Regarding diachronic issues, the evolution of 394

medical terminology over time can make interpret- 395

ing older texts difficult, as terms may have changed 396

or acquired new meanings. Meanwhile, synchronic 397

problems arise from the coexistence of multiple 398

ways to refer to the same concept in a given period, 399

requiring extraction systems to recognize these vari- 400

ations. Dialectal differences also play a role, like 401

in the USA that possesses a huge hispanic commu- 402

nity. To address this, resources like the Diccionario 403

panhispánico de términos médicos3 have been de- 404

veloped to promote a shared medical vocabulary 405

and improve interoperability in Spanish-speaking 406

contexts. 407

Lastly, in multilingual settings, the translation of 408

eligibility criteria must be not only linguistically 409

accurate but also culturally appropriate. Studies 410

in bilingual regions show that switching languages 411

during medical consultations can enhance doctor- 412

patient communication. Moreover, research has 413

found that the quality of online health informa- 414

tion varies by language, reinforcing the need for 415

adaptation when translating these criteria to ensure 416

medical communication across diverse populations 417

(Fefer et al., 2020; Schlicht et al., 2025). Let us 418

discuss some methods to tackle these challenges. 419

5.2 Manual methods for extracting criteria 420

from patient reports 421

The extraction of eligibility criteria for clinical tri- 422

als relies on an analysis of patients’ medical records 423

to identify those who meet the requirements. This 424

process involves a review of clinical history to de- 425

tect evidence matching the established criteria. 426

A key step is the disambiguation of medical 427

terms (Jonnalagadda et al., 2017), as many con- 428

cepts may have multiple meanings. To resolve 429

these ambiguities, medical dictionaries and special- 430

3https://dptm.es/
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ized ontologies are used, considering the clinical431

context in which terms appear to ensure interpreta-432

tion.433

Another is information extraction (Adupa et al.,434

2016), organizing it into categories such as demo-435

graphic data, medical conditions, treatments and re-436

sults. The information structuring relies on linguis-437

tic norms to interpret relationships between clinical438

concepts and maintain a representation of the in-439

formation. Validation of the information (Kraljevic440

et al., 2021) is essential to ensure its reliability.441

This involves checking consistency between the442

extracted data and the patient’s medical history and443

consulting specialists to confirm the findings. This444

methodological approach, supported by scientific445

literature, ensures that the extracted data is trust-446

worthy and suitable for determining patient partici-447

pation. We present now some methods that aim to448

reproduce this criteria extraction process.449

5.3 Automation of criteria extraction from450

medical reports451

5.3.1 Methods and models452

The automation of eligibility criteria extraction for453

clinical trials from EHRs has advanced thanks to a454

range of methodologies and models:455

• Apache cTAKES (Savova et al., 2010): an456

open-source NLP system based on OpenNLP4457

and designed to extract clinical information458

from unstructured EHR text.459

• MedCAT (Medical Concept Annotation460

Toolkit) (Kraljevic et al., 2021): based on the461

spaCy framework, MedCAT combines rule-462

based and machine learning methods to pro-463

cess clinical texts.464

• Linguamatics I2E (Rath et al., 2023): used to465

extract information from clinical and biomed-466

ical texts based on rules.467

• GPT-4 (Datta et al., 2024): a large-scale lan-468

guage model developed by OpenAI. GPT-4469

has shown advanced capabilities in under-470

standing and generating text.471

• GatorTron (Yang et al., 2022): a large-scale472

clinical language model trained on over 90473

billion words to process unstructured EHRs.474

4https://opennlp.apache.org/

• Text Nailing (Kartoun, 2017): a hybrid 475

method that combines human input with NLP 476

techniques to extract structured information 477

from unstructured documents. 478

• DICE (Ma et al., 2023): the DICE model 479

automates the extraction of relevant clinical 480

events from medical records, facilitating pa- 481

tient pre-screening for clinical trials. DICE 482

employs a conditional generation strategy and 483

contrastive learning to define medical men- 484

tions. 485

5.3.2 Datasets 486

The automation of eligibility criteria extraction for 487

clinical trials relies on datasets used to train and 488

evaluate NLP pipelines: 489

• ClinicalTrials.gov (Stergiopoulos et al., 490

2019): a public database providing informa- 491

tion on registered clinical trials, including eli- 492

gibility criteria, interventions, and outcomes. 493

It is useful for developing models based on 494

real-world clinical trial data. 495

• MIMIC-III (Johnson et al., 2016): a publicly 496

available clinical dataset containing informa- 497

tion from patients admitted to intensive care 498

units. It includes several detailed data about 499

patients’ condition. 500

• FAERS (FDA Adverse Event Reporting 501

System) (Polepalli Ramesh et al., 2014): a 502

database containing reports of adverse events 503

and drug reactions. It is valuable for adverse 504

event detection and pharmacovigilance. 505

• AIDS Clinical Trials Group Study 175 (Fu, 506

2024): contains health statistics and categor- 507

ical information for patients diagnosed with 508

AIDS. Its primary task is to predict whether a 509

patient died within a given time frame. 510

• i2b2 Clinical Notes Dataset (Eguia et al., 511

2024): a collection of annotated clinical notes 512

used in clinical information extraction chal- 513

lenges. 514

• DermatES (Torre et al., 2024): a dataset con- 515

sisting of dermatological clinical reports in 516

Spanish, collected from various healthcare 517

centers in Spain. 518

These datasets are essential in advancing the au- 519

tomation of eligibility criteria extraction in clinical 520
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trials. They support the development of NLP mod-521

els capable of transforming unstructured clinical522

text into structured data, improving the efficiency523

and accuracy of patient identification for clinical524

trials. Table 3 in Appendix B summarizes the char-525

acteristics of each of them.526

5.3.3 Methods benchmark527

A comparative table of key models used for the au-528

tomated extraction of eligibility criteria in clinical529

trials is presented in Table 4 in Appendix B, includ-530

ing their evaluation metrics and datasets used.531

To assess the performance of models in the task532

of automatic patient pre-screening, a variety of met-533

rics are employed. One study explored the use of534

InstructGPT (Ouyang et al., 2022) to assist physi-535

cians in determining patient eligibility based on536

summarized medical profiles. The study measured537

the model’s ability to identify eligibility criteria and538

classify patient suitability, finding that the LLM539

could reduce physicians’ workload by filtering out540

non-applicable criteria (Hamer et al., 2023).541

Furthermore, the QUEST framework was pro-542

posed for the human evaluation of LLMs in health-543

care applications. This framework encompasses544

five key principles: information quality, under-545

standing and reasoning, expression and persona,546

safety and harm, and trust. While not focused547

on patient pre-screening, QUEST offers a struc-548

tured guide to assess the effectiveness and safety549

of LLMs in clinical contexts (Tam et al., 2024).550

5.4 Patient-trial automatic matching551

As we mentioned in Section 1, automatic pa-552

tient–trial matching entails aligning a patient’s med-553

ical profile with a trial’s eligibility criteria through554

a dedicated matching system. Recent NLP research555

has introduced LLMs and inference architectures556

to tackle this task. (Aguiar et al., 2025) built557

NLI4PR, a natural language inference approach558

where patients describe their profiles in everyday559

language. (Jin et al., 2024) propose TrialGPT, a560

zero-shot LLM framework that retrieves candidate561

trials, evaluates criterion-level eligibility, and ag-562

gregates results into trial-level scores and (Gupta563

et al., 2024) created OncoLLM, a language model564

that outperforms GPT 4 in an empirical evaluation565

of clinical trial matching using real-world EHRs.566

As for cohort selection, (Dasgupta et al., 2020)567

implemented a co-training-based model to select568

patient cohorts automatically, outperforming fully569

supervised pipelines. (Wornow et al., 2025) report570

a zero-shot LLM-based matching system reach- 571

ing state-of-the-art performance on the n2c2 2018 572

cohort screening benchmark. Additionally, (Shi 573

et al., 2025) introduce MAKAR, a multi-agent 574

knowledge-augmented reasoning system that in- 575

tegrates domain knowledge. Finally, a multimodal 576

LLM-powered pipeline by (Callies et al., 2025) out- 577

performs manual review times with a minimal drop 578

in accuracy. 579

Despite strong performance, current systems 580

face unresolved challenges: generalizing across 581

medical specialties, handling complex multi- 582

criteria logic, scaling to large trial sets and ensuring 583

explainable, auditable decisions. Research must 584

prioritize multi-site validation, transparent failure 585

analysis, and user-centered design in deployment 586

environments. We detailed them in the next section. 587

6 Ethical, technical and ecological 588

limitations 589

6.1 Technical challenges 590

Clinical notes are unstructured, with inconsistent 591

formats, sections and notation standards (Tang 592

et al., 2019). Semantic interoperability remains 593

a challenge: different systems use distinct termi- 594

nologies and data models, complicating data in- 595

tegration (Torab-Miandoab et al., 2023; Ademola 596

et al., 2024). Moreover, medical narratives con- 597

tain domain-specific abbreviations, typographical 598

errors, and hedge language. For example, BERT- 599

based clinical text models still struggle with resolv- 600

ing negations (“no evidence of metastasis”), tempo- 601

ral cues (“6 months prior”) and jargon-heavy con- 602

structions (“SOB on exertion”) (Liu et al., 2023). 603

LLMs trained on general medical corpora re- 604

quire fine-tuning to handle specialty domains such 605

as oncology or mental health triage. Studies 606

show that domain-specific pretraining improves 607

performance but demands substantial annotated in- 608

domain data (Kerner, 2024). Finally, EHR texts 609

include typos, shorthand, markup remnants and 610

section headers, reducing text mining accuracy. 611

6.2 Ethical issues 612

The use of LLMs for clinical trial pre-screening 613

raises ethical and legal concerns in the domain of 614

clinical NLP (Šuster et al., 2017). One issue is 615

privacy and data access: efforts highlight how ac- 616

cess to large-scale clinical text is restricted by data 617

protection policies, necessitating the use of privacy- 618

preserving NLP approaches and secure data han- 619
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dling to comply with regulations such as GDPR620

