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Abstract
Active learning methods have shown great promise in reducing the number of
samples necessary for learning. As automated learning systems are adopted into
real-time, real-world decision-making pipelines, it is increasingly important that
such algorithms are designed with safety in mind. In this work we investigate
the complexity of learning the best safe decision in interactive environments. We
reduce this problem to a constrained linear bandits problem, where our goal is to
find the best arm satisfying certain (unknown) safety constraints. We propose an
adaptive experimental design-based algorithm, which we show efficiently trades
off between the difficulty of showing an arm is unsafe vs suboptimal. To our
knowledge, our results are the first on best-arm identification in linear bandits with
safety constraints. In practice, we demonstrate that this approach performs well on
synthetic and real world datasets.

1 Introduction
In many problems in online decision-making, the goal of the learner is to take measurements in such
a way as to learn a near-optimal policy. Oftentimes, though the space of policies may be large, the set
of feasible, or safe policies could be much smaller, effectively constraining the search space of the
learner. Furthermore, these constraints may themselves depend on unknown problem parameters.

For example, consider the problem of bidding sequentially in a series of auctions where the bidder
bids a price wt, the value of winning an item t is denoted vt, and the utility of winning that item and
paying price pt is vt � pt. The goal of the bidder is to choose an optimal strategy amongst bidding
strategies s 2 S, s : R! R. When a bidder is deciding how to choose these strategies, they often
face constraints: they may have a budget B they must abide to; they may wish to have those auctions
they win be well-distributed across time (e.g. in the case of advertising campaigns); they may want to
ensure the set of items they win satisfy some other property (e.g. for advertisements, they might want
to ensure they are not over-targeting any demographic group).

As another example, inventory management systems may face similar issues of deciding amongst
strategies, where there is some objective function (such as revenue) and a variety of constraints at play
in this choice (e.g. capacity of a set of warehouses, employee scheduling constraints, or limits on the
duration of delivery lag). They also operate in markets with changing demand and other uncertainties,
leading to uncertainty about which strategies are feasible or safe (satisfy constraints) and uncertainty
about the revenue they generate.

Both of these scenarios motivate understanding the sample complexity of selecting an action or
strategy which approximately maximizes an objective while also satisfying some constraints, where
samples are needed to both learn the objective value of actions and whether or not they satisfy said
constraints. In this work, we study the active sample complexity of this task—if the learner can
choose which examples to observe and have labeled, how many fewer samples might they need
compared to the number needed in a passive setting? We pose this as a best-arm identification
problem in the setting of linear bandits with safety constraints, where the goal is to estimate the best
arm, subject to it meeting certain (initially unknown) safety constraints. We propose an experiment
design-based algorithm which efficiently learns the best safe decision, and show the efficacy of this
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approach in practice through several experimental examples. To the best of our knowledge, ours is
the first approach to handle best-arm identification in linear bandits with safety constraints.

1.1 Linear Bandits with Safety Constraints
Let � 2 (0, 1) be a confidence parameter, X ,Z ✓ Rd be finite known sets of vectors, and assume
there exists ✓⇤ 2 Rd, µ⇤ 2 Rm⇥d unknown to the learner. For simplicity, we assume that k✓⇤k2  1,
and kµ⇤,ik2  1, i 2 [m] and kxk2  1, kzk2  1, 8x 2 X , z 2 Z . The learner plays according
to the following protocol: at each time step t the learner chooses some action xt 2 X , observes
(rt, {st,i}mi=1) where rt = ✓

>

⇤
xt + w

✓
t and st,i = µ

>

⇤,ixt + w
µ
t,i for all i 2 [m], where w

✓
t , w

µ
t,i are

i.i.d. mean zero 1-subGaussian noise. The choice of action xt is measurable with respect to the
history Ft = {(xj , rj , {sj,i}mi=1)}t�1

j=1. The learner stops at a stopping time ⌧� which is measurable
with respect to the filtration generated by Ft⌧ , and returns bz⌧ 2 Z . In general, when referring to any
expectation E or probability P, the underlying measure will be with respect to the actions, observed
rewards, and internal randomness of the algorithm.

We are interested in the safe transductive best-arm identification problem (STBAI), where the goal
of the learner is to identify

z⇤ := argmax
z2Z

z
>
✓⇤ s.t. z

>
µ⇤,i  �, 8i 2 [m]

for some (known) threshold �. In words, our goal is to identify the best safe arm in Z , z⇤, where we
say an arm z is safe if it satisfies every linear constraint: z>µ⇤,i  �, 8i 2 [m]. We are interested in
obtaining learners that take the fewest number of samples possible to accomplish this. In practice, we
will consider a slightly easier objective. Fix some tolerance ✏ > 0 and let

Z✏ := {z 2 Z : z
>
✓⇤ � z

>

⇤
✓⇤ � ✏, z

>
µ⇤,i  � + ✏, 8i 2 [m]}.

