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Abstract

Brain age prediction models have succeeded in predicting clinical outcomes in
neurodegenerative diseases, but can struggle with tasks involving faster progress-
ing diseases and low quality data. To enhance their performance, we employ a
semi-supervised diffusion model, obtaining a 0.83(p<0.01) correlation between
chronological and predicted age on low quality T1w MR images. This was compet-
itive with state-of-the-art non-generative methods. Furthermore, the predictions
produced by our model were significantly associated with survival length (r=0.24,
p<0.05) in Amyotrophic Lateral Sclerosis. Thus, our approach demonstrates the
value of diffusion-based architectures for the task of brain age prediction.

1 Introduction

Brain age prediction refers to the task of predicting an individual’s age using neuroimaging data [1].
As individuals age, various brain structures and functions degrade; which lead to negative health
outcomes [2]–[7]. These changes do not occur at the same rate across people, such that individuals
may have the same chronological age but different brain ages [8]. This disparity is particularly
present in neurodegenerative diseases such as: Alzheimer’s Disease (AD) and Multiple Sclerosis
(MS). In such diseases, an older appearing brain has been associated with: disease status, higher risk
of mortality, the speed of disease progression, and disease related genetic markers [9]–[12].

However, the brain age paradigm has seen limited application to amyotrophic lateral sclerosis (ALS)
[13]. ALS, is one of the rarest and fastest progressing neurodegenerative diseases; with a median
survival time (time from diagnosis to death) of only 3 years [14]. With such a short time-window for
the most significant ageing related brain changes to occur, effective brain age models for ALS need
to be particularly sensitive to ageing related neuroanatomical changes. One study demonstrated that
individuals with cognitive and behavioural symptoms but not motor impairment have an association
with a higher brain age; this further outlines the subtlety of the relationship between neuroanatomical
ageing and ALS [13]. Additionally, brain age models are often trained on high quality (research
grade) data, which reduces their wider applicability in real-world settings where the quality of data is
lower (clinical grade); this is particularly true for rare diseases like ALS.

Generative models may offer a solution, as they have demonstrated great capabilities in capturing
latent factors within an image (e.g., ageing) and produce representations which are robust to data
quality [15]–[22]. In particular, diffusion models have demonstrated image synthesis capabilities well
beyond previous approaches [23]–[25].

In this work, we present a novel brain age prediction architecture which leverages the representation
learning capabilities of diffusion autoencoders [17]. Our approach produces representations which
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Figure 1: The Model architecture. First the image, x0 goes through the forward process q(x1:T |x0),
to produce xT . The reverse process, pθ(x0:T|zsem) then reconstructs the image conditioned on the
semantic latent, produced by sϕ(x0). Finally, the age predictor, fψ(zsem) predicts an individual’s age,
ŷ.

are robust to data quality, and conditioned on the neuroanatomical effects of ageing. This results in
predictions which are accurate on clinical-grade data and associated with mortality in ALS disease at
a level which surpasses non-generative approaches.

2 Background

2.1 Diffusion Models

Diffusion models allow us to approximate a data distribution, q(x0), with a learnt distribution, pθ(x0),
via a latent variable model which takes the form:

pθ(x0) =

∫
pθ(x0:T )dx1:T , where pθ(x0:T ) := pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt) (1)

Where the latents x1, ...,xT share the same dimensions as our training data x0 ∼ q(x0) [15], [16],
[26]. As denoted above, the transitions between latents are defined as a Markov chain beginning at a
prior p(xT ) = N (xT ; 0, I) and ending at our model distribution pθ(x0). We call this joint distribution,
pθ(x0:T ), the reverse process. In contrast to most latent variable models, the approximate posterior
q(x1:T |x0) is predefined as another Markov chain, that we call the forward process. This process
destroys the structure of our data, x0, via the gradual addition of Gaussian noise, defined as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (2)

Where β1, ..., βT are scalars which enforce a variance schedule. The reverse process, pθ(x0:T ),
denoises our image following the forward process, q(x1:T |x0), to recover our data distribution. Our
model, pθ(x0), may be trained by minimising a variational lower bound on negative log likelihood:

E [− log pθ(x0)] ≤ Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq [− log pθ(x0:T )− log q(x1:T |x0)] (3)

At time t, the approximate posterior is another Gaussian, q(xt|x0) = N (
√
αtx0, (1− αt)I), where

αt =
∏t
s=1(1− βs). Thus, the noised image at time t can be expressed as xt =

√
αtx0 +

√
1− αtϵ

where ϵ ∼ N (0, I). This allows us to simplify our objective, by learning a model, ϵ(t)θ (xt), which
predicts the sampled noise, ϵ, based on xt and t. This holds provided that our noised image at time t

2



Table 1: Results of brain age prediction. The first three rows are different metrics demonstrating
the accuracy of the brain age predictions on an external dataset. The final row is the relationship
(again Pearson’s r) between the brain-PADs and survival in months (time from scan to death) on ALS
patients. Significant relationships are displayed in bold.