and HIPAA.621

Another concern is algorithmic bias and health622

equity. Clinical embeddings have been shown to623

carry gender and race-based biases which can per-624

petuate disparities in care (Shah et al., 2020; So-625

gancioglu et al., 2022). Further, the clinical NLP626

field is moving toward greater interpretability and627

explainability (Huang et al., 2024). Models that628

lack traceability present risks if deployed in patient-629

facing settings, as chatbots have demonstrated con-630

cerns over reproducing racially biased output, rais-631

ing questions about model validation and developer632

liability5.633

6.3 Ecological impact634

LLMs deployed for clinical-trial pre-screening con-635

sume substantial computational resources during636

both training and inference, raising environmen-637

tal concerns (Hershcovich et al., 2022). The NLP638

community has begun to acknowledge this impact.639

(Strubell et al., 2019; Wang et al., 2023) highlight640

that large transformer models require immense en-641

ergy to train and deploy.642

More recent work benchmarks inference energy643

within NLP tasks (Morrison et al., 2025). (Liu644

et al., 2025) introduce “functional unit” analysis645

for prompt-based LLM deployment, revealing that646

even a single query to GPT-style models may emit647

more carbon dioxide than certain web searches.648

Lightweight transformer variants targeted to reduce649

model complexity and decoding cost without per-650

formance loss, have been demonstrated effective in651

clinical text-processing tasks, offering a direction652

toward sustainable deployments (Bannour et al.,653

2021).654

7 Conclusion and future works655

In this work, we successfully connected two close656

fields of NLP for bio-informatics: questionnaire657

generation for clinical trials and automatic patient658

pre-screening. By searching literature of both659

fields, we were able to conduct a narrative review660

that outlines recent progress for these two tasks661

and current limitations as well as the links between662

them. We showed that automation of patient pre-663

screening for clinical trials through NLP has shown664

significant progress. The combination of LLMs and665

specialized tools, such as MedSpaCy, has improved666

5https://apnews.com/article/ai-chatbots-racist-medicine-
chatgpt-bard-6f2a330086acd0a1f8955ac995bdde4d

the extraction of eligibility criteria from clinical 667

trial documents and EHRs. We also highlighted 668

that the generation of clinical questionnaires based 669

on extracted trial criteria has demonstrated consid- 670

erable potential to streamline the patient screening 671

process, enhancing accuracy and reducing recruit- 672

ment time. 673

However, our review also reveals several chal- 674

lenges. The heterogeneity of clinical data, the lack 675

of standardization in EHRs, and the limitations of 676

NLP tools in handling unstructured data are ma- 677

jor barriers to large-scale implementation. For fu- 678

ture work, several areas need to be addressed: data 679

interoperability across platforms, improving the 680

accuracy of NLP models in clinical contexts and 681

increasing the volume of annotated clinical data. 682

Implementing hybrid methods that combine super- 683

vised and unsupervised learning could enhance the 684

extraction of clinical events and the classification 685

of eligibility criteria in real-world environments. 686

Likewise, the development of continuous feedback 687

systems (integrating real-time data from clinical 688

practice) is emerging as a direction to optimize 689

model accuracy and adaptability. 690

Another line of future work concerns issues re- 691

lated to the generation of questions. In particular, 692

the standardization of generated questions is es- 693

sential. In the medical field, it is common to use 694

acronyms or initialisms, which may appear in either 695

their abbreviated or expanded forms. Standardiz- 696

ing these formats will allow for faster and more 697

reusable patient assessments. 698

It is worth noting the importance of analyzing 699

the correspondence between eligibility criteria and 700

generated questions. Although the most common 701

scenario is a one-on-one correspondence between 702

criterion and question, there are cases where a sin- 703

gle criterion must generate multiple questions. Con- 704

versely, multiple criteria may lead to a single ques- 705

tion. An example of each case is provided in the 706

Table 5 from Appendix B. Therefore, designing 707

a procedure to determine such correspondences 708

could improve the accuracy of these systems. 709

The use of current state-of-the-art LLMs in com- 710

bination with models capable of extracting relevant 711

information from the original text appears to be a 712

promising approach. Supplying this extracted in- 713

formation through the model’s prompt provides an 714

additional layer that could help improve the quality 715

of the generated output compared to cases where 716

such information is not included. 717
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Limitations718

Although the authors did their best to cover the719

extensive literature about automatic patient pre-720

screening, this work presents several limitations,721

due to it’s own goal or to the current state-of-the-722

art:723

• Systematic literature review and text mining:724

the authors argue that this work is a narra-725

tive overview that completes a SLR or an UR.726

However it lacks the rigor and the statistical727

work of the former that select all the articles728

that mention in the title or in the abstract the729

current subject. Besides, all the linguistics730

difficulties mentioned over the sections of this731

work are based on literature and not corrob-732

orated by a real experiment, or a text mining733

pipeline that could demonstrate them.734

• Absence of state-of-the-art benchmark: many735

models, techniques and methods are men-736

tioned all along this article. Despite this ex-737

tensive list and explanation, there is no real738

comparison between them, nor a proper bench-739

mark that could justify the strengths and weak-740

nesses of each of them.741

• Ethical issues limitation: several ethical,742

gender-bias, hallucination and explainability743

issues have been outlined in the work. The744

authors do not propose any solution other745

than manual supervision to tackle them, which746

could either be consider as a future work, or a747

limitation.748

• Ecological impact: most studies mentioned749

by the authors about the ecological damaged750

provoked by LLMs are based on carbon foot-751

print. However they do not take into account752

other issues like production of the material to753

pre-train the models or the electrical consum-754

ing thus the financial cost for any deployment755

of a LLM-based solution. A more specific756

work must be made in order to measure the757

real ecological impact of the automation of758

patient pre-screening in clinical trials.759

• Interoperability and explainable AI: regard-760

ing semantic interoperability, some standards761

are being designed to tackle this challenge.762

We can cite Fast Healthcare Interoperability763

Resources (FHIR) that aim to ease the imple-764

mentation and usage of clinical workflows and765

the Observational Medical Outcomes Partner- 766

ship (OMOP) whose purpose is to normal- 767

ize healthcare data for research and analysis 768

(Wang et al., 2024b; Tabari et al., 2024). The 769

integration of one or both of them into an 770

NLP pipeline could solve the interoperability 771

challenge but we did not focus on it. As for 772

explainable AI and hallucinations, recent ap- 773

proaches leverage grounded generation tech- 774

niques that condition LLMs on structured in- 775

puts (e.g., EHR or knowledge bases), improv- 776

ing factual consistency (Lewis et al., 2020). 777

Additionally, rationale-enhanced models gen- 778

erate explicit natural language explanations 779

to improve transparency and support clinical 780

validation (Rajani et al., 2019). However this 781

work does not get deeper into this exploratory 782

leads. 783

• Baseline benchmark: the lack of a concise 784

benchmark summary in the article makes it 785

harder to identify which technique is state-of- 786

the-art or under which conditions a method 787

works best for patient-trial matching. How- 788

ever, to our knowledge there is no benchmark 789

that compares the question generation plus 790

patient pre-screening double task. 791

• AI-assisted literature search: we mention sev- 792

eral databases as information source for this 793

narrative review. We do say we use a genera- 794

tive model-based like ChatGPT to conduct the 795

rest of the search and complete it. However, 796

we do not compare it with other commercial 797

generative models such as Gemini (Saab et al., 798

2024), Claude (Jiang et al., 2025), Le Chat6 799

or QWen7 nor with open-source models such 800

as LLaMa8 or DeepSeek (DeepSeek-AI et al., 801

2025) . Moreover, some AI-based tools are 802

built to assist academic research, such as Scis- 803

pace (Tozuka et al., 2025) or NotebookLM 804

(Jain et al., 2024). One improvement could be 805

comparing the paper search evaluating both 806

the quality of the search (hallucination rate, ar- 807

ticles pertinence) and the time spent to gather 808

the literature. 809

6https://chat.mistral.ai/chat
7https://chat.qwen.ai/
8https://www.llama.com/docs/model-cards-and-prompt-

formats/llama3_3/

9



References810

Adetunji Ademola, Carlisle George, and Glenford Mapp.811
2024. Addressing the interoperability of electronic812
health records: The technical and semantic interop-813
erability, preserving privacy and security framework.814
Applied System Innovation, 7(6).815

Abhishek Kalyan Adupa, Ravi Prakash Garg, Jessica816
Corona-Cox, Sanjiv J Shah, and Siddhartha R Jon-817
nalagadda. 2016. An information extraction ap-818
proach to prescreen heart failure patients for clinical819
trials.820

Mathilde Aguiar, Pierre Zweigenbaum, and Nona821
Naderi. 2025. Am I eligible? natural language in-822
ference for clinical trial patient recruitment: the pa-823
tient’s point of view. In Proceedings of the Second824
Workshop on Patient-Oriented Language Process-825
ing (CL4Health), pages 243–259, Albuquerque, New826
Mexico. Association for Computational Linguistics.827

Anton M Alekseev, Z Miftahutdinov, Elena Tutubalina,828
Artem Shelmanov, V Ivanov, V Kokh, Alexander829
Nesterov, Manvel Avetisian, Andrey Chertok, and830
S Nikolenko. 2022. Medical crossing: A cross-831
lingual evaluation of clinical entity linking. LREC,832
pages 4212–4220.833

Erick Alphonse, Sophie Aubin, Philippe Bessières,834
Gilles Bisson, Thierry Hamon, Sandrine Lagarrigue,835
Adeline Nazarenko, Alain-Pierre Manine, Claire836
Nédellec, Mohamed Ould Abdel Vetah, Thierry837
Poibeau, and Davy Weissenbacher. 2006. Event-838
based information extraction for the biomedical do-839
main: the caderige project.840

Temitope Ibrahim Amosa, Lila Iznita Bt Izhar, Patrick841
Sebastian, Idris B Ismail, Oladimeji Ibrahim, and842
Shehu Lukman Ayinla. 2023. Clinical errors from843
acronym use in electronic health record: A review of844
NLP-based disambiguation techniques. IEEE Access,845
11:59297–59316.846

Emilia Apostolova, Tony Wang, Tim Tschampel, Ioan-847
nis Koutroulis, and Tom Velez. 2019. Combining848
structured and free-text electronic medical record849
data for real-time clinical decision support. In Pro-850
ceedings of the 18th BioNLP Workshop and Shared851
Task, Stroudsburg, PA, USA. Association for Com-852
putational Linguistics.853

E Aramaki, Yoshinobu Kano, Tomoko Ohkuma, and854
Mizuki Morita. 2016. MedNLPDoc: Japanese shared855
task for clinical NLP. pages 13–16.856

Vahan Arsenyan, Spartak Bughdaryan, Fadi Shaya, Kent857
Small, and Davit Shahnazaryan. 2023. Large lan-858
guage models for biomedical knowledge graph con-859
struction: Information extraction from EMR notes.860

Shadnaz Asgari, Fabien Scalzo, and Magdalena861
Kasprowicz. 2019. Pattern recognition in medical862
decision support. Biomed Res. Int., 2019:6048748.863

Reza Averly and Xia Ning. 2025. Entity decomposi- 864
tion with filtering: A zero-shot clinical named entity 865
recognition framework. In Proceedings of the 2025 866
Conference of the Nations of the Americas Chap- 867
ter of the Association for Computational Linguistics: 868
Human Language Technologies (Volume 1: Long 869
Papers), pages 2935–2951, Stroudsburg, PA, USA. 870
Association for Computational Linguistics. 871