Then our goal is to obtain an (✏, �)-PAC learner defined as follows:

Definition 1 ((✏, �)-PAC Learner). A learner is (✏, �)-PAC if for any instance it returns bz⌧ such that
P[bz⌧ 2 Z✏] � 1� �.

We define the optimality gap for any z 2 Z as �(z) := ✓
>

⇤
(z⇤ � z), and the safety gap for constraint

i as �i
safe(z) := � � µ

>

⇤,iz. Note that either �(z) or �i
safe(z) can be negative. If �(z) < 0, it

follows that z has larger value—z
>
✓⇤—than the best safe arm z⇤, which implies it must be unsafe. If

�i
safe(z) < 0 for some i, then arm z is unsafe. We also define the ✏-safe optimality gap as:

�✏(z) = max
z02Z

(z0 � z)>✓⇤ s.t. min
i2[m]

�i
safe(z) � ✏. (1)

�✏(z) is then the gap in value between arm z and the best arm with minimum safety gap at least ✏.

Mathematical Notation. Let kxk2A = x
>
Ax and p(x) := max{x, 0}. eO(·) hides factors that

are logarithmic in the arguments. . denotes inequality up to constants. We denote the simplex as
4X := {� 2 R|X |

�0 :
P

x2X
�x = 1}.

2 Safe Best-Arm Identification in Linear Bandits
2.1 Algorithm Definition
The main challenge in algorithm design for the safe best-arm identification problem is ensuring that
we are efficiently balancing our exploration between refining our estimates of both the safety gaps, as
well as the optimality gaps. Our approach is given in Algorithm 1, BESIDE.

BESIDE relies on a round-based adaptive experimental design approach. In each round BESIDE
consists of three phases. In the first phase, it solves an experimental design over �` 2 4X , with the
goal of refining our estimates of the safety gaps. It then takes ⌧` samples from �`. In the second
phase these samples are used to estimate the safety constraints, bµi,`, and the safety gaps of each
arm, b�i,`

safe(z). Finally, in Phase 3, an additional experimental design is solved which now aims to
refine our estimates of the optimality gaps, and the estimates of the optimality gaps b�`(z) for each
z 2 Z are then computed. We encapsulate Phase 3 in a subroutine, RAGE✏, which we outline in
the following. We now carefully describe each phase—we begin with Phase 2 to explain how our
estimator works.
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Algorithm 1 Best Safe Arm Identification (BESIDE)
1: input: tolerance ✏, confidence �

2: ◆✏  dlog( 20✏ )e, b�
i,0
safe(z) 0, b�0(z) 0 for all z 2 Z

3: for ` = 1, 2, . . . , ◆✏ do
4: ✏`  20 · 2�`

// Phase 1: Solve design to reduce uncertainty in safety constraints
5: Define

c`(z) = min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

6: Let ⌧` be the minimal value of ⌧ 2 R+ which is greater than 4 log 4m|Z|`2

� such that the
objective to the following is no greater than ✏`/100, and �` the corresponding optimal distribution

inf
�24X

max
z2Z

� 1

100
(c`(z) + ✏`) +

r
⌧�1 · kzk2A(�)�1 · log( 4m|Z|`2

� )

7: Sample xt ⇠ �`, collect ⌧` observations {(xt, rt, st,1, . . . , st,m)}⌧`t=1
// Phase 2: Estimate safety constraints

8: {bµi,`}mi=1  RIPS({(xt, st,i)}⌧`t=1,Z,
�

2m`2 )

9: b�i,`
safe(z) � � z

>bµi,` + kzkA(�`)�1

q
⌧
�1
` log( 4m|Z|`2

� )
// Phase 3: Refine estimates of optimality gaps

10: {b�`(z)}z2Z  RAGE✏
⇣
Z,Y`, ✏`,

�
4`2 , {b�safe(z) maxj p(�b�j,`

safe(z))}z2Z

⌘

// Perform final round of exploration to ensure we find ✏-good arm
11: Yend  {z 2 Z : c`(z) . b�i,`

safe(z) + ✏}
12: {b�end(z)}z2Yend  RAGE✏(Yend,Yend, ✏, �, {b�safe(z) maxj p(�b�j,`

safe(z))}z2Z)

13: return bz = argminz2Yend
b�end(z)

Phase 2: In Phase 2 the algorithm would like to use the ⌧` samples drawn from the design �`

to estimate the constraints for each z 2 Z: z
>
µ⇤,i for each i 2 [m]. Past works using adaptive

experimental design in the linear bandits literature have utilized the least-squares estimator along with
complicated rounding schemes [13] which may require an additional poly(d) samples each round
(this poly(d) factor could be prohibitively large—for example, in active classification problems, d
is the total number of data points). We instead utilize the RIPS estimator of [6] which gives us a
guarantee of the form: with probability greater than 1� �, for all z 2 Z ,

|z>(bµi,` � µ⇤,i)| . kzkA(�`)�1 ·
q

⌧
�1
` log( 4m|Z|`2

� ). (2)

We describe the RIPS estimator in more detail in Appendix B.