OUR MODEL DENSENET 121[27] BRAINAGER[28] DEEPBRAINNET[29]

TEST R 0.83(P<0.001) 0.83(P<0.001) 0.46(P<0.001) 0.81(P<0.001)
TEST MAE 5 YEARS 8.63 YEARS 11.7 YEARS 5.55 YEARS
TEST R2 0.65 0.12 -1.14 0.56
ALS SURVIVAL 0.24(P<0.05) -0.05 (P=0.61) 0.17 (P=0.14) -0.12 (P=0.28)

Table 2: Results of Two-Sample Kolmogorov-Smirnov tests for significance between the PADs
produced by our model and those produced by other models. Significant results are displayed in bold.

OUR MODEL DENSENET 121[27] BRAINAGER[28] DEEPBRAINNET[29]

MEAN -6.19 -1.60 -19.17 -1.13
STD 27.29 7.74 10.97 8.06
KS STATISTIC 0.32(P<0.05) 0.47(P<0.001) 0.31(P<0.05)

is assumed to be Gaussian with a fixed variance according to αt and a learnable mean admitting the
following loss (see [16] for the full derivation):

L :=

T∑
t=1

Ex0∼q(x0),ϵt∼N (0,I)

[
∥ϵ(t)θ (

√
αtx0 +

√
1− αtϵt)− ϵt∥22

]
(4)

2.2 Diffusion Autoencoders

Diffusion autoencoders modify diffusion models by conditioning the reverse process on a latent,
zsem ∈ Rd where x0 ∈ RD and d ≪ D. This latent is output by a semantic encoder, sϕ(x0) : RD →
Rd, that is distinct from our noise predictor, ϵtθ(xt). The modified reverse process takes the form:

p(x0:T |zsem) = p(xT )

t=T∏
t=1

p(xt−1|xt, zsem) (5)

By conditioning the reverse process on a semantic latent, diffusion autoencoders force the stochasticity
contained within the image to be modelled by our forward process, q(xt|x0) [17]. Whilst the
semantically meaningful information is forced into our latent zsem, this leads to rich representations
which allow for accurate predictions in the present context.

3 Method

Our model fuses a diffusion autoencoder with an age predictor network, fψ(zsem) : Rd → R+ which
predicts an individual’s age based on the latent representation, zsem of their brain image, x0. The
model takes as input a batch of images sampled from a dataset q(X ) =

{
x0,i

}N
i=1

where x0,i ∈ RD.
The images are accompanied by age labels, Y =

{
yi
}

, where yi ∈ R+. First the image, x0, goes
through the forward process, q(x1:T |x0), to produce xT . The reverse process, pθ(x0:T |zsem), then
reconstructs the image conditioned on the semantic latent, zsem, produced by sϕ(x0). Finally, the age
predictor, fψ(zsem) predicts an individual’s age; see Figure 1 for visual intuition.

Our objective is a sum of two MSE losses. The first loss is modified version of Equation 4. With the
addition that the noise predictor ϵθ also takes as input zsem, at every time step. Whilst the second loss
is the standard MSE between predicted age and actual age:

LAGE =
1

N

N∑
i=0

(yi − ŷi)
2 (6)
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Figure 2: A Boxplot of the distribution of brain-PADs produced by different models on our ALS
dataset. Our model produces more variation within the brain-PADs of the ALS patients. Two-Sample
Kolmogrov Smirnov tests (Table 2) demonstrated that our brain-PADs were significantly different
from brain-PADs from the other three approaches .

Thus, the model receives direct supervision from the labels learnt by fψ(zsem) and receives self-
supervision via its generative arm, learnt by pθ(x0:T |zsem) making for a semi-supervised diffusion
model. The model is also semi-supervised in the classic sense of the term as unlabelled are used
when training to help condition our latent space. In those instances the image is run through the
model in the usual fashion without producing an age prediction fψ(zsem).

4 Results

We trained our model on 4631 2D T1w Magnetic Resonance Imaging (MRI) scans from 8 publicly
available datasets (mean age = 56 years, std = 20.9 years). For more details concerning the datasets
and pre-processing see Appendix B; for details concerning the network design and hardware see
Appendix D. Our test set comprised 473 2D T1w MR images (mean age = 68 years, std = 10 years),
100 % of which were clinical grade.