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: 872
An automatic metric for MT evaluation with im- 873
proved correlation with human judgments. In Pro- 874
ceedings of the ACL Workshop on Intrinsic and Ex- 875
trinsic Evaluation Measures for Machine Transla- 876
tion and/or Summarization, pages 65–72, Ann Arbor, 877
Michigan. Association for Computational Linguis- 878
tics. 879

Nesrine Bannour, Sahar Ghannay, Aurélie Névéol, and 880
Anne-Laure Ligozat. 2021. Evaluating the carbon 881
footprint of NLP methods: a survey and analysis of 882
existing tools. In Proceedings of the Second Work- 883
shop on Simple and Efficient Natural Language Pro- 884
cessing, pages 11–21, Virtual. Association for Com- 885
putational Linguistics. 886

G O Barnett, N S Justice, M E Somand, J B Adams, 887
B D Waxman, P D Beaman, M S Parent, F R 888
Van Deusen, and J K Greenlie. 1979. COSTAR— 889
A computer-based medical information system for 890
ambulatory care. Proc. IEEE Inst. Electr. Electron. 891
Eng., 67(9):1226–1237. 892

Elaine Beller, Justin Clark, Guy Tsafnat, Clive Adams, 893
Heinz Diehl, Hans Lund, Mourad Ouzzani, Kristina 894
Thayer, James Thomas, Tari Turner, Jun Xia, Karen 895
Robinson, Paul Glasziou, and founding members 896
of the ICASR group. 2018. Making progress with 897
the automation of systematic reviews: principles of 898
the international collaboration for the automation of 899
systematic reviews (ICASR). Syst. Rev., 7(1):77. 900

Arth Bohra, Govert Verkes, Artem Harutyunyan, Pascal 901
Weinberger, and Giovanni Campagna. 2023. BYOC: 902
Personalized few-shot classification with co-authored 903
class descriptions. In Findings of the Association 904
for Computational Linguistics: EMNLP 2023, pages 905
13999–14015, Singapore. Association for Computa- 906
tional Linguistics. 907

Theodora S Brisimi, Tingting Xu, Taiyao Wang, 908
Wuyang Dai, William G Adams, and Ioannis Ch 909
Paschalidis. 2018. Predicting chronic disease hos- 910
pitalizations from electronic health records: An in- 911
terpretable classification approach. Proc. IEEE Inst. 912
Electr. Electron. Eng., 106(4):690–707. 913

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 914
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 915
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 916
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 917
Gretchen Krueger, Tom Henighan, Rewon Child, 918
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 919
Clemens Winter, and 12 others. 2020. Language 920
models are few-shot learners. In Proceedings of the 921

10

https://doi.org/10.3390/asi7060116
https://doi.org/10.3390/asi7060116
https://doi.org/10.3390/asi7060116
https://doi.org/10.3390/asi7060116
https://doi.org/10.3390/asi7060116
https://arxiv.org/abs/1609.01594
https://arxiv.org/abs/1609.01594
https://arxiv.org/abs/1609.01594
https://arxiv.org/abs/1609.01594
https://arxiv.org/abs/1609.01594
https://doi.org/10.18653/v1/2025.cl4health-1.21
https://doi.org/10.18653/v1/2025.cl4health-1.21
https://doi.org/10.18653/v1/2025.cl4health-1.21
https://doi.org/10.18653/v1/2025.cl4health-1.21
https://doi.org/10.18653/v1/2025.cl4health-1.21
https://arxiv.org/abs/cs/0609135
https://arxiv.org/abs/cs/0609135
https://arxiv.org/abs/cs/0609135
https://arxiv.org/abs/cs/0609135
https://arxiv.org/abs/cs/0609135
https://arxiv.org/abs/2301.12473
https://arxiv.org/abs/2301.12473
https://arxiv.org/abs/2301.12473
https://arxiv.org/abs/2301.12473
https://arxiv.org/abs/2301.12473
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2023.findings-emnlp.933
https://doi.org/10.18653/v1/2023.findings-emnlp.933
https://doi.org/10.18653/v1/2023.findings-emnlp.933
https://doi.org/10.18653/v1/2023.findings-emnlp.933
https://doi.org/10.18653/v1/2023.findings-emnlp.933


34th International Conference on Neural Information922
Processing Systems, NIPS ’20, Red Hook, NY, USA.923
Curran Associates Inc.924

Anatole Callies, Quentin Bodinier, Philippe Ravaud,925
and Kourosh Davarpanah. 2025. Real-world valida-926
tion of a multimodal llm-powered pipeline for high-927
accuracy clinical trial patient matching leveraging928
ehr data. Preprint, arXiv:2503.15374.929

Leonardo Campillos Llanos, Dhouha Bouamor, Éric930
Bilinski, Anne-Laure Ligozat, Pierre Zweigenbaum,931
and Sophie Rosset. 2015. Description of the Pa-932
tientGenesys dialogue system. In Proceedings of the933
16th Annual Meeting of the Special Interest Group934
on Discourse and Dialogue, Stroudsburg, PA, USA.935
Association for Computational Linguistics.936

David Campos, Sergio Matos, and Jose Luis. 2012.937
Biomedical named entity recognition: A survey of938
machine-learning tools. In Theory and Applications939
for Advanced Text Mining. InTech.940

Jose Castano, María Laura Gambarte, Hee Joon Park,941
Maria del Pilar Avila Williams, David Perez, Fer-942
nando Campos, Daniel Luna, Sonia Benitez, Her-943
nan Berinsky, and Sofía Zanetti. 2016. A machine944
learning approach to clinical terms normalization. In945
Proceedings of the 15th Workshop on Biomedical Nat-946
ural Language Processing, Stroudsburg, PA, USA.947
Association for Computational Linguistics.948

Raphael Cohen and Michael Elhadad. 2013. Effect of949
out of vocabulary terms on inferring eligibility cri-950
teria for a retrospective study in hebrew EHR. In951
Proceedings of the 2013 Workshop on Biomedical952
Natural Language Processing, BioNLP@ACL 2013,953
Sofia, Bulgaria, August 8, 2013, pages 116–119. As-954
sociation for Computational Linguistics.955

Tirthankar Dasgupta, Ishani Mondal, Abir Naskar, and956
Lipika Dey. 2020. Extracting semantic aspects for957
structured representation of clinical trial eligibility958
criteria. In Proceedings of the 3rd Clinical Natu-959
ral Language Processing Workshop, pages 243–248,960
Online. Association for Computational Linguistics.961

Surabhi Datta, Kyeryoung Lee, Hunki Paek, Frank J962
Manion, Nneka Ofoegbu, Jingcheng Du, Ying Li,963
Liang-Chin Huang, Jingqi Wang, Bin Lin, Hua Xu,964
and Xiaoyan Wang. 2024. AutoCriteria: a generaliz-965
able clinical trial eligibility criteria extraction system966
powered by large language models. J. Am. Med. In-967
form. Assoc., 31(2):375–385.968

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-969
uan Wang, Bochao Wu, Chengda Lu, Chenggang970
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,971
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,972
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,973
and 181 others. 2025. Deepseek-v3 technical report.974
Preprint, arXiv:2412.19437.975

Louise Deléger, Cyril Grouin, and Pierre Zweigenbaum.976
2010. Extracting medical information from narrative977

patient records: the case of medication-related infor- 978
mation. J. Am. Med. Inform. Assoc., 17(5):555–558. 979

Dina Demner-Fushman, Wendy W Chapman, and 980
Clement J McDonald. 2009. What can natural lan- 981
guage processing do for clinical decision support? J. 982
Biomed. Inform., 42(5):760–772. 983

Yihan Deng, M Stoehr, and K Denecke. 2014. Re- 984
trieving attitudes: Sentiment analysis from clinical 985
narratives. pages 12–15. 986

Santoshi Deshmukh and Utkarsha Pacharaney. 2025. 987
Enhancing healthcare communication: A study on 988
automated speech-to-text conversion and analysis of 989
doctor-patient dialogues for improved clinical docu- 990
mentation and patient care. In 2025 4th International 991
Conference on Sentiment Analysis and Deep Learn- 992
ing (ICSADL), pages 229–234. IEEE. 993

Kanchan Babaji Dhomse. 2024. Dynamic question gen- 994
eration using NER with various feature extraction 995
and NLP techniques. Adv. Nonlinear Var. Inequal., 996
27(3):639–652. 997

Hans Eguia, Carlos Luis Sánchez-Bocanegra, Franco 998
Vinciarelli, Fernando Alvarez-Lopez, and Francesc 999
Saigí-Rubió. 2024. Clinical decision support and 1000
natural language processing in medicine: Systematic 1001
literature review. J. Med. Internet Res., 26:e55315. 1002

Hady Elsahar, Christophe Gravier, and Frederique Lafor- 1003
est. 2018. Zero-shot question generation from knowl- 1004
edge graphs for unseen predicates and entity types. 1005
In Proceedings of the 2018 Conference of the North 1006
American Chapter of the Association for Computa- 1007
tional Linguistics: Human Language Technologies, 1008
Volume 1 (Long Papers), pages 218–228, New Or- 1009
leans, Louisiana. Association for Computational Lin- 1010
guistics. 1011

Peter J Embi, Anil Jain, Jeffrey Clark, and C Martin 1012
Harris. 2005. Development of an electronic health 1013
record-based clinical trial alert system to enhance 1014
recruitment at the point of care. In AMIA Annual 1015
Symposium Proceedings, volume 2005, page 231. 1016

Hannah Eyre, Alec B Chapman, Kelly S Peterson, Jian- 1017
lin Shi, Patrick R Alba, Makoto M Jones, Tamára L 1018
Box, Scott L DuVall, and Olga V Patterson. 2021. 1019
Launching into clinical space with medspacy: a new 1020
clinical text processing toolkit in python. AMIA Annu. 1021
Symp. Proc., 2021:438–447. 1022

Maia Fefer, Carolyn C Lamb, Abra H Shen, Peter 1023
Clardy, Vinayak Muralidhar, Phillip M Devlin, and 1024
Edward Christopher Dee. 2020. Multilingual anal- 1025
ysis of the quality and readability of online health 1026
information on the adverse effects of breast cancer 1027
treatments. JAMA Surg., 155(8):781–784. 1028

Dyke Ferber, Lars Hilgers, Isabella C. Wiest, Marie- 1029
Elisabeth Leßmann, Jan Clusmann, Peter Neidlinger, 1030
Jiefu Zhu, Georg Wölflein, Jacqueline Lammert, 1031
Maximilian Tschochohei, Heiko Böhme, Dirk Jäger, 1032
Mihaela Aldea, Daniel Truhn, Christiane Höper, and 1033