Phase 1: By our definition of the experimental design on Line 6, our safety gap estimation error
bound in (2) satisfies, for each z 2 Z:

|z>(bµi,` � µ⇤,i)| . kzkA(�`)�1 ·
q
⌧
�1
` log( 4m|Z|`2

� ) . c`(z) + ✏`. (3)

Note that our design chooses an allocation that minimizes the variance in our estimate of each safety
constraint (up to some tolerance), which scales as kzk2A(�)�1 . This can be thought of as a form of
XY-design—a design of the form inf�24X

maxy2Y kyk2A(�)�1—where here Y  Z is chosen to
reduce our uncertainty in estimating the safety value for each z 2 Z . We refer to such a design
objective henceforth as XYsafe. Assume that at round `� 1, we can guarantee

c`(z) = min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z)) + ✏`

. min
j

|�j
safe(z)| +max

j
p(��j

safe(z)) + p(�✏`�1(z)) + ✏`. (4)

Then combining the above inequalities, we see that the experiment design on Line 6 aims to minimize
the uncertainty in our estimate of z>µ⇤,i up to a tolerance that scales as the maximum of the four
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terms in (4). It follows that if any of these terms is large, we will only allocate a small number of
samples to refining our estimate of arm z. Each one of these terms can be intuitively motivated by
thinking through what is needed to prove that an arm z 6= z⇤.

• z has small safety gap minj |�j
safe(z)|: if this term is large, it implies that minimum safety gap

for z is large. To show an arm is safe or unsafe, it suffices to learn each safety gap up to a tolerance
a constant factor from its value—regularizing by this term ensures we do just that.

• z fails some safety constraint maxj p(��j
safe(z)): if this term is large, it implies that arm z is

very unsafe for some constraint. In this case, we can easily determine z is unsafe, and therefore do
not need to reduce our uncertainty in the safety gap any more.

• z is sub-optimal p(�✏`�1(z)): if this term is large, it implies that z is very suboptimal compared
to some safe arm with safety gap at least ✏`�1. In this case, we do not need to estimate z’s safety
gap, as we will have already eliminated it.

It remains to ensure that (4) holds. As we show in Appendix D through a careful inductive argument,
combining (3) with our guarantee on the estimates of the optimality gaps obtained in Phase 3, b�`(z),
is sufficient to guarantee (4) holds. In particular, if any gap is greater than ✏` it is estimated up to a
constant factor, and otherwise it is estimated up to O(✏`). This ensures that our gaps are estimated at
the correct rate while guaranteeing we do not collect too many samples in each round.

Phase 3: In this phase we estimate the suboptimality gaps using RAGE✏. RAGE✏ is inspired by
the RAGE algorithm of [13] for best-arm identification. In the interest of space, we defer the full
definition of RAGE✏ to Appendix C but provide some intuition here. After Phase 2, by (3) the set of
arms Y` := {z 2 Z : cs(z) . b�i,s(z), 8i 2 [m]} for s  ` are precisely the ones that we can certify
are safe (note that we do not need to ever explicitly construct such a set—we can instead maintain an
implicit definition through the constraints). RAGE✏ uses an adaptive experimental design procedure
to sample in such a way as to optimally estimate the gaps (z � by)>✓⇤, 8z 2 Z and some by 2 Y`

up to some (sufficient) tolerance. In particular, it also solves an XY-design, but now on the set
Y  {z � by : z 2 Z}. Thus, rather than minimizing kzk2A(�)�1 , we minimize kz � byk2A(�)�1 . This
design reduces uncertainty on the differences between arms, which allows us to refine our estimates
of their optimality gaps. Henceforth we refer to such a design as XYdi↵ . We describe the importance
of the choice of design in more detail in Section 2.4. Ultimately, if an arm z has value within a factor
of ✏` of the best safe arm in Y`, and if we have not yet shown arm z is unsafe, then we will estimate
its optimality gap up to a constant factor of ✏`. If we were maintaining arm sets explicitly (similar to
the original RAGE algorithm of [13]) we would eliminate arms at this point.

