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Abstract
Imitation learning methods are used to infer a pol-
icy in a Markov decision process from a dataset
of expert demonstrations by minimizing a diver-
gence measure between the empirical state occu-
pancy measures of the expert and the policy. The
guiding signal to the policy is provided by the
discriminator used as part of an adversarial opti-
mization procedure. We observe that this model is
prone to absorbing spurious correlations present
in the expert data. To alleviate this issue, we pro-
pose to use causal invariance as a regularization
principle for adversarial training of these mod-
els. The regularization objective is applicable in a
straightforward manner to existing adversarial im-
itation frameworks. We demonstrate the efficacy
of the regularized formulation in an illustrative
two-dimensional setting as well as a number of
high-dimensional robot locomotion benchmark
tasks.

1. Introduction
The invariant causal prediction principle (Peters et al., 2015)
has gained a lot of attention in the recent years. Contempo-
rary methods such as (Arjovsky et al., 2019; Chang et al.,
2020; Krueger et al., 2021) propose a representation learn-
ing scheme for supervised learning problems which aim to
eliminate features which are spuriously correlated with the
label. Various instantiations of this principle obtain asymp-
totically stable label conditionals across interventional set-
tings of the data generating process. The canonical example
of deep learning models absorbing such spurious features
is the classification of cows and camels. In this example,
the model learns the feature encoding of the background
as a form of shortcut for classifying the more complex ge-
ometry of animal shapes, exploiting a selection bias in the
dataset. The model subsequently fails on a test set of images
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with permuted backgrounds. Analogously, in reinforcement
learning, it is desirable to avoid behaviours which would
exploit such features. This is particularly relevant when
learning from demonstrations, i.e. in the imitation learning
setting.

Modern imitation learning methods (Ho & Ermon, 2016)
aim to minimize a discrepancy measure between the a fi-
nite dataset of expert demonstrations and the trajectories
induced by the policy trying to mimic the expert. The dis-
crepancy measure is typically an instance of the family of
φ-divergences (Csiszár, 1972) or integral probability metrics
(e.g. Wasserstein distance). In both cases, the variational
formulation of the density matching problem is chosen for
computational purposes whitch has been shown to have
strong links to binary classification (Nguyen et al., 2009;
Sriperumbudur et al., 2009), a fact widely used in genera-
tive adversarial network (GAN) and adversarial imitation
methods.

In this work, we observe that the binary classifier used as dis-
criminator in the adversarial optimization scheme is prone
to exploiting the spurious correlations present in the mix-
ture of policy and expert trajectory data. This has multiple
far-reaching implications for the resulting training proce-
dure. For instance, this could lead to undesired behaviours,
similar to the ones associated with reward hacking (Skalse
et al., 2022). The exploitation of spurious correlations by
a model typically leads to higher empirical performance
at training time but will fail at test time. In the context of
adversarial training, an overly confident discriminator is
known to impede meaningful generator training due to a
stale training signal. This issue is typically remedied by
regularizing the discriminator in various ways (Gulrajani
et al., 2017; Peng et al., 2018). The problem is exacerbated
by the fact that the policy will try to optimize the expected
density ratio based on spurious features of the discriminator,
further contributing to the covariate shift.

To alleviate this issue, we propose to regularize the dis-
criminator using the invariant risk minimization principle
(Arjovsky et al., 2019), more specifically, the IRMv1 ob-
jective. The application of this regularization technique
requires mild assumptions on the problem setting, which
are often satisfied in practice, and is easy to implement. To
validate our method, we perform an empirical study of the
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algorithm performance in both a low-dimensional naviga-
tion setting as well as on a number of benchmark tasks from
the MuJoCo suite. We observe a consistent improvement in
both settings when using the regularized version of common
adversarial imitation learning algorithms.