We achieved a test accuracy 0.83(p<0.01) measured as the Pearson’s r correlation coefficient between
predicted and chronological age (MAE = 5 years, R2 = 0.65). Table 1 displays our performance
compared to state-of-the-art brain age prediction methods, which demonstrates that we are competitive
with these approaches. The final row of Table 1 shows the correlation between the brain predicted
age difference (measured as predicted age minus chronological age) and survival in months in our
ALS patient group. This quantity is the biomarker typically used to characterise accelerated ageing
[1], [2].

The brain predicted age differences (brain-PADs) produced by our model are significantly correlated
with survival in months for 72 patients with ALS disease (mean age = 61 years, std = 10.9 years).
The other standard approaches did not produce brain-PADs which were significantly associated with
this outcome. Table 2 shows that the brain-PADs produced by our method were significantly different
from the rest of the techniques; see Figure 2 for visual intuition.

5 Discussion

In this work, we present a novel diffusion based brain age prediction architecture. To our knowledge,
this is the first application of a class of diffusion model to this task. Our results demonstrate that our
approach is competitive with state-of-the-art brain age prediction models on a dataset completely
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composed of clinical-grade data. It exhibited a modest improvement over existing techniques,
achieving the joint highest Pearson correlation coefficient (r = 0.83, p < 0.01), the highest coefficient
of determination (R2 = 0.65), and the lowest mean absolute error (MAE) of 5 years.

Most importantly, the ALS brain-PADs produced by our method also capture more variance than
non-generative approaches in a statistically significant way; as displayed in the box plots shown
in Figure 2. This variation in brain-PADs was also significantly associated with survival time in
ALS, unlike non-generative approaches. This demonstrates that our method is sensitive to the subtle
relationship between ALS derived neuroanatomical changes and the ageing process. We posit that
our improved performance can be attributed to the capacity of diffusion based architectures, to
produce representations which are well conditioned on latent factors within an image, (e.g., the
neuroanatomical effects of ageing) and robust to data quality.

6 Future Work and Limitations

Although the association between the ALS brain-PADs and survival was significant, the results would
be better if the effect size were larger. However, the small sample size of ALS patients (n = 72)
certainly contributed to this. It is also interesting to note that the mean of the brain-PADs was
negative (−6.19 years), which is the opposite direction of what is expected. Future work should
use larger cohorts of ALS patients to see if the effect size of the association between PADs and
survival increases; as well as whether the brain-PADs remain mainly negative. The model may also
be augmented by including a separate ALS survival objective; but this of course requires more patient
data. It may also be extended to process 3D data and should be tested on other diseases such as: AD
and MS. We leave this to future work, and treat the present study as a preliminary exposition of our
approach to brain age prediction.

7 Related Work

Choi et al. [30] used a variational autoencoder to model age conditioned brain topography using
positron emission tomography data. The authors found that as they aged individuals with the model,
their predicted regional metabolic changes, were associated with their actual follow-up changes.
However, this approach was not able to make age predictions as age was required in-order to use the
model.

Mouches et al. [31] used an age conditioned autoencoder coupled with a brain age regressor, to
produce a model which can produce synthetic brain images of a particular age and perform brain age
predictions.

Zhao et al. [32] similarly combined an age regressor with a variational autoencoder, to model age
conditioned latent’s whilst producing brain age predictions. Although both approaches also used MRI
data, they were not applied to a patient dataset, so the significance of their approaches for disease
groups is unknown. Additionally they were trained solely on research-grade data so are unlikely to
generalise to clinical-grade scans.
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although alot of the data is available from public datasets, individuals must apply to the
relevant consortiums in order to have access. We have provided much detail concerning
the datasets in Appendix B, such that the relevant applications can be made if someone
wishes. We have however included code that can be used to train a model, (see the
Abstract). This can then be used to make predictions if the data is acquired.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Appendix D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider) [Yes] see Appendix D

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets?[N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Appendix

A Potential Negative Societal Impact

Brain age prediction is primarily used in order to make inferences about cognitive and neuroanatomical
decline. Although these predictions may aid in: clinical trial design, disease prognostication and
classification. One could imagine brain age prediction being used by bad actors to discriminate
against an individual based on their brain age. An example would be an insurance company who
would offer higher premiums for individuals with older looking brains. With that being said, we
anticipate that the clinical utility of this tool outweighs the likelihood of such events occurring.