Remark 1 (Computational Complexity). The main computational challenge in BESIDE and RAGE✏

is the calculation of the experimental designs (i.e. Line 6 and the corresponding design in RAGE✏).
In general, the presence of the square root implies that the resulting optimization problem may not be
convex in �. To handle this issue we note that 2pxy = min↵>0 ↵x+ y

↵—thus we can replace the ex-
isting design with inf�24X

maxz2Z min↵>0� 1
100 (c`(z) + ✏`)+↵kzk2A(�)�1 +log( 4m|Z|`2

� )/(↵⌧).
By appropriately discretizing the space we search over for ⌧ and ↵ we can then apply the Frank-Wolfe
algorithm to minimize over �. While computationally efficient in theory, this procedure is quite
complicated and impractical for large problems. In the experiments section we provide a practical
heuristic that is motivated by the above algorithm and is computationally efficient for larger problems.

2.2 Main Result
BESIDE achieves the following complexity.

Theorem 1. BESIDE is (✏, �)-PAC. In other words, with probability at least 1� �, BESIDE returns
an arm bz 2 Z such that

bz>✓⇤ � z
>

⇤
✓⇤ � ✏, min

i2[m]
�i

safe(bz) � �✏

and terminates after collecting at most

C · sup
e✏�✏

inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

� )
�
minj |�j

safe(z)| +maxj p(��j
safe(z)) + p(�e✏(z)) + e✏

�2 (safety)
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+ C · sup
e✏�✏

inf
�24X

max
z2Z

kz � z⇤k2A(�)�1 · log( |Z|

� )
�
maxj p(��j

safe(z)) + p(�e✏(z)) + e✏
�2 + C0 (optimality)

samples for some C = poly log( 1✏ ) and C0 = poly log( 1✏ , |Z|) · log 1
� .

The complexity bound given in Theorem 1 may, at first glance, appear rather opaque, yet it in
fact yields a very intuitive interpretation. The first term in the complexity, the safety term, is the
complexity needed to show each arm is safe or unsafe, if they have not otherwise been eliminated. As
described in the previous section, if p(�e✏(z)) is large, this implies we have found an arm better than
z, so learning its safety value is irrelevant.

The second term in the complexity, the optimality term, corresponds to the difficulty of showing an
arm is worse than the best arm we can guarantee is safe. Note that we can only guarantee an arm is
suboptimal if we can find a safe arm with higher value. Recall the definition of �e✏(z) given in (1).
Intuitively, �e✏(z) denotes the gap in value between arm z and the best arm with safety gap at least
e✏. As we make e✏ smaller, we can show additional arms are safe, which increases �e✏(z). While this
makes it easier to show z is suboptimal, it comes at a cost—the extra samples necessary to decrease
our safety tolerance, given by the first term in the complexity. BESIDE trades off between optimizing
for each of these terms—gradually decreasing its tolerance on both the safety and optimality terms to
more easily eliminate suboptimal arms, while not allocating too many samples to guarantee safety.

To help illustrate this complexity, we consider a simple example with orthogonal arms, i.e. a
multi-armed bandit example.

Example 1 (BESIDE on Multi-Armed Bandits). In the multi-armed bandit setting, we have X =
Z = {e1, . . . , ed}. Let m = 1, d = 3, and consider the settings of ✓⇤ and µ⇤ given in Figure 1. Here
we see that arm e1 is safe and has value much higher than any other arm, so z⇤ = e1, and can be
shown to be safe relatively easily; arm e2 has near-optimal value but is very unsafe; and arm e3 is
unsafe with very small safety gap, but has the smallest value.

[��]1 [��]2 [��]3
0.00

0.25

0.50

V
al

ue

[µ�]1 [µ�]2 [µ�]3
0.00

�

0.50

Sa
fe

ty
V
al

ue

Figure 1: Multi-Armed Bandit Instance

Showing e2 is Suboptimal. As e2 has near-optimal value, �(e2) is very small and it is very difficult
to show e2 is suboptimal. However, ��safe(e2) = O(1), so it is very easy to show e2 is unsafe. It
follows that p(��safe(e2)) = O(1) so both denominators in our complexity will always be O(1)
for z = e2—BESIDE does not attempt to show e2 is suboptimal, but instead shows it is unsafe, and
therefore does not pay for the small optimality gap of �(e2) in the complexity.

Showing e3 is Suboptimal. Recall the definition of �✏(z) = maxz0:�safe(z0)�✏ ✓
>

⇤
(z0 � z). In this

case, for ✏ = O(1), we will have �safe(e1) � ✏, which implies that �✏(e3) = ✓
>

⇤
(e1 � e2) =

�(e3) = O(1). To show e3 is suboptimal, we could either show it is unsafe (which is very difficult)
or suboptimal (which is very easy). Observing the sample complexity of Theorem 1, we see that the
denominator of both terms will always be O(1) for z = e3 since �✏(e2) = O(1)—BESIDE never
pays for the small safety gap of e3, it instead takes advantage of the fact that e3 can easily be shown
to be suboptimal, and uses this to eliminate it.