2. Related work
Invariance and causality in reinforcement learning The
concept of invariance has been used in a number of works in
the reinforcement learning domain. Invariant causal predic-
tion has been utilized in (Zhang et al., 2020) to learn model
invariant state abstractions in a multiple MDP setting with
a shared latent space. Invariant policy optimization (Sonar
et al., 2021) uses the IRM games (Ahuja et al., 2020) formu-
lation to learn policies invariant to certain domain variations.
de Haan et al. (2019) tackle the problem of causal confusion
in imitation learning by making use of causal structure of
demonstrations. The issue of discriminator overfitting to
task-irrelevant visual features is addressed in (Zolna et al.,
2021). Another example of using causal invariance is pre-
sented in (Bica et al., 2021). In contrast to the methods
outlined above, our method specifically addresses the issues
with spurious correlations during the process of adversarial
training, which lead to discriminator degeneration.

3. Problem setting
We start by introducing the necessary notation and formal-
ism to describe the problem setting.

MDP We consider environments modelled by a Markov
decision process M = (S,A, T , µ,R), where S is the state
space, A is the action space, T is the family of transition
distributions on S indexed by S ×A with p(s′|s, a) describ-
ing the probability of transitioning to state s′ when taking
action a in state s, µ is the initial state distribution, and
R : S × A → R is the reward function. A policy π is a
map from states s ∈ S to distributions π(·|s) over actions,
with π(a|s) being the probability of taking action a in state
s. We denote by ρE =

∑
si∈DE

δi(si) the empirical state
occupancy measure of the expert based on a dataset of ex-
pert trajectories DE = {τi}i≤K where τi = (s

(i)
1:T , a

(i)
1:T )

is a sequence of states and actions of expert i of length T .
ρπ =

∑
t≤T P

π
µ (St = s,At = a) denotes the state occu-

pancy measure induced by the policy π over a finite horizon
T for initial measure µ.

Imitation learning methods aim to estimate a policy πθ
parameterized by weights θ , which mimics the expert. To
achieve this goal, a distance or divergence measure between
the empirical state occupancy measure of the expert ρE and
the induced state occupancy measure of the policy ρπ is
minimized. More specifically, the divergence measure is

typically an instance of the class of φ-divergences (Csiszár,
1972), where the choice the φ-function corresponds to com-
monly used methods such as GAIL ((Ho & Ermon, 2016)),
AIRL ((Fu et al., 2017)) or f-IRL ((Ni et al., 2021)). The
adversarial imitation learning (AIL) objective is formulated
as follows:

LAIL = min
θ

max
ψ

EρE [logDψ(s, a, s
′)]

+Eρπθ
[log(1−Dψ(s, a, s

′))]− λH(πθ)

where Dψ(s, a, s
′) is the discriminator parametrized by a

neural network with parameters ψ, πθ is the student policy
and H(πθ) the entropy regularization term. 1

Invariant causal prediction The principle of invariant
causal prediction (Peters et al., 2015; Heinze-Deml et al.,
2017) stipulates that for provable out-of-distribution (OOD)
generalization in linear regression tasks, the regression co-
efficients must be stable across interventional settings of
the data generating process, indexed by e ∈ E where E
denotes the set of datasets sampled from the data generat-
ing process. The authors of (Arjovsky et al., 2019) extend
this to nonlinear features and introduce a tractable approx-
imation of the bi-level optimization required to identify
invariant features Φ. The derived gradient norm penalty
D(w,Φ, e) = ||∇w|w=1.0Le(w ◦ Φ)||2 quantifies the viola-
tion of the normal equations to measure the optimality of a
fixed linear classifier (w = 1.0) at each setting e. This leads
to the following regularized formulation of the empirical
risk minimization (ERM) problem where Etr ⊆ E is the set
of training environments:

min
Φ:X→Y

∑
e∈Etr

Le(Φ)+λ||∇w|w=1.0Le(w◦Φ)||2 (IRMv1)

In the following section, we will address why this regular-
ization is beneficial for disciminator fitting in adversarial
training procedures.