11

https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://arxiv.org/abs/2503.15374
https://aclanthology.org/W13-1915/
https://aclanthology.org/W13-1915/
https://aclanthology.org/W13-1915/
https://aclanthology.org/W13-1915/
https://aclanthology.org/W13-1915/
https://doi.org/10.18653/v1/2020.clinicalnlp-1.27
https://doi.org/10.18653/v1/2020.clinicalnlp-1.27
https://doi.org/10.18653/v1/2020.clinicalnlp-1.27
https://doi.org/10.18653/v1/2020.clinicalnlp-1.27
https://doi.org/10.18653/v1/2020.clinicalnlp-1.27
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/N18-1020
https://doi.org/10.18653/v1/N18-1020
https://doi.org/10.18653/v1/N18-1020


Jakob Nikolas Kather. 2024. End-to-end clinical1034
trial matching with large language models. Preprint,1035
arXiv:2407.13463.1036

Erlend Frayling, Jake Lever, and Graham McDonald.1037
2024. Zero-shot and few-shot generation strategies1038
for artificial clinical records.1039

Xiaowen Fu. 2024. On the differential privacy of statis-1040
tical analysis in clinical studies. Ph.D. thesis.1041

J J García Adeva, J M Pikatza Atxa, M Ubeda Carrillo,1042
and E Ansuategi Zengotitabengoa. 2014. Automatic1043
text classification to support systematic reviews in1044
medicine. Expert Syst. Appl., 41(4):1498–1508.1045

Shashi Gupta, Aditya Basu, Mauro Nievas, Jerrin1046
Thomas, Nathan Wolfrath, Adhitya Ramamurthi,1047
Bradley Taylor, Anai N. Kothari, Regina Schwind,1048
Therica M. Miller, Sorena Nadaf-Rahrov, Yanshan1049
Wang, and Hrituraj Singh. 2024. Prism: Patient1050
records interpretation for semantic clinical trial1051
matching system using large language models. npj1052
Digital Medicine, 7(1):305.1053

Danny M den Hamer, Perry Schoor, Tobias B Polak,1054
and Daniel Kapitan. 2023. Improving patient pre-1055
screening for clinical trials: Assisting physicians with1056
large language models.1057

Daniel Hershcovich, Nicolas Webersinke, Mathias1058
Kraus, Julia Bingler, and Markus Leippold. 2022.1059
Towards climate awareness in NLP research. In Pro-1060
ceedings of the 2022 Conference on Empirical Meth-1061
ods in Natural Language Processing, pages 2480–1062
2494, Abu Dhabi, United Arab Emirates. Association1063
for Computational Linguistics.1064

Michael Hindelang, Sebastian Sitaru, and Alexander1065
Zink. 2024. Transforming health care through chat-1066
bots for medical history-taking and future directions:1067
Comprehensive systematic review. JMIR Med. In-1068
form., 12:e56628.1069

Lynette Hirschman, Ralph Grishman, and Naomi Sager.1070
1976. From text to structured information: Auto-1071
matic processing of medical reports. In Proceedings1072
of the June 7-10, 1976, national computer conference1073
and exposition on - AFIPS ’76, New York, New York,1074
USA. ACM Press.1075

Chih-Wei Huang, Bethany C Y Wu, Phung Anh Nguyen,1076
Hsiao-Han Wang, Chih-Chung Kao, Pei-Chen Lee,1077
Annisa Ristya Rahmanti, Jason C Hsu, Hsuan-Chia1078
Yang, and Yu-Chuan Jack Li. 2023. Emotion recog-1079
nition in doctor-patient interactions from real-world1080
clinical video database: Initial development of artifi-1081
cial empathy. Comput. Methods Programs Biomed.,1082
233(107480):107480.1083

Guangming Huang, Yingya Li, Shoaib Jameel, Yunfei1084
Long, and Giorgos Papanastasiou. 2024. From ex-1085
plainable to interpretable deep learning for natural1086
language processing in healthcare: How far from re-1087
ality? Computational and Structural Biotechnology1088
Journal, 24:362–373.1089

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. 1090
2019. Clinicalbert: Modeling clinical notes and pre- 1091
dicting hospital readmission. arXiv:1904.05342. 1092

Betina Idnay, Caitlin Dreisbach, Chunhua Weng, and 1093
Rebecca Schnall. 2021. A systematic review on nat- 1094
ural language processing systems for eligibility pre- 1095
screening in clinical research. J. Am. Med. Inform. 1096
Assoc., 29(1):197–206. 1097

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 1098
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 1099
Yu, Armand Joulin, Sebastian Riedel, and Edouard 1100
Grave. 2022. Atlas: Few-shot learning with retrieval 1101
augmented language models. 1102

Siddhant Jain, Asheesh Kumar, Trinita Roy, Kartik 1103
Shinde, Goutham Vignesh, and Rohan Tondulkar. 1104
2024. Scispace literature review: Harnessing ai 1105
for effortless scientific discovery. In Advances in In- 1106
formation Retrieval, pages 256–260, Cham. Springer 1107
Nature Switzerland. 1108

Qile Jiang, Zhiwei Gao, and George Em Karniadakis. 1109
2025. Deepseek vs. chatgpt vs. claude: A compar- 1110
ative study for scientific computing and scientific 1111
machine learning tasks. Theoretical and Applied 1112
Mechanics Letters, 15(3):100583. 1113

Qiao Jin, Zifeng Wang, Charalampos S Floudas, 1114
Fangyuan Chen, Changlin Gong, Dara Bracken- 1115
Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, and 1116
Zhiyong Lu. 2024. Matching patients to clinical 1117
trials with large language models. Nat. Commun., 1118
15(1):9074. 1119

Alistair E W Johnson, Tom J Pollard, Lu Shen, Li- 1120
Wei H Lehman, Mengling Feng, Mohammad Ghas- 1121
semi, Benjamin Moody, Peter Szolovits, Leo An- 1122
thony Celi, and Roger G Mark. 2016. MIMIC-III, 1123
a freely accessible critical care database. Sci. Data, 1124
3(1):160035. 1125

Siddhartha R Jonnalagadda, Abhishek K Adupa, Ravi P 1126
Garg, Jessica Corona-Cox, and Sanjiv J Shah. 2017. 1127
Text mining of the electronic health record: An in- 1128
formation extraction approach for automated identi- 1129
fication and subphenotyping of HFpEF patients for 1130
clinical trials. J. Cardiovasc. Transl. Res., 10(3):313– 1131
321. 1132

Corinne Jorgenson, Ali I Ozkes, Jurgen Willems, and Di- 1133
eter Vanderelst. 2024. Virtual assistants are unlikely 1134
to reduce patient non-disclosure. Proceedings of the 1135
AAAI/ACM Conference on AI, Ethics, and Society, 1136
7:659–669. 1137

Armand Joulin, Edouard Grave, Piotr Bojanowski, and 1138
Tomas Mikolov. 2017. Bag of tricks for efficient text 1139
classification. In Proceedings of the 15th Confer- 1140
ence of the European Chapter of the Association for 1141
Computational Linguistics: Volume 2, Short Papers, 1142
Stroudsburg, PA, USA. Association for Computa- 1143
tional Linguistics. 1144

12

https://arxiv.org/abs/2407.13463
https://arxiv.org/abs/2407.13463
https://arxiv.org/abs/2407.13463
https://arxiv.org/abs/2403.08664
https://arxiv.org/abs/2403.08664
https://arxiv.org/abs/2403.08664
https://doi.org/10.1038/s41746-024-01274-7
https://doi.org/10.1038/s41746-024-01274-7
https://doi.org/10.1038/s41746-024-01274-7
https://doi.org/10.1038/s41746-024-01274-7
https://doi.org/10.1038/s41746-024-01274-7
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2304.07396
https://doi.org/10.18653/v1/2022.emnlp-main.159
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://doi.org/10.1016/j.csbj.2024.05.004
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://doi.org/10.1016/j.taml.2025.100583
https://doi.org/10.1016/j.taml.2025.100583
https://doi.org/10.1016/j.taml.2025.100583
https://doi.org/10.1016/j.taml.2025.100583
https://doi.org/10.1016/j.taml.2025.100583


Mahtab Karami and Azin Rahimi. 2019. Semantic web1145
technologies for sharing clinical information in health1146
care systems. Acta Inform. Med., 27(1):4–7.1147

Uri Kartoun. 2017. Text nailing: An efficient human-1148
in-the-loop text-processing method. Interactions,1149
24(6):44–49.1150

Tobias Kerner. 2024. Domain-specific pretraining of1151
language models: A comparative study in the medical1152
field. arXiv preprint arXiv:2407.14076.1153

Martijn G Kersloot, Florentien J P van Putten, Ameen1154
Abu-Hanna, Ronald Cornet, and Derk L Arts. 2020.1155
Natural language processing algorithms for mapping1156
clinical text fragments onto ontology concepts: a1157
systematic review and recommendations for future1158
studies. J. Biomed. Semantics, 11(1):14.1159

Zeljko Kraljevic, Thomas Searle, Anthony Shek, Lukasz1160
Roguski, Kawsar Noor, Daniel Bean, Aurelie Mas-1161
cio, Leilei Zhu, Amos A Folarin, Angus Roberts,1162
Rebecca Bendayan, Mark P Richardson, Robert Stew-1163
art, Anoop D Shah, Wai Keong Wong, Zina Ibrahim,1164
James T Teo, and Richard J B Dobson. 2021. Multi-1165
domain clinical natural language processing with1166
MedCAT: The medical concept annotation toolkit.1167
Artif. Intell. Med., 117(102083):102083.1168

Craig E Kuziemsky, Dillon Chrimes, Simon Minshall,1169
Michael Mannerow, and Francis Lau. 2024. AI qual-1170
ity standards in health care: Rapid umbrella review.1171
J. Med. Internet Res., 26(1):e54705.1172

Khai Le-Duc, Khai-Nguyen Nguyen, Long Vo-Dang,1173
and Truong-Son Hy. 2024. Real-time speech sum-1174
marization for medical conversations. In Interspeech1175
2024, pages 1960–1964, ISCA. ISCA.1176

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon1177
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.1178
2020. BioBERT: a pre-trained biomedical language1179
representation model for biomedical text mining.1180
Bioinformatics, 36(4):1234–1240.1181

Yan Lei, Liang Pang, Yuanzhuo Wang, Huawei Shen,1182
and Xueqi Cheng. 2024. Qsnail: A questionnaire1183
dataset for sequential question generation. In Pro-1184
ceedings of the 2024 Joint International Conference1185
on Computational Linguistics, Language Resources1186
and Evaluation (LREC-COLING 2024), pages 13407–1187
13418, Torino, Italia. ELRA and ICCL.1188