In both of these cases we see that BESIDE does the “right” thing, always using the easier of the two
criteria—either showing an arm is unsafe or suboptimal—to show that z 6= z⇤. Combining the above
observations, for ✏ ⇡ min{�(e3),��safe(e2),�safe(e1)}, it follows that on this example the total
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sample complexity of BESIDE given by Theorem 1 scales as:

eO
✓⇣ 1

�safe(e1)2
+

1

�safe(e2)2
+

1

�(e3)2

⌘
· log 1

�

◆

where the 1/�safe(e1)2 arises because we must also show e1 is safe.

2.3 Optimality of BESIDE

Optimality in Best-Arm Identification. Consider applying BESIDE to a problem instance where
m = 1, µ⇤,1 = 0, and � = 1. In this case, every arm is safe, and the safety constraints are essentially
vacuous—every arm can easily be shown safe. We can therefore think of this as simply an instance of
the best-arm identification problem. In this setting, we obtain the following corollary.

Corollary 1. Consider running BESIDE on a problem instance where m = 1, µ⇤,1 = 0, and � = 1,
and set ✏ = 1

2 maxz 6=z⇤ ✓
>

⇤
(z⇤ � z). Then with probability at least 1� �, BESIDE returns z⇤ and has

sample complexity bounded by:

eO
✓

inf
�24X

max
z2Z

kz � z⇤k2A(�)�1

�(z)2
· log |Z|

�
+ inf

�24X

max
z2Z

kzk2A(�)�1 · log |Z|
�

◆
.

Up to lower-order terms, this exactly matches the lower bound on best-arm identification given in
[13]. Thus, in settings where the safety constraint is vacuous, BESIDE hits the optimal rate.

Worst-Case Performance of BESIDE. We next consider the worst-case performance of BESIDE in
settings when X = Z . We have the following result.

Corollary 2. Assume that X = Z . Then for any ✓⇤ and (µ⇤,i)mi=1, the sample complexity of BESIDE

necessary to return an ✏-good and ✏-safe arm is bounded as eO( d
✏2 · (log(m|X |) + log 1

� )).

Theorem 2 of [38] shows a worst-case lower bound of ⌦(d2/✏2) on the sample complexity of
identifying an ✏-optimal arm in the standard linear bandit setting. Safe best-arm identification
problems in which the safety constraint is vacuous are at least as hard as the standard best-arm
identification problem, since at minimum we need to find the best arm out of every safe arm. Thus,
⌦(d2/✏2) is also a worst-case lower bound for the safe best-arm identification problem. The hard
instance of [38] has |X | = O(2d), so it follows that on this instance, BESIDE achieves a complexity
of eO( d

✏2 · (d+ log 1
� )), and therefore BESIDE has optimal dimensionality dependence. In addition,

this also implies that safe best-arm identification, in the worst-case, is no harder than the standard
best-arm identification problem—it is no harder to find the best safe arm, regardless of the number of
safety constraints, than to find the best arm, ignoring safety constraints.

2.4 The Role of Experiment Design
We can think of the safe best-arm identification problem, in some sense, as an interpolation of the
standard best-arm identification problem, as well as the level-set estimation problem, where the
goal is to identify z 2 Z satisfying z

>
µ⇤  � [29]. In the former problem, [13] shows that the

instance-optimal rate can be attained by running a round-based algorithm and at every round solving
an instance of the XYdi↵ experiment design, as defined in Section 2.1. In the latter problem, [29]
also show that a round-based algorithm can hit the instance-optimal rate, but instead solving the
XYsafe problem at each round. It is natural to ask whether either of these strategies could be applied
to the safe best-arm identification problem directly, or if it is necessary to alternate between them.
The following results show that, on their own, each of these designs is unable to hit the optimal rate.

Proposition 2. Fix some small enough ✏ > 0. Then there exist instances of the safe best-arm
identification problem, Ii = (✓i

⇤
, µ

i
⇤
,X i

,Zi), i = 1, 2, with d = |X i| = |Zi| = 2, m = 1, such that:

• On I1, any (✏, �)-PAC algorithm which plays only allocations minimizing XYdi↵ must have
E[⌧�] � ⌦

�
1
✏3 · log 1

�

�
, while BESIDE identifies an ✏-optimal arm after eO( 1

✏2 · log 1/�) samples.