4. Spurious correlations in adversarial
imitation learning

We will now describe the mechanisms by which spuri-
ous correlations lead to issues in the process of adver-
sarial training. At every adversarial optimization round,
a number of discriminator gradient updates is performed.
In particular, the discriminator at round k is updated us-
ing the concatenated transition samples from the expert
dataset and the policy buffer, Dk = (DE ,Dπ). Let us
assume a decomposition of the feature space x ∈ X
into two subsets, xC and xNC , which denote the causal

1In the case of AIRL, ψ denotes the joint set of structured
discriminator parameters of functions gξ and hϕ
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Figure 1: (a) Probabilistic graphical model of a transition under influence of the index variable E and latent variable W .
The stable conditional is highlighted in blue. (b) General setting where Ot depends on causal x(c) and non-causal x(nc)

features of the transition. (c) Spurious correlations assuming wrong edge orientation Ot → st+1. (d) Spurious correlations
assuming state-only formulation.

and spurious2 features respectively. By definition, spu-
rious features do not generalize outside of the training
set. The discriminator parametrizes the density ratio
D(x) = D(xC ,xNC) = ρ̂E(xC ,xNC)/ρ̂π(xC ,xNC),
where ρ̂E(xC ,xNC) and ρ̂π(xC ,xNC) denote the density
estimators of the expert and policy respectively. Suppose in
the cow-camel classification example, the camera operator
is given agency to move the camera to frame different parts
of the scene. The guiding signal is provided by the negative
log likelihood ratio of features present in subsets of the cow
and camel images, meaning deviations from unity ratio are
penalized. If the ratio is easier to estimate using the xNC
variable of the joint distribution p̂(xC ,xNC), the camera
might end up focusing on parts of the scene which do not
contain objects of interest. Analogously, in the imitation
learning case, the policy occupancy measure will converge
to a part of the state space, which might not describe mean-
ingful behaviours.

Spurious correlations in model of transitions Figure 1
describes our setting from a probabilistic graphical model
point of view. We consider various settings in which a
non-causal information path corresponding to spurious cor-
relations is formed in the structural causal model (SCM) of
transitions (Fig. 1a). Fig. 1b illustrates the most general
setting where an arbitrary transition input (s, a, s′) is par-
titioned into the causal transition feature components x(c)

and x(nc) : (s, a, s′) = (x(c),x(nc)), whereby conditioning
on the x(nc) collider introduces a spurious correlation path.
In Fig. 1c we can observe the scenario where we do not
condition the discriminator D(s) on the action. By con-
ditioning on the collider node st+1 and not observing the
action node at, a path is formed between the setting index
E and the optimality variable Ot, resulting in the violation
of their conditional independence relationship. A third sce-
nario can be observed in Fig. 1d. This scenario requires the
assumption that the orientation of the edge from node Ot to
node st+1 is temporally causal, meaning that the optimality
of a state at time t is a causal parent of the next state. In this
case, observing the collider node st+1 implies the following
conditional independence relationship: E ⊥̸⊥ Ot|st+1.

2Here, spuriousness is defined w.r.t. the output label

Algorithm 1 Causally invariant adversarial imitation learn-
ing (CIAIL)

Input: Expert trajectories De
E from settings e ∈ E

Initialize actor-critic πθ, Vϑ or soft actor-critic
πθ, Q

(j)
ς , Vϑ and discriminator Dψ

for t = 1 to Nrounds do
Collect trajectory buffer Dπ = {τi}i≤|Dπ| by execut-
ing the policy πθ
Update Dψ(s, a) via binary logistic regression by max-
imizing L(ψ, e) using tuple Dt = (DE ,Dπ):

L(ψ; e) = LBCE(ψ; e) + λ||∇ω|ω=1.0LBCE(ψ; e)||2

Compute logDψ(s, a, s
′) ∀(s, a, s′) ∈ D

1. (On-policy CIAIL): Update (πθ, Vϑ) using a con-
strained policy gradient method (e.g. PPO) using rψ
as reward
2. (Off-policy CIAIL): Update (πθ, Q

(j)
ς , Vϑ) using an

off-policy methods (e.g. SAC) using rψ as reward
end for

In order to apply this intuition in the desired context, we
must make the following assumption which has implications
on the necessary data and training procedure specifics.