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio1189
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-1190
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-1191
täschel, Sebastian Riedel, and Douwe Kiela. 2020.1192
Retrieval-augmented generation for knowledge-1193
intensive nlp tasks. In Proceedings of the 34th Inter-1194
national Conference on Neural Information Process-1195
ing Systems, NIPS ’20, Red Hook, NY, USA. Curran1196
Associates Inc.1197

Jennifer Liang, Ching-Huei Tsou, and Ananya Poddar.1198
2019. A novel system for extractive clinical note1199

summarization using. In Proceedings of the 2nd Clin- 1200
ical Natural Language Processing Workshop, pages 1201
46–54, Stroudsburg, PA, USA. Association for Com- 1202
putational Linguistics. 1203

Chin-Yew Lin. 2004. ROUGE: A package for automatic 1204
evaluation of summaries. Annu Meet Assoc Comput 1205
Linguistics, pages 74–81. 1206

Zefeng Lin, Weidong Chen, Yan Song, and Yongdong 1207
Zhang. 2024. Prompting few-shot multi-hop ques- 1208
tion generation via comprehending type-aware se- 1209
mantics. In Findings of the Association for Computa- 1210
tional Linguistics: NAACL 2024, pages 3730–3740, 1211
Mexico City, Mexico. Association for Computational 1212
Linguistics. 1213

Sicen Liu, Xiaolong Wang, Yongshuai Hou, Ge Li, 1214
Hui Wang, Hui Xu, Yang Xiang, and Buzhou Tang. 1215
2023. Multimodal data matters: Language model 1216
pre-training over structured and unstructured elec- 1217
tronic health records. IEEE Journal of Biomedical 1218
and Health Informatics, 27(1):504–514. 1219

Yifei Liu, Zuo Gan, Zhenghao Gan, Weiye Wang, Chen 1220
Chen, Yizhou Shan, Xusheng Chen, Zhenhua Han, 1221
Yifei Zhu, Shixuan Sun, and Minyi Guo. 2025. Ef- 1222
ficient serving of llm applications with probabilistic 1223
demand modeling. Preprint, arXiv:2506.14851. 1224

D W Lonsdale, C Tustison, C G Parker, and D W Em- 1225
bley. 2008. Assessing clinical trial eligibility with 1226
logic expression queries. Data Knowl. Eng., 66(1):3– 1227
17. 1228

Jessica López Espejel. 2019. Automatic summariza- 1229
tion of medical conversations, a review. In Actes 1230
de la Conférence sur le Traitement Automatique 1231
des Langues Naturelles (TALN) PFIA 2019. Volume 1232
III : RECITAL, pages 487–498, Toulouse, France. 1233
ATALA. 1234

P López-Úbeda, Manuel Carlos Díaz Galiano, L A U 1235
López, M Martín-Valdivia, T Martín-Noguerol, and 1236
A Luna. 2020. Transfer learning applied to text classi- 1237
fication in spanish radiological reports. pages 29–32. 1238

Hui Ma, Jian Wang, Hongfei Lin, and Bo Xu. 2022. 1239
Graph augmented sequence-to-sequence model for 1240
neural question generation. Appl. Intell. 1241

Mingyu Derek Ma, Alexander Taylor, Wei Wang, and 1242
Nanyun Peng. 2023. DICE: Data-efficient clinical 1243
event extraction with generative models. In Proceed- 1244
ings of the 61st Annual Meeting of the Association for 1245
Computational Linguistics (Volume 1: Long Papers), 1246
Stroudsburg, PA, USA. Association for Computa- 1247
tional Linguistics. 1248

Diwakar Mahajan, Jennifer J Liang, Ching-Huei Tsou, 1249
and Özlem Uzuner. 2023. Overview of the 2022 1250
n2c2 shared task on contextualized medication event 1251
extraction in clinical notes. J. Biomed. Inform., 1252
144(104432):104432. 1253

13

https://aclanthology.org/2024.lrec-main.1174/
https://aclanthology.org/2024.lrec-main.1174/
https://aclanthology.org/2024.lrec-main.1174/
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.1109/JBHI.2022.3217810
https://doi.org/10.1109/JBHI.2022.3217810
https://doi.org/10.1109/JBHI.2022.3217810
https://doi.org/10.1109/JBHI.2022.3217810
https://doi.org/10.1109/JBHI.2022.3217810
https://arxiv.org/abs/2506.14851
https://arxiv.org/abs/2506.14851
https://arxiv.org/abs/2506.14851
https://arxiv.org/abs/2506.14851
https://arxiv.org/abs/2506.14851


Saeed Mehrabi, Anand Krishnan, Sunghwan Sohn,1254
Alexandra M Roch, Heidi Schmidt, Joe Kesterson,1255
Chris Beesley, Paul Dexter, C Max Schmidt, Hong-1256
fang Liu, and Mathew Palakal. 2015. DEEPEN: A1257
negation detection system for clinical text incorpo-1258
rating dependency relation into NegEx. J. Biomed.1259
Inform., 54:213–219.1260

S M Meystre, G K Savova, K C Kipper-Schuler, and J F1261
Hurdle. 2008. Extracting information from textual1262
documents in the electronic health record: a review1263
of recent research. Yearb. Med. Inform., 17(01):128–1264
144.1265

Jacob Morrison, Clara Na, Jared Fernandez, Tim1266
Dettmers, Emma Strubell, and Jesse Dodge.1267
2025. Holistically evaluating the environmental1268
impact of creating language models. Preprint,1269
arXiv:2503.05804.1270

Emmanuel Mutabazi, Jianjun Ni, Guangyi Tang, and1271
Weidong Cao. 2021. A review on medical textual1272
question answering systems based on deep learning1273
approaches. Appl. Sci. (Basel), 11(12):5456.1274

Marco Naguib, Xavier Tannier, and Aurélie Névéol.1275
2024. Few-shot clinical entity recognition in english,1276
french and spanish: masked language models outper-1277
form generative model prompting. In Findings of the1278
Association for Computational Linguistics: EMNLP1279
2024, pages 6829–6852, Stroudsburg, PA, USA. As-1280
sociation for Computational Linguistics.1281

Yizhao Ni, Jordan Wright, John Perentesis, Todd Lin-1282
gren, Louise Deleger, Megan Kaiser, Isaac Kohane,1283
and Imre Solti. 2015. Increasing the efficiency of1284
trial-patient matching: automated clinical trial eligi-1285
bility pre-screening for pediatric oncology patients.1286
BMC Med. Inform. Decis. Mak., 15(1):28.1287

Regina Ofori-Boateng, Magaly Aceves-Martins, Nir-1288
malie Wiratunga, and Carlos Francisco Moreno-1289
Garcia. 2024. Towards the automation of systematic1290
reviews using natural language processing, machine1291
learning, and deep learning: a comprehensive review.1292
Artif. Intell. Rev., 57(8).1293

Amy L Olex and Bridget T McInnes. 2021. Review of1294
temporal reasoning in the clinical domain for timeline1295
extraction: Where we are and where we need to be.1296
J. Biomed. Inform., 118(103784):103784.1297

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-1298
roll L. Wainwright, Pamela Mishkin, Chong Zhang,1299
Sandhini Agarwal, Katarina Slama, Alex Ray, John1300
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,1301
Maddie Simens, Amanda Askell, Peter Welinder,1302
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.1303
Training language models to follow instructions with1304
human feedback. Preprint, arXiv:2203.02155.1305

Antonia Panayi, Katherine Ward, Amir Benhadji-Schaff,1306
A Santiago Ibanez-Lopez, Andrew Xia, and Regina1307
Barzilay. 2023. Evaluation of a prototype machine1308
learning tool to semi-automate data extraction for1309
systematic literature reviews. Syst. Rev., 12(1):187.1310

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 1311
Jing Zhu. 2001. BLEU: A method for automatic 1312
evaluation of machine translation. In Proceedings of 1313
the 40th Annual Meeting on Association for Compu- 1314
tational Linguistics - ACL ’02, pages 311–318, Mor- 1315
ristown, NJ, USA. Association for Computational 1316
Linguistics. 1317

Riccardo Pellecchia. 2024. Leveraging ai via speech- 1318
to-text and llm integration for improved healthcare 1319
decision-making in primary care. Master’s thesis, 1320
Politecnico di Milano, Milan, Italy. Academic Year 1321
2022/2023. 1322

Claude Pirtle, Harrison Whyte, Edward Goode, Shilo 1323
Anders, Christoph Lehmann, and Yaa Kumah- 1324
Crystal. 2018. Electronic health record interac- 1325
tions through voice: A review. Appl. Clin. Inform., 1326
09(03):541–552. 1327

Balaji Polepalli Ramesh, Steven M Belknap, Zuofeng 1328
Li, Nadya Frid, Dennis P West, and Hong Yu. 1329
2014. Automatically recognizing medication and 1330
adverse event information from food and drug admin- 1331
istration’s adverse event reporting system narratives. 1332
JMIR Med. Inform., 2(1):e10. 1333

Yin Poon, John Sie Yuen Lee, Yu Yan Lam, Wing Lam 1334
Suen, Elsie Li Chen Ong, and Samuel Kai Wah 1335
Chu. 2024. Few-shot question generation for read- 1336
ing comprehension. In Proceedings of the 10th 1337
SIGHAN Workshop on Chinese Language Process- 1338
ing (SIGHAN-10), pages 21–27, Bangkok, Thailand. 1339
Association for Computational Linguistics. 1340

Sameer Pradhan, Noémie Elhadad, Brett R South, 1341
David Martinez, Lee Christensen, Amy Vogel, Hanna 1342
Suominen, Wendy W Chapman, and Guergana 1343
Savova. 2015. Evaluating the state of the art in dis- 1344
order recognition and normalization of the clinical 1345
narrative. J. Am. Med. Inform. Assoc., 22(1):143– 1346
154. 1347

Mojdeh Rahmanian, Seyed Mostafa Fakhrahmad, Zahra 1348
Mousavi, and Ashkan Sami. 2023. Towards efficient 1349
patient recruitment for clinical trials: Application of 1350
a prompt-based learning model. 1351

Nazneen Fatema Rajani, Bryan McCann, Caiming 1352
Xiong, and Richard Socher. 2019. Explain your- 1353
self! leveraging language models for commonsense 1354
reasoning. In Proceedings of the 57th Annual Meet- 1355
ing of the Association for Computational Linguistics, 1356
pages 4932–4942, Florence, Italy. Association for 1357
Computational Linguistics. 1358

K Rajeshkumar, S Dhanasekaran, and V Vasudevan. 1359
2023. Efficient and secure medical big data man- 1360
agement system using optimal map-reduce frame- 1361
work and deep learning. Multimed. Tools Appl., 1362
83(16):47111–47138. 1363