• On I2, any (✏, �)-PAC algorithm which plays only allocations minimizing XYsafe must have
E[⌧�] � ⌦

�
1

✏3/2
· log 1

�

�
, while BESIDE identifies an ✏-optimal arm after eO( 1✏ · log 1/�) samples.
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Proposition 2 implies that, to solve the safe best-arm identification problem optimally, more care must
be taken in exploring than either standard experiment design induces—we must trade off between
XYdi↵ and XYsafe as BESIDE does. We remark briefly on the instance I1. On this instance we have
X = {e1, e2} and Z = {z1, z2} with z1 = [1/4, 1/2] and z2 = [3/4, 1/2 + ↵]. We set ✓1

⇤
= [1, 0],

µ
1
⇤
= [0, 1], and � = 1/2 + ↵/2. Here z2 is unsafe while z1 is safe, so it follows that z⇤ = z1. As

z
>

2 ✓
1
⇤
> z

>

1 ✓
1
⇤
, to show z2 6= z⇤, we must show it is unsafe. However, if we solve the design XYdi↵ ,

we see that it places nearly all of the mass on the first coordinate. While this would be optimal if
both z1 and z2 were safe and we simply wished to determine which has a higher value, to show z2 is
unsafe, the optimal strategy places (roughly) the same mass on each coordinate, since each coordinate
could contribute to the safety value. This is precisely the allocation BESIDE will play, so it is able to
show that z2 is unsafe much more efficiently than a naive XYdi↵ approach.

3 Experiments for Safe Best Arm Identification in Linear Bandits
We next present experimental results on BESIDE to demonstrate the advantage of experimental
design—especially combining XYdi↵ and XYsafe designs. As there are no existing algorithms
that consider safe best-arm identification, as a benchmark we consider the naive adaptive approach
BASELINE that first solves the problem of finding the safe arms up to a desired tolerance, and then
solves the problem of finding the best (safe) arm among the arms that were found to be safe. We first
describe instances on which we test BESIDE. Our experimental details and precise implementation of
BESIDE using elimination are described in Section F.

Multi-Armed Bandit. We consider a best-arm identification problem in which every arm is safe,
but the arm with highest value is very difficult to identify as safe, while the second-best arm can
easily be shown safe. We vary the total number of arms and run BESIDE and BASELINE with ✏ = 0.5
and � = 0.1. From Figure 2, we observe that the sample complexity of BESIDE is smaller (up to
about two times for 100 arms) than the sample complexity of its baseline.

Linear Response Model. Random Instance: We also consider the more general setup where
X ,Z ⇢ Rd, ✓ 2 Rd and µ 2 Rd are randomly generated from independent Gaussian random
variables with mean 0 and variance 1. We set |X | = 50 and vary the size of |Z|. In Figure 3, we see
again that BESIDE significantly outperforms the baseline.

Hard Instance: We last consider the instance of Proposition 2 and benchmark against the strategy
playing only allocations minimizing XYdi↵ . In Figure 4, we see again that BESIDE significantly
outperforms this baseline, corroborating the theoretical result of Proposition 2.

Figure 2: Total arm pulls to ter-
mination vs. number of arms

Figure 3: Total arm pulls to
termination vs. |Z|

Figure 4: Total arm pulls to
termination vs. ✏

3.1 Practical Algorithms for Active Classification Under Constraints
Next, we provide an application of the above ideas to pool-based active classification with constraints—
namely, adaptive sampling to learn the highest accuracy classifier with a constraint on the false
discovery rate (FDR). We first explain how this problem maps to the linear bandit setting. Precisely, let
X be the example space and Y = {0, 1} the label space. Fix a hypothesis class H such that each h 2
H is a classifier h : X ! Y . We represent each h with an associated indicator vector zh 2 {0, 1}|X |

where zh(x) = 1 () h(x) = 1. Similarly, let ⌘ 2 [0, 1]|X | represent the label distribution, i.e.
⌘(x) = P(Y = 1|X = x). Then the risk of a classifier R(h) := Ex⇠Unif(X ),Y⇠Ber(⌘(x))[ [h(x) 6=
Y ]] = z

>

h (2⌘ � 1) and the FDR is defined as FDR(h) := (1 � ⌘)>z/1>
z. In the case when

⌘ 2 {0, 1}|X |, FDR(h) is the proportion of examples that h incorrectly labels as 1 out of all
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examples h labels as 1. Our goal is to solve the following constrained best arm identification problem:

bh = min
h2H

R(h) s.t. FDR(h)  q () min
h2H

z
>

h ⌘ s.t. ((1� ⌘)> � q1>)>z  0. (5)

The main challenge in running BESIDE on this problem directly is a potentially high computational
cost from computing a design over an extremely large hypothesis class H (e.g. neural networks
of a bounded width). In this section we provide an alternative approach motivated by BESIDE.
Algorithm 2 follows a similar design as BESIDE and relies on an oracle, CERM, that can solve (5), i.e.
given a dataset it returns the highest accuracy classifier under an FDR constraint. Such oracles are
available in, for example in [1, 10]. In each round of Algorithm 2 we perform randomized exploration
by perturbing the labels on our existing dataset with mean zero Gaussian noise, and then training k

classifiers bhi, i 2 [k], on the resulting datasets. Implicitly, we are making the assumption that the loss
function in the training of ERM can handle continuous labels, such as the MLE of logistic regression.
As described in [25], randomized exploration emulates sampling from a posterior distribution on our
possible set of classifiers. We then use the labels generated from these classifiers to compute safe
classifiers hi, i 2 [k]. Finally, mimicking the strategy of BESIDE, we compute XYsafe and XYdi↵

designs on these k safe classifiers and repeat (note that the designs computed on Line 5 are equivalent
to XYsafe and XYdi↵ in the classification setting).