B Dataset and Pre-processing

We curated one dataset for the task of standard brain age prediction and a separate dataset for ALS
survival analyses. Our brain age prediction dataset consisted of 4621 3D structural T1-weighted
MR images for training (mean age=56 years, std=20.9 years) and 473 3D structural T1-weighted
MR images for testing (mean age=68 years, std=10 years). All individuals included in training were
considered to be radiologically normal (of non-disease status). Our data were drawn from 8 publicly
available datasets. These were: the Open Access Series of Imaging Studies-1, the Australian Imaging,
Biomarker & Lifestyle Flagship Study of Ageing (AIBL), the Southwest University Adult Lifespan
Dataset, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the Dallas Lifespan
Brain Study, the Nathan Kline Insti- tute Rocklands Sample, the National Alzheimer’s Coordinating
Center and the Cambridge Centre for Ageing and Neuroscience study (Cam-CAN). Our ALS dataset
comprised 72 3D T1w MR images (mean age = 61 years, std=10.9 years) from the San Rafaele
Hospital in Milan. All images underwent the following pre-processing. The ANTS package was
used to conduct affine registrations of the images to the MNI 152 brain template, they were then
resampled to 130 × 130 × 130 resolution, Simple ITK was used to perform n4 bias field correcttion
and HD-BET was used to skull strip the images [33]–[35]. 2D medial axial slices were then taken
from the 3D volumes, which had their pixel values normalised to be between 0 and 1, after being
resized to 128 × 128 resolution.

C Network Design and Hardware

All model hyperparameters and architectural details were chosen heuristically. Our noise predictor
network ϵ

(t)
θ was a U-Net with the following design. The first convolutional layer expanded the input

from a single channel to 32. The tensor stayed at this channel depth for another three convolutional
layers. Following this, channel multipliers (2, 3, 4) were applied every 3 convolutional layers making
for a channel expansion of (32 → 32 → 32) → (32 → 32 → 32) → (64 → 64 → 64) → (96 → 96 →
96) → (128 → 128 → 128). Three attention blocks then followed, which received a flattened version
of the output; this formed the middle block of the U-Net. The upward path of the U-Net was simply
the exact reverse of the downward path with regard to channel expansion. Where the channels were
equal across the two U-Net paths, a residual connection sent information across. Group normalisation
followed each convolutional layer as well as the SiLU activation function. Our semantic encoder
network, sϕ(x0) was the downward path of the U-Net and the middle block. The semantic encoder,
output latent representations, zsem of dimension 512. The age predictor network, fψ(zsem), was an
MLP which consisted of two linear layers of size: (512 → 128 → 32) following these layers a final
layer mapped to the age. Between each layer was a ReLU, batch normalisation and 0.5 dropout.
There were 10.12 million parameters in total. All training was performed on an Nvidia GeForce RTX
4090 graphics card, with the Adam optimizer using PyTorch lightning [36] all model components
ϵ
(t)
θ (zsem), sϕ(x0) and fψ(zsem) were trained simultaneously.

D Network Design and Hardware

All model hyperparameters and architectural details were chosen heuristically. Our noise predictor
network ϵ

(t)
θ (x0) was a U-Net with the following design. The first convolutional layer expanded

the input from a single channel to 32. The tensor stayed at this channel depth for another three
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convolutional layers. Following this, channel multipliers (2, 3, 4) were applied every 3 convolutional
layers making for a channel expansion of (32 → 32 → 32) → (32 → 32 → 32) → (64 → 64 → 64)
→ (96 → 96 → 96) → (128 → 128 → 128). Three attention blocks then followed, which received a
flattened version of the output; this formed the middle block of the U-Net. The upward path of the
U-Net was simply the exact reverse of the downward path with regard to channel expansion. Where
the channels were equal across the two U-Net paths, a residual connection sent information across.
Group normalisation followed each convolutional layer as well as the SiLU activation function. Our
semantic encoder network, sϕ(x0) was the downward path of the U-Net and the middle block. The
semantic encoder, output latents, zsem of dimension 512. The age predictor network, fψ(zsem), was
an MLP which consisted of two linear layers of size: (512 → 128 → 32) following these layers a
final layer mapped to the age. Between each layer was a ReLU, batch normalisation and 0.5 dropout.
There were 10.12 million parameters in total. All training was performed on an Nvidia GeForce RTX
4090 graphics card, with the Adam optimizer using PyTorch lightning [36].

E Additional Results

Figure 3: Age Interpolations. In the first row, the image in the first column is that of a 25-year-old, we
then linearly interpolate between them and a 75-year-old (final column). The second row is the same
but reversed, from age 92 to age 20. The difference in data quality, across the two rows, exemplifies
the robustness of the model to varied data quality.
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Figure 4: Image Reconstructions. The images on the left columns are the original image, and the
images on the right columns are their reconstructed version.
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