N Rath, W Harrison, E Louvet, W Dunlop, and B Liljas. 1364
2023. MSR112 assessing the feasibility of applying 1365
natural language processing for systematic literature 1366
reviews: A case study in non-small-cell lung cancer. 1367
Value Health, 26(12):S414. 1368

14

https://arxiv.org/abs/2503.05804
https://arxiv.org/abs/2503.05804
https://arxiv.org/abs/2503.05804
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://www.politesi.polimi.it/retrieve/e86637d3-88c1-4def-8a4e-ec729b95a0a8/2024_04_Pellecchia_Tesi_01.pdf
https://www.politesi.polimi.it/retrieve/e86637d3-88c1-4def-8a4e-ec729b95a0a8/2024_04_Pellecchia_Tesi_01.pdf
https://www.politesi.polimi.it/retrieve/e86637d3-88c1-4def-8a4e-ec729b95a0a8/2024_04_Pellecchia_Tesi_01.pdf
https://www.politesi.polimi.it/retrieve/e86637d3-88c1-4def-8a4e-ec729b95a0a8/2024_04_Pellecchia_Tesi_01.pdf
https://www.politesi.polimi.it/retrieve/e86637d3-88c1-4def-8a4e-ec729b95a0a8/2024_04_Pellecchia_Tesi_01.pdf
https://aclanthology.org/2024.sighan-1.3/
https://aclanthology.org/2024.sighan-1.3/
https://aclanthology.org/2024.sighan-1.3/
https://arxiv.org/abs/2404.16198
https://arxiv.org/abs/2404.16198
https://arxiv.org/abs/2404.16198
https://arxiv.org/abs/2404.16198
https://arxiv.org/abs/2404.16198
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487


Ajay Madhavan Ravichandran, Julianna Grune, Nils1369
Feldhus, Aljoscha Burchardt, Roland Roller, and Se-1370
bastian Möller. 2024. XAI for better exploitation of1371
text in medical decision support. In Proceedings of1372
the 23rd Workshop on Biomedical Natural Language1373
Processing, pages 506–513, Stroudsburg, PA, USA.1374
Association for Computational Linguistics.1375

Jessica Ross, Samson Tu, Simona Carini, and Ida Sim.1376
2010. Analysis of eligibility criteria complexity in1377
clinical trials. Summit On Translat. Bioinforma.,1378
2010:46–50.1379

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno,1380
David Stutz, Ellery Wulczyn, Fan Zhang, Tim1381
Strother, Chunjong Park, Elahe Vedadi, Juanma Zam-1382
brano Chaves, Szu-Yeu Hu, Mike Schaekermann,1383
Aishwarya Kamath, Yong Cheng, David G. T. Bar-1384
rett, Cathy Cheung, Basil Mustafa, Anil Palepu, and1385
48 others. 2024. Capabilities of gemini models in1386
medicine. Preprint, arXiv:2404.18416.1387

Efsun Sarioglu, Kabir Yadav, and Hyeong-Ah Choi.1388
2013. Topic modeling based classification of clinical1389
reports. Proc. Conf. Assoc. Comput. Linguist. Meet.,1390
2013:67–73.1391

Guergana K Savova, James J Masanz, Philip V Ogren,1392
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-1393
Schuler, and Christopher G Chute. 2010. Mayo clin-1394
ical text analysis and knowledge extraction system1395
(cTAKES): architecture, component evaluation and1396
applications. J. Am. Med. Inform. Assoc., 17(5):507–1397
513.1398

Ipek Baris Schlicht, Zhixue Zhao, Burcu Sayin, Lu-1399
cie Flek, and Paolo Rosso. 2025. Do llms provide1400
consistent answers to health-related questions across1401
languages? In Advances in Information Retrieval,1402
pages 314–322, Cham. Springer Nature Switzerland.1403

Lennart Seitz, Sigrid Bekmeier-Feuerhahn, and Krutika1404
Gohil. 2022. Can we trust a chatbot like a physician?1405
a qualitative study on understanding the emergence of1406
trust toward diagnostic chatbots. Int. J. Hum. Comput.1407
Stud., 165(102848):102848.1408

Deven Santosh Shah, H. Andrew Schwartz, and Dirk1409
Hovy. 2020. Predictive biases in natural language1410
processing models: A conceptual framework and1411
overview. In Proceedings of the 58th Annual Meet-1412
ing of the Association for Computational Linguistics,1413
pages 5248–5264, Online. Association for Computa-1414
tional Linguistics.1415

Sakib Shahriar, Brady D. Lund, Nishith Reddy Man-1416
nuru, Muhammad Arbab Arshad, Kadhim Hayawi,1417
Ravi Varma Kumar Bevara, Aashrith Mannuru, and1418
Laiba Batool. 2024. Putting gpt-4o to the sword:1419
A comprehensive evaluation of language, vision,1420
speech, and multimodal proficiency. Applied Sci-1421
ences, 14(17).1422

Muhammad Talha Sharif and Abdul Rehman. 2025.1423
Systematic literature review on clinical trial eligi-1424
bility matching.1425

Hanwen Shi, Jin Zhang, and Kunpeng Zhang. 2025. En- 1426
hancing clinical trial patient matching through knowl- 1427
edge augmentation and reasoning with multi-agent. 1428
Preprint, arXiv:2411.14637. 1429

Chandan Singh, Jeevana Priya Inala, Michel Galley, 1430
Rich Caruana, and Jianfeng Gao. 2024. Rethinking 1431
interpretability in the era of large language models. 1432
Preprint, arXiv:2402.01761. 1433

Maria Skeppstedt. 2013. Annotating named entities 1434
in clinical text by combining pre-annotation and ac- 1435
tive learning. Annu Meet Assoc Comput Linguistics, 1436
pages 74–80. 1437

W V Slack, G P Hicks, C E Reed, and L J Van Cura. 1438
1966. A computer-based medical-history system. N. 1439
Engl. J. Med., 274(4):194–198. 1440

Gizem Sogancioglu, Fabian Mijsters, Amar van Uden, 1441
and Jelle Peperzak. 2022. Gender bias in (non)- 1442
contextual clinical word embeddings for stereotypical 1443
medical categories. Preprint, arXiv:2208.01341. 1444

Stella Stergiopoulos, Kenneth A Getz, and Chris- 1445
tine Blazynski. 2019. Evaluating the complete- 1446
ness of ClinicalTrials.Gov. Ther. Innov. Regul. Sci., 1447
53(3):307–317. 1448

Emma Strubell, Ananya Ganesh, and Andrew McCal- 1449
lum. 2019. Energy and policy considerations for 1450
deep learning in NLP. In Proceedings of the 57th 1451
Annual Meeting of the Association for Computational 1452
Linguistics, pages 3645–3650, Florence, Italy. Asso- 1453
ciation for Computational Linguistics. 1454

Simon Šuster, Stéphan Tulkens, and Walter Daelemans. 1455
2017. A short review of ethical challenges in clinical 1456
natural language processing. In Proceedings of the 1457
First ACL Workshop on Ethics in Natural Language 1458
Processing, pages 80–87, Valencia, Spain. Associa- 1459
tion for Computational Linguistics. 1460

Parinaz Tabari, Gennaro Costagliola, Mattia De Rosa, 1461
and Martin Boeker. 2024. State-of-the-art fast health- 1462
care interoperability resources (FHIR)-based data 1463
model and structure implementations: Systematic 1464
scoping review. JMIR Med. Inform., 12:e58445. 1465

Thomas Yu Chow Tam, Sonish Sivarajkumar, Sumit 1466
Kapoor, Alisa V Stolyar, Katelyn Polanska, Kar- 1467
leigh R McCarthy, Hunter Osterhoudt, Xizhi Wu, 1468
Shyam Visweswaran, Sunyang Fu, Piyush Mathur, 1469
Giovanni E Cacciamani, Cong Sun, Yifan Peng, and 1470
Yanshan Wang. 2024. A framework for human evalu- 1471
ation of large language models in healthcare derived 1472
from literature review. NPJ Digit. Med., 7(1):258. 1473

Matthew Tang, Priyanka Gandhi, Md Ahsanul Kabir, 1474
Christopher Zou, Jordyn Blakey, and Xiao Luo. 2019. 1475
Progress notes classification and keyword extraction 1476
using attention-based deep learning models with bert. 1477
Preprint, arXiv:1910.05786. 1478

15

https://arxiv.org/abs/2404.18416
https://arxiv.org/abs/2404.18416
https://arxiv.org/abs/2404.18416
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.3390/app14177782
https://doi.org/10.3390/app14177782
https://doi.org/10.3390/app14177782
https://doi.org/10.3390/app14177782
https://doi.org/10.3390/app14177782
https://arxiv.org/abs/2503.00863
https://arxiv.org/abs/2503.00863
https://arxiv.org/abs/2503.00863
https://arxiv.org/abs/2411.14637
https://arxiv.org/abs/2411.14637
https://arxiv.org/abs/2411.14637
https://arxiv.org/abs/2411.14637
https://arxiv.org/abs/2411.14637
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2208.01341
https://arxiv.org/abs/2208.01341
https://arxiv.org/abs/2208.01341
https://arxiv.org/abs/2208.01341
https://arxiv.org/abs/2208.01341
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/W17-1610
https://doi.org/10.18653/v1/W17-1610
https://doi.org/10.18653/v1/W17-1610
https://arxiv.org/abs/1910.05786
https://arxiv.org/abs/1910.05786
https://arxiv.org/abs/1910.05786


Cui Tao, Harold R Solbrig, and Christopher G Chute.1479
2011. CNTRO 2.0: A harmonized semantic web1480
ontology for temporal relation inferencing in clin-1481
ical narratives. AMIA Summits Transl. Sci. Proc.,1482
2011:64–68.1483

Shubo Tian, Pengfei Yin, Hansi Zhang, Arslan Erden-1484
gasileng, Jiang Bian, and Zhe He. 2023. Parsing clini-1485
cal trial eligibility criteria for cohort query by a multi-1486
input multi-output sequence labeling model. Pro-1487
ceedings (IEEE Int. Conf. Bioinformatics Biomed.),1488
2023:4426–4430.1489

Abhisek Tiwari, Manisimha Manthena, Sriparna Saha,1490
Pushpak Bhattacharyya, Minakshi Dhar, and Sarba-1491
jeet Tiwari. 2022. Dr. can see: Towards a multi-1492
modal disease diagnosis virtual assistant. In Proceed-1493
ings of the 31st ACM International Conference on1494
Information & Knowledge Management, New York,1495
NY, USA. ACM.1496