Assumption 4.1. The data samples in the discriminator
training tuple at round k Dk stem from different settings
e ∈ Etr.

The assumption is motivated by the fact that in the IRMv1
formulation, no explicit environment specification is neces-
sary to perform the optimization and obtain invariant fea-
tures. For the problem we are considering, this assumption
is satisfied in two cases. The first case necessitates a varied
set of expert demonstrations De

E where e denotes the setting
index. This scenario is quite common as the expert demon-
strations from multiple sources are typically pooled into one
dataset. The second case corresponds to a setting where the
policy set of transitions Dπ contains transitions gathered
over multiple policy optimization episodes. This setting cor-
responds to off-policy reinforcement learning methods such
as Soft Actor-Critic (SAC) (Haarnoja et al., 2018), where
the replay buffer contains rollouts of policies from previous
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Table 1: Policy rollout results using ground truth reward for 2d navigation environment (MovePoint) with varying
regularization strength and number of discriminator updates. Expert reference: -23665.025±2264.521

nupdates irm: λ = 0.01 irm: λ = 0.1 irm: λ = 1.0 irm: λ = 10.0 erm

GAIL

1 -24747.54±4386.43 -25702.6±3534.82 -24732.45±3270.27 -22836.3±3240.09 -26703.01±4607.2

2 -27169.45±4005.41 -28277.35±4534.81 -32413.52±4023.55 -27741.34±4692.81 -22320.1±2181.62

5 -25339.01±3560.01 -28124.89±5341.83 -33132.36±6205.38 -28396.54±2183.32 -30267.07±4701.83

10 -36217.57±5066.6 -34263.65±6112.41 -29385.81±3815.97 -34222.82±5145.31 -33012.71±5759.67

AIRL

1 -29958.88±4681.55 -34682.4±4199.57 -33810.05±5590.15 -30720.46±4385.96 -30003.58±2758.92

2 -42563.59±5112.57 -30877.76±4797.0 -31796.58±4120.83 -45376.83±9748.12 -34177.21±6388.29

5 -34297.02±6927.63 -39084.49±7758.24 -33692.61±6301.28 -43255.18±6108.74 -42262.5±6552.44

10 -33756.08±5623.63 -40828.81±6786.65 -38408.9±6991.46 -30690.02±4484.04 -35218.11±3468.91

optimization rounds.

Algorithm We outline the proposed algorithm in 1. The
algorithm introduces two novel aspects to the adversarial
imitation learning pipeline. The first is a straightforward
application of the IRMv1 penalty to the discriminator binary
cross-entropy loss. This can be applied to both the on-policy
and the off-policy formulations of the algorithm. The on-
policy formulation utilizes the Proximal Policy Optimization
(PPO) (Schulman et al., 2017) algorithm for policy training.
The introduction of an off-policy algorithm, Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) is the second addition.
The use of an off-policy algorithm has previously been
explored in (Kostrikov et al., 2018) for the purposes of
sample efficiency. In our case, the off-policy formulation is
one of the scenarios which satisfies 4.1.

5. Experiments
In order to evaluate our method empirically, we propose to
conduct two different experiments. In both experiments, we
compare the performance of the proposed regularization ap-
plied to two well-established adversarial imitation learning
baselines: GAIL (Ho & Ermon, 2016) and AIRL (Fu et al.,
2017).