Algorithm 2 Active constrained classification with randomized exploration

Require: Batch size n, initial (labeled) data x(0)
1 , . . . , x

(0)
n , number of rounds L, number of classifiers

per round k, perturbation variance �

1: for ` = 1, . . . , L do
2: for i = 1, . . . , k do
3: bhi = ERM({(x(`)

t , y
(`)
t + ✏

(i)
t )}nt=1), where {✏(i)t }1tn

i.i.d.⇠ N (0,�2)

4: hi = CERM({(x,bhi(x))}x2X )

5: Compute designs: �safe = argmin�24X
max1ik

P
x2X

{hi(x) 6=0}
�x

, �diff =

argmin�24X
max1i 6=jk

P
x2X

{hi(x) 6=hj(x)}
�x

6: Sample x
(`)
1 , . . . , x

(`)
n from a uniform mixture of �safe,�diff

7: Observe corresponding labels y(`)1 , . . . , y
(`)
n

return eh = CERM({(x(`)
t , y

(`)
t )}1tn,0`L)

To validate Algorithm 2, we experiment against a passive baseline that selects points uniformly at
randoms from the pool of examples X , retrains the model using the same Constrained Empirical Risk
Minimization oracle (CERM) as Algorithm 2 on its current samples, and report the accuracy and FDR.
We evaluate on two real world datasets and on one synthetic dataset next and provide an additional
details on the experiments in Section F.

Figure 5: FDR vs accuracy for active (Al-
gorithm 2) and passive sampling, ticks report
number of samples. FDR and accuracy are
averaged over 5 trials

Adult dataset. We evaluate on the adult income data
set [27] (48,842 examples) where the goal is to predict
whether someone’s income is above $50k per year. We
set the constraint to be FDR < 0.15 and report in Fig-
ure 5 the accuracy and the FDR obtained when varying
the number of labels given to each method (batch size is
set to 25 and initial number of queried labels is 50). We
observe that for any desired accuracy Algorithm 2 allows
us to provide a classifier with lower FDR. Also, for any
chosen number of total labels—such as 500, 750, 2000 as
reported in Figure 5—the Algorithm 2 gives a classifier
with higher accuracy and lower FDR. In general we found
that the active method needed half the number of sam-
ples as the passive sampling to achieve a given FDR. This
demonstrates the effectiveness of Algorithm 2 to learn si-
multaneously the objective (risk) and the constraint (FDR),
in a similar favorable way as characterized by our theoretical findings.
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Figure 6: TPR vs FDR for active active
(Algorithm 2) and passive sampling, ticks
report number of samples. Precision is 1 �
FDR, recall is TPR. Precision and recall are
averaged over 25 trials

German Credit dataset. We consider the German
Credit Dataset originally from the Staflog Project
Databases [24]. The goal is to predict whether someone’s
credit is ’bad’ or ’good’. We report in Figure 6 the recall
(TPR) and the precision (1�FDR) obtained when varying
the number of labels given to each method. We observe
that for any desired precision Algorithm 2 allows us to pro-
vide a classifier with higher recall. Also, for any chosen
number of total labels—such as 170, 270, 330, 450, 600 as
reported in Figure 6—the Algorithm 2 gives a classifier
with higher precision and higher recall. As for the Adult
dataset we found that the active method needed half the
number of samples as the passive sampling to achieve a
given precision.

Half circle dataset. We consider a two-dimensional half circle dataset, visualized on Figure 10.
We report in Figures 11 and 12 the precision and (respectively) the recall obtained when varying the
number of labels given to each method. The confidence intervals are obtained over 25 repetitions.
We observe that Algorithm 2 allows us to provide a classifier satisfying a given recall or precision in
far fewer queries. This is in line with the results of [16] on One Dimensional Thresholds, where the
sample complexity of the active strategy is O(log(n)) while the sample complexity of the passive
strategy is at least of order n.