Amir Torab-Miandoab, Taha Samad-Soltani, Ah-1497
madreza Jodati, and Peyman Rezaei-Hachesu. 2023.1498
Interoperability of heterogeneous health information1499
systems: a systematic literature review. BMC Med.1500
Inform. Decis. Mak., 23(1):18.1501

Leon-Paul Schaub Torre, Pelayo Quiros, and He-1502
lena Garcia Mieres. 2024. Automatic detection of1503
diseases in spanish clinical notes combining medical1504
language models and ontologies.1505

Ryota Tozuka, Hisashi Johno, Akitomo Amakawa,1506
Junichi Sato, Mizuki Muto, Shoichiro Seki, At-1507
sushi Komaba, and Hiroshi Onishi. 2025. Appli-1508
cation of notebooklm, a large language model with1509
retrieval-augmented generation, for lung cancer stag-1510
ing. Japanese Journal of Radiology, 43(4):706–712.1511

Ozlem Uzuner. 2008. Second i2b2 workshop on natural1512
language processing challenges for clinical records.1513
AMIA Annu. Symp. Proc., pages 1252–1253.1514

Ozlem Uzuner, Andreea Bodnari, Shuying Shen, Tyler1515
Forbush, John Pestian, and Brett R South. 2012. Eval-1516
uating the state of the art in coreference resolution1517
for electronic medical records. J. Am. Med. Inform.1518
Assoc., 19(5):786–791.1519

Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe1520
You, WeiZhi Liu, Qi Li, and Jian Li. 2024a. Prompt1521
engineering in consistency and reliability with the1522
evidence-based guideline for llms. npj Digital1523
Medicine, 7(1):41.1524

Liwei Wang, Andrew Wen, Sunyang Fu, Xiaoyang1525
Ruan, Ming Huang, Rui Li, Qiuhao Lu, Andrew E1526
Williams, and Hongfang Liu. 2024b. Adoption of the1527
OMOP CDM for cancer research using real-world1528
data: Current status and opportunities.1529

Xiaorong Wang, Clara Na, Emma Strubell, Sorelle1530
Friedler, and Sasha Luccioni. 2023. Energy and1531
carbon considerations of fine-tuning bert. In Find-1532
ings of the Association for Computational Linguis-1533
tics: EMNLP 2023, page 9058–9069. Association for1534
Computational Linguistics.1535

Cliff Wong, Sheng Zhang, Yu Gu, Christine Moung, Ja- 1536
cob Abel, Naoto Usuyama, Roshanthi Weerasinghe, 1537
Brian Piening, Tristan Naumann, Carlo Bifulco, and 1538
Hoifung Poon. 2023. Scaling clinical trial matching 1539
using large language models: A case study in oncol- 1540
ogy. In Proceedings of the 8th Machine Learning 1541
for Healthcare Conference, volume 219 of Proceed- 1542
ings of Machine Learning Research, pages 846–862. 1543
PMLR. 1544

Michael Wornow, Alejandro Lozano, Dev Dash, Jenelle 1545
Jindal, Kenneth W Mahaffey, and Nigam H Shah. 1546
2025. Zero-shot clinical trial patient matching with 1547
LLMs. NEJM AI, 2(1). 1548

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong 1549
Zhang. 2024. Benchmarking retrieval-augmented 1550
generation for medicine. 1551

Ying Xiong, Xin Yang, Linjing Liu, Ka-Chun Wong, 1552
Qingcai Chen, Yang Xiang, and Buzhou Tang. 2023. 1553
EARA: Improving biomedical semantic textual simi- 1554
larity with entity-aligned attention and retrieval aug- 1555
mentation. In Findings of the Association for Com- 1556
putational Linguistics: EMNLP 2023, pages 8760– 1557
8771, Stroudsburg, PA, USA. Association for Com- 1558
putational Linguistics. 1559

Hua Xu, Shane P Stenner, Son Doan, Kevin B John- 1560
son, Lemuel R Waitman, and Joshua C Denny. 2010. 1561
MedEx: a medication information extraction system 1562
for clinical narratives. J. Am. Med. Inform. Assoc., 1563
17(1):19–24. 1564

Xi Yang, Nima Pour Nejatian, Hoo Chang Shin, Kaleb 1565
Smith, Christopher Parisien, Colin Compas, Cheryl 1566
Martin, Mona Flores, Ying Zhang, Tanja Magoc, 1567
Christopher Harle, Gloria Lipori, Duane Mitchell, 1568
William Hogan, Elizabeth Shenkman, Jiang Bian, 1569
and Yonghui Wu. 2022. GatorTron: A large clinical 1570
language model to unlock patient information from 1571
unstructured electronic health records. 1572

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. 1573
Clinical text classification with rule-based features 1574
and knowledge-guided convolutional neural net- 1575
works. BMC Med. Inform. Decis. Mak., 19(Suppl 1576
3):71. 1577

Chi Yuan, Patrick B Ryan, Casey Ta, Yixuan Guo, Zi- 1578
ran Li, Jill Hardin, Rupa Makadia, Peng Jin, Ning 1579
Shang, Tian Kang, and Chunhua Weng. 2019. Cri- 1580
teria2Query: a natural language interface to clinical 1581
databases for cohort definition. J. Am. Med. Inform. 1582
Assoc., 26(4):294–305. 1583

Deborah A Zarin and Alla Keselman. 2007. Regis- 1584
tering a clinical trial in ClinicalTrials.gov. Chest, 1585
131(3):909–912. 1586

Hongwei Zeng, Bifan Wei, Jun Liu, and Weiping Fu. 1587
2023. Synthesize, prompt and transfer: Zero-shot 1588
conversational question generation with pre-trained 1589
language model. In Proceedings of the 61st Annual 1590
Meeting of the Association for Computational Lin- 1591
guistics (Volume 1: Long Papers), pages 8989–9010, 1592

16

https://arxiv.org/abs/2412.03176
https://arxiv.org/abs/2412.03176
https://arxiv.org/abs/2412.03176
https://arxiv.org/abs/2412.03176
https://arxiv.org/abs/2412.03176
https://doi.org/10.1038/s41746-024-01029-4
https://doi.org/10.1038/s41746-024-01029-4
https://doi.org/10.1038/s41746-024-01029-4
https://doi.org/10.1038/s41746-024-01029-4
https://doi.org/10.1038/s41746-024-01029-4
https://doi.org/10.18653/v1/2023.findings-emnlp.607
https://doi.org/10.18653/v1/2023.findings-emnlp.607
https://doi.org/10.18653/v1/2023.findings-emnlp.607
https://proceedings.mlr.press/v219/wong23a.html
https://proceedings.mlr.press/v219/wong23a.html
https://proceedings.mlr.press/v219/wong23a.html
https://proceedings.mlr.press/v219/wong23a.html
https://proceedings.mlr.press/v219/wong23a.html
https://arxiv.org/abs/2402.13178
https://arxiv.org/abs/2402.13178
https://arxiv.org/abs/2402.13178
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540
https://arxiv.org/abs/2203.03540
https://doi.org/10.18653/v1/2023.acl-long.500
https://doi.org/10.18653/v1/2023.acl-long.500
https://doi.org/10.18653/v1/2023.acl-long.500
https://doi.org/10.18653/v1/2023.acl-long.500
https://doi.org/10.18653/v1/2023.acl-long.500


Toronto, Canada. Association for Computational Lin-1593
guistics.1594

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-1595
berger, and Yoav Artzi. 2019. BERTScore: Evaluat-1596
ing text generation with BERT.1597

Xingyao Zhang, Cao Xiao, Lucas M Glass, and Jimeng1598
Sun. 2020. DeepEnroll: Patient-trial matching with1599
deep embedding and entailment prediction. In Pro-1600
ceedings of The Web Conference 2020, New York,1601
NY, USA. ACM.1602

Yaoyun Zhang, Min Jiang, Jingqi Wang, and Hua Xu.1603
2016. Semantic role labeling of clinical text: Com-1604
paring syntactic parsers and features. AMIA Annu.1605
Symp. Proc., 2016:1283–1292.1606

Angelo Ziletti and Leonardo D’Ambrosi. 2024. Re-1607
trieval augmented text-to-SQL generation for epi-1608
demiological question answering using electronic1609
health records.1610

A ChatGPT prompts1611

In this section, the following list gives 3 examples1612

of prompts that were used to instruct ChatGPT in1613

searching for references.1614

1. When it was about the related works we1615

prompted: any other related works or um-1616

brellas review to enrich this section ?1617

(a) Reply: Ai Quality Standards (2025) con-1618

ducted a rapid umbrella review exam-1619

ining quality benchmarks across health-1620

care AI, revealing inconsistent reporting1621

and evaluation practices in systematic1622

reviews ChatGPT in Consumer Health1623

(2025) reviewed existing systematic re-1624

views on ChatGPT in healthcare, em-1625

phasizing strengths in accessibility but1626

noting weak evaluation frameworks and1627

scarce primary clinical studies . AI in1628

Vaccine Research (2025) deployed an1629

umbrella review to consolidate findings1630

on AI applications in antigen discovery,1631

trial design, and supply chains, under-1632

scoring a consistent over-reliance on1633

machine learning lagging behind deep1634

learning and system integration.1635

(b) Reply: In contrast, existing reviews in1636

patient pre-screening (see Table 1) focus1637

narrowly on specific tasks: Meystre et1638

al. (2008) and Uzuner (2008) defined1639

foundational methods in EHR extraction;1640

cTAKES (Savova et al., 2010) delivered a1641

modular pipeline;Ni et al. (2015) piloted1642

rule-based recruitment tools; Beller et 1643

al. (2018) and Ofori-Boateng et al. 1644

(2021) broadened scope to systematic 1645

reviews; Idnay et al. (2022) systemat- 1646

ically reviewed NLP systems for eligibil- 1647

ity screening; Panayi et al. (2023) ex- 1648

plored semi-automated data extraction; 1649

Jin et al. (2023), Hamer et al. (2023), 1650

Rahmanian et al. (2024), and Sharif 1651

and Rehman (2025) introduced and eval- 1652

uated LLM-based matching and prompt- 1653

based learning systems. 1654

2. About enhancing the list about criteria extrac- 1655

tion: any NLP ref I haven’t mentioned? 1656

• Criteria2Query (2019) – Introduced a 1657

hybrid NLP pipeline to parse free-text 1658

eligibility criteria into structured, ex- 1659

ecutable cohort queries. The system 1660

achieved F1 scores of approximately 1661

0.80 for entity and relation extraction 1662

and supports interactive, human-in-the- 1663

loop query refinement. 1664

• DeepEnroll (2020) – Proposed a cross- 1665

modal deep learning model that embeds 1666

eligibility criteria and longitudinal EHR 1667

data into a shared latent space, incor- 1668

porating a numerical entailment module 1669

— outperforming baseline matching sys- 1670

tems by up to 12.4% F1. 1671

• Criteria2Query 3.0 / TrialGPT (2024) 1672

– Upgraded the original Criteria2Query 1673

pipeline with GPT-3.5/GPT-4 to enhance 1674

concept extraction, SQL generation, and 1675

reasoning explanation—marked by a sig- 1676

nificant leap in usability and accuracy. 1677

• PRISM (2024) – A deep neural net- 1678

work system that directly embeds pa- 1679

tient records and trial criteria to com- 1680

pute match scores, with special handling 1681

for unstructured oncology data and real- 1682

world note streams. 1683

• Entity-Extraction + Neural Re-ranking 1684

(2023) – A two-stage pipeline combin- 1685

ing NER-enabled lexical retrieval with 1686

Transformer-based re-rankers, boost- 1687

ing precision by approximately 15% 1688

compared to traditional retrieval ap- 1689

proaches. 1690

• LLM Distillation for Matching (2023) 1691

– Benchmarked GPT-3.5/4 and open- 1692
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source LLaMA models for patient–trial1693