5.1. 2d goal navigation

The first task consists of a simple two-dimensional goal nav-
igation problem (MoveP-v0) defined on states given by the
concatenation of Cartesian coordinates of the agent and the
target and imbued with a discrete action space correspond-
ing to the movement directions. The 10 expert trajectories
used in training are obtained by sampling a policy trained
on the ground truth reward defined as the Euclidean distance
to target. In order to simulate the fact that experts stem from
different settings, we introduce an intermediate goal which
varies across the experts. Here, we limit our evaluation to

the on-policy version of algorithm 1. The regularization co-
efficient λ is varied in the range λ ∈ {0.01, 0.1, 1.0, 10.0}
and the number of discriminator updates is varied in the
range n ∈ {1, 2, 5, 10}. The results are summarized in Ta-
ble 1. We can observe that applying the causal invariance
penalty has a consistent positive effect when evaluating the
rollout performance of the policies.

5.2. MuJoCo robot locomotion

The second setting is a subset of MuJoCo robot locomo-
tion tasks. Here, we evaluate both the on-policy and the
off-policy formulations of the presented algorithm. In Table
2, we can observe that for both policy learning algorithms,
regularizing the discriminator significantly improved the
cumulative ground truth reward metric obtained by rolling
out the learned policies. In particular, we observe a dramatic
improvement for the case where the off-policy algorithm
(SAC) is used for policy optimization, which validates our
assumption 4.1. Our algorithm also favorably compares to
an existing gradient penalty regularization method which is
based on the convex combination of inputs (mixup) (Car-
ratino et al., 2020) denoted by the GP suffix in Table 2.

6. Discussion
In this work, we have presented a novel algorithm which
introduces a causal invariance regularization objective to
adversarial imitation learning. We have observed its efficacy
in a number of settings and described scenarios which ben-
efits from its application. Future work includes extending
these preliminary results to the image domain and a more
in depth comparison to existing regularization techniques
some of which have recently been interpreted through a
causal lens. While the emprical evaluation seems to indicate
a strong benefit of the method, a more thorough theoretical
analysis of the distribution shift of the discriminator input
would be beneficial. Furthermore, a stronger link between
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Table 2: Policy rollout results using ground truth reward for MuJoCo environments. The GP suffix corresponds to the
gradient penalty regularization with regularization coefficient λGP = 50.0 and IRM suffix to the IRM regularization with

coefficient λIRM = 50.0. The algorithms were trained on 10 expert trajectories with the following recorded rollout
performance: Ant-v3: 4303.532±1553.060, HalfCheetah-v3: 9018.685±125.446, Hopper-v3: 1709.923±859.010, Walker2d-v3:

3984.531±64.259

Environment GAIL-ERM GAIL-GP GAIL-IRM AIRL-ERM AIRL-GP AIRL-IRM

SAC

Ant-v3 2163.28±1835.18 3292.43±1365.91 4291.28±1243.44 361.35±218.897 9.69±3.89 2010.191±2170.729

HalfCheetah-v3 941.69±382.93 1983.39±382.93 2352.82±733.15 2666.90±515.74 2849.03±367.74 3450.245±1465.968

Hopper-v3 3079.70±951.30 2819.37±983.72 3315.53 ±956.21 3581.49±39.04 728.96±324.067 3770.767±61.337

Walker2d-v3 3128.51±1452.83 3076.22±1275.81 3705.04±1068.60 2355.69±646.41 1538.38±1070.435 4213.480±58.596

PPO

Ant-v3 18.483±12.318 -28.1±100.89 26.326±20.265 48.650423±9.492 8.43±11.92 73.427±21.424

HalfCheetah-v3 2577.173 ±1324.064 4117.92±1214.57 2788.065±1015.200 571.990±223.634 52.01±137.43 976.267 ±1365.386

Hopper-v3 2859.980±1114.946 2708.60±976.71 3173.536 ±923.694 170.987±60.603 45.01 ±40.98 1421.980 ±1523.009

Walker2d-v3 2648.653 ±1128.649 1945.99±781.85 3443.572±1032.796 24.773±5.793 2.91±3.74 1361.887 ±1642.685

spurious correlations and reward hacking behaviours should
be established.
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