Figure 7: Half circle dataset. Figure 8: Precision Figure 9: Recall

4 Related works
Constrained Bandits. A growing body of work seeks to address the question of safe learning in
interactive environments. In particular, the majority of such works have considered the problem of
regret minimization in linear bandits with linear safety constraints. Here, the goal is to maximize
online reward, x>

t ✓⇤, by choosing actions xt 2 X ✓ Rd, while ensuring a safety constraint of the
form x

>

t µ⇤  � is met at all times (either in expectation or with high probability). A variety of
algorithms have been proposed, including UCB-style [23, 2, 32], and Thompson Sampling [30, 31].
While these works show that

p
T regret is attainable, they only provide worst-case bounds (while

we obtain instance-dependent bounds) and do not study the pure-exploration best-arm identification
problem. To our knowledge, the only work to offer instance-dependent guarantees is [9], yet they
focus exclusively on the regret setting, and offer a relatively coarse notion of instance-dependence
— analogous to O(d · poly log T/�min) bounds in the unconstrained linear bandits setting — in
contrast to the more fine-grained notion of instance-dependence we provide.

To our knowledge, only several existing works consider the question of best-arm identification with
safety constraints [36, 37, 39, 28]. The most related to ours is [28] which focuses on the easier
problem of safe best arm identification with known rewards and unknown constraints. Since the
reward is known, the main challenge in the setting of [28] is to learn constraints via G-optimal designs.
The key and novel challenge of our framework is to carefully balance between G and XY designs:
naively spending enough budget to either learn the reward model (via a XY design) or to learn
the safety constraints (via a G design) will fail catastrophically (see Example 2.1 and Proposition
1). [36, 37] consider a general constrained optimization setting where the goal of the learner is to
minimize some function f(x) over a domain x 2 D, while only having access to noisy samples of
f(x), f(xt)+wt, and guaranteeing that a safety constraint g(xt) � h is met for every query point xt.
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While they do provide a sample complexity upper bound, they give no lower bound, and, as shown
in [39], their approach can be very suboptimal. [39] considers the setting of best-arm identification
in multi-armed bandits. In their setting, at every step t they query a value at 2 A for a particular
coordinate it, and their goal is to identify the coordinate i

⇤ such that a⇤i⇤✓i⇤ � maxi a⇤i ✓i, where
a
⇤

i is the largest value respecting the safety constraint: a⇤i = argmaxa2A
a✓i s.t. aµi  �. Similar

to [36, 37], they require that the safety constraint atµit  � must be met while learning. Though
they do show matching upper and lower bounds, and in addition consider a slightly more general
setting that allows for nonlinear (but monotonic) response functions, they treat every coordinate as
independent, and do not allow for information-sharing between coordinates—the key generalization
the linear bandit setting targets. We remark as well that in our setting, unlike these works, we allow
the learner to query unsafe points during exploration, and only require that they output a safe decision
at termination.

Best-Arm Identification in Linear Bandits. The best-arm identification problem in multi-armed
bandits (without safety constraints) is a classical and well-studied problem [3, 33, 12, 5], and near-
optimal algorithms exist [18, 22]. More recently, there has been a growing interest in understanding
the sample complexity of best-arm identification in linear bandits [35, 19, 40, 13, 20, 11]. We
highlight in particular the work of [13] which proposes an experiment-design based algorithm, RAGE,
that our approach takes inspiration from. While much progress has been made in understanding
best-arm identification in linear bandits, to our knowledge, no existing works consider the setting of
best-arm identification in linear bandits with safety constraints, the setting of this work.

Active Classification under FDR constraints We finally mention one other related body of work—
the problem of actively sampling to find a classifier with high accuracy or recall under precision
constraints. Motivated by the experimental design approach of our main algorithm, BESIDE, we
provide a heuristic algorithm for this problem with good empirical performance in Section 3.1. There
is an extensive body of work on active learning (see the survey [14]) but only recently have works
made the connection between best-arm identification for linear bandits and classification [21, 16, 7].
Precision constraints has been less studied in the adaptive context, we only know of [16, 4].

5 Conclusion
In this work we have shown that it is possible to efficiently find the best safe arm in linear bandits
with a carefully designed adaptive experiment design-based approach. Our results open up several
interesting directions for future work.

Instance Optimality. While BESIDE is worst-case optimal, in Appendix A we show an instance-
dependent lower bound which BESIDE does not, in general, seem to hit. We conjecture that this lower
bound may be loose—addressing this discrepancy and showing matching instance-dependent upper
and lower bounds is an exciting direction for future work.

Safety During Exploration. Though there are many interesting applications where we may not
require safety during exploration (i.e. only querying safe arms), in other cases we may need to ensure
safety is met during exploration. Extending our work to this setting is an interesting open problem.

Potential Impacts. As with any algorithm making stochastic assumptions, if assumptions are not
met we can not guarantee the performance. In this case, one limitation is that if the underlying
environment is changing (i.e. the constraints vary over time) the algorithm could have unexpected
behavior with unintended consequences. Such a situation could lead to harmful results in examples
such as the online advertising bidding example from the introduction. To mitigate this limitation of
our setting, practitioners are encouraged to monitor many metrics, both short and long-term.
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