matching. Through fine-tuning, it1694

showed that lightweight LLMs can rival1695

proprietary models in accuracy.1696

• Zero-Shot LLM Matching (2024) –1697

Demonstrated how zero-shot prompting1698

with GPT variants achieves state-of-1699

the-art results on n2c2 cohort selection1700

benchmarks, also generating coherent,1701

clinician-readable explanations.1702

3. I need a last reference list about patient-trial1703

automatic matching, it must really be patient1704

EHR, clinical trial and a matching system. it1705

must contain new references from NLP confer-1706

ences, performance limitation and metrics.1707

(a) Reply 1:1708

• Savova et al. (2010) – cTAKES: Clin-1709

ical Text Analysis and Knowledge Ex-1710

traction System1711

• Kraljevic et al. (2021) – MedCAT:1712

Medical Concept Annotation Toolkit1713

• Neumann et al. (2021) – MedSpacy:1714

A Clinical Text Processing Toolkit1715

• Luo et al. (2022) – Challenges in1716

NLP for Clinical Trials1717

• Lee et al. (2020) – BioBERT: Pre-1718

trained Biomedical Language Repre-1719

sentation Model for Biomedical Text1720

Mining1721

• Liu et al. (2021) – Zero-shot Biomed-1722

ical Entity Recognition with GPT-1723

style Models1724

• Rahmanian et al. (2024) – Autocri-1725

teria: Prompt-tuned Criteria Extrac-1726

tion for Clinical Trials1727

• Mehrabi et al. (2015) – Handling1728

Negation and Uncertainty in Clinical1729

Text1730

• Weng et al. (2019) – Criteria2Query:1731

Converting Eligibility Criteria into1732

Computable Queries1733

• Choi et al. (2022) – Error Propaga-1734

tion in Clinical NLP Pipelines1735

• Johnson et al. (2021) – Temporal1736

Reasoning and Ambiguity in EHR1737

Criteria Extraction1738

(b) Reply 2 after adding “give me the URL1739

of each of them”:1740

• Savova et al. (2010) – cTAKES1741

• Kraljevic et al. (2021) – MedCAT 1742

• Neumann et al. (2021) – MedSpacy 1743

• Lee et al. (2020) – BioBERT 1744

• Liu et al. (2021) – Zero-shot NER 1745

with GPT 1746

• Rahmanian et al. (2024) – Autocrite- 1747

ria 1748

• Mehrabi et al. (2015) – DeepEN 1749

Negation 1750

• Weng et al. (2019) – Criteria2Query 1751

• Choi et al. (2022) – No public URL 1752

available (secondary citation) 1753

• Johnson et al. (2021) – No direct 1754

URL found 1755

B Complementary information 1756

In this section, complementary information is given. 1757

Table 1 shows the chronological list of all system- 1758

atic literature and umbrella reviews about NLP 1759

tasks and research applied to biomedical topics. 1760

Table 2 provides a mapping between EHR features 1761

and associated NLP/AI techniques. Table 3 is a 1762

summary of the datasets used for training and eval- 1763

uating NLP models in eligibility criteria extraction. 1764

Table 4 shows performance comparison of models 1765

for automated eligibility criteria extraction. Table 5 1766

shows three examples of correspondence between 1767

the number of criteria and questions to be gener- 1768

ated. 1769
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Year Title
2008 Extracting information from textual documents

in EHR (Meystre et al., 2008)
2008 The i2b2 2008 workshop (Uzuner, 2008)
2010 Clinical Text Analysis and Knowledge Extrac-

tion System (Savova et al., 2010)
2015 Automated clinical trial eligibility prescreening

(Ni et al., 2015)
2018 ICASR (Beller et al., 2018)
2021 Automation of systematic reviews (Ofori-

Boateng et al., 2024)
2021 Systematic review of NLP systems for eligibility

pre-screening (Idnay et al., 2021)
2023 Evaluation of a prototype ML tool for literature

reviews (Panayi et al., 2023)
2023 Improving patient pre-screening with LLMs

(Hamer et al., 2023)
2023 Prompt-based learning for efficient clinical trial

recruitment (Rahmanian et al., 2023)
2024 Matching patients to clinical trials with LLMs

(Jin et al., 2024)
2024 AI Quality Standards in HealthCare: rapid um-

brella review (Kuziemsky et al., 2024)
2025 Systematic review on clinical trial eligibility

matching (Sharif and Rehman, 2025)

Table 1: Chronological summary of key works on NLP for clinical trial recruitment and eligibility screening

EHR Feature Document
validation

Knowledge
representation

Content
structuring NLU Person Big Data

“Complete” medical
information

Named entity
recognition

(Aramaki et al.,
2016)

Semantic web
(Karami and Rahimi,

2019)

Categorization (Yao
et al., 2019)

Semantic role
labeling (Zhang

et al., 2016)

Speech to text
(Deshmukh and

Pacharaney, 2025)

Information retrieval
(Joulin et al., 2017)

Avoid loss of
information

Information
extraction (Alphonse

et al., 2006)

Ontologies (Torre
et al., 2024)

Automatic
formatting

(Hirschman et al.,
1976)

Normalization
(Castano et al.,

2016)

Chatbot (Hindelang
et al., 2024)

Text mining
(Apostolova et al.,

2019)

Registered in an
understandable way

Template mapping
(Kersloot et al.,

2020)

Normalization
(Pradhan et al.,

2015)

Classification
(García Adeva et al.,

2014)

Sentiment analysis
(Deng et al., 2014)

Speech to text (Pirtle
et al., 2018)

Semantic similarity
(Xiong et al., 2023)

So that the
professional reading

the record can
understand it

Entity linking
(Alekseev et al.,

2022)

Ontologies (Tao
et al., 2011)

Topic modelling
(Sarioglu et al.,

2013)

Question answering
(Mutabazi et al.,

2021)

Task oriented dialog
system

(Campillos Llanos
et al., 2015)

Retrieval augmented
generation (Xiong

et al., 2024)

Minimize time spent Active learning
(Skeppstedt, 2013)

Code switching
(López-Úbeda et al.,

2020)

Speech to text
(Pellecchia, 2024)

Virtual assistant
(Tiwari et al., 2022)

Maintain the
patient-doctor
relationship

Emotion detection
(Huang et al., 2023)

Chatbot (Seitz et al.,
2022)

Automatic
summarization
(López Espejel,

2019)

Sentiment analysis
(Demner-Fushman

et al., 2009)

Virtual assistant
(Jorgenson et al.,

2024)

Information
contained in a large
number of medical

records

Template mapping
(Rajeshkumar et al.,

2023)

Knowledge graph
(Arsenyan et al.,

2023)

Keyword extraction
(Deléger et al.,

2010)

Pattern recognition
(Asgari et al., 2019)

Decision support
system

(Ravichandran et al.,
2024)

Information retrieval
/ Retrieval
augmented

generation (Ziletti
and D’Ambrosi,

2024)

Accurate and
concise recording

Automatic
summarization

(Liang et al., 2019)

Named entity
recognition

(Campos et al.,
2012)

Classification
(Brisimi et al., 2018)

Coreference
resolution (Uzuner

et al., 2012)

Speech to text
(Le-Duc et al., 2024)

Semantic similarity
(López Espejel,

2019)

Table 2: Mapping between EHR features and associated NLP/AI techniques.

Dataset Language Annotations Type Size Access
ClinicalTrials.gov9 English No Protocols, trial outcomes Over 400,000 studies Public
MIMIC-III10 English Yes Clinical notes, ICU data Over 40,000 patients Requires access
FAERS11 English No Adverse event reports Over 10 million reports Public
AIDS CTG Study 17512 English Yes Clinical notes 2,139 participants Public
i2b213 English Yes Annotated clinical notes ∼1,500 notes Requires access
DermatES14 Spanish Yes Dermatological reports 8,800 dermatology EHRs Public

Table 3: Summary of datasets used for training and evaluating NLP models in eligibility criteria extraction.
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Model Main Metric Value Dataset(s) Used Reference
AutoCriteria F1-Score 89.42 ClinicalTrials.gov (Datta et al., 2024)
DICE F1-Score 70.46–75.22 MACCROBAT-EE (Ma et al., 2023)
GPT-4 (C2Q 3.0) F1-Score 89.1 ClinicalTrials.gov (Yuan et al., 2019)
GPT-4 (C2Q 3.0) F1-Score 64.8–72.5 Oncology clinical trials (Yuan et al., 2019)

Table 4: Comparison of models in automated extraction of eligibility criteria for clinical trials.

1 criterion 1 question

Predicted life expectancy > 3 months
Is the patient’s predicted life expectancy > 3

months?

1 criterion 4 questions

Previous or current malignancies of other
histologies within the last 2 years, except for in

situ carcinoma of the cervix, and adequately
treated basal cell or squamous cell carcinoma

of the skin

Has the patient had any other previous or
current malignancy?

Is that malignancy an in situ carcinoma of the
cervix?

Is that malignancy an adequately treated
non-melanoma skin cancer?

Has there been evidence of that malignancy
within the last 2 years?

4 criteria 1 question

Three cohorts of subjects are defined in this
prospective multicenter study: Has the patient been diagnosed with: (1) triple

negative breast cancer? (2) HER 2 positive
breast cancer? (3) Non-small cell lung cancer?

Cohort 1: Triple-negative breast cancer
(TNBC)

Cohort 2: HER 2 positive breast cancer
(HER2+ BC)

Cohort 3: Non-small cell lung cancer (NSCLC)

Table 5: Examples of correspondence between the number of criteria and questions to be generated. The criteria are
extracted from the clinical trial NCT05278975. The questions are generated by the authors of this article
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